Sample records for a-01 wetland treatment

  1. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volumemore » and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation

  2. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2003-03-01

    the treatment wetland is to biodegrade perchloroethylene, which is present in the groundwater as a contaminant. Contaminated water enters the...characterizing groundwater flow through a constructed treatment wetland, one can visualize the flow paths of water through various types of soil. With...flowing groundwater and are now appearing in drinking water wells. Since contamination originated from government practices at many of these sites

  3. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity ofmore » outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the

  4. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  5. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  6. Acidification of experimental wetlands: Effects on wetland productivity and survival of juvenile black ducks

    USGS Publications Warehouse

    Haramis, G.M.; Chu, D.S.; Bunck, C.M.; Mingo, T.M.; Schaffner, W.W.R.

    1997-01-01

    Six man-made wetlands (0.02 ha each) and pen-reared broods of American black ducks (Anas rubripes) were used to assess the effects of reduced pH on the quality of fish- free, palustrine habitat for brood rearing. Acid treatment was assigned randomly among newly constructed wetlands during April through June 1984-85, to simulate depressed pH from snowmelt and spring rain. Sampling of chlorophyll epiphytic growth, zooplankton and macroinvertebrates confirmed reduced productivity of acidified (pH 5.0) versus control (pH 6.8) wetlands. Primary productivity was particularly reduced in acidified wetlands in early spring as indicated by high water transparency and low chlorophyll a concentrations. Chlrophyll a concentrations showed treatment (p = 0.01) and date (p = 0.05) effects, but no interaction, and dry weight of epiphytic growth was lower (p = 0.03) in acidified versus control wetlands. Numbers of zooplankton were similar in experimental wetlands, although controls generally exceeded acidified wetlands in abundance; only a single treatment effect for cladocerans (p = 0.1) was detected. Sweep net samples yielded greater numbers (p = 0.03), taxa (p = 0.01) and biomass (p = 0.07) of macroinvertebrates in control wetlands with gastropods, pelecypods and leeches notably reduced by acidification. Placement of 18 broods (female with four 10-day-old ducklings) for 10-day trials on experimental wetlands revealed limited growth, altered behaviour and marked reduction in survival of ducklings on acidified wetlands. An inadequate number of invertebrates is indicated as the cause for poor duckling productivity on acidified wetlands

  7. Treatment of atrazine in nursery irrigation runoff by a constructed wetland.

    PubMed

    Runes, Heather B; Jenkins, Jeffrey J; Moore, James A; Bottomley, Peter J; Wilson, Bruce D

    2003-02-01

    To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain.

  8. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    PubMed

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles <5 microm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the

  9. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.

    2005-01-01

    Constructed wetlands that mimic natural marshes have been used as low-cost alternatives to conventional secondary or tertiary wastewater treatment in the U.S. for at least 30 years. However, the general level of understanding of internal treatment processes and their relation to vegetation and habitat quality has not grown in proportion to the popularity of these systems. We have studied internal processes in surface-flow constructed wastewater-treatment wetlands throughout the southwestern U.S. since 1990. At any given time, the water quality, hydraulics, water temperature, soil chemistry, available oxygen, microbial communities, macroinvertebrates, and vegetation each greatly affect the treatment capabilities of the wetland. Inside the wetland, each of these components plays a functional role and the treatment outcome depends upon how the various components interact. Vegetation plays a uniquely important role in water treatment due to the large number of functions it supports, particularly with regard to nitrogen transformations. However, it has been our experience that vegetation management is critical for achieving and sustaining optimal treatment function. Effective water treatment function and good wildlife quality within a surface-flow constructed wetland depend upon the health and sustainability of the vegetation. We suggest that an effective tool to manage and sustain healthy vegetation is the use of hummocks, which are shallow emergent plant beds within the wetland, positioned perpendicular to the water flow path and surrounded by water sufficiently deep to limit further emergent vegetation expansion. In this paper, we describe the use of a hummock configuration, in conjunction with seasonal water level fluctuations, to manage the vegetation and maintain the treatment function of wastewater-treatment wetlands on a sustainable basis.

  10. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    NASA Astrophysics Data System (ADS)

    Lacki, Michael J.; Hummer, Joseph W.; Webster, Harold J.

    1992-07-01

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs ( Rana clamitans) and pickerel frogs ( R. palustris), while species richness was due to the number of snake species found. The rich mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers ( Hyla crucifer). Whole-body assays of green frog and bullfrog ( R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; managanese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amphibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters.

  11. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2) are...

  12. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacki, M.J.; Hummer, J.W.; Webster, H.J.

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs (rana clamitans) and pickerel frogs (R. palustris), while species richness was due to the number of snake species found. The richmore » mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers (Hyla crucifer). Whole-body assays of green frog and bullfrog (R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; manganese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amplibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters. 35 refs., 4 tabs.« less

  13. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA)more » of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).« less

  14. Subsurface Treatment of Domestic Wastewater Using Single Domicile Constructed Wetlands

    NASA Astrophysics Data System (ADS)

    Aseltyne, T.; Steer, D.; Fraser, L.

    2001-05-01

    Analysis of one year of input versus output water quality monitoring data from nine household wastewater treatment wetlands in western Ohio indicates that these systems substantially reduce effluent loads delivered to the local watershed. Overall performance as measured by output water quality improvement varies widely between the nine systems despite their close proximity and identical design. These three-cell systems (septic tank with 2 subsurface wetland cells) are found to reduce biological oxygen demand (BOD) 70-98%, fecal coliform 60-99.9%, NH3 29-97%, Phosphorus 21-99.9% and total suspended solids (TSS) up to 97%. NO3/NO2 readings were only taken at the second wetland cell, but show that NO3/NO2 levels are at 0.005-5.01 mg/l and well below the USEPA standards for discharge from a wetland. On average, the pH of the wastewater increases from 6.6 at the septic tank to 8.7 at the wetland output. Nearly all the monitoring data indicate clear decreases in nutrient loads and bacteria though individual systems are found to non-systematically fail to meet EPA discharge guidelines for one or more of the monitored loads. Preliminary analysis of the data indicates a decrease in overall efficiency of the wetlands in April that may be related to seasonal factors. These systems will be monitored for the next three years in order to relate changing performance trends to seasonal variability.

  15. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  16. Are constructed treatment wetlands sustainable sanitation solutions?

    PubMed

    Langergraber, Guenter

    2013-01-01

    The main objective of sanitation systems is to protect and promote human health by providing a clean environment and breaking the cycle of disease. In order to be sustainable, a sanitation system has to be not only economically viable, socially acceptable and technically and institutionally appropriate, but it should also protect the environment and the natural resources. 'Resources-oriented sanitation' describes the approach in which human excreta and water from households are recognized as resource made available for reuse. Nowadays, 'resources-oriented sanitation' is understood in the same way as 'ecological sanitation'. For resources-oriented sanitation systems to be truly sustainable they have to comply with the definition of sustainable sanitation as given by the Sustainable Sanitation Alliance (SuSanA, www.susana.org). Constructed treatment wetlands meet the basic criteria of sustainable sanitation systems by preventing diseases, protecting the environment, and being an affordable, acceptable, and simple technology. Additionally, constructed treatment wetlands produce treated wastewater of high quality, which is fostering reuse, which in turn makes them applicable in resources-oriented sanitation systems. The paper discusses the features that make constructed treatment wetlands a suitable solution in sustainable resources-oriented sanitation systems, the importance of system thinking for sustainability, as well as key factors for sustainable implementation of constructed wetland systems.

  17. Wastewater treatment in a compact intensified wetland system at the Badboot: a floating swimming pool in Belgium.

    PubMed

    Van Oirschot, D; Wallace, S; Van Deun, R

    2015-09-01

    The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are

  18. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland

    USGS Publications Warehouse

    Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.

    2000-01-01

    A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.

  19. Hydrology and hydraulics of treatment wetlands constructed on drained peatlands

    NASA Astrophysics Data System (ADS)

    Postila, Heini; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    depth below 20 cm (or 10 cm). Two site it decreased at the depth of 40 cm, and at five sites, it was high at all depth investigated (down to 60-70 cm). The outflow proportion to inflow varied from 20 % to 97 %, which means that the part of the water infiltrated into the groundwater. Evaporation can explain part of the observed reduced water flow especially in dense tree stands. More than half of the wetlands contained also dry areas, meaning that treatment wetlands constructed on drained area have problems with even water distribution to the wetland. Ditches are also potential preferential flow paths and the shortest observed residence time was less than one day, but a much longer residence time was also recorded. The water flow in these treatment wetlands consequently occur only at the surface layer (0-20 cm) of peat, not deeper, or in the ditches, which may have impact on water purification results.

  20. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    NASA Astrophysics Data System (ADS)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  1. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems.

    PubMed

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  2. "Living off the land": resource efficiency of wetland wastewater treatment.

    PubMed

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  3. ``Living off the land'': resource efficiency of wetland wastewater treatment

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  4. Rejuvenating the Largest Treatment Wetland in Florida: Tracer Moment and Model Analysis of Wetland Hydraulic Performance

    NASA Astrophysics Data System (ADS)

    White, J. R.; Wang, H.; Jawitz, J. W.; Sees, M. D.

    2004-12-01

    The Orlando Easterly Wetland (OEW), the largest municipal treatment wetland in Florida, began operation in 1987 mainly for reducing nutrient loads in tertiary treated domestic wastewater produced by the city of Orlando. After more than ten years of operation, a decrease in total P removal effectiveness has occurred since 1999, even though the effluent concentration of the wetland has remained below the permitted limit of 0.2 mg/L,. Hydraulic inefficiency in the wetland, especially in the front-end cells of the north flow train, was identified as a primary cause of the reduced treatment effectiveness. In order to improve the hydraulic performance of the OEW and maintain its efficient phosphorus treatment, a rejuvenation program (including muck removal followed by re-vegetation) was initiated on the front-end cells of the north flow train in 2002. The effectiveness of this activity for the improvement of hydraulic performance was evaluated with a tracer test and subsequent moment and model analyses for the tracer resident time distribution (RTDs). Results were compared to similar tracer tests conducted prior to rejuvenation activities. The models included one-path tank-in-series (TIS), two-path TIS, one-dimensional transport with inflow and storage (OTIS), plug flow with dispersion (PFD), and plug flow with fractional dispersion (PFFD). The hydraulic performance was characterized by both wetland hydraulic efficiency and the spreading of tracers. The results demonstrated that the rejuvenation considerably improved the hydraulic performance in the restored area. Also presented is a comparison of the wetland response between both bromide and lithium tracers, and the determination of the complete moments of residence time distributions (RTD) in cell-network wetlands.

  5. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2002-03-01

    sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil

  6. Constructed wetlands for wastewater treatment: five decades of experience.

    PubMed

    Vymazal, Jan

    2011-01-01

    The first experiments on the use of wetland plants to treat wastewaters were carried out in the early 1950s by Dr. Käthe Seidel in Germany and the first full-scale systems were put into operation during the late 1960s. Since then, the subsurface systems have been commonly used in Europe while free water surface systems have been more popular in North America and Australia. During the 1970s and 1980s, the information on constructed wetland technology spread slowly. But since the 1990 s the technology has become international, facilitated by exchange among scientists and researchers around the world. Because of the need for more effective removal of ammonia and total nitrogen, during the 1990 s and 2000s vertical and horizontal flow constructed wetlands were combined to complement each other to achieve higher treatment efficiency. Today, constructed wetlands are recognized as a reliable wastewater treatment technology and they represent a suitable solution for the treatment of many types of wastewater.

  7. Effects of habitat management treatments on plant community composition and biomass in a Montane wetland

    USGS Publications Warehouse

    Austin, J.E.; Keough, J.R.; Pyle, W.H.

    2007-01-01

    Grazing and burning are commonly applied practices that can impact the diversity and biomass of wetland plant communities. We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the U.S. Fish and Wildlife Service. Our study area was Grays Lake, a large, montane wetland in southeastern Idaho that is bordered by extensive wet meadows. We identified seven plant cover types, representing the transition from dry meadow to deep wetland habitats: mixed deep marsh, spikerush slough, Baltic rush (Juncus balticus), moist meadow, alkali, mesic meadow, and dry meadow. We compared changes in community composition and total aboveground biomass of each plant cover type between 1998, when all units had been idled for three years, and 1999 (1 yr post-treatment) and 2000 (2 yr post-treatment). Analysis using non-metric multidimensional scaling indicated that compositional changes varied among cover types, treatments, and years following treatment. Treatment-related changes in community composition were greatest in mixed deep marsh, Baltic rush, and mesic meadow. In mixed deep marsh and Baltic rush, grazing and associated trampling contributed to changes in the plant community toward more open water and aquatic species and lower dominance of Baltic rush; grazing and trampling also seemed to contribute to increased cover in mesic meadow. Changing hydrological conditions, from multiple years of high water to increasing drought, was an important factor influencing community composition and may have interacted with management treatments. Biomass differed among treatments and between years within cover types. In the wettest cover types, fall burning and grazing rotation treatments had greater negative impact on biomass than the idle treatment, but in drier cover types, summer grazing stimulated

  8. The integration of constructed wetlands into a treatment system for airport runoff.

    PubMed

    Revitt, D M; Worral, P; Brewer, D

    2001-01-01

    A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.

  9. Floating treatment wetlands for domestic wastewater treatment.

    PubMed

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  10. Design and hydrologic performance of a tile drainage treatment wetland in Minnesota, USA

    USDA-ARS?s Scientific Manuscript database

    Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters such as the Gulf of Mexico. A 0.10 ha wetland was designed,installed and monitored to treat subsurface drainage flow from farmland in Minnesota, USA. This project sought to deve...

  11. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  12. Porewater chemistry in a treatment wetland: links to metal retention and release

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Zhang, J.

    2011-12-01

    Constructed wetlands are gaining increased support for treatment of nonpoint source pollutants. A subsurface flow wetland treating runoff from an agricultural milkhouse floor and roof drainage has been monitored for metal removal. Influent dissolved concentrations from 5 to 30 ppb Cu and 60 to 800 ppb Zn were observed. Effluent concentrations of Zn were always lower from about 3 to 60 ppb Zn, however, Cu was typically around 10 ppb, and much larger at certain points in time, up to 95 ppb Cu. The results were similar in vegetated and non-vegetated wetlands, suggesting abiotic chemistry or microbial activity is controlling metal mobility. Porewater samples were taken using soil moisture lysimeters during both non-storm and storm events to examine metal and related chemistry with depth and distance in the wetland. Under non storm conditions, Cu and Zn average porewater concentrations were 64 and 250 ppb, respectively and did not vary much along the length of the wetland. During a storm event, Zn concentrations in the porewater initially increased near the inlet shortly after a storm, but typically decreased along the length and depth of the wetland to less than 60 ppb. Observed porewater Cu concentrations also increased near the inlet in some cases up to 700 ppb, but dropped rapidly with distance to less than 30 ppb near the middle of the wetland and increased again near the outlet. The dissolved Fe and Mn concentrations follow nearly opposite trends as Cu, increasing and then decreasing along the length of the wetland, suggesting possibly different roles in controlling Cu retention in each stage of the wetland, either co-precipitation with Cu initially, or reductive dissolution and release of Cu in later stages. An understanding of what controls metal retention and release is relevant to optimizing future design parameters of these wetlands.

  13. The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland

    USGS Publications Warehouse

    Andersen, D.C.; Sartoris, J.J.; Thullen, J.S.; Reusch, P.G.

    2003-01-01

    A 9.9-ha constructed wetland designed to reduce nitrogen in municipal wastewater following conventional secondary treatment began operating in southern California's San Jacinto Valley in September 1994. The wetland incorporated zones of bulrush (Schoenoplectus acutus and S. californicus) for effluent treatment, plus areas of 1.8-m deep open water and other features to benefit wintering waterfowl. A one-year long program to monitor bird use and evaluate their contribution to loadings of nitrogen and phosphorus was initiated seven months later and a second, four-month long period of monitoring was initiated after a 20-month hiatus. Daily bird use peaked at nearly 12,000 individuals during the second period. Estimates of maximum daily nitrogen and phosphorus input by birds were 139 g N ha−1 day−1 and 56 g P ha−1 day−1. Following a reconfiguration of the wetland that increased the area of open water, a third year-long period of monitoring was initiated in September 2000. Estimated maximum daily loading attributable to birds during this period reached 312 g N ha−1 day−1 and 124 g P ha−1 day−1. These levels represent only 2.6% and 7.0%, respectively, of the mean daily loads of N and P in inflow water from the wastewater-treatment plant. Wintering waterfowl contributed the most to nutrient loading, but the numerically dominant species was the colonial Red-winged Blackbird (Agelaius phoeniceus). The wetland's nutrient-removal efficiency was negatively correlated to bird loading. However, the greatest bird loading occurred during November to March, when winter conditions would reduce microbial nutrient-removal processes and plant uptake in the wetland. Multiple regression analysis indicated that variation in nutrient removal efficiency over a one-year period was best explained by wetland water temperature (R2 = 0.21) and that little additional insight was gained by adding bird loading and inflow nutrient load data (R2 = 0.22). This case study supports the

  14. On-site wastewater treatment using subsurface flow constructed wetlands in Ireland.

    PubMed

    Gill, Laurence W; O'Luanaigh, Niall; Johnston, Paul M

    2011-01-01

    The results from an Irish EPA-funded project on the effectiveness of using constructed wetlands for treating wastewater from single households is presented, which has contributed to the design guidelines included in the new EPA Code of Practice. Three subsurface flow gravel-filled wetlands were constructed on separate sites--one to provide secondary treatment and the other two to provide tertiary treatment stages for the domestic effluent. A comprehensive analysis over three years was then conducted to provide a robust characterization of the internal dynamics of the systems, particularly with respect to N and P removal as well as evaluating the temporal water balance across the different seasons. The removal of Total N was only 29% and 30% in the secondary and tertiary treatment wetlands, respectively; particularly disappointing for the tertiary treatment process, which was receiving nitrified effluent. Studies on the (15)N stable isotope confirmed that 35% of the ammonium from the septic tank was passing straight through the process without taking part in any biogeochemical processes. However, influent N in the wetlands was shown to be biologically assimilated into organic nitrogen and then released again as soluble ammonium--so-called nitrogen "spiraling." Removal of Total P in the wetlands averaged from 28% to 45% with higher P removals measured during summer periods, although the effluent concentrations were still found to be high (> 5 mg/l on average). The phosphorus in the plant material was also analysed revealing that the annual above-ground stem matter only accounted for 1.3% to 8.4% of the annual total P-load in the wetlands. Finally, the water balance analyses showed that the mean flow discharging from both the secondary and tertiary treatment wetlands was slightly greater than the mean flow to the reed bed over the trial period, with rainfall acting to increase flows by 13% and 5%, respectively, on average in winter while just about balancing

  15. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater.

    PubMed

    VanderZaag, A C; Gordon, R J; Burton, D L; Jamieson, R C; Stratton, G W

    2010-01-01

    Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an effective treatment option. During treatment, however, some C and N are converted to CH(4), N(2)O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH(4), N(2)O, and CO(2) emissions from surface flow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m(2) each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fluxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were significantly (p < 0.01) different between SF and SSF wetlands changed significantly with time. Overall, SF wetlands had significantly (p < 0.01) higher emissions of CH(4) N(2)O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N(2)O to CH(4) emissions (CO(2)-equivalent) was nearly 1:1 in both wetland types. Emissions of CH(4)-C as a percentage of C removal varied seasonally from 0.2 to 27% were 2 to 3x higher in SF than SSF wetlands. The ratio of N(2)O-N emitted to N removed was between 0.1 and 1.6%, and the difference between wetland types was inconsistent. Thus, N(2)O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH(4) while removing more C from the wastewater than SF wetlands.

  16. Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight.

    PubMed

    Felis, Ewa; Sochacki, Adam; Magiera, Sylwia

    2016-11-01

    Laboratory-scale experiments were performed using unsaturated subsurface-flow treatment wetlands and artificial sunlight (with and without TiO 2 ) to study the efficiency of benzotriazole and benzothiazole removal and possible integration of these treatment methods. Transformation products in the effluent from the treatment wetlands and the artificial sunlight reactor were identified by high performance liquid chromatography coupled with tandem mass spectrometry. The removal of benzothiazole in the vegetated treatment wetlands was 99.7%, whereas the removal of benzotriazole was 82.8%. The vegetation positively affected only the removal of benzothiazole. The major transformation products in the effluents from the treatment wetlands were methylated and hydroxylated derivatives of benzotriazole, and hydroxylated derivatives of benzothiazole. Hydroxylation was found to be the main process governing the transformation pathway for both compounds in the artificial sunlight experiment (with and without TiO 2 ). Benzotriazole was not found to be susceptible to photodegradation in the absence of TiO 2 . The integration of the sunlight-induced processes (with TiO 2 ) with subsurface-flow treatment wetlands caused further elimination of the compounds (42% for benzotriazole and 58% for benzothiazole). This was especially significant for the elimination of benzotriazole, because the removal of this compound was 96% in the coupled processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions shall...

  18. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions shall...

  19. Performance and cost evaluation of constructed wetland for domestic waste water treatment.

    PubMed

    Deeptha, V T; Sudarsan, J S; Baskar, G

    2015-09-01

    Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour.

  20. 7 CFR 1410.10 - Restoration of wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by CCC...

  1. Modeling Vertical Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency

    DTIC Science & Technology

    2011-03-24

    ammonia, such as landfill leachate and food processing wastes (Kadlec and Wallace, 2009). Figure 2: Typical Horizontal Subsurface Flow Treatment...51(9): 165-171, 2005. Williams, J.B. Phytoremediation in wetland ecosystems: Progress, problems, and potential. Critical Reviews in Plant Sciences

  2. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1) The...

  3. Hydraulic reliability of a horizontal wetland for wastewater treatment in Sicily.

    PubMed

    Marzo, A; Ventura, D; Cirelli, G L; Aiello, R; Vanella, D; Rapisarda, R; Barbagallo, S; Consoli, S

    2018-09-15

    The purpose of this study was to evaluate how the hydraulic behavior of a horizontal subsurface wetland (HF), that is part of the hybrid wetland (hybrid-TW) of the IKEA® store in Eastern Sicily (Italy), influences the overall wastewater treatment performance. The HF unit experiences frequent overloading peaks due to the extreme variability in the number of visitors at the store, and after 2 years of operation it showed signals of partial clogging at the inlet area. The hydraulics of the HF unit has been monitored through measurements of hydraulic conductivity at saturation (Ks), tracer tests, and geophysical (i.e. electrical resistivity tomography-ERT) measurements carried out during the years 2016 and 2017. Results indicated a general good agreement between the performed measurement techniques, thus their combination, if adequately performed and calibrated, might be a reliable tool for detecting those wetland areas mainly affected by clogging conditions. The results also indicated that partial clogging had no significant effect on the quality of the discharged water. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The role of sand, marble chips and Typha latifolia in domestic wastewater treatment - a column study on constructed wetlands.

    PubMed

    Kadaverugu, Rakesh; Shingare, Rita P; Raghunathan, Karthik; Juwarkar, Asha A; Thawale, Prashant R; Singh, Sanjeev K

    2016-10-01

    The relative importance of sand, marble chips and wetland plant Typha latifolia is evaluated in constructed wetlands (CWs) for the treatment of domestic wastewater intended for reuse in agriculture. The prototype CWs for the experiments are realized in polyvinyl chloride columns, which are grouped into four treatments, viz. sand (<2 mm) + Typha latifolia (cattail), sand, marble chips (5-20 mm) + cattail and marble chips. The removal percentage of organic and nutritional pollutants from the wastewater is measured at varying hydraulic retention time in the columns. The statistical analysis suggests that the main effects of sand and cattail are found to be significant (p < .05) for the removal of biological oxygen demand and chemical oxygen demand from the wastewater. The presence of cattail significantly (p < .01) contributes to the conversion of total nitrogen in wastewater into [Formula: see text] by fostering the growth of favorable microbes for the nitrification. The removal of [Formula: see text] and turbidity from the wastewater is significantly (p < .01) influenced by sand than the presence of cattail. The maximum [Formula: see text] adsorption capacity of the sand is estimated to be 2.5 mg/g. Marble chips have significantly (p < .01) influenced the removal of [Formula: see text]and its maximum removal capacity is estimated to be 9.3 mg/g. The negative correlation between the filter media biofilm and column hydraulic conductivity is also reported for all the treatments. Thus, the findings of this study elucidate the role of low-cost and easily available filter media and it will guide the environmental practitioners in designing cost-effective CWs for wastewater treatment.

  5. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    NASA Astrophysics Data System (ADS)

    Keefe, Steffanie H.; Daniels, Joan S. (Thullen); Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-11-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  6. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    USGS Publications Warehouse

    Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-01-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one‐dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start‐up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross‐sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short‐circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  7. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.

    PubMed

    Hadad, H R; Maine, M A; Bonetto, C A

    2006-06-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes.

  8. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  9. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.

  10. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  11. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  12. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  13. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  14. Free water surface wetlands for wastewater treatment in Sweden: nitrogen and phosphorus removal.

    PubMed

    Andersson, J L; Kallner Bastviken, S; Tonderski, K S

    2005-01-01

    In South Sweden, free water surface wetlands have been built to treat wastewater from municipal wastewater treatment plants. Commonly, nitrogen removal has been the prime aim, though a significant removal of tot-P and BOD7 has been observed. In this study, performance data for 3-8 years from four large (20-28 ha) FWS wetlands have been evaluated. Two of them receive effluent from WWTP with only mechanical and chemical treatment. At the other two, the wastewater has also been treated biologically resulting in lower concentrations of BOD7 and NH4+-N. The wetlands performed satisfactorily and removed 0.7-1.5 ton N ha(-1) yr(-1) as an average for the time period investigated, with loads between 1.7 and 6.3 ton N ha(-1)yr(-1). Treatment capacity depended on the pre-treatment of the water, as reflected in the k20-values for N removal (first order area based model). In the wetlands with no biological pre-treatment, the k20-values were 0.61 and 1.1 m month(-1), whereas for the other two they were 1.7 and 2.5 m month(-1). P removal varied between 10 and 41 kg ha(-1) yr(-1), and was related to differences in loads, P speciation and to the internal cycling of P in the wetlands.

  15. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.

    PubMed

    Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G

    2007-07-15

    A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.

  16. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil.

    PubMed

    Conkle, Jeremy L; Lattao, Charisma; White, John R; Cook, Robert L

    2010-09-01

    Significant amounts of pharmaceuticals are discharged into the environment through wastewater effluent. Sorption has been shown to be a significant aqueous removal pathway for many of these compounds. Competition between ciprofloxacin (CIP), ofloxacin (OFL) and norfloxacin (NOR) and their sorption to, and desorption from, a surrogate Louisiana wastewater treatment wetland soil were investigated to gain insight into the fate and transport of the pollutants within wastewater treatment wetlands. This study was undertaken in the context of a treatment wetland that continuously receives pharmaceuticals. Therefore it is important to understand the total capacity of this soil to sorb these compounds. Sorption to this treatment wetland soil was found to provide a major and potentially long-term removal pathway for these antibiotics from wastewater. LogK(F) values for all three compounds were between 4.09 and 3.90 for sorption and 4.24 and 4.05 microg(1-1/)(n)(cm(3))(1/)(n)g(-1) for desorption. The compounds were sorbed in amounts ranging from 60% to 90% for high and low loading, respectively. The majority of the compounds were sorbed to the soil within the first 20h, indicating that treatment wetland may not need long retention times (weeks to months) in order to remove these compounds. Sorption K(D) values for competition (20 ppm of each compound for 60 ppm of total fluoroquinolones) ranged from 2300 to 3800 cm(3)g(-1) which is between both the 20 (4300-5800 cm(3)g(-1)) and 60 (1300-3000 cm(3)g(-1)) ppm single compound K(D) values, indicating that there is competition between these three compound for sorption sites. Sorption and desorption data (single component and mixture) collectively provide the following evidence: (1) NOR and, to a lesser extent, CIP outcompete OFL for sorption sites, (2) OFL sorbes to its share of "quality" sorption sites, and (3) competition only occurs for lesser "quality" binding sites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  18. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.

    PubMed

    Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl

    2018-03-01

    An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

  19. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  20. [Feasibility of treatment of landfill leachates by external loop three phase fluidized bed-constructed wetland system].

    PubMed

    Zhang, Jin-Sheng; Yuan, Xing-Zhong; Zeng, Guang-Ming; Dong, Bei-Bei; Liang, Yun-Shan

    2009-11-01

    In this study, the system composed with the external loop fluidized bed reactor and constructed wetland was used to treat the landfill leachate. The change of water quality for the landfill leachate treated by this system was investigated. The experimental results indicated that the COD and NH4(+) -N of the influent reduced from 4000 mg x L(-1) and 300 mg x L(-1) to 1 500 mg x L(-1) and 150 mg x L(-1) after the external loop three phase fluidized bed reactor and steady at 200 mg x L(-1) and 10 mg x L(-1) behind treated by the constructed wetland. The heavy metals of Cd, Zn, Pb were also reduced for treatment by external loop three phase fluidized bed reactor. They were steady at 0.01 mg x L(-1), 0.5 mg x L(-1), 0.1 mg x L(-1) from 0.12 mg x L(-1), 3.0 mg x L(-1), 1.4 mg x L(-1) because of the constructed wetland. We also compared the different plants for the efficiency, the results showed that whatever plants, there was little effects on the efficiency of the COD and NH4(+) -N, but the effect of heavy metal was markedness.

  1. Performance of a half-saturated vertical flow wetland packed with volcanic gravel in stormwater treatment.

    PubMed

    Chen, Yaoping; Park, Kisoo; Niu, Siping; Kim, Youngchul

    2014-01-01

    A half-saturated pilot-scale wetland planted with Acorus calamus was built to treat urban stormwater. The design comprises a sedimentation tank for pretreatment, and a vertical flow volcanic gravel wetland bed equipped with a recirculation device. Eighteen rainfall events were monitored in 2012. The treatment system achieved total removal efficiencies of 99.4, 81, 50, and 86% for suspended solids, organic matter, nitrogen and phosphorus, respectively, and 29, 68, and 25% for copper, zinc, and lead, respectively, at a 3-day hydraulic residence time. In the wetland bed, the removal of ammonia, total nitrogen, and zinc were improved by recirculation. Plant uptake provided 18% of nitrogen removal and 39% of phosphorus removal. During the experimental stage, only 1.4% of the pore volume in substrate was reduced due to clogging, implying that the wetland can operate without clogging for a relatively long period.

  2. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  3. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    PubMed

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  4. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  5. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review.

    PubMed

    Vymazal, Jan

    2005-01-01

    Domestic and municipal sewage contains various pathogenic or potentially pathogenic microorganisms which, depending on species concentration, pose a potential risk to human health and whose presence must therefore be reduced in the course of wastewater treatment. The removal of microbiological pollution is seldom a primary target for constructed treatment wetlands (CWs). However, wetlands are known to act as excellent biofilters through a complex of physical, chemical and biological factors which all participate in the reduction of the number of bacteria. Measurement of human pathogenic organisms in untreated and treated wastewater is expensive and technically challenging. Consequently, environmental engineers have sought indicator organisms that are (1) easy to monitor and (2) correlate with population of pathogenic organisms. The most frequently used indicators are total coliforms, fecal coliforms, fecal streptococci and Escherichia coli. The literature survey of 60 constructed wetlands with emergent vegetation around the world revealed that removal of total and fecal coliforms in constructed wetlands with emergent macrophytes is high, usually 95 to > 99% while removal of fecal streptococci is lower, usually 80-95%. Because bacterial removal efficiency is a function of inflow bacteria number, the high removal effects are achieved for untreated or mechanically pretreated wastewater. Therefore, the outflow numbers of bacteria are more important. For TC and FC the outflow concentrations are usually in the range of 10(2) to 10(5) CFU/ 100 ml while for FS the range is between 10(2) and 10(4) CFU/ 100 ml. Results from operating systems suggest that enteric microbe removal efficiency in CWs with emergent macrophytes is primarily influenced by hydraulic loading rate (HLR) and the resultant hydraulic residence time (HRT) and the presence of vegetation. Removal of enteric bacteria follows approximately a first-order relationship.

  6. An assessment of the performance of municipal constructed wetlands in Ireland.

    PubMed

    Hickey, Anthony; Arnscheidt, Joerg; Joyce, Eadaoin; O'Toole, James; Galvin, Gerry; O' Callaghan, Mark; Conroy, Ken; Killian, Darran; Shryane, Tommy; Hughes, Francis; Walsh, Katherine; Kavanagh, Emily

    2018-03-15

    While performance assessments of constructed wetlands sites around the world have appraised their capacity for effective removal of organics, a large variance remains in these sites' reported ability to retain nutrients, which appears to depend on differences in design, operation and climate factors. Nutrient retention is a very important objective for constructed wetlands, to avoid eutrophication of aquatic environments receiving their effluents. This study assessed the performance of constructed wetlands in terms of nutrient retention and associated parameters under the humid conditions of Ireland's temperate maritime climate. A review of the performance of 52 constructed wetland sites from 17 local authorities aimed to identify the best performing types of constructed wetlands and the treatment factors determining successful compliance with environmental standards. Data analysis compared effluent results from constructed wetlands with secondary free surface flow or tertiary horizontal subsurface flow, hybrid systems and integrated constructed wetlands with those from small-scale mechanical wastewater treatment plants of the same size class. Nutrient concentrations in effluents of constructed wetlands were negatively correlated (p < .01) with specific area, i.e. the ratio of surface area and population equivalents. The latest generation of integrated constructed wetlands, which had applied design guidelines issued by the Department of the Environment, performed best. Storm management design features improved treatment performance of constructed wetlands significantly (p < .05) for total suspended solids concentrations and exceedance frequency of limit values for total nitrogen. Mechanical wastewater treatment plants, secondary free surface water and tertiary horizontal subsurface flow wetlands showed a very large variance in effluent concentrations for organic and nutrient parameters. E. coli numbers in effluents were lowest for integrated constructed

  7. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-10-01

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD 5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  8. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    NASA Astrophysics Data System (ADS)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  9. ASSESSING THE EFFECT OF ANTIBIOTICS ON THE RESISTANCE OF RESIDENT MICROBES IN WETLANDS CONSTRUCTED FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The use of constructed wetlands as a cost effective and environmentally friendly option for wastewater treatment is becoming more prevalent. These systems are championed as combining many of the benefits of tertiary treatment while also providing high quality wetland habitat as...

  10. Constructed Wetlands

    EPA Pesticide Factsheets

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  11. 7 CFR 1410.10 - Restoration of wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION RESERVE PROGRAM § 1410.10 Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for...

  12. 7 CFR 623.13 - Wetlands reserve plan of operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... wetland restoration activities and future management and easement monitoring in connection with the land... 7 Agriculture 6 2010-01-01 2010-01-01 false Wetlands reserve plan of operations. 623.13 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.13...

  13. 7 CFR 623.13 - Wetlands reserve plan of operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... wetland restoration activities and future management and easement monitoring in connection with the land... 7 Agriculture 6 2011-01-01 2011-01-01 false Wetlands reserve plan of operations. 623.13 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.13...

  14. Carbon sequestration in a surface flow constructed wetland after 12 years of swine wastewater treatment.

    PubMed

    Reddy, Gudigopuram B; Raczkowski, Charles W; Cyrus, Johnsely S; Szogi, Ariel

    2016-01-01

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in a marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbon content and organic matter turnover rate. To better understand system performance and carbon dynamics, we measured plant dry matter, decomposition rates and soil carbon fractions. Plant litter decomposition rate was 0.0052 g day(-1) (±0.00119 g day(-1)) with an estimated half-life of 133 days. The detritus layer accumulated over the soil surface had much more humin than other C fractions. In marsh areas, soil C extracted with NaOH had four to six times higher amounts of humic acid, fulvic acid and humin than soil C extracted by cold and hot water, HCl/HF, and Na pyruvate. In the pond area, humic acid, fulvic acid and humin content were two to four times lower than in the marsh area. More soil C and N was found in the marsh area than in the pond area. These wetlands proved to be large sinks for stable C forms.

  15. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow.

    PubMed

    Meutia, A A

    2001-01-01

    Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.

  16. Performance characterisation of a constructed wetland.

    PubMed

    Mangangka, Isri R; Egodawatta, Prasanna; Parker, Nathaniel; Gardner, Ted; Goonetilleke, Ashantha

    2013-01-01

    Performance of a constructed wetland is commonly reported as being variable due to the site specific nature of influential factors. This paper discusses the outcomes from an in-depth study which characterised the treatment performance of a wetland based on the variation in the runoff regime. The study included a comprehensive field monitoring of a well-established constructed wetland in Gold Coast, Australia. Samples collected at the inlet and outlet were tested for Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP). Pollutant concentrations in the outflow were found to be consistent irrespective of the variation in inflow water quality. The analysis revealed two different treatment characteristics for events with different rainfall depths. TSS and TN load reduction was found to be strongly influenced by the hydraulic retention time where performance was relatively superior for rainfall events below the design event. For small events, treatment performance was higher at the beginning of the event and gradually decreased during the course of the event. For large events, the treatment performance was comparatively poor at the beginning and improved during the course of the event. The analysis also confirmed the variable treatment trends for different pollutant types.

  17. Influence of wetland type, hydrology, and wetland destruction on aquatic communities within wetland reservoir subirrigation systems in northwestern Ohio

    USDA-ARS?s Scientific Manuscript database

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of two different types of wetlands adjacent to agricultural fields. Each WRSIS consists of one treatment wetland designed to process agricultural contaminants (...

  18. Propagation of Human Enteropathogens in Constructed Horizontal Wetlands Used for Tertiary Wastewater Treatment

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.

    2009-01-01

    Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this

  19. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Wetlands. 258.12 Section 258.12... Act or applicable State wetlands laws, the presumption that practicable alternative to the proposed... Species Act of 1973, and (iv) Violate any requirement under the Marine Protection, Research, and...

  20. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 258.12 Section 258.12... Act or applicable State wetlands laws, the presumption that practicable alternative to the proposed... Species Act of 1973, and (iv) Violate any requirement under the Marine Protection, Research, and...

  1. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 258.12 Section 258.12... Act or applicable State wetlands laws, the presumption that practicable alternative to the proposed... Species Act of 1973, and (iv) Violate any requirement under the Marine Protection, Research, and...

  2. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development.

    PubMed

    Vymazal, Jan

    2013-09-15

    The hybrid systems were developed in the 1960s but their use increased only during the late 1990 s and in the 2000s mostly because of more stringent discharge limits for nitrogen and also more complex wastewaters treated in constructed wetlands (CWs). The early hybrid CWs consisted of several stages of vertical flow (VF) followed by several stages of horizontal flow (HF) beds. During the 1990 s, HF-VF and VF-HF hybrid systems were introduced. However, to achieve higher removal of total nitrogen or to treat more complex industrial and agricultural wastewaters other types of hybrid constructed wetlands including free water surface (FWS) CWs and multistage CWs have recently been used as well. The survey of 60 hybrid constructed wetlands from 24 countries reported after 2003 revealed that hybrid constructed wetlands are primarily used on Europe and in Asia while in other continents their use is limited. The most commonly used hybrid system is a VF-HF constructed wetland which has been used for treatment of both sewage and industrial wastewaters. On the other hand, the use of a HF-VF system has been reported only for treatment of municipal sewage. Out of 60 surveyed hybrid systems, 38 have been designed to treat municipal sewage while 22 hybrid systems were designed to treat various industrial and agricultural wastewaters. The more detailed analysis revealed that VF-HF hybrid constructed wetlands are slightly more efficient in ammonia removal than hybrid systems with FWS CWs, HF-VF systems or multistage VF and HF hybrid CWs. All types of hybrid CWs are comparable with single VF CWs in terms of NH4-N removal rates. On the other hand, CWs with FWS units remove substantially more total nitrogen as compared to other types of hybrid constructed wetlands. However, all types of hybrid constructed wetlands are more efficient in total nitrogen removal than single HF or VF constructed wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  4. Constructed Wetlands for Wastewater Treatment and Wildlife Habitat: 17 Case Studies

    EPA Pesticide Factsheets

    This document provides brief descriptions of 17 wetland treatment systems from across the country that are providing significant water quality benefits while demonstrating additional benefits such as wildlife habitat.

  5. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 257.9 Section 257.9...; and (iv) Violate any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  6. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Wetlands. 257.9 Section 257.9...; and (iv) Violate any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  7. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 257.9 Section 257.9...; and (iv) Violate any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  8. The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes

    USGS Publications Warehouse

    Gray, J.L.; Sedlak, D.L.

    2005-01-01

    Recently, the estrogenic hormones 17??-estradiol (E2) and 17??-ethinyl estradiol (EE2) have been detected in municipal wastewater effluent and surface waters at concentrations sufficient to cause feminization of male fish. To evaluate the fate of steroid hormones in an engineered treatment wetland, lithium chloride, E2, and EE 2 were added to a treatment wetland test cell. Comparison of hormone and tracer data indicated that 36% of the E2 and 41% of the EE 2 were removed during the cell's 84-h hydraulic retention time (HRT). The observed attenuation was most likely the result of sorption to hydrophobic surfaces in the wetland coupled with biotransformation. Sorption was indicated by the retardation of the hormones relative to the conservative tracer. Biotransformation was indicated by elevated concentrations of the E2 metabolite, estrone. It may be possible to improve the removal efficiency by increasing the HRT or the density of plant materials.

  9. Phytoremediation of explosives in groundwater using innovative wetlands-based treatment technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, F.J.; Behrends, L.L.; Coonrod, H.S.

    1997-12-31

    Many army ammunition plants across the country have problems with groundwater contaminated with explosives. A field demonstration was initiated at the Milan Army Ammunition Plant near Milan, Tennessee early in 1996 to demonstrate the feasibility of treating contaminated groundwater with constructed wetlands. Two different systems were designed and installed. A lagoon system consisted of two cells in series with each cell having dimensions of 24 x 9.4 x 0.6 m (L x W x H). A gravel-bed system consisted of three gravel-beds operated in series with a primary anaerobic cell having dimensions of 32 x 11 x 1.4 m (Lmore » x W x H), followed by a pair of secondary cells each with dimensions of 5.5 x 11 x 1.4 m (L x W x H). The primary cell is maintained anaerobic by adding powdered milk to the water every two weeks. The secondary cells are maintained aerobic via reciprocation, whereby water is pumped back and forth from one cell to another to cause a recurrent fill and drain action. The lagoons were planted with sago pond weed, water stargrass, elodea, and parrot feather. The gravel-bed wetlands were planted with canary grass, wool grass, sweet flag, and parrot feather. Water began flowing to each of the wetland treatment systems at 19 L min{sup {minus}1} starting in June 1996. The design hydraulic retention time through each treatment system was approximately 10 days. Influent and effluent water samples were collected every 2 weeks. Intensive sampling of water interior to the wetlands occurred every 2 months.« less

  10. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013).

    PubMed

    Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2015-04-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems. Copyright © 2015. Published by Elsevier B.V.

  11. SEASONAL MONITORING OF ELEMENTS AT THREE CONSTRUCTED TREATMENT WETLANDS: 1999-2001

    EPA Science Inventory

    A suite of major, minor, and trace elements in sediment, pore water, and overlying water were monitored during winter and summer over a three year period at three different types of constructed treatment wetlands to evaluate their efficacy with season. Acid-volatile sulfide (AVS)...

  12. FGD liner experiments with wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigatedmore » the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.« less

  13. Use of Constructed Wetlands for Polishing Recharge Wastewater

    NASA Astrophysics Data System (ADS)

    Cardwell, W.

    2009-12-01

    The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter

  14. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent.

  15. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry.

    PubMed

    Ajaero, Chukwuemeka; Peru, Kerry M; Simair, Monique; Friesen, Vanessa; O'Sullivan, Gwen; Hughes, Sarah A; McMartin, Dena W; Headley, John V

    2018-08-01

    Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity. Copyright © 2018. Published by Elsevier B.V.

  16. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands.

    PubMed

    Berberidou, Chrysanthi; Kitsiou, Vasiliki; Lambropoulou, Dimitra A; Antoniadis, Αpostolos; Ntonou, Eleftheria; Zalidis, George C; Poulios, Ioannis

    2017-06-15

    The present study proposes an integrated system based on the synergetic action of solar photocatalytic oxidation with surface flow constructed wetlands for the purification of wastewater contaminated with pesticides. Experiments were conducted at pilot scale using simulated wastewater containing the herbicide clopyralid. Three photocatalytic methods under solar light were investigated: the photo-Fenton and the ferrioxalate reagent as well as the combination of photo-Fenton with TiO 2 P25, which all led to similar mineralization rates. The subsequent treatment in constructed wetlands resulted in further decrease of DOC and inorganic ions concentrations, especially of NO 3 - . Clopyralid was absent in the outlet of the wetlands, while the concentration of the detected intermediates was remarkably low. These findings are in good agreement with the results of phytotoxicity of the wastewater, after treatment with the ferrioxalate/wetlands process, which was significantly reduced. Thus, this integrated system based on solar photocatalysis and constructed wetlands has the potential to effectively detoxify wastewater containing pesticides, producing a purified effluent which could be exploited for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of Habitat Management Treatments on Plant Community Composition and Biomass in a Montane Wetland

    EPA Science Inventory

    We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the USGS. . . Our results il...

  18. A Framework for Wetlands Research: Development of a Wetlands Data Base

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Issues related to the assembly of a comprehensive global wetlands data base are presented. A strategy to collect relevant data for wetland ecosystems through remote sensing inventories of wetland distribution was discussed. Elements of a research program on biogenic gas fluxes were identified. The major wetland parameters and their functional importance to material exchange mechanisms are summarized.

  19. Treatment wetlands in decentralised approaches for linking sanitation to energy and food security.

    PubMed

    Langergraber, Guenter; Masi, Fabio

    2018-02-01

    Treatment wetlands (TWs) are engineered systems that mimic the processes in natural wetlands with the purpose of treating contaminated water. Being a simple and robust technology, TWs are applied worldwide to treat various types of water. Besides treated water for reuse, TWs can be used in resources-oriented sanitation systems for recovering nutrients and carbon, as well as for growing biomass for energy production. Additionally, TWs provide a large number of ecosystem services. Integrating green infrastructure into urban developments can thus facilitate circular economy approaches and has positive impacts on environment, economy and health.

  20. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property... of the Federal Emergency Management Agency as having special flood or mudslide hazards. This...

  1. Removal of Pharmaceutical Products in a Constructed Wetland

    PubMed Central

    Özengin, Nihan; Elmaci, Ayse

    2016-01-01

    Background There is growing interest in the natural and constructed wetlands for wastewater treatment. While nutrient removal in wetlands has been extensively investigated, information regarding the degradation of the pharmaceuticals and personal care products (PPCPs) has only recently been emerging. PPCPs are widely distributed in urban wastewaters and can be removed to some extent by the constructed wetlands. The medium-term (3-5 years) behavior of these systems regarding PPCP removal is still unknown. Objectives The efficiency of a Leca-based laboratory-scale constructed wetland planted with Phragmites australis (Cav.) Trin. Ex. Steudel in treating an aqueous solution of the pharmaceuticals, namely, carbamazepine, ibuprofen, and sulfadiazine, was to investigate. Materials and Methods The two pilot-scale constructed wetlands (CW) were operated in parallel; one as an experimental unit (a planted reactor with P. australis) and the other as a control (an unplanted reactor with Leca). Pretreatment and analyses of the carbamazepine, ibuprofen, sulfadiazine, and tissue samples (Leca, P. australis body and P.australis leaf) were conducted using HPLC. Results The carbamazepine, ibuprofen, and sulfadiazine removal efficiencies for the planted and unplanted reactors were 89.23% and 95.94%, 89.50% and 94.73%, and 67.20% and 93.68%, respectively. The Leca bed permitted an efficient removal. Leca has a high sorption capacity for these pharmaceuticals, with removal efficiencies of 93.68-95.94% in the unplanted reactors. Conclusions Sorption processes might be of a major importance in achieving efficient treatment of wastewater, particularly in the removal of organic material that are resistant to biodegradation, in which case the materials composing the support matrix may play an important role. The results obtained in the present study indicate that a constructed wetland with Leca as a substrate and planted with P. australis is effective in the treatment of wastewater

  2. Wetland-based passive treatment systems for gold ore processing effluents containing residual cyanide, metals and nitrogen species.

    PubMed

    Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L

    2013-10-01

    Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.

  3. Effect of a constructed wetland on disinfection byproducts: Removal processes and production of precursors

    USGS Publications Warehouse

    Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.

    2000-01-01

    The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.

  4. Hydraulic and hydrological aspects of an evapotranspiration-constructed wetland combined system for household greywater treatment.

    PubMed

    Filho, Fernando Jorge C Magalhães; Sobrinho, Teodorico Alves; Steffen, Jorge L; Arias, Carlos A; Paulo, Paula L

    2018-05-12

    Constructed wetlands systems demand preliminary and primary treatment to remove solids present in greywater (GW) to avoid or reduce clogging processes. The current paper aims to assess hydraulic and hydrological behavior in an improved constructed wetland system, which has a built-in anaerobic digestion chamber (AnC), GW is distributed to the evapotranspiration and treatment tank (CEvaT), combined with a subsurface horizontal flow constructed wetland (SSHF-CW). The results show that both the plants present in the units and the AnC improve hydraulic and volumetric efficiency, decrease short-circuiting and improve mixing conditions in the system. Moreover, the hydraulic conductivity measured on-site indicates that the presence of plants in the system and the flow distribution pattern provided by the AnC might reduce clogging in the SSHF-CW. It is observed that rainfall enables salt elimination, thus increasing evapotranspiration (ET), which promotes effluent reduction and enables the system to have zero discharge when reuse is unfeasible.

  5. Advantages of using subsurface flow constructed wetlands for wastewater treatment in space applications: Ground-based mars base prototype

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Alling, A.; Dempster, W. F.; van Thillo, M.; Allen, John

    Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens ™" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.

  6. Accumulation of contaminants in fish from wastewater treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Keefe, S.H.; Antweiler, Ronald C.; Taylor, Howard E.; Wass, R.D.

    2006-01-01

    Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p???-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58 000 and for the HOC ranged from 530 to 150 000. ?? 2006 American Chemical Society.

  7. Autochthonous and Allochthonous Carbon Cycling in a Eutrophic Flow-Through Wetland

    EPA Science Inventory

    Wetland environments are important sites for the cycling and retention of terrestrially derived organic matter and nutrients, the influx of which subsidizes wetland C sequestration, as well as fueling autochthonous C productivity. Wetland treatment of agricultural runoff has been...

  8. Feasibility of using ornamental plants in subsurface flow wetlands for domestic wastewater treatment

    Treesearch

    Marco A. Belmont

    2000-01-01

    Constructed wetlands are possible low-cost solutions for treating domestic and industrial wastewater in developing countries such as Mexico. However, treatment of wastewater is not a priority in most developing countries unless communities can derive economic benefit from the water resources that are created by the treatment process. As part of our studies directed at...

  9. Modeling natural wetlands: A new global framework built on wetland observations

    NASA Astrophysics Data System (ADS)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  10. Advantages of using subsurface flow constructed wetlands for wastewater treatment in space applications: ground-based Mars Base prototype.

    PubMed

    Nelson, M; Alling, A; Dempster, W F; van Thillo, M; Allen, John

    2003-01-01

    Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens (TM)" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  11. Comparison of grey water treatment performance by a cascading sand filter and a constructed wetland.

    PubMed

    Kadewa, W W; Le Corre, K; Pidou, M; Jeffrey, P J; Jefferson, B

    2010-01-01

    A novel unplanted vertical flow subsurface constructed wetland technology comprising three shallow beds (0.6 m length, 0.45 m width and 0.2 m depth) arranged in a cascading series and a standard single-pass Vertical Flow Planted Constructed Wetland (VFPCW, 6 m² and 0.7 m depth) were tested for grey water treatment. Particular focus was on meeting consent for published wastewater reuse parameters and removal of anionic surfactants. Treatment performance at two hydraulic loading rates (HLR) of 0.08, and 0.17 m³ m⁻² d⁻¹ were compared. Both technologies effectively removed more than 90% turbidity and more than 96% for organics with the prototype meeting the most stringent reuse standard of < 2 NTU and <10 mg/L. However, surfactant removal in the VFPCW was higher (76-85%) than in the prototype which only achieved more than 50% removal at higher loading rate. Generally, the prototype performed consistently better than the VFPCW except for surfactant removal. However, at higher loading rates, both systems did not meet the reuse standard of <1 mg L⁻¹ for anionic surfactants. This observation confirms that shallow beds provide a more oxidised environment leading to higher BOD₅ and COD removals. Presence of plants in the VFPCW led to higher anionic surfactant removal, through increased microbial and sorption processes.

  12. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  13. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    PubMed

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: 01μg/kg), 65% Alisma triviale (imidacloprid, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B

  14. Nitrate Attenuation Pathways and Capacity in Urban Wetlands of Phoenix, Arizona.

    NASA Astrophysics Data System (ADS)

    Handler, A. M.; Suchy, A. K.; Grimm, N. B.; Palta, M.; Childers, D. L.; Stromberg, J. C.

    2016-12-01

    In the urban Salt River channel of Phoenix, Arizona, stormwater pipes collect urban runoff that drains directly into the dry river bed, providing a new water source that sustains perennial wetlands. Water delivered by storm drains is enriched in nitrogen, particularly nitrate (NO3-), a common surface-water pollutant. However, these systems are not planned nor are they actively managed to reduce nitrogen loads. We investigated the microbial capacity of these wetlands to reduce nitrate concentrations by examining surface-water (SW) and subsurface porewater (PW) chemistry and conducting soil incubations from dominant wetland vegetation patches. Nitrate was higher in SW than PW (mean ± S.E.: 0.23 ± 0.05 vs. 0.03 ± 0.01 ppm N-NO3-) while ammonium (NH4+) was the opposite (0.11 ± 0.02 vs. 0.47 ± 0.10 ppm N-NH4+). Dissolved organic carbon (DOC) was abundant throughout the wetland (6.0 ± 0.9 ppm), but was significantly higher in vegetated patches compared to non-vegetated patches (t-test: p=0.04). These data indicate conditions that support microbial NO3- reduction persists, especially in vegetated patches. Laboratory incubations of wetland soil treated with a high (7 ppm) and low (1 ppm) dose of NO3- consumed 0.191 ± 0.022 and 0.019 ± 0.005 mg N-NO3- hr-1 kg wet soil-1, respectively. A best-fit model showed incubations with a higher starting NO3- concentration had a higher NO3- loss rate (standardized β=0.10 ± 0.01, p<0.001) and incubations from vegetated patches had a higher NO3- loss rate than those from open patches (β=0.02 ± 0.01, p=0.003). Across patches, NH4+ increased in the high treatment incubations (t-test: p<0.001), potentially indicating the presence of dissimilatory nitrate reduction to ammonium (DNRA). These results suggest the wetlands have the capacity to both remove nitrogen via denitrification and retain it via DNRA. This study indicates unplanned, unmanaged urban wetland systems have a high capacity to attenuate NO3- delivered from the urban

  15. Towards a Global Wetland Observation System: The Geo-Wetlands Initiative

    NASA Astrophysics Data System (ADS)

    Strauch, Adrian; Geller, Gary; Grobicki, Ania; Hilarides, Lammert; Muro, Javier; Paganini, Marc; Weise, Kathrin

    2016-08-01

    Wetlands are hot spots of biodiversity and provide a wide range of valuable ecosystem services, but at the same time they globally are one of the fastest declining and most endangered ecosystems. The development of a Global Wetland Observation System (GWOS) that is supported by the Ramsar Convention on Wetlands since 2007 is seen as a step towards improved capabilities for global mapping, monitoring and assessment of wetland ecosystems and their services, status and trends. A newly proposed GEO-Wetlands initiative is taking up this effort and developing the necessary governance and management structures, a community of practice and the necessary scientific and technical outputs to set up this system and maintain it over the long term. This effort is aiming at directly supporting the needs of global conventions and monitoring frameworks as well as users of wetland information on all levels (local to global) to build a platform that provides a knowledge-hub as a baseline for informed ecosystem management and decision-making.

  16. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  17. Insights to bioprocess and treatment competence of urban wetlands.

    PubMed

    Mahapatra, Durga Madhab; Joshi, N V; Ramachandra, T V

    2018-01-15

    Wetlands play a major role in the recharge of groundwater resources, maintenance of water quality (remediation), moderate microclimate while supporting local livelihood through provision of fish, fodder, etc. The present study aims to investigate algal-bacterial consortium as a function of residence time with the water quality dynamics in two major wetlands in Bangalore city, India. Over thirty-two genera of algae were recorded with more than 40 species in the lakes and two dominant bacterial assemblages. The higher Ammonium-N content favoured the growth of these members. Significant correlation was observed between the nutrient concentrations and the community structure at the inflows and the outflows. The algal community showed negative correlation to filterable COD and high nutrients levels while bacterial abundance was observed under high loadings. The green algae Chlorophyceae (Chlorella blooms), which are indicators of nutrient enrichment were observed predominantly, that needs an immediate attention. Higher overall treatment efficiency was observed in terms of CNP removal during the Pre-monsoon season attributed to absence of macrophytes cover and rapid growth of algal assemblage's due to higher temperature regimes with adequate solar insolation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Response of Aquatic Invertebrates to Ecological Rehabilitation of Southeastern USA Depressional Wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batzer, Darold P.; Taylor, Barbara E.; DeBiase, Adrienne E.

    We assessed aquatic invertebrate response to ecological rehabilitation treatment in 20 depression wetlands on the Savannah River Site, South Carolina, USA. All wetlands had been ditched for 50+ years. Sixteen of the 20 wetlands received rehabilitation treatment, and four wetlands remained untreated as a control group. Treatment included logging of all trees, plugging drainage ditches, and planting wetland trees and grasses. Hydroperiods were consequently extended in most of the treatment wetlands. As part a larger study, we sampled macroinvertebrates and microcrustaceans during the pre-habilitation (1998–2000) and rehabilitation (2001–2003) phases. Our study spanned 2 years of high rainfall (1998 and 2003)more » and 4 years of low rainfall (1999–2002). Samples were collected bimonthly from any wetlands holding water. Macroinvertebrate assemblages in treatment wetlands in 2003 had changed from previous years (1998–2002) and compared to control wetlands (1998–2003), with abundances of Baetidae, Coenagrionidae, Dytiscidae, Chironomidae, and Chaoboridae driving variation. For microcrustaceans (Copepoda and Branchiopoda, including Cladocera, Anostraca and Laevicaudata), assemblage composition and species richness responded mainly to hydrologic conditions. Rehabilitation efforts in these wetlands induced diverse and abundant invertebrate communities to develop, but some responses appeared opportunistic; several taxa that benefitted were not typical residents of depressional wetlands in the region.« less

  19. Response of Aquatic Invertebrates to Ecological Rehabilitation of Southeastern USA Depressional Wetlands

    DOE PAGES

    Batzer, Darold P.; Taylor, Barbara E.; DeBiase, Adrienne E.; ...

    2015-07-02

    We assessed aquatic invertebrate response to ecological rehabilitation treatment in 20 depression wetlands on the Savannah River Site, South Carolina, USA. All wetlands had been ditched for 50+ years. Sixteen of the 20 wetlands received rehabilitation treatment, and four wetlands remained untreated as a control group. Treatment included logging of all trees, plugging drainage ditches, and planting wetland trees and grasses. Hydroperiods were consequently extended in most of the treatment wetlands. As part a larger study, we sampled macroinvertebrates and microcrustaceans during the pre-habilitation (1998–2000) and rehabilitation (2001–2003) phases. Our study spanned 2 years of high rainfall (1998 and 2003)more » and 4 years of low rainfall (1999–2002). Samples were collected bimonthly from any wetlands holding water. Macroinvertebrate assemblages in treatment wetlands in 2003 had changed from previous years (1998–2002) and compared to control wetlands (1998–2003), with abundances of Baetidae, Coenagrionidae, Dytiscidae, Chironomidae, and Chaoboridae driving variation. For microcrustaceans (Copepoda and Branchiopoda, including Cladocera, Anostraca and Laevicaudata), assemblage composition and species richness responded mainly to hydrologic conditions. Rehabilitation efforts in these wetlands induced diverse and abundant invertebrate communities to develop, but some responses appeared opportunistic; several taxa that benefitted were not typical residents of depressional wetlands in the region.« less

  20. TREATMENT OF CHLORINATED VOLATILE ORGANIC COMPOUNDS IN UPFLOW WETLAND MESOCOSMS. (R828773C003)

    EPA Science Inventory

    Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundw...

  1. Albuquerque's constructed wetland pilot project for wastewater polishing

    Treesearch

    Michael D. Marcus; Shannon M. House; Nathan A. Bowles; Robert T. Sekiya; J. Steven Glass

    1999-01-01

    The City of Albuquerque has funded the Constructed Wetland Pilot Project (CWPP) since 1995 at the City's Southside Water Reclamation Plant (SWRP). Results from CWPP and other wetland treatment projects indicate that appropriately designed surface-flow wetlands could increase the cost-efficiencies of wastewater treatment, as well as help the City meet present and...

  2. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.

    2002-01-01

    The impact of three vegetation management strategies on wetland treatment function and mosquito production was assessed in eight free water surface wetland test cells in southern California during 1998–1999. The effectiveness of the strategies to limit bulrush Schoenoplectus californicus culm density within the cells was also investigated. Removing accumulated emergent biomass and physically limiting the area in which vegetation could reestablish, significantly improved the ammonia–nitrogen removal efficiency of the wetland cells, which received an ammonia-dominated municipal wastewater effluent (average loading rate=9.88 kg/ha per day NH4-N). We determined that interspersing open water with emergent vegetation is critical for maintaining the wetland's treatment capability, particularly for systems high in NH4-N. Burning aboveground plant parts and thinning rhizomes only temporarily curtailed vegetation proliferation in shallow zones, whereas creating hummocks surrounded by deeper water successfully restricted the emergent vegetation to the shallower hummock areas. Since the hummock configuration kept open water areas interspersed throughout the stands of emergent vegetation, the strategy was also effective in reducing mosquito production. Decreasing vegetation biomass reduced mosquito refuge areas while increasing mosquito predator habitat. Therefore, the combined goals of water quality improvement and mosquito management were achieved by managing the spatial pattern of emergent vegetation to mimic an early successional growth stage, i.e. actively growing plants interspersed with open water.

  3. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Walton, W.E.

    2002-01-01

    The impact of three vegetation management strategies on wetland treatment function and mosquito production was assessed in eight free water surface wetland test cells in southern California during 1998-1999. The effectiveness of the strategies to limit bulrush Schoenoplectus californicus culm density within the cells was also investigated. Removing accumulated emergent biomass and physically limiting the area in which vegetation could reestablish, significantly improved the ammonia - nitrogen removal efficiency of the wetland cells, which received an ammonia-dominated municipal wastewater effluent (average loading rate = 9.88 kg/ha per day NH4-N). We determined that interspersing open water with emergent vegetation is critical for maintaining the wetland's treatment capability, particularly for systems high in NH4-N. Burning aboveground plant parts and thinning rhizomes only temporarily curtailed vegetation proliferation in shallow zones, whereas creating hummocks surrounded by deeper water successfully restricted the emergent vegetation to the shallower hummock areas. Since the hummock configuration kept open water areas interspersed throughout the stands of emergent vegetation, the strategy was also effective in reducing mosquito production. Decreasing vegetation biomass reduced mosquito refuge areas while increasing mosquito predator habitat. Therefore, the combined goals of water quality improvement and mosquito management were achieved by managing the spatial pattern of emergent vegetation to mimic an early successional growth stage, i.e. actively growing plants interspersed with open water. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. A Constructed Wetland for Treatment of an Impacted Waterway and the Influence of Native Waterfowl on its Perceived Effectiveness

    EPA Science Inventory

    The performance of a constructed, variable-flow treatment wetland was evaluated for its ability to reduce bacterial loads from the Banklick Creek, an impacted recreational waterway in Northern Kentucky. Historically, culturable fecal indicator (coliforms and E. coli) bacteria me...

  5. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox.

    PubMed

    Avila, Cristina; Reyes, Carolina; Bayona, Josep María; García, Joan

    2013-01-01

    This study aimed at assessing the influence of primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and operational strategy (alternation of saturated/unsaturated phases vs. permanently saturated) on the removal of various emerging organic contaminants (i.e. ibuprofen, diclofenac, acetaminophen, tonalide, oxybenzone, bisphenol A) in horizontal subsurface flow constructed wetlands. For that purpose, a continuous injection experiment was carried out in an experimental treatment plant for 26 days. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturate/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line, wetlands had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium D(60) = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 25 mm/d and about 4.7 g BOD/m(2)d, respectively. The injection experiment delivered very robust results that show how the occurrence of higher redox potentials within the wetland bed promotes the elimination of conventional quality parameters as well as emerging microcontaminants. Overall, removal efficiencies were always greater for the batch line than for the control and anaerobic lines, and to this respect statistically significantly differences were found for ibuprofen, diclofenac, oxybenzone and bisphenol A. As an example, ibuprofen, whose major removal mechanism has been reported to be biodegradation under aerobic conditions, showed a higher removal in the batch line (85%) than in the control (63%) and anaerobic (52%) lines. Bisphenol A showed also a great dependence on the redox status of the wetlands, finding an 89% removal rate for the batch line, as opposed to the control and anaerobic lines (79 and 65%, respectively). Furthermore, diclofenac showed a greater

  6. Pollutant removal in a multi-stage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate.

    PubMed

    Rivas, A; Barceló-Quintal, I; Moeller, G E

    2011-01-01

    A multi-stage municipal wastewater treatment system is proposed to comply with Mexican standards for discharge into receiving water bodies. The system is located in Santa Fe de la Laguna, Mexico, an area with a temperate climate. It was designed for 2,700 people equivalent (259.2 m3/d) and consists of a preliminary treatment, a septic tank as well as two modules operating in parallel, each consisting of a horizontal subsurface-flow wetland, a maturation pond and a vertical flow polishing wetland. After two years of operation, on-site research was performed. An efficient biochemical oxygen demand (BOD5) (94-98%), chemical oxygen demand (91-93%), total suspended solids (93-97%), total Kjeldahl nitrogen (56-88%) and fecal coliform (4-5 logs) removal was obtained. Significant phosphorus removal was not accomplished in this study (25-52%). Evapotranspiration was measured in different treatment units. This study demonstrates that during the dry season wastewater treatment by this multi-stage system cannot comply with the limits established by Mexican standards for receiving water bodies type 'C'. However, it has demonstrated the system's potential for less restrictive uses such as agricultural irrigation, recreation and provides the opportunity for wastewater treatment in rural areas without electric energy.

  7. Atrazine remediation in wetland microcosms.

    PubMed

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  8. Nitrate reduction in a simulated free-water surface wetland system.

    PubMed

    Misiti, Teresa M; Hajaya, Malek G; Pavlostathis, Spyros G

    2011-11-01

    The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSS(COD)-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Performance Evaluation of Integrated Constructed Wetland for Domestic Wastewater Treatment.

    PubMed

    Sehar, Shama; Naz, Iffat; Khan, Sumera; Naeem, Sana; Perveen, Irum; Ali, Naeem; Ahmed, Safia

    2016-03-01

    Simple, budget friendly, laboratory-scale integrated constructed wetland (ICW) was designed to assess domestic wastewater treatment performance at a loading rate of 75 mm/d, planted with native plant species: Veronica-angallis aquatica and compared with non-vegetative control system at various residence times of 4, 8, 12, 16, 20, 24, and 28 days. Results revealed that the vegetated ICW demonstrated superior performance over non-vegetated control: 69.12 vs 17.12%, 67.77 vs 16.04%, 68 vs 16.48%, 71.19 vs 6.56%, 71.54 vs 14.80%, and 72.04 vs 11.41% for total dissolved solids, total suspended solids, phosphates (PO4(-)), sulfate (SO4(-)), nitrate (NO3(-)), and nitrite (NO2(-)), respectively, at 20 days residence times. Reduction in bacterial counts (2.79 × 10(4) CFU/mL) and fecal pathogens (345.5 MPN index/100 mL) was observed in V. aquatica at 20 days residence time. Therefore, the present study highlights not only the presence of vegetation but also appropriate residence time in constructed wetlands for better performances.

  10. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands.

    PubMed

    Hussein, Amjad; Scholz, Miklas

    2018-03-01

    The release of untreated dye textile wastewater into receiving streams is unacceptable not only for aesthetic reasons and its negative impacts on aquatic life but also because numerous dyes are toxic and carcinogenic to humans. Strategies, as of now, used for treating textile wastewaters have technical and economical restrictions. The greater part of the physico-chemical methods, which are used to treat this kind of wastewater, are costly, produce large amounts of sludge and are wasteful concerning some soluble dyes. In contrast, biological treatments such as constructed wetlands are cheaper than the traditional methods, environmental friendly and do not produce large amounts of sludge. Synthetic wastewater containing Acid Blue 113 (AB113) and Basic Red 46 (BR46) has been added to laboratory-scale vertical-flow construction wetland systems, which have been planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). The concentrations 7 and 208 mg/l were applied for each dye at the hydraulic contact times of 48 and 96 h. Concerning the low concentrations of BR46 and AB113, the unplanted wetlands are associated with significant (ρ < 0.05) reduction performances, if compared with planted wetlands concerning the removal of dyes. For the high concentrations of AB113, BR46 and a mixture of both of them, wetlands with long contact times were significantly (ρ < 0.05) better than wetlands that had short contact times in terms of dye, colour and chemical oxygen demand reductions. Regarding nitrate nitrogen (NO 3 -N), the reduction percentage rates of AB113, BR46 and a mixture dye of both of them were between 85 and 100%. For low and high inflow dye concentrations, best removals were generally recorded for spring and summer, respectively.

  11. Mass Balance of Fipronil and Total Toxicity of Fipronil-Related Compounds in Process Streams during Conventional Wastewater and Wetland Treatment

    PubMed Central

    2015-01-01

    Attenuation of the pesticide fipronil and its major degradates was determined during conventional wastewater treatment and wetland treatment. Analysis of flow-weighted composite samples by liquid and gas chromatography–tandem mass spectrometry showed fipronil occurrence at 12–31 ng/L in raw sewage, primary effluent, secondary effluent, chlorinated effluent, and wetland effluent. Mean daily loads of total fipronil related compounds in raw sewage and in plant effluent after chlorination were statistically indistinguishable (p = 0.29; n = 10), whereas fipronil itself was partially removed (25 ± 3%; p = 0.00025; n = 10); the associated loss in toxicity was balanced by the formation of toxic fipronil degradates, showing conventional treatment to be unfit for reducing overall toxicity. In contrast to these findings at the municipal wastewater treatment, both parental fipronil and the sum of fipronil-related compounds were removed in the wetland with efficiencies of 44 ± 4% and 47 ± 13%, respectively. Total fipronil concentrations in plant effluent (28 ± 6 ng/L as fipronil) were within an order of magnitude of half-maximal effective concentrations (EC50) of nontarget invertebrates. This is the first systematic assessment of the fate of fipronil and its major degradates during full-scale conventional wastewater and constructed wetland treatment. PMID:26710933

  12. Mass Balance Assessment for Six Neonicotinoid Insecticides During Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater

    PubMed Central

    2016-01-01

    Occurrence and removal of six high-production high-volume neonicotinoids was investigated in 13 conventional wastewater treatment plants (WWTPs) and one engineered wetland. Flow-weighted daily composites were analyzed by isotope dilution liquid chromatography tandem mass spectrometry, revealing the occurrence of imidacloprid, acetamiprid, and clothianidin at ng/L concentrations in WWTP influent (60.5 ± 40.0; 2.9 ± 1.9; 149.7 ± 289.5, respectively) and effluent (58.5 ± 29.1; 2.3 ± 1.4; 70.2 ± 121.8, respectively). A mass balance showed insignificant removal of imidacloprid (p = 0.09, CI = 95%) and limited removal of the sum of acetamiprid and its degradate, acetamiprid-N-desmethyl (18 ± 4%, p = 0.01, CI = 95%). Clothianidin was found only intermittently, whereas thiamethoxam, thiacloprid, and dinotefuran were never detected. In the wetland, no removal of imidacloprid or acetamiprid was observed. Extrapolation of data from 13 WWTPs to the nation as a whole suggests annual discharges on the order of 1000–3400 kg/y of imidacloprid contained in treated effluent to surface waters nationwide. This first mass balance and first United States nationwide wastewater reconnaissance identified imidacloprid, acetamiprid, and clothianidin as recalcitrant sewage constituents that persist through wastewater treatment to enter water bodies at significant loadings, potentially harmful to sensitive aquatic invertebrates. PMID:27196423

  13. Upland-wetland connectivity provides a significant nexus between isolated wetlands and downstream water bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2013-12-01

    Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of

  14. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland.

    PubMed

    Moore, M T; Cooper, C M; Smith, S; Cullum, R F; Knight, S S; Locke, M A; Bennett, E R

    2009-01-01

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides.

  15. A Review of the Recent Scientific Literature on Irrigation Induced and Enhanced Wetlands

    DTIC Science & Technology

    2014-08-01

    Wetlands Located near Salt Lake City, Utah. Bridging the Gap, 1-10. Champagne , P. 2007. Wetlands Natural Processes and Systems for Hazardous Waste...5) Water Quality Champagne , P. 2007. Wetlands Natural Processes and Systems for Hazardous Waste Treatment.189-256. The ability of natural

  16. Long-term investigation of constructed wetland wastewater treatment and reuse: Selection of adapted plant species for metaremediation.

    PubMed

    Saggaï, Mohamed Mounir; Ainouche, Abdelkader; Nelson, Mark; Cattin, Florence; El Amrani, Abdelhak

    2017-10-01

    A highly diverse plant community in a constructed wetland was used to investigate an ecological treatment system for human wastewater in an arid climate. The eight-year operation of the system has allowed the identification of a highly adapted and effective plant consortium that is convenient for plant-assisted metaremediation of wastewater. This constructed wetland pilot station demonstrated effective performance over this extended period. Originally, there were twenty-five plant species. However, because of environmental constraints and pressure from interspecific competition, only seven species persisted. Interestingly, the molecular phylogenetic analyses and an investigation of the photosynthetic physiology showed that the naturally selected plants are predominately monocot species with C4 or C4-like photosynthetic pathways. Despite the loss of 72% of initially used species in the constructed wetland, the removal efficiencies of BOD, COD, TSS, total phosphorus, ammonia and nitrate were maintained at high levels, approximately 90%, 80%, 94%, 60% and 50%, respectively. Concomitantly, the microbiological water tests showed an extremely high reduction of total coliform bacteria and streptococci, about 99%, even without a specific disinfection step. Hence, the constructed wetland system produced water of high quality that can be used for agricultural purposes. In the present investigation, we provide a comprehensive set of plant species that might be used for long-term and large-scale wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.

    2018-04-01

    Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.

  18. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  19. USE OF WETLANDS TO TREAT SEPTIC TANK EFFLUENT FROM A CONFERENCE FACILITY

    EPA Science Inventory

    The Grailville Retreat Center near Loveland, OH built a wastewater treatment wetland under an experimental permit from OEPA to eliminate overflow from a failing leach field. Grailville allowed the USEPA Risk Management Research Lab in Cincinnati to subdivide the wetland into fiv...

  20. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland.

    PubMed

    Boog, Johannes; Nivala, Jaime; Aubron, Thomas; Wallace, Scott; van Afferden, Manfred; Müller, Roland Arno

    2014-06-01

    In this study, a side-by-side comparison of two pilot-scale vertical subsurface flow constructed wetlands (6.2 m(2)×0.85 m, q(i)=95 L/m(2) d, τ(n)=3.5 d) handling primary treated domestic sewage was conducted. One system (VA-i) was set to intermittent aeration while the other was aerated continuously (VAp-c). Intermittent aeration was provided to VA-i in an 8 h on/4 h off pattern. The intermittently aerated wetland, VA-i, was observed to have 70% less nitrate nitrogen mass outflow than the continuously aerated wetland, VAp-c. Intermittent aeration was shown to increase treatment performance for TN while saving 33% of running energy cost for aeration. Parallel tracer experiments in the two wetlands showed hydraulic characteristics similar to one Continuously Stirred Tank Reactor (CSTR). Intermittent aeration did not significantly affect the hydraulic functioning of the system. Hydraulic efficiencies were 78% for VAp-c and 76% for VA-i. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Morphology of a Wetland Stream

    PubMed

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  2. Global wetlands: Potential distribution, wetland loss, and status.

    PubMed

    Hu, Shengjie; Niu, Zhenguo; Chen, Yanfen; Li, Lifeng; Zhang, Haiying

    2017-05-15

    Even though researchers have paid a great deal of attention to wetland loss and status, the actual extent of wetland loss on a global scale, especially the loss caused directly by human activities, and the actual extent of currently surviving wetlands remains uncertain. This paper simulated the potential distribution of global wetlands by employing a new Precipitation Topographic Wetness Index (PTWI) and global remote sensing training samples. The results show earth would have approximately 29.83millionkm 2 of wetlands, if humans did not interfere with wetland ecosystems. By combining datasets related to global wetlands, we found that at least 33% of global wetlands had been lost as of 2009, including 4.58millionkm 2 of non-water wetlands and 2.64millionkm 2 of open water. The areal extent of wetland loss has been greatest in Asia, but Europe has experienced the most serious losses. Wetland-related datasets suffer from major inconsistencies, and estimates of the areal extent of the remaining global wetlands ranged from 1.53 to 14.86millionkm 2 . Therefore, although it is challenging, thematic mapping of global wetlands is necessary and urgently needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Design, construction and performance of a horizontal subsurface flow wetland system in Australia.

    PubMed

    Bolton, Lise M W; Bolton, Keith G E

    2013-01-01

    Malabugilmah is a remote Aboriginal community located in Clarence Valley, Northern NSW, Australia. In 2006, seven horizontal subsurface flow wetland clusters consisting of 3 m × 2 m wetland cells in series were designed and constructed to treat septic tank effluent to a secondary level (Total Suspended Solids (TSS) < 30 mg/L and Biochemical Oxygen Demand (BOD5) <20 mg/L) and achieve >50% Total Nitrogen (TN) reduction, no net Total Phosphorus (TP) export and ≥99.9% Faecal Coliform (FC) reduction. The wetland cell configuration allowed the wetlands to be located on steeper terrain, enabling effluent to be treated to a secondary level without the use of pumps. In addition to the water quality targets, the wetlands were designed and constructed to satisfy environmental, economic and social needs of the community. The wetland systems were planted with a local Australian wetland tree species which has become well established. Two wetland clusters have been monitored over the last 4 years. The wetlands have demonstrated to be robust over time, providing a high level of secondary treatment over an extended period.

  4. Constructed wetlands for wastewater and activated sludge treatment in north Greece: a review.

    PubMed

    Tsihrintzis, V A; Gikas, G D

    2010-01-01

    Constructed wetlands used for the treatment of urban, industrial and agricultural wastewater have become very popular treatment systems all over the world. In Greece, these systems are not very common, although the climate is favourable for their use. During recent years, there have been several attempts for the implementation of these systems in Greece, which include, among others, pilot-scale systems used for research, and full-scale systems designed and/or constructed to serve settlements or families. The purpose of this paper is the presentation of systems operating in Northern Greece, which have been studied by the Laboratory of Ecological Engineering and Technology of Democritus University of Thrace and others. A comparison is made of different system types, and the effect of various design and operational parameters is presented. Current research shows the good and continuous performance of these systems.

  5. Treatment performances of French constructed wetlands: results from a database collected over the last 30 years.

    PubMed

    Morvannou, A; Forquet, N; Michel, S; Troesch, S; Molle, P

    2015-01-01

    Approximately 3,500 constructed wetlands (CWs) provide raw wastewater treatment in France for small communities (<5,000 people equivalent). Built during the past 30 years, most consist of two vertical flow constructed wetlands (VFCWs) in series (stages). Many configurations exist, with systems associated with horizontal flow filters or waste stabilization ponds, vertical flow with recirculation, partially saturated systems, etc. A database analyzed 10 years earlier on the classical French system summarized the global performances data. This paper provides a similar analysis of performance data from 415 full-scale two-stage VFCWs from an improved database expanded by monitoring data available from Irstea and the French technical department. Trends presented in the first study are confirmed, exhibiting high chemical oxygen demand (COD), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN) removal rates (87%, 93% and 84%, respectively). Typical concentrations at the second-stage outlet are 74 mgCOD L(-1), 17 mgTSS L(-1) and 11 mgTKN L(-1). Pollutant removal performances are summarized in relation to the loads applied at the first treatment stage. While COD and TSS removal rates remain stable over the range of applied loads, the spreading of TKN removal rates increases as applied loads increase.

  6. EVALUATION OF BIOREMEDIATION STRATEGIES OF A CONTROLLED OIL RELEASE IN A WETLAND

    EPA Science Inventory

    A controlled petroleum release was conducted to evaluate bioremediation in a wetland near Houston, Texas. The 140-day study was conducted using a randomized, complete block design to test three treatments with six replicates per treatment. The three treatment strategies were in...

  7. A Review of Wetland Remote Sensing.

    PubMed

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-04-05

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  8. A Review of Wetland Remote Sensing

    PubMed Central

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-01-01

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers. PMID:28379174

  9. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    PubMed

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparison of constructed wetland and stabilization pond for the treatment of digested effluent of swine wastewater.

    PubMed

    Liu, Gang-Jin; Zheng, Dan; Deng, Liang-Wei; Wen, Quan; Liu, Yi

    2014-01-01

    A laboratory-scale horizontal subsurface flow constructed wetland (HSFCW) and a stabilization pond (SP) were constructed to compare their performances on the treatment of digested effluent of swine wastewater. After 457 days of operation, the removal efficiencies of the HSFCW were as follows: chemical oxygen demand (COD), 17-54%; total phosphorus (TP), 32-45% and ammonia nitrogen [Formula: see text], 27-88%, while they were 25-55%, 31-56% and 56-98%, respectively, for the SP, with a hydraulic retention time of 54 days and hydraulic loading of 0.01 m³ m⁻² d⁻¹. The average removed loads for the HSFCW were as follows: COD, 0.25-4.33; TP, 0.01-0.11 and [Formula: see text], 0.34-2.54 g m⁻² d⁻¹, while they were 0.25-4.45, 0.02-0.13 and 0.72-2.87 g m⁻² d⁻¹, respectively, for the SP. The SP performed better than the HSFCW because the SP showed a 20% of higher removal efficiency for [Formula: see text] than the HSFCW. Especially, the COD removal rate of SP was 10% higher than the HSFCW when the influent concentration was at the lowest and highest stages. Meanwhile, given the lower costs, the SP is more suitable for the treatment of digested effluent of swine wastewater than the HSFCW.

  11. A wetland aquifer interaction test

    NASA Astrophysics Data System (ADS)

    Wise, W. R.; Annable, M. D.; Walser, J. A. E.; Switt, R. S.; Shaw, D. T.

    2000-01-01

    An understanding of the hydraulic connectivity between an isolated wetland and its underlying groundwater is required to help assess the ecological impact that changes in the groundwater level may induce. Literature values for the hydraulic conductivity of peat vary up to ten orders of magnitude, indicating the absolute necessity of obtaining site-specific information. Horizontal and vertical variability in peat layers makes the process of extrapolating point-based measurements to predict system-level behavior difficult. By inducing or augmenting a flow up from the underlying aquifer into the wetland through a rapid lowering of wetland water level, the system-level hydraulic connectivity of a wetland to the groundwater may be directly measured. At a study site, a small, seasonally flooded depression mash wetland in Florida, the method and subsequent analysis yielded a value for the hydraulic resistance of the organic layer of 6 days, indicating a significant connection between the wetland and the aquifer.

  12. Biogeochemial modeling of biodegradation and stable isotope fractionation of DCE in a small-scale wetland

    NASA Astrophysics Data System (ADS)

    Alvarez-Zaldívar, Pablo; Imfeld, Gwenaël; Maier, Uli; Centler, Florian; Thullner, Martin

    2013-04-01

    In recent years, the use of (constructed) wetlands has gained significant attention for the in situ remediation of groundwater contaminated with (chlorinated) organic hydrocarbons. Although many sophisticated experimental methods exist for the assessment of contaminant removal in such wetlands the understanding how changes in wetland hydrochemistry affect the removal processes is still limited. This knowledge gap might be reduced by the use of biogeochemical reactive transport models. This study presents the reactive transport simulation of a small-scale constructed wetland treated with groundwater containing cis-1,2-dichloroethene (cDCE). Simulated processes consider different cDCE biodegradation pathways and the associated carbon isotope fractionation, a set of further (bio)geochemical processes as well as the activity of the plant roots. Spatio-temporal hydrochemical and isotope data from a long-term constructed wetland experiment [1] are used to constrain the model. Simulation results for the initial oxic phase of the wetland experiment indicate carbon isotope enrichment factors typical for cometabolic DCE oxidation, which suggests that aerobic treatment of cDCE is not an optimal remediation strategy. For the later anoxic phase of the experiment model derived enrichment factors indicate reductive dechlorination pathways. This degradation is promoted at all wetland depths by a sufficient availability of electron donor and carbon sources from root exudates, which makes the anoxic treatment of groundwater in such wetlands an effective remediation strategy. In combination with the previous experimental data results from this study suggest that constructed wetlands are viable remediation means for the treatment of cDCE contaminated groundwater. Reactive transport models can improve the understanding of the factors controlling chlorinated ethenes removal, and the used model approach would also allow for an optimization of the wetland operation needed for a complete

  13. Spatiotemporal analysis of encroachment on wetlands: a case of Nakivubo wetland in Kampala, Uganda.

    PubMed

    Isunju, John Bosco; Kemp, Jaco

    2016-04-01

    Wetlands provide vital ecosystem services such as water purification, flood control, and climate moderation among others, which enhance environmental quality, promote public health, and contribute to risk reduction. The biggest threat to wetlands is posed by human activities which transform wetlands, often for short-term consumptive benefits. This paper aimed to classify and map recent land cover and provide a multi-temporal analysis of changes from 2002 to 2014 in the Nakivubo wetland through which wastewater from Kampala city drains to Lake Victoria in Uganda. The paper contributes through spatially congruent change maps showing site-specific land cover conversions. In addition, it gives insight into what happened to the wetlands, why it happened, how the changes in the wetlands affect the communities living in them, and how the situation could be better managed or regulated in future. The analysis is based on very high resolution (50-62 cm) aerial photos and satellite imagery, focus group discussions, and key informant interviews. Overall, the analysis of losses and gains showed a 62 % loss of wetland vegetation between 2002 and 2014, mostly attributable to crop cultivation. Cultivation in the wetland buffering the lake shore makes it unstable to anchor. The 2014 data shows large portions of the wetland calved away by receding lake waves. With barely no wetland vegetation buffer around the lake, the heavily polluted wastewater streams will lower the quality of lake water. Furthermore, with increased human activities in the wetland, exposure to flooding and pollution will be likely to have a greater impact on the health and livelihoods of vulnerable communities. This calls for a multi-faceted approach, coordination of the various stakeholders and engagement of wetland-dependent communities as part of the solution, and might require zoning out the wetland and restricting certain activities to specific zones.

  14. Simulation of Constructed Wetland in treating Wastewater using Fuzzy Logic Technique

    NASA Astrophysics Data System (ADS)

    Sudarsan, J. S.; Subramani, Sheekha; Rajan, Rajitha J.; Shah, Isha; Nithiyanantham, S.

    2018-04-01

    Constructed wetlands act as a natural alternative to conventional methods of wastewater treatment. CW are found effective in wastewater containing inorganic matter, organic matter, toxic compounds, metals, nitrogen, phosphorous, heavy metals, organic chemicals, and pathogens. The treatment efficiency by the adaptation of CWs in treatment process is achieved by a complex interaction between plants, microorganisms, soil matrix and substances in the wastewater. Constructed wetland treatment systems are engineered systems designed in such a manner that it could take advantages of those processes occurring in natural wetlands in treating the wastewater concerned, but in a more controlled environment. Petrochemical wastewater was the type of wastewater taken for the study. Characteristics of petrochemical wastewater mainly oil, Biological Oxygen Demand (BOD) and Chemical oxygen demand (COD) were selected for treatment in constructed wetland as they are predominant in petrochemical wastewater. The conventional methods followed in the treatment are chemical and biological treatment. In this study, a fuzzy model for water quality assessment has been developed and water quality index value was obtained. The experiment conducted and further analysis using fuzzy logic indicated that interpretation of certain imprecise data can be improved within fuzzy inference system (FIS). Based on the analysis, we could observe that Typha sp contained wetland cell showed greater efficiency in removal of parameters such as COD and BOD than Phragmites sp. wetland cell.

  15. Importance of hydrogeochemical processes in the coastal wetlands: A case study from Edremit-Dalyan coastal wetland, Balıkesir-Turkey

    NASA Astrophysics Data System (ADS)

    Somay, Melis A.

    2016-11-01

    Investigating the hydrogeochemical properties of wetlands allow us to protect them in a sustainable fashion in global scale. Edremit-Dalyan coastal wetland (EDCW) is located in southern part of Biga Peninsula (Mount Ida) which is the most important eco-tourism center in Turkey. Water sampling was done from the hydrologic basin of coastal wetland that consists of a geothermal site, ore deposits area, treatment facility area and olive tree breeding area. EC values of wetland vary between 440 and 2190 μS/cm and water type shows a shift from CaHCO3 to NaClSO4. Al, As, Cd, Cu, Fe, Pb and Zn concentrations exceed the tolerance limits in wetland area probably due to ore deposits around the Edremit Plain. Concentrations of As are high in wetland area exceeding both aquatic life and drinking water As standards of 10 μg/L by as much as 3 times are observed. The dominant As species is As (III). For the living organisms, this situation can be dangerous. Oxygen-18 and deuterium composition of the samples between -7.18 and -6.13‰, and between -42.6 and -34.4‰, respectively in the study area and all the waters are of meteoric origin. Oxygen-18 enrichment can be observed around Derman and coastal zone due to the geothermal activity and evaporation, respectively.

  16. Treatment performance of a constructed wetland during storm and non-storm events in Korea.

    PubMed

    Maniquiz, M C; Lee, S Y; Choi, J Y; Jeong, S M; Kim, L H

    2012-01-01

    The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality.

  17. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    PubMed

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake.

    PubMed

    Batty, Lesley C; Younger, Paul L

    2004-11-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues, (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H+ ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development.

  19. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  20. Developing a New Wetland Habitat

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2006-01-01

    This article features a project at Ohio's Miami Valley Career Technology Center (MVCTC) which has made a real difference in the wetland environment on campus. The goals of the wetland project were to replace a poorly functioning tile system and develop two wetland areas for local and migratory wildlife. The environmental/natural resources students…

  1. Enhanced Biological Attenuation of Aircraft Deicing Fluid Runoff Using Constructed Wetlands

    DTIC Science & Technology

    2004-09-01

    treatment wetlands have variable water column oxygen levels depending on several factors. Atmospheric diffusion, wind action, algae, and macrophytes ...visible to the unassisted eye are called macrophytes and include the vascular, herbaceous, and woody species common to wetland environments. Microbes are...of pH in treatment wetlands shows that typical operational pH levels range from 6.5 to 7.5 13. Rooted wetland macrophytes also actively transport

  2. Organic Matter Decomposition following Harvesting and Site Preparation of a Forested Wetland

    Treesearch

    Carl C. Trettin; M. Davidian; M.F. Jurgensen; R. Lea

    1996-01-01

    Organic matter accumulation is an important process that affects ecosystem function in many northern wetlands. The cotton strip assay (CSA)was used to measure the effect of harvesting and two different site preparation treatments, bedding and trenching, on organic matter decomposition in a forested wetland. A Latin square experimental design was used to determine the...

  3. Occurrence of 25 pharmaceuticals in Taihu Lake and their removal from two urban drinking water treatment plants and a constructed wetland.

    PubMed

    Hu, Xia-Lin; Bao, Yi-Fan; Hu, Jun-Jian; Liu, You-Yu; Yin, Da-Qiang

    2017-06-01

    Pharmaceuticals in drinking water sources have raised significant concerns due to their persistent input and potential human health risks. The seasonal occurrence of 25 pharmaceuticals including 23 antibiotics, paracetamol (PAR), and carbamazepine (CMZ) in Taihu Lake was investigated; meanwhile, the distribution and removal of these pharmaceuticals in two drinking water treatment plants (DWTPs) and a constructed wetland were evaluated. A high detection frequency (>70%) in the Taihu Lake was observed for nearly all the 25 pharmaceutics. Chlortetracycline (234.7 ng L -1 ), chloramphenicol (27.1 ng L -1 ), erythromycin (72.6 ng L -1 ), PAR (71.7 ng L -1 ), and CMZP (23.6 ng L -1 ) are compounds with both a high detection frequency (100%) and the highest concentrations, suggesting their wide use in the Taihu Basin. Higher concentrations of chloramphenicols, macrolides, PAR, and CMZP were observed in dry season than in wet season, probably due to the low flow conditions of the lake in winter and the properties of pharmaceuticals. The overall contamination levels of antibiotic pharmaceutics (0.2-74.9 ng L -1 ) in the Taihu Lake were lower than or comparable to those reported worldwide. However, for nonantibiotic pharmaceutics, PAR (45.0 ng L -1 ) and CMZP (14.5 ng L -1 ), significantly higher concentrations were observed in the Taihu Lake than at a global scale. High detection frequencies of 25 pharmaceuticals were observed in both the two DWTPs (100%) and the wetland (>60%) except for florfenicol and sulfapyridine. The removal efficacies of the studied pharmaceuticals in DWTP B with advanced treatment processes including ozonation and granular activated carbon filtration (16.7-100%) were superior to DWTP A with conventional treatment processes (2.9-100%), except for sulfonamides. Wetland C with the constructed root channel technology was efficient (24.2-100%) for removing most pharmaceuticals. This work suggests that the application of cost

  4. DESIGN AND CONSTRUCTION OF DEMONSTRATION/RESEARCH WETLANDS FOR TREATMENT OF DAIRY FARM WASTEWATER

    EPA Science Inventory

    There are no constructed wetlands currently used in Oregon for treating agricultural wastes. his report discusses the construction of nine wetland cells at the Oregon State University dairy farm. hese wetlands will be used in a long-term project which will attempt to: 1) Develop ...

  5. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland... assessment (EA) involving Huron, Madison, and Sand Lake Wetland Management Districts (Districts). In this..., Madison Wetland Management District, Sand Lake Wetland Management District final CCP'' in the subject line...

  6. The Cartridge Theory: a description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results.

    PubMed

    Samsó, Roger; García, Joan

    2014-03-01

    Despite the fact that horizontal subsurface flow constructed wetlands have been in operation for several decades now, there is still no clear understanding of some of their most basic internal functioning patterns. To fill this knowledge gap, on this paper we present what we call "The Cartridge Theory". This theory was derived from simulation results obtained with the BIO_PORE model and explains the functioning of urban wastewater treatment wetlands based on the interaction between bacterial communities and the accumulated solids leading to clogging. In this paper we start by discussing some changes applied to the biokinetic model implemented in BIO_PORE (CWM1) so that the growth of bacterial communities is consistent with a well-known population dynamics models. This discussion, combined with simulation results for a pilot wetland system, led to the introduction of "The Cartridge Theory", which states that the granular media of horizontal subsurface flow wetlands can be assimilated to a generic cartridge which is progressively consumed (clogged) with inert solids from inlet to outlet. Simulations also revealed that bacterial communities are poorly distributed within the system and that their location is not static but changes over time, moving towards the outlet as a consequence of the progressive clogging of the granular media. According to these findings, the life-span of constructed wetlands corresponds to the time when bacterial communities are pushed as much towards the outlet that their biomass is not anymore sufficient to remove the desirable proportion of the influent pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    PubMed

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. Copyright © 2015. Published by Elsevier B.V.

  8. Wetlands reserve program: a partnership to restore wetlands and associated habitat

    Treesearch

    Randall L. Gray

    2005-01-01

    The 1990 Farm Bill created the Wetlands Reserve Program (WRP) to restore and protect wetland, which as of 2002 has enrolled over 1.4 million acres of wetland and upland habitat in 49 states and Puerto Rico. The program is administered by the U. S. Department of Agriculture Natural Resource Conservation Service and delivered in cooperation with many partners from the...

  9. Groundwater inflow measurements in wetland systems

    USGS Publications Warehouse

    Hunt, Randy J.; Krabbenhoft, David P.; Anderson, Mary P.

    1996-01-01

    Our current understanding of wetlands is insufficient to assess the effects of past and future wetland loss. While knowledge of wetland hydrology is crucial, groundwater flows are often neglected or uncertain. In this paper, groundwater inflows were estimated in wetlands in southwestern Wisconsin using traditional Darcy's law calculations and three independent methods that included (1) stable isotope mass balances, (2) temperature profile modeling, and (3) numerical water balance modeling techniques. Inflows calculated using Darcy's law were lower than inflows estimated using the other approaches and ranged from 0.02 to 0.3 cm/d. Estimates obtained using the other methods generally were higher (0.1 to 1.1 cm/d) and showed similar spatial trends. An areal map of groundwater flux generated by the water balance model demonstrated that areas of both recharge and discharge exist in what is considered a regional discharge area. While each method has strengths and weaknesses, the use of more than one method can reduce uncertainty in the estimates.

  10. Evaluation of a market in wetland credits: entrepreneurial wetland banking in Chicago.

    PubMed

    Robertson, Morgan; Hayden, Nicholas

    2008-06-01

    With the rise of market-led approaches to environmental policy, compensation for permitted discharge of dredge or fill material into wetlands under Section 404 of the U.S. Clean Water Act has been purchased increasingly from entrepreneurial third-party providers. The growth of this practice (i.e., entrepreneurial wetland banking) has resolved many challenges associated with wetland compensation. But it has also produced (1) quantifiable temporal loss of wetland ecological functions, (2) spatial redistribution of wetland area, and (3) a degree of regulatory instability that may pose a threat to entrepreneurial compensation as a sustainable component of wetland-compensation policy. We used achieved compensation ratios, lapse between bank credit sale and the attainment of performance standards, distance between impact and bank site, and changes in bank market area to examine these 3 factors. We analyzed data from a census of all such transactions in the Chicago District of the U.S. Army Corps of Engineers, compiled from site visits, Corps databases, and contacts with consultants and Section 404 permittees. Entrepreneurial banking provided compensation at a lower overall ratio than nonbank forms of compensation. Approximately 60% of bank credits were sold after site-protection standards were met but before ecological performance standards were met at the bank site. The average distance between bank and impact site was approximately 26 km. The area of markets within which established banks can sell wetland credits has fluctuated considerably over the study period. Comparing these data with similar data for other compensation mechanisms will assist in evaluating banking as an element of conservation policy. Data characterizing the performance of entrepreneurial wetland banks in actual regulatory environments are scarce, even though it is the most established of similar markets that have become instrumental to federal policy in administering several major environmental

  11. Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.

    PubMed

    Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn

    2016-01-01

    Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period.

  12. Hydrologic budget for a wetland system.

    DOT National Transportation Integrated Search

    1998-07-01

    An important functional indicator of the success of a constructed wetland as a replacement for a natural system is the hydrology of : a site and whether it is adequate to support wetland vegetation and habitats. For constructed wetlands with potentia...

  13. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater.

    PubMed

    Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang

    2016-06-01

    Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.

  14. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  15. Linking climate change to water provision: greywater treatment by constructed wetlands

    NASA Astrophysics Data System (ADS)

    Qomariyah, S.; Ramelan, AH; Setyono, P.; Sobriyah

    2018-03-01

    Climate change has been felt to take place in Indonesia, causing the temperature to increase, additional drought with more moisture evaporates from rivers, lakes, and other bodies of water, and intense rainfall in a shorter rainy season. One of the major concerns is the risk of severe drought leading to water shortages. It will affect water supply and agriculture yields. As a country extremely vulnerable to the climate change, Indonesia must adapt to the serious environmental issues. This paper aims to offer an effort of water provision by recycling and reusing of greywater applying constructed wetland systems. The treated greywater is useful as water provision for non-consumptive uses. A recent experiment was conducted on a household yard using a single horizontal subsurface flow type of constructed wetland. The experiments demonstrated that the constructed wetland systems reduced effectively the pollutants of TSS, BOD, COD, and detergent to the level that are compliant with regulatory standards. The constructed wetland has been established for almost two years however the system still works properly.

  16. Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater.

    PubMed

    Mustapha, Hassana Ibrahim; Gupta, Pankaj Kumar; Yadav, Brijesh Kumar; van Bruggen, J J A; Lens, P N L

    2018-08-01

    A duplex constructed wetland (duplex-CW) is a hybrid system that combines a vertical flow (VF) CW as a first stage with a horizontal flow filter (HFF) as a second stage for a more efficient wastewater treatment as compared to traditional constructed wetlands. This study evaluated the potential of the hybrid CW system to treat influent wastewater containing diesel range organic compounds varying from C 7 - C 40 using a series of 12-week practical and numerical experiments under controlled conditions in a greenhouse (pH was kept at 7.0 ± 0.2, temperature between 20 and 23° C and light intensity between 85 and 100-μmol photons m -2 sec -1 for 16 h d -1 ). The VF CWs were planted with Phragmites australis and were spiked with different concentrations of NH 4 + -N (10, 30 and 60 mg/L) and PO 4 3- -P (3, 6 and 12 mg/L) to analyse their effects on the degradation of the supplied petroleum hydrocarbons. The removal rate of the diesel range organics considering the different NH 4 + -N and PO 4 3- -P concentrations were simulated using Monod degradation kinetics. The simulated results compared well with the observed database. The results showed that the model can effectively be used to predict biochemical transformation and degradation of diesel range organic compounds along with nutrient amendment in duplex constructed wetlands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Promoting species establishment in a phragmites-dominated great lakes coastal wetland

    USGS Publications Warehouse

    Carlson, M.L.; Kowalski, K.P.; Wilcox, D.A.

    2009-01-01

    This study examined efforts to promote species establishment and maintain diversity in a Phragmites-dominated wetland where primary control measures were underway. A treatment experiment was performed at Crane Creek, a drowned-river-mouth wetland in Ottawa National Wildlife Refuge along the shore of western Lake Erie. Following initial aerial spraying of Phragmites with glyphosate, this study tested combinations of cutting, raking, and additional hand spraying of Phragmites with glyphosate as methods to promote growth of other wetland species and increase plant diversity. Percent-cover vegetation data were collected in permanent plots before and after treatments, and follow-up sampling was performed the following year. Increased species richness, species emergence, and relative dominance of non-Phragmites taxa were used as measures of treatment success. We also examined treatment effects on Phragmites cover. Dimensionality of seedbank and soil properties was reduced using principal component analysis. With the exception of nitrogen, soil nutrients affected species establishment, non-Phragmites taxa dominance, and Phragmites cover. A more viable seedbank led to greater species emergence. Treatments had differential effects on diversity depending on elevation and resulting degree of hydrologic inundation. Whereas raking to remove dead Phragmites biomass was central to promoting species establishment in dry areas, spraying had a greater impact in continually inundated areas. For treatment success across elevations into the year following treatments, spraying in combination with cutting and raking had the greatest effect. The results of this study suggest that secondary treatments can produce a short-term benefit to the plant community in areas treated for Phragmites.

  18. The effect of phorate on wetland macroinvertebrates

    USGS Publications Warehouse

    Dieter, Charles D.; Flake, Lester D.; Duffy, Walter G.

    1996-01-01

    The effects of phorate, an organophosphorus insecticide, on aquatic macroinvertebrates was studied in littoral mesocosms in South Dakota wetlands. In 1991 and 1992, four mesocosms were constructed in each of three wetlands. In each wetland, one mesocosm was a reference and phorate concentrations of 1.2, 2.4, and 4.8 kg/ha were applied to treatment mesocosms. Phorate caused mortality to amphipods and chironomids throughout the study. Leeches and snails were resistant to phorate. Few living macroinvertebrates were present in mesocosms after phorate treatment and populations recovered only slightly after 1 month. Macroinvertebrate taxa that were sensitive to phorate included: Odonata, Hemiptera, Culicidae, Heliidae, Ephemeroptera, Acarina, Coleoptera, Stratio-myidae, and Hydracarina. Taxa that were tolerant to phorate included: Hirudinea, Gastropoda, Oligochaeta, and Ostracoda.

  19. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands

    DOE PAGES

    Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.; ...

    2015-10-29

    Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the

  20. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.

    Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the

  1. Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    In Dar es Salaam City there are more than a thousand tie-and-dye (TAD) small-scale industries (SSIs) that discharge dye-rich wastewater indiscriminately with resultant water pollution. Due to the decentralised nature of the TAD SSIs, coupled with financial constraints facing their operators, control of their pollution needs a simple cost-effective waste treatment technology. Engineered wetland systems (EWSs) constitute such a technology. A pilot scale EWS was evaluated with respect to its effectiveness in treating dye-rich wastewater. The role of wetland plants was assessed through comparing treatment performance efficiencies between an unplanted and vegetated EWS beds. On the whole, it has been demonstrated that the EWS has the potential to effectively treat dye-rich wastewater. Colour, which is the most apparent problem issue with textile wastewater, was reduced by 72-77%. COD was reduced by 68-73%, while sulphate was reduced by 53-59%. The proportionately high COD removal suggests the reduction in colour was accompanied by almost complete degradation of dyes and daughter products. The overall treatment efficiency of the vegetated units was more than twice as high as that of the unplanted bed. On average, the bed vegetated with coco yam plants performed better (7.6%) than the one planted with cattail plants.

  2. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts

    PubMed Central

    Watson, Elizabeth Burke

    2017-01-01

    Although saline tidal wetlands cover less than a fraction of one percent of the earth’s surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972–2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California’s Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO2eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands. PMID:29295540

  3. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts.

    PubMed

    Watson, Elizabeth Burke; Hinojosa Corona, Alejandro

    2017-12-24

    Although saline tidal wetlands cover less than a fraction of one percent of the earth's surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972-2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California's Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO₂eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands.

  4. Mitigation and treatment of pollutants from railway and highway runoff by pocket wetland system; A case study.

    PubMed

    Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli

    2018-08-01

    This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Aquatic and wetland vascular plants of the northern Great Plains

    Treesearch

    Gary E. Larson

    1993-01-01

    A taxonomic treatment of aquatic and wetland vascular plants has been developed as a tool for identifying over 500 plant species inhabiting wetlands of the northern Great Plains region. The treatment provides dichotomous keys and botanical descriptions to facilitate identification of all included taxa. Illustrations are also provided for selected species. Geographical...

  6. National Wetland Condition Assessment 2011: A ...

    EPA Pesticide Factsheets

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the public and decision makers with nationally consistent and representative information on the condition of all the nation's waters. The National Wetland Condition report provides information on the biological condition of the nation’s wetlands and key stressors that affect them.

  7. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment

    Treesearch

    R. K. Kolka; C. C. Trettin; E. A. Nelson; C. D. Barton; D. E. Fletcher

    2002-01-01

    Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...

  8. Application of the EPA wetland research program approach to a floodplain wetland restoration assessment

    Treesearch

    R.K. Kolka; Carl C. Trettin; E.A. Nelson; C.D. Barton; D.E. Fletcher

    2002-01-01

    Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...

  9. Resilience of Floating Treatment Wetlands to Repeated Freeze-Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Ortega, K.; Marchetto, P.; Magner, J.

    2017-12-01

    Floating treatment wetlands (FTWs), made of a matrix of recycled polyethylene terephthalate (PET) fibers, are currently being used as a method to reduce nutrient loading in lakes. The matrix encourages growth of biofilms, which uptake nutrients from the water. However, the usefulness of FTWs has only been assessed in areas where the lakes do not freeze over in the winter. Repeated freeze-thaw cycles were run on sections of the FTWs in a laboratory setting in order to test the resilience of the PET fibers over the FTWs' advertised fifteen-year lifespan. Preliminary findings suggest that the stresses caused by freezing and thawing of the surrounding water contribute to deterioration of the PET fibers, leading to production of microplastics. Estimations indicate that approximately 0.063% of a FTW's mass could be lost as microplastics over the course of its lifespan. Production of microplastics contributes to plastic pollution in the treatment water, possibly offsetting any nutrient remediation the FTWs perform.

  10. Technical, economic and environmental assessment of sludge treatment wetlands.

    PubMed

    Uggetti, Enrica; Ferrer, Ivet; Molist, Jordi; García, Joan

    2011-01-01

    Sludge treatment wetlands (STW) emerge as a promising sustainable technology with low energy requirements and operational costs. In this study, technical, economic and environmental aspects of STW are investigated and compared with other alternatives for sludge management in small communities (<2000 population equivalent). The performance of full-scale STW was characterised during 2 years. Sludge dewatering increased total solids (TS) concentration by 25%, while sludge biodegradation lead to volatile solids around 45% TS and DRI(24h) between 1.1 and 1.4 gO(2)/kgTS h, suggesting a partial stabilisation of biosolids. In the economic and environmental assessment, four scenarios were considered for comparison: 1) STW with direct land application of biosolids, 2) STW with compost post-treatment, 3) centrifuge with compost post-treatment and 4) sludge transport to an intensive wastewater treatment plant. According to the results, STW with direct land application is the most cost-effective scenario, which is also characterised by the lowest environmental impact. The life cycle assessment highlights that global warming is a significant impact category in all scenarios, which is attributed to fossil fuel and electricity consumption; while greenhouse gas emissions from STW are insignificant. As a conclusion, STW are the most appropriate alternative for decentralised sludge management in small communities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Carbon storage in US wetlands | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This Nature Communications article is a product of legacy work that contributes to Safe and Sustainable Water Resources research on technical support and research on the enhancement of Office of Water’s National Aquatic Resource Surveys (NARS) (SSWR 3.01A). The research is also potentially relevant to SHC and ACE research program questions. The research was conducted under USEPA cooperative agreement number 83422601 with Michigan State University in association with Kenyon College. USEPA 2011 National Wetland Condition Assessment data used for this research are publically available from https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys. ***This is article is clearing for completion ONLY*** The research and conclusions in this article highlight the role of wetland soils in storing carbon and the implications of disturbance to wetlands for climate change. Specifically, we provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales using field data from the 2011 National Wetland Condition Assessment (NWCA). This research also describes how soil carbon stocks vary by wetland type and soil depth, and by anthropogenic disturbance to the wetland. We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fol

  12. Methodologies for pre-validation of biofilters and wetlands for stormwater treatment.

    PubMed

    Zhang, Kefeng; Randelovic, Anja; Aguiar, Larissa M; Page, Declan; McCarthy, David T; Deletic, Ana

    2015-01-01

    Water Sensitive Urban Design (WSUD) systems are frequently used as part of a stormwater harvesting treatment trains (e.g. biofilters (bio-retentions and rain-gardens) and wetlands). However, validation frameworks for such systems do not exist, limiting their adoption for end-uses such as drinking water. The first stage in the validation framework is pre-validation, which prepares information for further validation monitoring. A pre-validation roadmap, consisting of five steps, is suggested in this paper. Detailed methods for investigating target micropollutants in stormwater, and determining challenge conditions for biofilters and wetlands, are provided. A literature review was undertaken to identify and quantify micropollutants in stormwater. MUSIC V5.1 was utilized to simulate the behaviour of the systems based on 30-year rainfall data in three distinct climate zones; outputs were evaluated to identify the threshold of operational variables, including length of dry periods (LDPs) and volume of water treated per event. The paper highlights that a number of micropollutants were found in stormwater at levels above various worldwide drinking water guidelines (eight pesticides, benzene, benzo(a)pyrene, pentachlorophenol, di-(2-ethylhexyl)-phthalate and a total of polychlorinated biphenyls). The 95th percentile LDPs was exponentially related to system design area while the 5th percentile length of dry periods remained within short durations (i.e. 2-8 hours). 95th percentile volume of water treated per event was exponentially related to system design area as a percentage of an impervious catchment area. The out-comings of this study show that pre-validation could be completed through a roadmap consisting of a series of steps; this will help in the validation of stormwater treatment systems.

  13. Vegetation of Upper Coastal Plain Depression Wetlands: Environmental Templates and Wetland Dynamics Within A Landscape Framework

    Treesearch

    Diane De Steven; Maureen M. Toner

    2004-01-01

    Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across...

  14. Radioiodine concentrated in a wetland.

    PubMed

    Kaplan, Daniel I; Zhang, Saijin; Roberts, Kimberly A; Schwehr, Kathy; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Santschi, Peter H

    2014-05-01

    Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Association between wetland disturbance and biological attributes in floodplain wetlands

    USGS Publications Warehouse

    Chipps, S.R.; Hubbard, D.E.; Werlin, K.B.; Haugerud, N.J.; Powell, K.A.; Thompson, John; Johnson, T.

    2006-01-01

    We quantified the influence of agricultural activities on environmental and biological conditions of floodplain wetlands in the upper Missouri River basin. Seasonally-flooded wetlands were characterized as low impact (non-disturbed) or high impact (disturbed) based on local land use. Biological data collected from these wetlands were used to develop a wetland condition index (WCI). Fourteen additional wetlands were sampled to evaluate the general condition of seasonally-flooded floodplain wetlands. Structural and functional attributes of macrophyte, algae, and macroinvertebrate communities were tested as candidate metrics for assessing biotic responses. The WCI we developed used six biological metrics to discriminate between disturbed and non-disturbed wetlands: 1) biomass of Culicidae larvae, 2) abundance of Chironomidae larvae, 3) macroinvertebrate diversity, 4) total number of plant species, 5) the proportion of exotic plant species, and 6) total number of sensitive diatom species. Disturbed wetlands had less taxa richness and species diversity and more exotic and nuisance (e.g., mosquitoes) species. Environmental differences between low and high impact wetlands included measures of total potassium, total phosphorus, total nitrogen, alkalinity, conductance, and sediment phosphorus concentration. Canonical analyses showed that WCI scores were weakly correlated (P = 0.057) with environmental variables in randomly selected wetlands. In addition, mean WCI score for random wetlands was higher than that for high impact wetlands, implying that floodplain wetlands were less impacted by the types of agricultural activities affecting high impact sites. Inter-year sampling of some wetlands revealed that WCI metrics were correlated in 2000 and 2001, implying that biological metrics provided useful indicators of disturbance in floodplain wetlands. ?? 2006, The Society of Wetland Scientists.

  16. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  17. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment.

    PubMed

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Hu, Zhen; Liu, Hai

    2015-10-01

    Constructed wetlands (CWs) have been used as an alternative to conventional technologies for wastewater treatment for more than five decades. Recently, the use of various modified CWs to improve treatment performance has also been reported in the literature. However, the available knowledge on various CW technologies considering the intensified and reliable removal of pollutants is still limited. Hence, this paper aims to provide an overview of the current development of CW strategies and techniques for enhanced wastewater treatment. Basic information on configurations and characteristics of different innovations was summarized. Then, overall treatment performance of those systems and their shortcomings were further discussed. Lastly, future perspectives were also identified for specialists to design more effective and sustainable CWs. This information is used to inspire some novel intensifying methodologies, and benefit the successful applications of potential CW technologies.

  18. Intensification of constructed wetlands for land area reduction: a review.

    PubMed

    Ilyas, Huma; Masih, Ilyas

    2017-05-01

    The large land area requirement of constructed wetlands (CWs) is a major limitation of its application especially in densely populated and mountainous areas. This review paper provides insights on different strategies applied for the reduction of land area including stack design and intensification of CWs with different aeration methods. The impacts of different aeration methods on the performance and land area reduction were extensively and critically evaluated for nine wetland systems under three aeration strategies such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) applied on three types of CWs including vertical flow constructed wetland (VFCW), horizontal flow constructed wetland (HFCW), and hybrid constructed wetland (HCW). The area reduction and pollutant removal efficiency showed substantial variation among different types of CWs and aeration strategies. The ER-VFCW designated the smallest footprint of 1.1 ± 0.5 m 2 PE -1 (population equivalent) followed by TF-VFCW with the footprint of 2.1 ± 1.8 m 2 PE -1 , and the large footprint was of AA-HFCW (7.8 ± 4.7 m 2 PE -1 ). When footprint and removal efficiency both are the major indicators for the selection of wetland type, the best options for practical application could be TF-VFCW, ER-HCW, and AA-HCW. The data and results outlined in this review could be instructive for futures studies and practical applications of CWs for wastewater treatment, especially in land-limited regions.

  19. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    PubMed Central

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  20. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    PubMed

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  1. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands

    EPA Science Inventory

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the publi...

  2. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.

    PubMed

    Dierberg, F E; DeBusk, T A; Jackson, S D; Chimney, M J; Pietro, K

    2002-03-01

    Submerged aquatic vegetation (SAV) communities exhibit phosphorus (P) removal mechanisms not found in wetlands dominated by emergent macrophytes. This includes direct assimilation of water column P by the plants and pH-mediated P coprecipitation with calcium carbonate (CaCO3). Recognizing that SAV might be employed to increase the performance of treatment wetlands, we investigated P removal in mesocosms (3.7 m2) stocked with a mixture of taxa common to the region: Najas guadalupensis, Ceratophyllum demersum, Chara spp. and Potamogeton illinoensis. Three sets of triplicate mesocosms received agricultural runoff from June 1998 to February 2000 at nominal hydraulic retention times (HRTs) of 1.5, 3.5 or 7.0 days. Mean total P (TP) loading rates were 19.7. 8.3 and 4.5 g/m2/yr. After eight months of operation. N. guadalupensis dominated the standing crop biomass and P storage, whereas C. demersum exhibited the highest tissue P content. Chara spp. was prominent only in the 7.0)-day HRT treatments while P. illinoensis largely disappeared. Inflow soluble reactive phosphorus (SRP) (10 163 microg/L) was reduced consistently to near the detection limit (2 microg/L) in the 3.5- and 7.0-day HRT treatments, and to a mean of 9 microg/L in the 1.5-day HRT treatment. The mean inflow TP concentration (10(7) microg/L) was reduced to 52, 29 and 23 microg/L in the 1.5-, 3.5- and 7.0-day HRT treatments, respectively. Total P concentrations in new sediment (mean= 641, 408 and 459 mg/kg in the 1.5-. 3.5-, and 7.0-day HRT mesocosms, respectively) were much higher than in the muck soil used to stock the mesocosms (236 mg/ kg). The calcium content of new sediment was twice that of the muck soil (16.5% vs. 7.6%), demonstrating that CaCO3 production and, perhaps, coprecipitation of P occurred. We observed no nocturnal remobilization of SRP despite diel fluctuations in pH and dissolved oxygen. Mean outflow TP (21 microg/L) from a 147 ha SAV wetland (4-day nominal HRT) was similar to mean outflow

  4. Emissions of NO and N2O in wetland microcosms for swine wastewater treatment.

    PubMed

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; Li, Yong; Zhou, Juan; Wu, Jinshui

    2015-12-01

    Nitric oxide (NO) and nitrous oxide (N2O) emitted from wetland systems contribute an important proportion to the global warming effect. In this study, four wetland microcosms vegetated with Myriophyllum elatinoides (WM), Alternanthera philoxeroides (WA), Eichhornia crassipes (WE), or without vegetation (NW) were compared to investigate the emissions of NO and N2O during nitrogen (N) removal process when treating swine wastewater. After 30-day incubation, TN removal rates of 96.4, 74.2, 97.2, and 47.3 % were observed for the WM, WA, WE, and NW microcosms, respectively. Yet, no significant difference was observed in WM and WE (p > 0.05). The average NO and N2O emissions in WE was significantly higher than those in WM, WA, and NW (p < 0.05). In addition, the emission of N2O in WE accounted for 2.10 % of initial TN load and 2.17 % of the total amount of TN removal, compared with less than 1 % in the other microcosms. These findings indicate that wetland vegetated with M. elatinoides may be an optimal system for swine wastewater treatment, based on its higher removal of N and lower emissions of NO and N2O.

  5. Geographically isolated wetlands: Rethinking a misnomer

    USGS Publications Warehouse

    Mushet, David M.; Calhoun, Aram J.K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  6. Aquatic macroinvertebrates associated with Schoenoplectus litter in a constructed wetland in California (USA)

    USGS Publications Warehouse

    Nelson, S.M.; Thullen, J.S.

    2008-01-01

    Culm processing characteristics were associated with differences in invertebrate density in a study of invertebrates and senesced culm packs in a constructed treatment wetland. Invertebrate abundance differed by location within the wetland and there were differences between the two study years that appeared to be related to water quality and condition of culm material. Open areas in the wetland appeared to be critical in providing dissolved oxygen (DO) and food (plankton) to the important invertebrate culm processor, Glyptotendipes. As culm packs aged, invertebrate assemblages became less diverse and eventually supported mostly tubificid worms and leeches. It appears from this study that wetland design is vital to processing of plant material and that designs that encourage production and maintenance of high DO's will encourage microbial and invertebrate processing of material.

  7. Performance of a pilot showcase of different wetland systems in an urban setting in Singapore.

    PubMed

    Quek, B S; He, Q H; Sim, C H

    2015-01-01

    The Alexandra Wetlands, part of PUB's Active, Beautiful, Clean Waters (ABC Waters) Programme, showcase a surface flow wetland, an aquatic pond and a sub-surface flow wetland on a 200 m deck built over an urban drainage canal. Water from the canal is pumped to a sedimentation basin, before flowing in parallel to the three wetlands. Water quality monitoring was carried out monthly from April 2011 to December 2012. The order of removal efficiency is sub-surface flow (81.3%) >aquatic pond (58.5%) >surface flow (50.7%) for total suspended solids (TSS); sub-surface (44.9%) >surface flow (31.9%) >aquatic pond (22.0%) for total nitrogen (TN); and surface flow (56.7%) >aquatic pond (39.8%) >sub-surface flow (5.4%) for total phosphorus (TP). All three wetlands achieved the Singapore stormwater treatment objectives (STO) for TP removal, but only the sub-surface flow wetland met the STO for TSS, and none met the STO for TN. Challenges in achieving satisfactory performance include inconsistent feed water quality, undesirable behaviour such as fishing, release of pets and feeding of animals in the wetlands, and canal dredging during part of the monitoring period. As a pilot showcase, the Alexandra Wetlands provide useful lessons for implementing multi-objective wetlands in an urban setting.

  8. Transfers and transformations of zinc in flow-through wetland microcosms.

    PubMed

    Gillespie, W B; Hawkins, W B; Rodgers, J H; Cano, M L; Dorn, P B

    1999-06-01

    Two microcosm-scale wetlands (570-liter containers) were integratively designed and constructed to investigate transfers and transformations of zinc associated with an aqueous matrix, and to provide future design parameters for pilot-scale constructed wetlands. The fundamental design of these wetland microcosms was based on biogeochemical principles regulating fate and transformations of zinc (pH, redox, etc.). Each wetland consisted of a 45-cm hydrosoil depth inundated with 25 cm of water, and planted with Scirpus californicus. Zinc ( approximately 2 mg/liter) as ZnCl2 was amended to each wetland for 62 days. Individual wetland hydraulic retention times (HRT) were approximately 24 h. Total recoverable zinc was measured daily in microcosm inflow and outflows, and zinc concentrations in hydrosoil and S. californicus tissue were measured pre- and post-treatment. Ceriodaphnia dubia and Pimephales promelas7-day aqueous toxicity tests were performed on wetland inflows and outflows, and Hyalella azteca whole sediment toxicity tests (10-day) were performed pre- and post-treatment. Approximately 75% of total recoverable zinc was transferred from the water column. Toxicity decreased from inflow to outflow based on 7-day C. dubia tests, and survival of H. azteca in hydrosoil was >80%. Data illustrate the ability of integratively designed wetlands to transfer and sequester zinc from the water column while concomitantly decreasing associated toxicity. Copyright 1999 Academic Press.

  9. Constructed wetlands in UK urban surface drainage systems.

    PubMed

    Shutes, B; Ellis, J B; Revitt, D M; Scholes, L N L

    2005-01-01

    This paper presents the outcome of an inventory of planted wetland systems in the UK which are classified according to land use type and are all examples of sustainable drainage systems. The introduction of constructed wetlands to treat surface runoff essentially followed a 1997 Environment Agency for England and Wales report advocating the use of "soft engineered" facilities including wetlands in the context of sustainable development and Agenda 21. Subsequently published reports by the UK Construction Industry Research and Information Association (CIRIA) have promoted the potential benefits to both developer and the community of adopting constructed wetlands and other vegetated systems as a sustainable drainage approach. In addition, the UK Environment Agency and Highways Agency (HA) have recently published their own design criteria and requirements for vegetative control and treatment of road runoff. A case study of the design and performance of a constructed wetland system for the treatment of road runoff is discussed. The performance of these systems will be assessed in terms of their design criteria, runoff loadings as well as vegetation and structure maintenance procedures. The differing design approaches in guidance documents published in the UK by the Environment Agency, CIRIA and HA will also be evaluated.

  10. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    EPA Pesticide Factsheets

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  11. Methodologies for Pre-Validation of Biofilters and Wetlands for Stormwater Treatment

    PubMed Central

    Zhang, Kefeng; Randelovic, Anja; Aguiar, Larissa M.; Page, Declan; McCarthy, David T.; Deletic, Ana

    2015-01-01

    Background Water Sensitive Urban Design (WSUD) systems are frequently used as part of a stormwater harvesting treatment trains (e.g. biofilters (bio-retentions and rain-gardens) and wetlands). However, validation frameworks for such systems do not exist, limiting their adoption for end-uses such as drinking water. The first stage in the validation framework is pre-validation, which prepares information for further validation monitoring. Objectives A pre-validation roadmap, consisting of five steps, is suggested in this paper. Detailed methods for investigating target micropollutants in stormwater, and determining challenge conditions for biofilters and wetlands, are provided. Methods A literature review was undertaken to identify and quantify micropollutants in stormwater. MUSIC V5.1 was utilized to simulate the behaviour of the systems based on 30-year rainfall data in three distinct climate zones; outputs were evaluated to identify the threshold of operational variables, including length of dry periods (LDPs) and volume of water treated per event. Results The paper highlights that a number of micropollutants were found in stormwater at levels above various worldwide drinking water guidelines (eight pesticides, benzene, benzo(a)pyrene, pentachlorophenol, di-(2-ethylhexyl)-phthalate and a total of polychlorinated biphenyls). The 95th percentile LDPs was exponentially related to system design area while the 5th percentile length of dry periods remained within short durations (i.e. 2–8 hours). 95th percentile volume of water treated per event was exponentially related to system design area as a percentage of an impervious catchment area. Conclusions The out-comings of this study show that pre-validation could be completed through a roadmap consisting of a series of steps; this will help in the validation of stormwater treatment systems. PMID:25955688

  12. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment.

    PubMed

    He, Hailing; Duan, Zhiwei; Wang, Zhenqing; Yue, Bo

    2017-07-01

    The removal efficiencies of two horizontal subsurface flow constructed wetlands (HSSF CWs, down-flow (F1) and up-flow (F2)) filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment were investigated. The adsorption experiment was conducted to evaluate the potential of zeolite and slag as the wetland substrate. The effects of distance variations along the longitudinal profile of wetland bed on pollutant removal were assessed by sampling at four locations (inlet, outlet, 0.55 m, and 1.10 m from the inlet). During the operation time, the influent and effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total nitrogen (TN), heavy metals, and polycyclic aromatic hydrocarbon (PAH) were measured. The results showed that the constructed wetlands were capable of removing COD, 20.5-48.2% (F1) and 18.6-61.2% (F2); NH 3 -N, 84.0-99.9% (F1) and 93.5-99.2% (F2); TN, 80.3-92.1% (F1) and 80.3-91.2% (F2); and heavy metals, about 90% (F1 and F2). The zeolite-slag hybrid substrate performed excellent removal efficiency for the nitrogen and heavy metals. The inlet area was the most active region of leachate removal. The up-flow constructed wetland (F2) has a higher removal efficiency for the PAH compounds. The significant removal efficiency illustrated that the rural landfill leachate can be treated using the horizontal subsurface flow constructed wetland filled with the zeolite-slag hybrid substrate.

  13. A Study of Natural and Restored Wetland Hydrology

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Sidle, William C.; Pavlovic, Noel B.

    1999-01-01

    The U.S. Geological Survey and the U.S. Environmental Protection Agency are jointly studying the hydrology of a long-existing natural wetland and a recently restored wetland in the Kankakee River Valley in northwestern Indiana. In characterizing the two wetlands, project investigators are testing innovative methods to identify the analytical tools best suited for evaluating the success of wetland restoration. Investigators also are examining and comparing the relations between hydrology and restored wetland vegetation.

  14. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    ERIC Educational Resources Information Center

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  15. Rehabilitation options for inland waterways impacted by sulfidic sediments--field trials in a south-eastern Australian wetland.

    PubMed

    Fraser, Mark A; Baldwin, Darren S; Rees, Gavin N; Silvester, Ewen J; Whitworth, Kerry L

    2012-07-15

    The accumulation of significant pools of sulfidic sediments in inland wetlands and creeks is an emerging risk for the management of inland waterways. We used replicated plot trials to appraise the viability of various strategies for neutralizing oxidized, acidified sulfidic sediments in a highly degraded wetland. Of the twenty different treatments trialed only addition of calcium hydroxide or calcium carbonate, burning of wood, and planting of Phragmites australis, Typha domingensis and Atriplex nummularia into beds prepared with CaCO3 or P. australis and T. domingensis into beds of sediment and mulch, decreased total actual acidity (TAA) in the top 5 cm of sediment in the first two weeks following treatment. Only the calcium hydroxide treatments and planting of P. australis, T. domingensis and A. nummularia into beds prepared with CaCO3 decreased TAA for a longer period of time (6 months). None of the treatments, except the planting of P. australis into beds prepared with lime, decreased TAA in the 5-30 cm layer of sediments. Therefore, the only effective treatment appears to be the application of highly alkaline ameliorants which need to be transported to the site. A survey of the wetland was undertaken to estimate the total amount of actual and potential acidity stored in the wetland's sediment and overlying water and showed that up to 1200 tonnes of calcium carbonate would be required to neutralise all of the actual and potential acidity in the 10 ha wetland. However, neutralisation of the remaining water in the wetland (about 12.5 ML) would produce approximately 2750 m3 of metal rich sludge (approximately 100 tonnes dry weight) that would require separate disposal. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  17. Is wetland mitigation successful in Southern California?

    NASA Astrophysics Data System (ADS)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  18. Applicability Assessment of Uavsar Data in Wetland Monitoring: a Case Study of Louisiana Wetland

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Niu, Y.; Lu, Z.; Yang, J.; Li, P.; Liu, W.

    2018-04-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Monitoring wetland is essential and potential. Because of the repeat-pass nature of satellite orbit and airborne, time-series of remote sensing data can be obtained to monitor wetland. UAVSAR is a NASA L-band synthetic aperture radar (SAR) sensor compact pod-mounted polarimetric instrument for interferometric repeat-track observations. Moreover, UAVSAR images can accurately map crustal deformations associated with natural hazards, such as volcanoes and earthquakes. And its polarization agility facilitates terrain and land-use classification and change detection. In this paper, the multi-temporal UAVSAR data are applied for monitoring the wetland change. Using the multi-temporal polarimetric SAR (PolSAR) data, the change detection maps are obtained by unsupervised and supervised method. And the coherence is extracted from the interfometric SAR (InSAR) data to verify the accuracy of change detection map. The experimental results show that the multi-temporal UAVSAR data is fit for wetland monitor.

  19. Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions.

    PubMed

    Gui, P; Inamori, R; Matsumura, M; Inamori, Y

    2007-01-01

    Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.

  20. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash.

    PubMed

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J

    2011-05-01

    Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new

  1. Characterization of enterococci populations collected from a subsurface flow constructed wetland.

    PubMed

    Graves, A K; Weaver, R W

    2010-04-01

    The aim of this study was to identify and characterize the population of Enterococcus sp. in domestic wastewater as it flows through a constructed wetland. Four hundred and eighty-four Enterococcus isolates were collected from the inlet, various sites within and from the outlet of a plastic lined constructed wetland in College Station, TX. The wetland treated septic tank effluent that passed sequentially through two 1.89 m(3) septic tanks and a 1.89 m(3) pump tank allowing 48 l doses at a 24 l min(-1) rate. The Enterococcus isolates were identified to species using the commercial Biolog system. The 484 Enterococcus isolates were comprised of ten different species, including Enterococcus faecalis (30.6%), Enterococcus pseudoavium (24.0%), Enterococcus casseliflavus (12.8%), Enterococcus faecium (11.2%), Enterococcus mundtii (7.9%), Enterococcus gallinarum (6.2%), Enterococcus dispar (3.7%), Enterococcus hirae (2.1%), Enterococcus durans and Enterococcus flavescens both 0.8%. Of the 88 isolates collected from the inlet, only 9.1% of the isolates were identified as Ent. faecalis and Ent. pseudoavium (36.4%) was identified as the predominant species. Whereas of the 74 isolates collected from the outlet, the predominant species were identified as Ent. faecalis (29.7%). Species identification varied among sites within the wetland, but often Ent. faecalis was the predominant species. Our data suggest that while Ent. faecalis is the predominant species of Enterococcus found in domestic wastewater, the populations may shift during treatment as the wastewater flows through the constructed wetland. We found that shifts in Enterococcus species composition occurred during domestic wastewater treatment. This has implications for the identification of faecal pollution based on the presence of specific bacterial types associated with domestic wastewater.

  2. Establishing a design for passive vertical flow constructed wetlands treating small sewage discharges to meet British Standard EN 12566.

    PubMed

    Weedon, Christopher Michael; Murphy, Clodagh; Sweaney, Geoff

    2017-01-01

    Owing to legislation change (which made General Binding Rules effective from 1 January 2015) unless discharge is to specified environmentally sensitive sites, small sewage discharges (SSDs) in England - that is, <2 m 3  d -1 to ground; <5 m 3  d -1 to surface waters - no longer require an Environmental Permit (EP) and need not be registered for exemption, provided discharge to surface waters is preceded by treatment using equipment complying with BS EN 12566. This effectively excludes the use of treatment wetlands, unless covered by an EP, because the cost of certification to EN 12566 for bespoke designs is prohibitive. EPs take up to four months to obtain. Therefore, the new legislation has created a commercial disadvantage for constructed wetlands treating SSDs, compared with mass-produced sewage treatment plants. However, the UK statutory pollution regulators have maintained a dialogue with the Constructed Wetland Association (CWA), with a view to assessing whether treatment of SSD using constructed wetlands might be allowable, without requiring EPs. This paper presents treatment performance data obtained over 15 years, from a variety of full-scale operational treatment wetlands, as supporting evidence for design guidelines, proposed by the CWA to the UK regulators, for the implementation of constructed wetlands continuously passively treating SSD to 20:30:20 mg l -1 BOD/SS/NH4-N under a wide range of loading rates. Relevant experience of UK designers, installers and operators since the early 1990s is included, resulting in recommended physical design criteria and loading rates for compact vertical flow reed beds, presented here as key elements of the draft guidelines.

  3. Classifying and retracking altimeter waveforms over wetlands: A case study in the Hsiang-Shan wetland, Taiwan

    NASA Astrophysics Data System (ADS)

    Huan Chin, K.; Wei Ming, C.; Chung-Yen, K.; Tseng, K. H.; Shum, C. K.; Hwang, C.; Cheng, K. C.

    2017-12-01

    A coastal wetland is an area saturated with fresh to saline water, and has a distinct ecological system. Taiwan has abundant wetlands, and some of them contain altimeter measurements from the Enivsat and TOPEX/Poseidon series of satellites. Typically, such measurements are refined to provide additional sea level measurements over tide gauge data. Often, here the refinements have limitations because of the contaminations of altimeter waveforms and improper geophysical corrections. In this study, we classify Envisat and SARAL/Altika waveforms over coastal areas of Taiwan using the Linear Discriminant Analysis (LDA). Three types of waveforms are identified: coastal ocean, wetland and land-noise waveforms. We carry out a case study over Hsinchu's Hsiang-Shan wetland in northern Taiwan. The coastal ocean and wetland waveforms, are retracked by two different retrackers, with the main objective of improving the accuracy of sea surface height measurements. The result is then assessed by measurements from a nearby tide gauge and modeled geoidal heights from EGM2008. Some of the parameters in our retrackers are associated with the surface and sub-surface properties of the Hsiang-Shan wetland. The space-time evolutions of these parameters can reflect wetland changes due to factors such as changes in sedimentation and soil moisture. This presentation will show how coastal altimeter data can benefit wetland studies.

  4. Wetlands postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-05-25

    Research conducted by scientists at the U.S. Geological Survey provides reliable scientific information for the management of wetlands ranging from small freshwater alpine lakes in the Western United States to coastal wetlands of the Great Lakes and salt marshes along the Southeastern coast. Learn more about USGS wetlands research at: http://www.usgs.gov/ecosystems/environments/wetlands.html.

  5. Wetlands: Tidal

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Baldwin, Andrew H.; Hutchinson, Stephen

    2014-01-01

    Tidal wetlands are some of the most dynamic areas of the Earth and are found at the interface between the land and sea. Salinity, regular tidal flooding, and infrequent catastrophic flooding due to storm events result in complex interactions among biotic and abiotic factors. The complexity of these interactions, along with the uncertainty of where one draws the line between tidal and nontidal, makes characterizing tidal wetlands a difficult task. The three primary types of tidal wetlands are tidal marshes, mangroves, and freshwater forested wetlands. Tidal marshes are dominated by herbaceous plants and are generally found at middle to high latitudes of both hemispheres. Mangrove forests dominate tropical coastlines around the world while tidal freshwater forests are global in distribution. All three wetland types are highly productive ecosystems, supporting abundant and diverse faunal communities. Unfortunately, these wetlands are subject to alteration and loss from both natural and anthropogenic causes.

  6. Dexpanthenol (Ro 01-4709) in the treatment of constipation.

    PubMed

    Hanck, A B; Goffin, H

    1982-01-01

    Functional constipation is not a life-threatening disease, but as a chronic state it worries the patient and causes him discomfort and often leads him to self-medication with potentially dangerous drugs. Ro 01-4709 contains as active substance dexpanthenol, which is the alcohol of pantothenic acid, a vitamin of the B-complex. In the cells, dexpanthenol is readily oxidized to pantothenic acid, which stimulates peristalsis when administered in therapeutically effective doses. Ro 01-4709 has already proven its efficacy in the prevention and treatment of adynamic ileus. Recently, several open and two double-blind studies have been carried out, investigating the efficacy of oral Ro 01-4709 in the treatment of chronic functional constipation. The two double-blind studies showed Ro 01-4709 to be superior to placebo in all parameters measured. The studies with an open design also demonstrated a favourable effect of Ro 01-4709 in the treatment of chronic functional constipation. Owing to its physiological action-which is in a favourable contrast to that of normal laxatives. Ro 01-4709 can be recommended for the treatment of functional constipation in pregnant women, children and the elderly.

  7. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.

    PubMed

    Hu, Zhiqiang; Wu, Shuang; Ji, Cheng; Zou, Jianwen; Zhou, Quansuo; Liu, Shuwei

    2016-01-01

    Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m(-2) h(-1) from rice paddies, and 1.14 and 0.50 mg m(-2) h(-1) for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52% lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha(-1) in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22-54% in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate.

  8. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    PubMed

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  9. Performance of a pilot-scale constructed wetland for stormwater runoff and domestic sewage treatment on the banks of a polluted urban river.

    PubMed

    Guo, Weijie; Li, Zhu; Cheng, Shuiping; Liang, Wei; He, Feng; Wu, Zhenbin

    2014-01-01

    To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4(+)-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m(-2) yr(-1), respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4(+)-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.

  10. Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment.

    PubMed

    Dzakpasu, Mawuli; Wang, Xiaochang; Zheng, Yucong; Ge, Yuan; Xiong, Jiaqing; Zhao, Yaqian

    2015-01-01

    The characteristics of nitrogen (N) and phosphorus (P) removal were studied during the 2-year operation of a free water surface flow wetland of 900 m² with hydraulic loading of 0.1 m/d to evaluate its potential to treat water from an urban stream polluted with municipal and industrial wastewater. Attention was focused on the removal of dissolved N and P by harvesting plants (local Phragmites australis and Typha orientalis) at the end of each growing season. According to findings, the removals of N and P increased from 47.1% and 17.6%, respectively, in the 1st year to 52.3% and 32.4%, respectively, in the 2nd year. Increments of N and P removal were largely attributable to plant biomass, which increased from an average dry weight of 1.77 kg/m² in the 1st year to 3.41 kg/m² in the 2nd year. The amount of nutrients assimilated by plants in the 2nd year was almost double that of the 1st year. Increasing biomass in the 2nd year also improved redox conditions in the substrate layer, which contributed to increasing the efficiency of N removal. Compared with T. orientalis, P. australis was more competitive and adapted to conditions in the wetland better; it regenerated more vigorously and contributed more to nutrient removal.

  11. Hydrologic regime controls soil phosphorus fluxes in restoration and undisturbed wetlands

    USGS Publications Warehouse

    Aldous, A.; McCormick, P.; Ferguson, C.; Graham, S.; Craft, C.

    2005-01-01

    Many wetland restoration projects occur on former agricultural soils that have a history of disturbance and fertilization, making them prone to phosphorus (P) release upon flooding. To study the relationship between P release and hydrologic regime, we collected soil cores from three restoration wetlands and three undisturbed wetlands around Upper Klamath Lake in southern Oregon, U.S.A. Soil cores were subjected to one of three hydrologic regimes - flooded, moist, and dry - for 7.5 weeks, and P fluxes were measured upon reflooding. Soils from restoration wetlands released P upon reflooding regardless of the hydrologic regime, with the greatest releases coming from soils that had been flooded or dried. Undisturbed wetland soils released P only after drying. Patterns in P release can be explained by a combination of physical and biological processes, including the release of iron-bound P due to anoxia in the flooded treatment and the mineralization of organic P under aerobic conditions in the dry treatment. Higher rates of soil P release from restoration wetland soils, particularly under flooded conditions, were associated with higher total P concentrations compared with undisturbed wetland soils. We conclude that maintaining moist soil is the means to minimize P release from recently flooded wetland soils. Alternatively, prolonged flooding provides a means of liberating excess labile P from former agricultural soils while minimizing continued organic P mineralization and soil subsidence. ?? 2005 Society for Ecological Restoration International.

  12. LAKE-WETLAND LINKAGE AND PERIPHYTON DYNAMICS IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Tributaries feeding coastal wetlands along the Wisconsin shore of Lake Superior are generally depleted in inorganic nitrogen (TIN) relative to phosphorus (SRP), while Lake Superior is phosphorous depleted and relatively rich in TIN. Within wetlands, mixing of tributary and lake w...

  13. Effects of agricultural, industrial, and municipal pollutants on wetlands and wildlife and wildlife health

    USGS Publications Warehouse

    Converse, Kathryn A.

    1995-01-01

    Wetlands accumulate pollutants from adjacent areas through intentional discharge of sewage or industrial wastes, runoff of agricultural fertilizers and pesticides, and discharge from municipal storm drains.  Coastal wetlands receive more pollutants indirectly as the endpoint for upland drainage systems and directly through petroleum spills and insect abatement.  Wetlands that serve as evaporation basins during seasonally high water, especially in more arid climates, concentrate natural compounds and as well as pollutants.  The ability of wetlands to be effective filtration systems for wastewater nutrients through microbial transformations, uptake by plants, and deposition of particulate matter, and the shortage of water in arid climates has resulted in revision of wetland regulations.  Wetlands can now be developed for wastewater treatment and natural wetlands can be restored or converted to wastewater treatment systems.  The effect of these accumulation pollutants on wetland ecology and wildlife health needs to be recognized.

  14. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.

    PubMed

    Hadad, H R; Mufarrege, M M; Pinciroli, M; Di Luca, G A; Maine, M A

    2010-04-01

    Typha domingensis had become the dominant species after 2 years of operation of a wetland constructed for metallurgical effluent treatment. Therefore, the main purpose of this study was to investigate its ability to tolerate the effluent and to maintain the contaminant removal efficiency of the constructed wetland. Plant, sediment, and water at the inlet and outlet of the constructed wetland and in two natural wetlands were sampled. Metal concentration (Cr, Ni, and Zn) and total phosphorus were significantly higher in tissues of plants growing at the inlet in comparison with those from the outlet and natural wetlands. Even though the chlorophyll concentration was sensitive to effluent toxicity, biomass and plant height at the inlet and outlet were significantly higher than those in the natural wetlands. The highest root and stele cross-sectional areas, number of vessels, and biomass registered in inlet plants promoted the uptake, transport, and accumulation of contaminants in tissues. The modifications recorded accounted for the adaptability of T. domingensis to the conditions prevailing in the constructed wetland, which allowed this plant to become the dominant species and enabled the wetland to maintain a high contaminant retention capacity.

  15. Sedimentation of prairie wetlands

    USGS Publications Warehouse

    Gleason, Robert A.; Euliss, Ned H.

    1998-01-01

    Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.

  16. Hydrology of a natural hardwood forested wetland

    Treesearch

    George M. Chescheir; Devendra M. Amatya; R. Wayne Skaggs

    2008-01-01

    This paper documents the hydrology of a natural forested wetland near Plymouth, NC, USA. The research site was located on one of the few remaining, undrained non-riverine, palustrine forested hardwood wetlands on the lower coastal plain of North Carolina. A 137 ha watershed within the 350ha wetland was selected for intensive field study. Water balance components...

  17. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    NASA Astrophysics Data System (ADS)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  18. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.

    PubMed

    Nag, Subir K; Liu, Ruiqiang; Lal, Rattan

    2017-10-23

    Wetlands are a C sink, but they also account for a large natural source of greenhouse gases (GHG), particularly methane (CH 4 ). Soils of wetlands play an important role in alleviating the global climate change regardless of the emission of CH 4 . However, there are uncertainties about the amount of C stored and emitted from wetlands because of the site specific factors. Therefore, the present study was conducted in a temperate riverine flow-through wetland, part of which was covered with emerging macrophyte Typhus latifolia in central Ohio, USA, with the objective to assess emissions of GHGs (CH 4, CO 2 , N 2 O) and measure C and nitrogen (N) stocks in wetland soil in comparison to a reference upland site. The data revealed that CH 4 emission from the open and vegetated wetland ranged from 1.03-0.51 Mg C/ha/y and that of CO 2 varied from 1.26-1.51 Mg C/ha/y. In comparison, CH 4 emission from reference upland site was negligible (0.01 Mg C/ha/y), but CO 2 emission was much higher (3.24 Mg C/ha/y). The stock of C in wetland soil was 85 to 125 Mg C/ha up to 0.3 m depth. The average rate of emission was 2.15 Mg C/ha/y, but the rate of sequestration was calculated as 5.55 Mg C/ha/y. Thus, the wetland was actually a C sink. Emission of N 2 O was slightly higher in vegetated wetland (0.153 mg N 2 O-N/m 2 /h) than the open wetland and the reference site (0.129 mg N 2 O-N/m 2 /h). Effect of temperature on emission of GHGs from the systems was also studied.

  19. Performance of a constructed wetland-pond system for treatment and reuse of wastewater from campus buildings.

    PubMed

    Ou, Wen-Sheng; Lin, Ying-Feng; Jing, Shuh-Ren; Lin, Hsien-Te

    2006-11-01

    A constructed wetland-pond system consisting of two free-water-surface-flow (FWS) wetland cells, a scenic pond, and a slag filter in series was used for reclamation of septic tank effluent from a campus building. The results show that FWS wetlands effectively removed major pollutants under a hydraulic loading rate between 2.1 and 4.2 cm/d, with average efficiencies ranging from 74 to 78% for total suspended solids, 73 to 88% for 5-day biochemical oxygen demand, 42 to 49% for total nitrogen, 34 to 70% for total phosphorous, 64 to 79% for total coliforms, and 90 to 99.9% for Escherichia coli. After passing through the scenic pond and slag filter, the reclaimed water was used for landscape irrigation. There were a variety of ornamental plants and aquatic animals established in the second FWS cell and scenic pond with good water quality, thus enhancing landscape and ecology amenity in campuses.

  20. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 2. Methodology.

    DTIC Science & Technology

    1987-10-01

    in Zones B or C fiom wind. (b) Open water fetch is less than 100 ft (Figure 19)? 19.1B (Answer "I" if the AA/IA is mostly a riverine wetland system ...and upland .... 58 19 Examples of sheltered open water in the AA/IA .................. 59 20 Example of a wetland protected shoreline...the wetland and adjacent of the channel, as well as contiguous wetlands within open water for a distance of 300 ft. from the deep 0.5 mile. water

  1. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    USGS Publications Warehouse

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  2. General design, construction, and operation guidelines: Constructed wetlands wastewater treatment systems for small users including individual residences. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, G.R.; Watson, J.T.

    1993-05-01

    One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology inmore » 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.« less

  3. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    PubMed

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua

    2015-01-01

    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands.

  4. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  5. The wetland continuum: a conceptual framework for interpreting biological studies

    USGS Publications Warehouse

    Euliss, N.H.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D.

    2004-01-01

    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axis, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations.

  6. Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System

    PubMed Central

    De La Mora-Orozco, Celia; González-Acuña, Irma Julieta; Saucedo-Terán, Ruben Alfonso; Flores-López, Hugo Ernesto; Rubio-Arias, Hector Osbaldo; Ochoa-Rivero, Jesús Manuel

    2018-01-01

    Pollutants from pig farms in Mexico have caused problems in many surface water reservoirs. Growing concern has driven the search for low-cost wastewater treatment solutions. The objective of this research was to evaluate the potential of an in-series constructed wetland to remove nutrients from wastewater from a pig farm. The wetland system had a horizontal flow that consisted of three cells, the first a surface water wetland, the second a sedimentation cell, and the third a subsurface flow wetland. The vegetation used was Thypa sp. and Scirpus sp. A mix of soil with red volcanic rock (10–30 mm diameter) and yellow sand (2–8 mm diameter) was used as a substrate for the vegetation. The experiments were carried out in duplicate. Water samples were collected at the inflow and outflow of the cells. Two hydraulic retention times (HRT) (5 and 10 days) and three treatments were evaluated: 400, 800, and 1200 mg·L−1 of chemical oxygen demand (COD) concentration. Data was collected in situ for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). COD, total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3–N), and total phosphorous (TP) were analyzed in the laboratory. The results showed that the in-series constructed wetland is a feasible system for nutrient pollutant removal, with COD removal efficiency of 76% and 80% mg·L−1 for a 5- and 10-day HRT, respectively. The removal efficiency for TKN, NH3–N, and TP reached about 70% with a 5-day HRT, while a removal of 85% was obtained with a 10-day HRT. The wetland reached the maximum removal efficiency with a 10-day HRT and an inflow load of 400 mg·L−1 of organic matter. The results indicate that HRT positively affects removal efficiency of COD and TDS. On the other hand, the HRT was not the determining factor for TP removal. Treatment one, with an initial COD concentration of 400 mg·L−1, had the highest removal of the assessed pollutants, allowing for the use

  7. Effects of wastewater on forested wetlands

    USGS Publications Warehouse

    Doyle, Thomas W.

    2002-01-01

    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  8. Eutrophication and Bacterial Pathogens as Risk Factors for Avian Botulism Outbreaks in Wetlands Receiving Effluents from Urban Wastewater Treatment Plants

    PubMed Central

    Vidal, Dolors; Laguna, Celia; Díaz-Sánchez, Sandra; Sánchez, Sergio; Chicote, Álvaro; Florín, Máximo; Mateo, Rafael

    2014-01-01

    Due to the scarcity of water resources in the “Mancha Húmeda” Biosphere Reserve, the use of treated wastewater has been proposed as a solution for the conservation of natural threatened floodplain wetlands. In addition, wastewater treatment plants of many villages pour their effluent into nearby natural lakes. We hypothesized that certain avian pathogens present in wastewater may cause avian mortalities which would trigger avian botulism outbreaks. With the aim of testing our hypothesis, 24 locations distributed in three wetlands, two that receive wastewater effluents and one serving as a control, were monitored during a year. Sediment, water, water bird feces, and invertebrates were collected for the detection of putative avian pathogenic Escherichia coli (APEC), Salmonella spp., Clostridium perfringens type A, and Clostridium botulinum type C/D. Also, water and sediment physicochemical properties were determined. Overall, APEC, C. perfringens, and C. botulinum were significantly more prevalent in samples belonging to the wetlands which receive wastewater. The occurrence of a botulism outbreak in one of the studied wetlands coincided with high water temperatures and sediment 5-day biochemical oxygen demand (BOD5), a decrease in water redox potential, chlorophyll a, and sulfate levels, and an increase in water inorganic carbon levels. The presence of C. botulinum in bird feces before the onset of the outbreak indicates that carrier birds exist and highlights the risk of botulinum toxin production in their carcasses if they die by other causes such as bacterial diseases, which are more probable in wastewater wetlands. PMID:24795377

  9. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review.

    PubMed

    Verlicchi, Paola; Zambello, Elena

    2014-02-01

    This review presents and discusses the data from 47 peer-reviewed journal articles on the occurrence of 137 pharmaceutical compounds in the effluent from various types of constructed wetlands treating urban wastewater. We analyse the observed removal efficiencies of the investigated compounds in order to identify the type of constructed wetland that best removes those most frequently detected. The literature reviewed details experimental investigations carried out on 136 treatment plants, including free water surface systems, as well as horizontal and vertical subsurface flow beds (pilot or full-scale) acting as primary, secondary or tertiary treatments. The occurrence of selected pharmaceuticals in sediments and gravel and their uptake by common macrophytes are also presented and discussed. We analyse the main removal mechanisms for the selected compounds and investigate the influence of the main design parameters, as well as operational and environmental conditions of the treatment systems on removal efficiency. We also report on previous attempts to correlate observed removal values with the chemical structure and chemical-physical properties (mainly pKa and LogKow) of pharmaceutical compounds. We then use the literature data to calculate the average pharmaceutical mass loadings in the effluent from constructed wetlands, comparing the ability of such systems to remove selected pharmaceuticals with the corresponding conventional secondary and tertiary treatments. Finally, the environmental risk posed by pharmaceutical residues in effluents from constructed wetlands acting as secondary and tertiary treatment steps is calculated in the form of the risk quotient ratio. This approach enabled us to provide a ranking of the most critical compounds for the two scenarios, to discuss the ramifications of the adoption of constructed wetlands for removing such persistent organic compounds, and to propose avenues of future research. © 2013.

  10. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    PubMed

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes. Copyright © 2014 Elsevier B.V. All rights

  11. [Vulnerability assessment on the coastal wetlands in the Yangtze Estuary under sea-level rise].

    PubMed

    Cui, Li-Fang; Wang, Ning; Ge, Zhen-Ming; Zhang, Li-Quan

    2014-02-01

    To study the response of coastal wetlands to climate change, assess the impacts of climate change on the coastal wetlands and formulate feasible and practical mitigation strategies are the important prerequisite for securing coastal ecosystems. In this paper, the possible impacts of sea level rise caused by climate change on the coastal wetlands in the Yangtze Estuary were analyzed by the Source-Pathway-Receptor-Consequence (SPRC) model and IPCC definition on the vulnerability. An indicator system for vulnerability assessment was established, in which sea-level rise rate, subsidence rate, habitat elevation, inundation threshold of habitat and sedimentation rate were selected as the key indicators. A quantitatively spatial assessment method based on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability index for the assessment of coastal wetlands in the Yangtze Estuary under the scenarios of sea-level rise. The vulnerability assessments on the coastal wetlands in the Yangtze Estuary in 2030 and 2050 were performed under two sea-level rise scenarios (the present sea-level rise trend over recent 30 years and IPCC A1F1 scenario). The results showed that with the projection in 2030 under the present trend of sea-level rise (0.26 cm x a(-1)), 6.6% and 0.1% of the coastal wetlands were in the low and moderate vulnerabilities, respectively; and in 2050, 9.8% and 0.2% of the coastal wetlands were in low and moderate vulnerabilities, respectively. With the projection in 2030 under the A1F1 scenario (0.59 cm x a(-1)), 9.0% and 0.1% of the coastal wetlands were in the low and moderate vulnerabilities, respectively; and in 2050, 9.5%, 1.0% and 0.3% of the coastal wetlands were in the low, moderate and high vulnerabilities, respectively.

  12. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  13. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    NASA Astrophysics Data System (ADS)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  14. Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment.

    PubMed

    Zhang, X; Inoue, T; Kato, K; Harada, J; Izumoto, H; Wu, D; Sakuragi, H; Ietsugu, H; Sugawara, Y

    2016-01-01

    The objective of this study was to evaluate performance of a hybrid constructed wetland (CW) built for high organic content piggery wastewater treatment in a cold region. The system consists of four vertical and one horizontal flow subsurface CWs. The wetland was built in 2009 and water quality was monitored from the outset. Average purification efficiency of this system was 95±5, 91±7, 89±8, 70±10, 84±15, 90±6, 99±2, and 93±16% for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total carbon (TC), total nitrogen (TN), ammonium-N (NH4-N), total phosphorus (TP), total coliform (T. Coliform), and suspended solids (SS), respectively during August 2010-December 2013. Pollutant removal rate was 15±18 g m(-2) d(-1), 49±52 g m(-2) d(-1), 6±4 g m(-2) d(-1), 7±5 g m(-2) d(-1), and 1±1 g m(-2) d(-1) for BOD5, COD, TN, NH4-N, and TP, respectively. The removal efficiency of BOD5, COD, NH4-N, and SS improved yearly since the start of operation. With respect to removal of TN and TP, efficiency improved in the first three years but slightly declined in the fourth year. The system performed well during both warm and cold periods, but was more efficient in the warm period. The nitrate increase may be attributed to a low C/N ratio, due to limited availability of carbon required for denitrification.

  15. Wetland features and landscape context predict the risk of wetland habitat loss.

    PubMed

    Gutzwiller, Kevin J; Flather, Curtis H

    2011-04-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive regression splines to develop a model to predict the risk of wetland habitat loss as a function of wetland features and landscape context. Fates of wetland habitats from 1992 to 1997 were obtained from the National Resources Inventory for the U.S. Forest Service's Southern Region, and land-cover data were obtained from the National Land Cover Data. We randomly selected 70% of our 40 617 observations to build the model (n = 28 432), and randomly divided the remaining 30% of the data into five Test data sets (n = 2437 each). The wetland and landscape variables that were important in the model, and their relative contributions to the model's predictive ability (100 = largest, 0 = smallest), were land-cover/ land-use of the surrounding landscape (100.0), size and proximity of development patches within 570 m (39.5), land ownership (39.1), road density within 570 m (37.5), percent woody and herbaceous wetland cover within 570 m (27.8), size and proximity of development patches within 5130 m (25.7), percent grasslands/herbaceous plants and pasture/hay cover within 5130 m (21.7), wetland type (21.2), and percent woody and herbaceous wetland cover within 1710 m (16.6). For the five Test data sets, Kappa statistics (0.40, 0.50, 0.52, 0.55, 0.56; P < 0.0001), area-under-the-receiver-operating-curve (AUC) statistics (0.78, 0.82, 0.83, 0.83, 0.84; P < 0.0001), and percent correct prediction of wetland habitat loss (69.1, 80.4, 81.7, 82.3, 83.1) indicated the model generally had substantial predictive ability across the South. Policy analysts and land-use planners can use the model and associated maps to prioritize

  16. Phenological Indicators of Vegetation Recovery in Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    Taddeo, S.; Dronova, I.

    2017-12-01

    Landscape phenology is increasingly used to measure the impacts of climatic and environmental disturbances on plant communities. As plants show rapid phenological responses to environmental changes, variation in site phenology can help characterize vegetation recovery following restoration treatments and qualify their resistance to environmental fluctuations. By leveraging free remote sensing datasets, a phenology-based analysis of vegetation dynamics could offer a cost-effective assessment of restoration progress in wetland ecosystems. To fulfill this objective, we analyze 20 years of free remote sensing data from NASA's Landsat archive to offer a landscape-scale synthesis of wetland restoration efforts in the Sacramento-San Joaquin Delta of California, USA. Through an analysis of spatio-temporal changes in plant phenology and greenness, we assess how 25 restored wetlands across the Delta have responded to restoration treatments, time, and landscape context. We use a spline smoothing approach to generate both site-wide and pixel-specific phenological curves and identify key phenological events. Preliminary results reveal a greater variability in greenness and growing season length during the initial post-restoration years and a significant impact of landscape context in the time needed to reach phenological stability. Well-connected sites seem to benefit from an increased availability of propagules enabling them to reach peak greenness and maximum growing season length more rapidly. These results demonstrate the potential of phenological analyses to measure restoration progress and detect factors promoting wetland recovery. A thorough understanding of wetland phenology is key to the quantification of ecosystem processes including carbon sequestration and habitat provisioning.

  17. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. Themore » system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.« less

  18. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: an enclosure approach.

    PubMed

    Sura, Srinivas; Waiser, Marley J; Tumber, Vijay; Raina-Fulton, Renata; Cessna, Allan J

    2015-04-15

    Wetlands in the Prairie pothole region of Saskatchewan and Manitoba serve an important role in providing wildlife habitat, water storage and water filtration. They display a wide range of water quality parameters such as salinity, nutrients and major ions with sulfate as the dominant ion for the most saline wetlands. The differences in these water quality parameters among wetlands are reflected in the composition of aquatic plant communities and their productivity. Interspersed within an intensely managed agricultural landscape where pesticides are commonly used, mixtures of herbicides are often detected in these wetlands as well as in rivers, and drinking water reservoirs. One freshwater and three wetlands of varying salinity in the St. Denis National Wildlife Area, Saskatchewan, Canada were selected to study the effects of a mixture of eight herbicides (2,4-D, MCPA, dicamba, clopyralid, bromoxynil, mecoprop, dichlorprop, and glyphosate) on wetland microbial communities using an outdoor enclosure approach. Six enclosures (three controls and three treatments) were installed in each wetland and the herbicide mixture added to the treatment enclosures. The concentration of each herbicide in the enclosure water was that which would have resulted from a direct overspray of a 0.5-m deep wetland at its recommended field application rate. After herbicide addition, primary and bacterial productivity, and algal biomass were measured in both planktonic and benthic communities over 28 days. The herbicide mixture had a stimulatory effect on primary productivity in the nutrient-sufficient freshwater wetland while no stimulatory effect was observed in the nutrient-deficient saline wetlands. The differences observed in the effects of the herbicide mixture appear to be related to the nutrient bioavailability in these wetlands. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  19. Remote Sensing and Wetland Ecology: a South African Case Study.

    PubMed

    De Roeck, Els R; Verhoest, Niko E C; Miya, Mtemi H; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc

    2008-05-26

    Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 - 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery. For

  20. Wetland biogeochemistry and ecological risk assessment

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Zhang, Guangliang

    2017-02-01

    Wetlands are an important ecotone between terrestrial and aquatic ecosystems and can provide great ecological service functions. Soils/sediments are one of the important components of wetland ecosystems, which support wetland plants and microorganisms and influence wetland productivity. Moreover, wetland soils/sediments serve as sources, sinks and transfers of carbon, nitrogen, phosphorus and chemical contaminants such as heavy metals. In natural wetland ecosystems, wetland soils/sediments play a great role in improving water quality as these chemical elements can be retained in wetland soils/sediments for a long time. Moreover, the biogeochemical processes of the abovementioned elements in wetland soils/sediments can drive wetland evolution and development, and their changes will considerably affect wetland ecosystem health. Therefore, a better understanding of wetland soil biogeochemistry will contribute to improving wetland ecological service functions.

  1. Forested wetland habitat

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  2. Colonization of a newly constructed urban wetland by mosquitoes in England: implications for nuisance and vector species.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2014-12-01

    Urban wetlands are being created in the UK as part of sustainable urban drainage strategies, to create wetland habitats lost during development, to provide a habitat for protected species, and to increase the public's access to 'blue-space' for the improvement of health and well-being. Sewage treatment reedbeds are also being incorporated into newly constructed wetlands to offer an alternative approach to dealing with sewage. This field study aims to provide the first UK evidence of how such newly constructed aquatic habitats are colonized by mosquitoes. A number of new aquatic habitats were surveyed for immature mosquitoes every fortnight over the first two years following wetland construction. The majority of mosquitoes collected were Culex sp. and were significantly associated with the sewage treatment reedbed system, particularly following storm events and sewage inflow. Other more natural aquatic habitats that were subject to cycles of drying and re-wetting contributed the majority of the remaining mosquitoes colonizing. Colonization of permanent habitats was slow, particularly where fluctuations in water levels inhibited emergent vegetation growth. It is recommended that during the planning process for newly constructed wetlands consideration is given on a case-by-case basis to the impact of mosquitoes, either as a cause of nuisance or as potential vectors. Although ornithophagic Culex dominated in this wetland, their potential role as enzootic West Nile virus vectors should not be overlooked. © 2014 The Society for Vector Ecology.

  3. Using Refined Regression Analysis To Assess The Ecological Services Of Restored Wetlands

    EPA Science Inventory

    A hierarchical approach to regression analysis of wetland water treatment was conducted to determine which factors are the most appropriate for characterizing wetlands of differing structure and function. We used this approach in an effort to identify the types and characteristi...

  4. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    Freshwater wetlands are an integral part of central Florida, where thousands are distributed across the landscape. However, their relatively small size and vast numbers challenge efforts to characterize them collectively as a statewide water resource. Wetlands are a dominant landscape feature in Florida; in 1996, an estimated 11.4 million acres of wetlands occupied 29 percent of the area of the State. Wetlands represent a greater percentage of the land surface in Florida than in any other state in the conterminous United States. Statewide, 90 percent of the total wetland area is freshwater wetlands and 10 percent is coastal wetlands. About 55 percent of the freshwater wetlands in Florida are forested, 25 percent are marshes and emergent wetlands, 18 percent are scrub-shrub wetlands, and the remaining 2 percent are freshwater ponds. Freshwater wetlands are distributed differently in central Florida than in other parts of the State. In the panhandle and in northern Florida, there are fewer isolated wetlands than in the central and southern parts of the State, and few of those wetlands are affected by activities such as groundwater withdrawals. In southern Florida, the vast wetlands of the Everglades and the Big Cypress Swamp blanket the landscape and form contiguous shallow expanses of water, which often exhibit slow but continuous flow toward the southwestern coast. In contrast, the wetlands of central Florida are relatively small, numerous, mostly isolated, and widely distributed. In many places, wetlands are flanked by uplands, generating a mosaic of contrasting environments-unique wildlife habitat often adjacent to dense human development. As the population of central Florida increases, the number of residents living near wetlands also increases. Living in close proximity to wetlands provides many Floridians with an increased awareness of nature and an opportunity to examine the relationship between people and wetlands. Specifically, these residents can observe

  5. High performance constructed wetlands for cold climates.

    PubMed

    Jenssen, Petter D; Maehlum, Trend; Krogstad, Tore; Vråle, Lasse

    2005-01-01

    In 1991, the first subsurface flow constructed wetland for treatment of domestic wastewater was built in Norway. Today, this method is rapidly becoming a popular method for wastewater treatment in rural Norway. This is due to excellent performance even during winter and low maintenance. The systems can be constructed regardless of site conditions. The Norwegian concept for small constructed wetlands is based on the use of a septic tank followed by an aerobic vertical down-flow biofilter succeeded by a subsurface horizontal-flow constructed wetland. The aerobic biofilter, prior to the subsurface flow stage, is essential to remove BOD and achieve nitrification in a climate where the plants are dormant during the cold season. When designed according to present guidelines a consistent P-removal of > 90% can be expected for 15 years using natural iron or calcium rich sand or a new manufactured lightweight aggregate with P-sorption capacities, which exceeds most natural media. When the media is saturated with P it can be used as soil conditioner and P-fertilizer. Nitrogen removal in the range of 40-60% is achieved. Removal of indicator bacteria is high and < 1000 thermotolerant coliforms/100 ml is normally achieved.

  6. 'Halophyte filters': the potential of constructed wetlands for application in saline aquaculture.

    PubMed

    De Lange, H J; Paulissen, M P C P; Slim, P A

    2013-01-01

    World consumption of seafood continues to rise, but the seas and oceans are already over-exploited. Land-based (saline) aquaculture may offer a sustainable way to meet the growing demand for fish and shellfish. A major problem of aquaculture is nutrient waste, as most of the nutrients added through feed are released into the environment in dissolved form. Wetlands are nature's water purifiers. Constructed wetlands are commonly used to treat contaminated freshwater effluent. Experience with saline systems is more limited. This paper explores the potential of constructed saline wetlands for treating the nutrient-rich discharge from land-based saline aquaculture systems. The primary function of constructed wetlands is water purification, but other ancillary benefits can also be incorporated into treatment wetland designs. Marsh vegetation enhances landscape beauty and plant diversity, and wetlands may offer habitat for fauna and recreational areas. Various approaches can be taken in utilizing plants (halophytes, macro-algae, micro-algae) in the treatment of saline aquaculture effluent. Their strengths and weaknesses are reviewed here, and a conceptual framework is presented that takes into account economic and ecological benefits as well as spatial constraints. Use of the framework is demonstrated for assessing various saline aquaculture systems in the southwestern delta region of the Netherlands.

  7. Regulatory Implications of Using Constructed Wetlands to Treat Selenium-Laden Wastewater

    Treesearch

    A. Dennis Lemly; Harry M. Ohlendorf

    2002-01-01

    The practice of using constructed wetlands to treat selenium-laden wastewater is gaining popularity in the linited States and elsewhere. However, proponents of treatment wetlands often overlook important ecological liabilities and regulatory implications when developing new methods and applications. Their research studies typically seek to answer a basic performance...

  8. A significant nexus: Geographically isolated wetlands influence landscape hydrology

    NASA Astrophysics Data System (ADS)

    McLaughlin, Daniel L.; Kaplan, David A.; Cohen, Matthew J.

    2014-09-01

    Recent U.S. Supreme Court rulings have limited federal protections for geographically isolated wetlands (GIWs) except where a "significant nexus" to a navigable water body is demonstrated. Geographic isolation does not imply GIWs are hydrologically disconnected; indeed, wetland-groundwater interactions may yield important controls on regional hydrology. Differences in specific yield (Sy) between uplands and inundated GIWs drive differences in water level responses to precipitation and evapotranspiration, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. These reversals are predicted to buffer surficial aquifer dynamics and thus base flow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we connected models of soil moisture, upland water table, and wetland stage to simulate hydrology of a low-relief landscape with GIWs, and explored the influences of total wetland area, individual wetland size, climate, and soil texture on water table and base flow variation. Increasing total wetland area and decreasing individual wetland size substantially decreased water table and base flow variation (e.g., reducing base flow standard deviation by as much as 50%). GIWs also decreased the frequency of extremely high and low water tables and base flow deliveries. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the importance of small GIWs to regional hydrology. Our results suggest that GIWs buffer dynamics of the surficial aquifer and stream base flow, providing an indirect but significant nexus to the regional hydrologic system.

  9. Appreciating tropical coastal wetlands from a landscape perspective

    Treesearch

    Katherine C. Ewel

    2010-01-01

    Freshwater forested wetlands are often found just upslope from mangrove forests in both high- and low-rainfall areas in the tropics. A case study on the island of Kosrae, Federated States of Micronesia, demonstrates how important both wetland types are to each other hydrologically and to local economies as well. Together, these wetlands form a landscape that provides...

  10. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J. E.; Jackson, L. M.

    2001-10-13

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatmentmore » of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.« less

  11. A novel algorithm for delineating wetland depressions and ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  12. Avian utilization of subsidence wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrot, J.R.; Conley, P.S.; Smout, C.L.

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avianmore » utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.« less

  13. Occurrence of riverine wetlands on floodplains along a climatic gradient

    USGS Publications Warehouse

    Kroes, D.E.; Brinson, M.M.

    2004-01-01

    The relation between the occurrence of riverine wetlands in floodplains along a humid to semi-arid climatic continuum was studied in two regions. The first included 36 mid-reach streams from Colorado to Iowa, USA, a region with a broad range of PET ratios (potential evapotranspiration/precipitation) from 0.70 to 1.75. The second region included 16 headwater streams in eastern North Carolina with PET ratios ranging from 0.67 to 0.83. Wetland boundaries were identified in the field along transects perpendicular to the floodplain. The width of jurisdictional wetlands was compared with flood-prone width (FPW) and expressed as a percent. An increase in PET ratio corresponded to an exponential decrease in the percentage of the FPW that is wetland. Soil texture, duration of overbank flow, and stream order did not correlate with percentage of FPW that was wetland. Streams with a PET ratio greater than 0.98 did not have wetlands associated with them. Greater channel cross-sectional areas correlated positively with greater wetland widths in both study regions. Overbank flow did not appear to contribute to wetland prevalence. Supplemental ground-water sources, however, as indicated by greater base flows, could not be ruled out as sources contributing to wetland occurrence. ?? 2004, The Society of Wetland Scientists.

  14. Contemporary and restorable wetland water storage: A landscape perspective

    USDA-ARS?s Scientific Manuscript database

    Surface water storage in wetlands drives ecosystem function from local to landscape scales. In many regions, hydrologic modifications have significantly reduced wetland storage capacity and subsequently diminished wetland functions. While the loss of wetland area has been well documented across many...

  15. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1998-01-01

    control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres-an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  16. A mesocosm study of the effects of wet-dry cycles on nutrient release from constructed wetlands in agricultural landscapes.

    PubMed

    Smith, Allyson S; Jacinthe, Pierre-Andre

    2014-01-01

    Given the projection that wet-dry periods will be more frequent in the US Midwest, a study was conducted to understand the impact of these hydro-climatic alterations on nutrient dynamics in wetlands constructed on former croplands in the region. Soil cores were collected from two constructed wetlands and a wooded riparian area (surface: 0-20 cm; subsurface: 40-60 cm) downslope from an agricultural field. Cores were either kept moist or subjected to a 5-week drying treatment, after which all cores were flooded for 36 days. Initial nitrate flux was significantly (p < 0.001) higher in the dry than in the moist treatment (44.5 vs. 1.9 mg N m(-2) per day), likely due to mineralization of organic matter. The NO3(-) released was rapidly denitrified (N2O flux: 18.9 mg N m(-2) per day), except in the subsurface soil cores in which processing of available N (N2O flux: 0.33 mg N m(-2) per day) was limited by low microbial activity (4 times lower CO2 production rate). The dry treatment also resulted in significantly (p < 0.01) higher inorganic P (Pi) flux (3.1 versus 1 mg P m(-2) per day in moist cores), with water-extractable soil P being the best predictor (r(2): 0.93, p < 0.03) of that flux. Despite a decline in redox potential (as low as -36.4 mv) and progressive increase in pore-water dissolved Fe, no relationship between floodwater Pi and dissolved Fe was observed, suggesting either limited contribution of reductive dissolution to Pi dynamics or rapid adsorption of the Pi released within the cores. Compared to the moist cores, geochemical modeling showed a consistent shift toward greater solubility of the calcium-phosphate minerals controlling pore-water Pi concentration in the dry treatment cores. These results suggest that dissolution of Ca-phosphate minerals could be a key factor controlling Pi mobility in constructed wetlands subjected to wet-dry cycles.

  17. Wetland Program Development Grants: Building State and Tribal Capacity to Protect Wetlands

    EPA Pesticide Factsheets

    This brochure highlights just a few examples of the progress being made by states and tribes through the use of the Wetland Program Development Grant funds. Wetland Program Development Grants: Building State and Tribal Capacity to Protect Wetlands

  18. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    PubMed

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.

  19. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  20. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  1. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale

    NASA Astrophysics Data System (ADS)

    Abouali, Mohammad; Nejadhashemi, A. Pouyan; Daneshvar, Fariborz; Adhikari, Umesh; Herman, Matthew R.; Calappi, Timothy J.; Rohn, Bridget G.

    2017-09-01

    Excessive nutrient use in agricultural practices is a major cause of water quality degradation around the world, which results in eutrophication of the freshwater systems. Among the nutrients, phosphorus enrichment has recently drawn considerable attention due to major environmental issues such as Lake Erie and Chesapeake Bay eutrophication. One approach for mitigating the impacts of excessive nutrients on water resources is the implementation of wetlands. However, proper site selection for wetland implementation is the key for effective water quality management at the watershed scale, which is the goal of this study. In this regard, three conventional and two pseudo-random targeting methods were considered. A watershed model called the Soil and Water Assessment Tool (SWAT) was coupled with another model called System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) to simulate the impacts of wetland implementation scenarios in the Saginaw River watershed, located in Michigan. The inter-group similarities of the targeting strategies were investigated and it was shown that the level of similarity increases as the target area increases (0.54-0.86). In general, the conventional targeting method based on phosphorus load generated per unit area at the subwatershed scale had the highest average reduction among all the scenarios (44.46 t/year). However, when considering the total area of implemented wetlands, the conventional method based on long-term impacts of wetland implementation showed the highest amount of phosphorus reduction (36.44 t/year).

  2. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  3. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    EPA Science Inventory

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  4. Determination of the health of Lunyangwa wetland using Wetland Classification and Risk Assessment Index

    NASA Astrophysics Data System (ADS)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.; Msilimba, Golden

    2016-04-01

    Wetlands are major sources of various ecological goods and services including storage and distribution of water in space and time which help in ensuring the availability of surface and groundwater throughout the year. However, there still remains a poor understanding of the range of values of water quality parameters that occur in wetlands either in its impacted state or under natural conditions. It was thus imperative to determine the health of Lunyangwa wetland in Mzuzu City in Malawi in order to classify and determine its state. This study used the Escom's Wetland Classification and Risk Assessment Index Field Guide to determine the overall characteristics of Lunyangwa wetland and to calculate its combined Wetland Index Score. Data on site information, field measurements (i.e. EC, pH, temperature and DO) and physical characteristics of Lunyangwa wetland were collected from March, 2013 to February, 2014. Results indicate that Lunyangwa wetland is a largely open water zone which is dominated by free-floating plants on the water surface, beneath surface and emergent in substrate. Furthermore, the wetland can be classified as of a C ecological category (score = 60-80%), which has been moderately modified with moderate risks of the losses and changes occurring in the natural habitat and biota in the wetland. It was observed that the moderate modification and risk were largely because of industrial, agricultural, urban/social catchment stressors on the wetland. This study recommends an integrated and sustainable management approach coupled with continuous monitoring and evaluation of the health of the wetland for all stakeholders in Mzuzu City. This would help to maintain the health of Lunyangwa wetland which is currently at risk of being further modified due to the identified catchment stressors.

  5. Wetlands in a changing climate: Science, policy and management

    USGS Publications Warehouse

    Moomaw, William R.; Chmura, G.L.; Davies, Gillian T.; Finlayson, Max; Middleton, Beth A.; Natali, Sue M.; Perry, James; Roulet, Nigel; Sutton-Grier, Ariana

    2018-01-01

    Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

  6. Effect of recirculation on organic matter removal in a hybrid constructed wetland system.

    PubMed

    Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C

    2011-01-01

    This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.

  7. Neotropical coastal wetlands

    USGS Publications Warehouse

    McKee, Karen L.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    The Neotropical region, which includes the tropical Americas, is one of the world's eight biogeographic zones. It contains some of the most diverse and unique wetlands in the world, some of which are still relatively undisturbed by humans. This chapter focuses on the northern segment of the Neotropics (south Florida, the Caribbean islands, Mexico, and Central America), an area that spans a latitudinal gradient from about 7 N to 29 N and 60 W to 112 W. Examples of coastal wetlands in this realm include the Everglades (Florida, USA), Ten Thousand Islands (Florida, USA), Laguna de Terminos (Mexico), Twin Cays (Belize), and Zapata Swamp (Cuba). Coastal wetlands are dominated by mangroves, which will be emphasized here, but also include freshwater swamps and marshes, saline marshes, and seagrass beds. The aim of this chapter is to provide a broad overview of Neotropical coastal wetlands of the North American continent, with an emphasis on mangroves, since this is the dominant vegetation type and because in-depth coverage of all wetland types is impossible here. Instead, the goal is to describe the environmental settings, plant and animal communities, key ecological controls, and some conservation concerns, with specific examples. Because this book deals with wetlands of North America, this chapter excludes coastal wetlands of South America. However, much of the information is applicable to mangrove, marsh, and seagrass communities of other tropicaI regions.

  8. A bench-scale constructed wetland as a model to characterize benzene biodegradation processes in freshwater wetlands.

    PubMed

    Rakoczy, Jana; Remy, Benjamin; Vogt, Carsten; Richnow, Hans H

    2011-12-01

    In wetlands, a variety of biotic and abiotic processes can contribute to the removal of organic substances. Here, we used compound-specific isotope analysis (CSIA), hydrogeochemical parameters and detection of functional genes to characterize in situ biodegradation of benzene in a model constructed wetland over a period of 370 days. Despite low dissolved oxygen concentrations (<30 μM), the oxidation of ammonium to nitrate and the complete oxidation of ferrous iron pointed to a dominance of aerobic processes, suggesting efficient oxygen transfer into the sediment zone by plants. As benzene removal became highly efficient after day 231 (>98% removal), we applied CSIA to study in situ benzene degradation by indigenous microbes. Combining carbon and hydrogen isotope signatures by two-dimensional stable isotope analysis revealed that benzene was degraded aerobically, mainly via the monohydroxylation pathway. This was additionally supported by the detection of the BTEX monooxygenase gene tmoA in sediment and root samples. Calculating the extent of biodegradation from the isotope signatures demonstrated that at least 85% of benzene was degraded by this pathway and thus, only a small fraction was removed abiotically. This study shows that model wetlands can contribute to an understanding of biodegradation processes in floodplains or natural wetland systems.

  9. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  10. A review of the ecohydrology of the Sakumo wetland in Ghana.

    PubMed

    Nonterah, Cynthia; Xu, Yongxin; Osae, Shiloh; Akiti, Thomas T; Dampare, Samuel B

    2015-11-01

    The Sakumo wetland is an internationally recognized Ramsar site located in a largely urban area and provides essential ecological and social services to wetland community dwellers. Despite its importance, the wetland has over the years been subjected to human interference resulting in considerable risks of deteriorating water quality, biodiversity loss, and drying up of most parts of the wetland. The conversion of land for residential and agricultural uses has significantly altered the hydrological characteristics of the land surface and modified pathways and flow of water into the wetland. Other drivers identified included drainage (mainly as runoff from agricultural farms), anthropogenic pressure (waste discharge) due to infrastructure development associated with urbanization, chemical contamination as a result of industrial and household pollution, and unsustainable fishing practices (overfishing). The purpose of the study was to review some of the physical and chemical properties of the Sakumo wetland on the changing wetland resources with emphasis on water quality. Rapid urbanization, industrialization, and overexploitation of wetland resources were identified as key causative factors affecting the wetland functions. Their effects on the wetland among others include increased nutrient and toxic chemical load which has resulted in reduced wetland surface water quality and decrease in species diversity. pH of the wetland waters was generally alkaline which is characteristic of water bodies influenced by seawater under oxygenated conditions. The increasing trends of electrical conductivity, phosphates, ammonia, nitrate, and nitrite, though small, point to deteriorating water quality in the wetland. The lagoon water was observed to be heavily polluted with nutrients particularly phosphate. The sequence of nutrient in the wetland was found to be in the order of PO4-P>NH3-N>NO3-N>NO2-N. These, if not checked, will result in further deterioration of the wetland

  11. Challenges in global modeling of wetland extent and wetland methane dynamics

    NASA Astrophysics Data System (ADS)

    Spahni, R.; Melton, J. R.; Wania, R.; Stocker, B. D.; Zürcher, S.; Joos, F.

    2012-12-01

    Global wetlands are known to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. Modelling of global wetland extent and wetland CH4 dynamics remains a challenge. Here we present results from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) that investigated our present ability to simulate large scale wetland characteristics (e.g. wetland type, water table, carbon cycling, gas transport, etc.) and corresponding CH4 emissions. Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The WETCHIMP experiments showed that while models disagree in spatial and temporal patterns of simulated CH4 emissions and wetland areal extent, they all do agree on a strong positive response to increased carbon dioxide concentrations. WETCHIMP made clear that we currently lack observation data sets that are adequate to evaluate model CH4 soil-atmosphere fluxes at a spatial scale comparable to model grid cells. Thus there are substantial parameter and structural uncertainties in large-scale CH4 emission models. As an illustration of the implications of CH4 emissions on climate we show results of the LPX-Bern model, as one of the models participating in WETCHIMP. LPX-Bern is forced with observed 20th century climate and climate output from an ensemble of five comprehensive climate models for a low and a high emission scenario till 2100 AD. In the high emission scenario increased substrate availability for methanogenesis due to a strong stimulation of net primary productivity, and faster soil turnover leads to an amplification of CH4 emissions with the sharpest increase in peatlands (+180% compared to present). Combined with prescribed anthropogenic CH4 emissions, simulated atmospheric CH4 concentration reaches ~4500 ppbv by 2100 AD, about 800 ppbv more than in

  12. Chromium fate in constructed wetlands treating tannery wastewaters.

    PubMed

    Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel

    2009-06-01

    Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.

  13. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    NASA Astrophysics Data System (ADS)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  14. Simulating the biogeochemical cycles in cypress wetland-pine upland ecosystems at a landscape scale with the wetland-DNDC model

    Treesearch

    G. Sun; C. Li; C. Tretting; J. Lu; S.G. McNulty

    2005-01-01

    A modeling framework (Wetland-DNDC) that described forested wetland ecosystem processes has been developed and validated with data from North America and Europe. The model simulates forest photosynthesis, respiration, carbon allocation, and liter production, soil organic matter (SOM) turnover, trace gas emissions, and N leaching. Inputs required by Wetland-DNDC...

  15. Drivers of Wetland Conversion: a Global Meta-Analysis

    PubMed Central

    van Asselen, Sanneke; Verburg, Peter H.; Vermaat, Jan E.; Janse, Jan H.

    2013-01-01

    Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic

  16. Drivers of wetland conversion: a global meta-analysis.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H; Vermaat, Jan E; Janse, Jan H

    2013-01-01

    Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic

  17. Water Table and Soil Gas Emission Responses to Disturbance in Northern Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Pypker, T. G.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Davis, J.; Wagenbrenner, J. W.; Sebestyen, S. D.; Kolka, R. K.

    2014-12-01

    Exotic pest infestations are increasingly common throughout North American forests. In forested wetlands, disturbance events may alter nutrient, carbon, and hydrologic pathways. Recently, ash (Fraxinus spp.) forests in North Central and Eastern North America have been exposed to the exotic emerald ash borer (EAB) (Burprestidae: Agrilus planipennis), and the rapid and extensive expansion of EAB populations since 2001 may soon eliminate most existing ash stands. Limited research has focused on post-establishment ecosystem impacts of an EAB disturbance, and to our knowledge, there are no studies that have evaluated the coupled response of black ash (Fraxinus nigra) wetland water tables, soil temperatures, and soil gas emissions to an EAB infestation. We present preliminary results that detail those responses to a simulated EAB disturbance. Water table position, soil temperature, and soil gas emissions (CO2 and CH4) were monitored in nine black ash wetlands in the Upper Peninsula of Michigan for three years, including one year of pre-treatment and two years of post-treatment data-collection. An EAB disturbance was simulated by girdling (Girdle) or felling (Clearcut) all black ash trees with diameters of 2.5 cm or greater within the wetland, and each treatment was applied to three sites. The results indicate that wetland water tables were insensitive to treatment effects, soil temperatures were significantly higher in the Clearcut treatment, soil gas flux was significantly higher in the Clearcut treatment, and the rate of soil gas flux was strongly regulated by water table position and temperature. No significant treatment effects were detected in the Girdle treatment during the first post-treatment year. Because water tables were insensitive to treatment, we concluded that water tables did not independently generate a soil gas flux response despite their strong regulatory influence. Furthermore, we concluded that the response of soil temperature to disturbance was

  18. Microbial diversity of bacteria, archaea, and fungi communities in a continuous flow constructed wetland for the treatment of swine waste

    USDA-ARS?s Scientific Manuscript database

    Contaminant removal in constructed wetlands may largely be a function of many microbial processes. However, information about bacterial, archaea, and fungi communities in constructed wetlands for the removal of swine waste is limited. In this study, we used 454/GS-FLX pyrosequencing to assess bacter...

  19. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1999-01-01

    Marshes, swamps, ponds, and bogs are teeming biological nurseries for migratory birds, fish, and aquatic plants. They also provide natural flood and erosion control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres - an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  20. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  1. Molecular Characterization of Wetland Soil Bacterial Community in Constructed Mesocosms

    DTIC Science & Technology

    2006-06-01

    promise. In order to better understand this process and test its legitimacy, a treatment wetland was constructed at Wright-Patterson AFB, Dayton, Ohio...fruition. Dr. Smith, without your patient instruction in the process of DNA extraction, PCR amplification, cloning, sequencing, and analysis those...then, wetlands have also been designed and constructed to treat process waters from industry (Kadlec and Knight, 1996) and are being used more and

  2. Management of wetlands for wildlife

    USGS Publications Warehouse

    Matthew J. Gray,; Heath M. Hagy,; J. Andrew Nyman,; Stafford, Joshua D.

    2013-01-01

    Wetlands are highly productive ecosystems that provide habitat for a diversity of wildlife species and afford various ecosystem services. Managing wetlands effectively requires an understanding of basic ecosystem processes, animal and plant life history strategies, and principles of wildlife management. Management techniques that are used differ depending on target species, coastal versus interior wetlands, and available infrastructure, resources, and management objectives. Ideally, wetlands are managed as a complex, with many successional stages and hydroperiods represented in close proximity. Managing wetland wildlife typically involves manipulating water levels and vegetation in the wetland, and providing an upland buffer. Commonly, levees and water control structures are used to manipulate wetland hydrology in combination with other management techniques (e.g., disking, burning, herbicide application) to create desired plant and wildlife responses. In the United States, several conservation programs are available to assist landowners in developing wetland management infrastructure on their property. Managing wetlands to increase habitat quality for wildlife is critical, considering this ecosystem is one of the most imperiled in the world.

  3. Coastal wetlands of Chesapeake Bay

    USGS Publications Warehouse

    Baldwin, Andrew H.; Kangas, Patrick J.; Megonigal, J. Patrick; Perry, Matthew C.; Whigham, Dennis F.; Batzer, Darold P.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    Wetlands are prominent landscapes throughout North America. The general characteristics of wetlands are controversial, thus there has not been a systematic assessment of different types of wetlands in different parts of North America, or a compendium of the threats to their conservation. Wetland Habitats of North America adopts a geographic and habitat approach, in which experts familiar with wetlands from across North America provide analyses and syntheses of their particular region of study. Addressing a broad audience of students, scientists, engineers, environmental managers, and policy makers, this book reviews recent, scientifically rigorous literature directly relevant to understanding, managing, protecting, and restoring wetland ecosystems of North America.

  4. Impact of Salinity Gradients on Ammonia Bioattenuation Processes in a Photosynthetic Wetland Biomat

    NASA Astrophysics Data System (ADS)

    Vega, M.; Jones, Z.; Sharp, J.

    2017-12-01

    Shallow, open water treatment wetlands may be able to offset challenges associated with the reclamation of impaired waters (e.g., membrane fouling, aeration costs, etc.) due to natural biogeochemical fluctuations produced by a benthic, photoactive biomat. This diatomaceous, redox-stratified biomat has demonstrated significant nitrate and trace organic removal from municipal wastewater streams and the microbial community has been thoroughly characterized. However, research is required to predict shifts in community structure and function in response to the excess salinity, ammonia, and metal gradients of impaired waters. Batch microcosm studies inoculating biomat from an active open water treatment wetland with incremental dilutions of hydraulic fracturing produced water were conducted in a light chamber with oscillating twelve-hour light and dark cycles to assess the effect of an impaired water matrix on biomat functionality. Diurnal photosynthetic signatures and ammonia removal kinetics were quantified in various experiments probing the effects of oscillating light conditions, biomat depth, water column isolation, nitrogen source, and salinity gradients in conjunction with phylogenetic profiles and morphological characterization. Diurnal pH and dissolved oxygen fluctuations were present at all produced water permutations, perhaps indicating stabilization of photosynthetic communities. Ammonia attenuation results suggest that the biomat is effective at removing ammonia, although first order rate constants decrease with increasing produced water abundance. Microbial community diversity appears to decrease with increasing salinity, and it is likely that these shifts correspond to variation in ecosystem function and thus treatment effectiveness. The application of shallow, open water treatment wetlands to remediate impaired waters has the potential to address societally relevant problems while discerning fundamental biogeochemical phenomena.

  5. Floodwater utilisation values of wetland services - a case study in Northeastern China

    NASA Astrophysics Data System (ADS)

    Lü, S. B.; Xu, S. G.; Feng, F.

    2012-02-01

    Water plays a significant role in wetlands. Floodwater utilisation in wetlands brings a wide range of wetland services, from goods production and water regulation to animal protection and aesthetics related to water supply in wetlands. In this study, the floodwater utilisation values of wetland services were estimated within the Momoge wetland and Xianghai wetland in western Jilin province of northeastern China. From 2003 to 2008, the floodwater diverted from the Nenjiang and Tao'er River is 381 million m3, which translates into a monetary value of approximately 1.35 billion RMB in 2008 (RMB: Chinese Currency, RMB 6.80 = US 1), and the ratio of economic value, eco-environmental value, and social value is 1:12:2. Besides the monetary value of the water itself, excessive floodwater utilisation may bring losses to wetlands; the threshold floodwater utilisation volumes in wetlands are discussed. Floodwater utilisation can alleviate water shortages in wetlands, and the evaluation of floodwater utilisation in wetland services in monetary terms is a guide for the effective use of the floodwater resources and for the conservation of wetlands.

  6. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  7. Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Mclaughlin, D. L.; Slesak, R.

    2016-12-01

    Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also

  8. Prairie basin wetlands of the Dakotas: a community profile

    USGS Publications Warehouse

    Kantrud, H.A.; Krapu, G.L.; Swanson, G.A.

    1989-01-01

    This description of prairie basin wetlands of the Dakotas is part of a series of community profiles on ecologically important wetlands of national significance. The shallow wetlands of the Dakotas form the bulk of the portion of the Prairie Pothole Region lying within the United States. This region is famous as the producer of at least half of North America's waterfowl and an unknown, but large, proportion of other prairie-dwelling marsh and aquatic birds.The wetlands described here lie in relatively small, shallow basins that vary greatly in their ability to maintain surface water, and in their water chemistry, which varies from fresh to hypersaline. These wetlands occur in a wide variety of hydrological settings, in an area where annual and seasonal precipitation varies greatly in form and amount. Thus the presence of surface water in these wetlands is largely unpredictable. Superimposed on these phenomena are the effects of a variety of land uses, including pasture, cultivation, mechanical forage removal, idle conditions and burning. All those factors greatly affect the plant and animal communities found in these basins.This profile covers lacustrine and palustrine basins with temporarily flooded, seasonally flooded, and semipermanently flooded water regimes. Basins with these water regimes compose about 90% of the basins in the Prairie Pothole Region of the Dakotas. This profile outlines the wetland subsystems, classes and subclasses that occur in these basins, and provides a useful reference to their geologic, climatic, hydrologic, and pedologic setting.Detailed information on the biotic environment of the wetlands dealt with in this profile will be useful to scientists and resource managers. Special recognition is paid to the macrophyte and invertebrate communities, which have dynamic qualities found in few other of the world's wetland ecosystems.The most noteworthy animal inhabitants of these basins are waterfowl, which are a resource of international

  9. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  10. Mitigating Losses of Wetland Ecosystems: A Context for Evaluation.

    ERIC Educational Resources Information Center

    Mattingly, Rosanna L.

    1994-01-01

    Preservation of our wetlands has been an issue for many years. Today, despite current laws and those adopted 200 years ago, the wetlands remain insufficiently protected and developed. A holistic guide and suggestions for the classroom are provided to aid in efforts directed at wetland education, research and management. (ZWH)

  11. Effectiveness of a constructed wetland for treating alkaline bauxite residue leachate: a 1-year field study.

    PubMed

    Higgins, Derek; Curtin, Teresa; Courtney, Ronan

    2017-03-01

    Increasing volumes of bauxite residues and their associated leachates represent a significant environmental challenge to the alumina industry. Constructed wetlands have been proposed as a potential approach for leachate treatment, but there is limited data on field-scale applications. The research presented here provides preliminary evaluation of a purpose-built constructed wetland to buffer leachate from a bauxite residue disposal site in Ireland. Data collected over a 1-year period demonstrated that the pH of bauxite residue leachates could be effectively reduced from ca. pH 10.3 to 8.1 but was influenced by influent variability and temporal changes. The wetland was also effective in decreasing elemental loading, and sequential extractions suggested that the bulk of the sediment-bound metal inventory was in hard-to-leach phases. Elemental analysis of Phragmites australis showed that although vegetation displayed seasonal variation, no trace elements were at concentrations of concern.

  12. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  13. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  14. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    PubMed

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Wetland landscape pattern change based on GIS and RS: a review].

    PubMed

    Kong, Fan-Ting; Xi, Min; Li, Yue; Kong, Fan-Long; Chen, Wan

    2013-04-01

    Wetland is an ecological landscape with most biodiversity in nature, which has unique ecological structure and function, and contains abundant natural resources to provide material guarantee for human's living and development. Wetland landscape pattern is the comprehensive result of various ecological processes, and has become a hot issue in wetland ecological study. At present, the combination of geographic information system (GIS) and remote sensing (RS) technologies is an important way to study the wetland landscape pattern change. This paper reviewed the research progress in the wetland landscape change based on GIS and RS from the aspects of the research methods of wetland landscape pattern, index of wetland landscape pattern, and driving forces of wetland landscape pattern evolution, and discussed the applications of the combination of GIS and RS in monitoring the wetland landscape pattern change, the index selection of wetland landscape pattern, and the driving mechanisms of the combined action of human and nature. Some deficiencies in the current studies were put forward, and the directions of the future-studies were prospected.

  16. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.

    PubMed

    Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F

    2014-01-01

    The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.

  17. Water quality of small seasonal wetlands in the Piedmont ecoregion, South Carolina, USA: Effects of land use and hydrological connectivity.

    PubMed

    Yu, Xubiao; Hawley-Howard, Joanna; Pitt, Amber L; Wang, Jun-Jian; Baldwin, Robert F; Chow, Alex T

    2015-04-15

    Small, shallow, seasonal wetlands with short hydroperiod (2-4 months) play an important role in the entrapment of organic matter and nutrients and, due to their wide distribution, in determining the water quality of watersheds. In order to explain the temporal, spatial and compositional variation of water quality of seasonal wetlands, we collected water quality data from forty seasonal wetlands in the lower Blue Ridge and upper Piedmont ecoregions of South Carolina, USA during the wet season of February to April 2011. Results indicated that the surficial hydrological connectivity and surrounding land-use were two key factors controlling variation in dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) in these seasonal wetlands. In the sites without obvious land use changes (average developed area <0.1%), the DOC (p < 0.001, t-test) and TDN (p < 0.05, t-test) of isolated wetlands were significantly higher than that of connected wetlands. However, this phenomenon can be reversed as a result of land use changes. The connected wetlands in more urbanized areas (average developed area = 12.3%) showed higher concentrations of dissolved organic matter (DOM) (DOC: 11.76 ± 6.09 mg L(-1), TDN: 0.74 ± 0.22 mg L(-1), mean ± standard error) compared to those in isolated wetlands (DOC: 7.20 ± 0.62 mg L(-1), TDN: 0.20 ± 0.08 mg L(-1)). The optical parameters derived from UV and fluorescence also confirmed significant portions of protein-like fractions likely originating from land use changes such as wastewater treatment and livestock pastures. The average of C/N molar ratios of all the wetlands decreased from 77.82 ± 6.72 (mean ± standard error) in February to 15.14 ± 1.58 in April, indicating that the decomposition of organic matter increased with the temperature. Results of this study demonstrate that the water quality of small, seasonal wetlands has a direct and close association with the surrounding environment. Copyright © 2015 Elsevier Ltd. All rights

  18. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  19. EPA METHODS FOR EVALUATING WETLAND CONDITION, WETLANDS CLASSIFICATION

    EPA Science Inventory

    In 1999, the U.S. Environmental Protection Agency (EPA) began work on this series of reports entitled Methods for Evaluating Wetland Condition. The purpose of these reports is to help States and Tribes develop methods to evaluate 1) the overall ecological condition of wetlands us...

  20. Wetland Hydrological Connectivity: A Classification Approach ...

    EPA Pesticide Factsheets

    Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to repre

  1. Towards the development of a novel construction solid waste (CSW) based constructed wetland system for tertiary treatment of secondary sewage effluents.

    PubMed

    Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C

    2011-01-01

    This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.

  2. Wetland and water supply

    USGS Publications Warehouse

    Baker, John Augustus

    1960-01-01

    The Geological Survey has received numerous inquiries about the effects of proposed changes in the wetland environment. The nature of the inquiries suggests a general confusion in the public mind as to wetland values and an increasing concern by the public with the need for facts as a basis for sound decisions when public action is required. Perhaps the largest gap in our knowledge is in regard to the role played by the wetland in the natural water scheme. Specialists in such fields as agriculture and conservation have studied the wetland in relation to its special uses and values for farming and as a habitat for fish and wildlife. However, except as studied incidentally by these specialists, the role of the wetland with respect to water has been largely neglected. This facet of the wetland problem is of direct concern to the Geological Survey. We commonly speak of water in terms of its place in the hydrologic environment---as, for example, surface water or ground water. These terms imply that water can be neatly pigeonholed. With respect to the wetland environment nothing can be further from the truth. In fact, one objective of this discussion is to demonstrate that for the wetland environment surface water, ground water, and soil water cannot be separated realistically, but are closely interrelated and must be studied together. It should be noted that this statement holds true for the hydrologic environment in general, and that the wetland environment is by no means unique in this respect. Our second and principal objective is to identify some of the problems that must be studied in order to clarify the role of the wetland in relation to water supply. We have chosen to approach these objectives by briefly describing one area for which we have some information, and by using this example to point out some of the problems that need study. First, however, let us define what we, as geohydrologists, mean by wetland and briefly consider wetland classifications. For our

  3. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    PubMed

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  4. Wetlands: water, wildlife, plants, & people

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    Wetlands are part of all our lives. They can generally be described as transitional areas between land and deepwater habitats. There are many different kinds of wetlands, and they can be found in many different habitat types, from forests to deserts; some are maintained by saltwater, others by freshwater. This poster shows general types of diverse wetlands and demonstrates how people and wetlands can benefit by living together. The diversity of plants and animals is shown in cartooned pictures. As with plants and animals, there are many different common names for the various wetland types. The common names used on this poster were used by the U.S. Fish and Wildlife Service in the publication "Wetlands-Status and Trends in the Conterminous United States, Mid-1970's to Mid-1980's." Estuarine wetland types--salt marshes and mangrove swamps--are labeled in red letters. The estuary is where ocean saltwater and river freshwater mix. The estuary is labeled in orange letters. The inland wetland types-inland marshes and wet meadows, forested wetlands, and shrub wetlands-are labeled in yellow. Other wetlands are present in rivers, lakes, and reservoirs. The water bodies associated with these wetlands are labeled in black. The poster is folded into 8.5" x 11" panels; front and back panels can easily be photocopied.

  5. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    PubMed

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of vegetation manipulation on breeding waterfowl in prairie wetlands--a literature review

    USGS Publications Warehouse

    Kantrud, H.A.

    1986-01-01

    Literature on the effects of fire and grazing on the wetlands used by breeding prairie waterfowl is reviewed. Both dabbling and diving ducks and their broods prefer wetlands with openings in the marsh canopy. Decreased use is commonly associated with decreased habitat heterogeneity caused by tall, robust hydrophytes such as Typha spp. and other species adapted to form monotypes in the absence of disturbance. Nearly all previous studies indicate that reductions in height and density of tall, emergent hydrophytes by fire and grazing (unless very intensive) generally benefit breeding waterfowl. Such benefits are an increase in pair density, probably related to increased interspersion of cover and open water which decreases visibility among conspecific pairs, and improvements in their invertebrate food resources that result from increased habitat heterogeneity. Research needs are great because of the drastic changes that have accrued to prairie wetlands through fire suppression, cultivation, and other factors. The physical and biological environments preferred by species of breeding waterfowl during their seasonal and daily activities should be ascertained from future studies in wetland complexes that exist in the highest state of natural preservation. Long-term burning and grazing experiments should follow on specific vegetatively-degraded wetlands judged to be potentially important breeding areas. Seasonality, frequency, and intensity of treatments should be varied and combined and, in addition to measuring the response of the biotic community, the changes in the physical and chemical environment of the wetlands should be monitored to increase our knowledge of causative factors and possible predictive values.

  7. DEVELOPING A REGULATORY PROGRAM FOR ISOLATED WETLANDS IN WASHINGTON

    EPA Science Inventory

    The Supreme Court's recent decision on isolated wetlands leaves many wetlands in Washington unprotected. Previously these wetlands were regulated through use of state-issued CWA ?401 water quality certifications, during the Corps of Engineers ?404 permitting process. But since ...

  8. Wetland Hydrology

    EPA Science Inventory

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  9. Assessing and measuring wetland hydrology

    USGS Publications Warehouse

    Rosenberry, Donald O.; Hayashi, Masaki; Anderson, James T.; Davis, Craig A.

    2013-01-01

    Virtually all ecological processes that occur in wetlands are influenced by the water that flows to, from, and within these wetlands. This chapter provides the “how-to” information for quantifying the various source and loss terms associated with wetland hydrology. The chapter is organized from a water-budget perspective, with sections associated with each of the water-budget components that are common in most wetland settings. Methods for quantifying the water contained within the wetland are presented first, followed by discussion of each separate component. Measurement accuracy and sources of error are discussed for each of the methods presented, and a separate section discusses the cumulative error associated with determining a water budget for a wetland. Exercises and field activities will provide hands-on experience that will facilitate greater understanding of these processes.

  10. Climate and land-use change in wetlands: A dedication

    USGS Publications Warehouse

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  11. The importance of artificial wetlands for birds: A case study from Cyprus

    PubMed Central

    Giosa, Efthymia; Zotos, Savvas

    2018-01-01

    The degradation of natural wetlands has significant effects on the ecosystem services they provide and the biodiversity they sustain. Under certain conditions, these negative effects can be mitigated by the presence of artificial wetlands. However, the conservation value of artificial wetlands needs to be explored further. In addition, it is unclear how certain anthropogenic variables, such as road networks and hunting reserves (i.e., areas where hunting of birds is prohibited) affect biodiversity in both artificial and natural wetlands. Here, we use data from thirteen artificial and six natural wetlands in Cyprus, to assess their similarities in bird species diversity and composition, and to quantify the relationship between species diversity and the density of road networks, hunting reserves, wetland size, and wetland depth. We found that while on average natural wetlands have more species and support higher abundances, certain artificial wetlands have the potential to support similarly diverse communities. Overall, regardless of the type, larger wetlands, with shallower waters tend to be more biodiverse. The same is true for wetlands surrounded by a higher percentage of hunting reserves and a lower density of road networks, albeit the effect of road networks was weaker. We conclude, from our results, that although the conservation value of natural wetlands is higher, artificial wetlands have the potential to play a complimentary role in the conservation of bird communities, assuming those wetlands have the right characteristics (e.g., in terms of size and depth) and assuming that the disturbances resulting from high-impact human-activities (e.g., hunting) are minimized. PMID:29746545

  12. Performance and bacterial community structure of a 10-years old constructed mangrove wetland.

    PubMed

    Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe

    2017-11-30

    Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Erosion and restoration of two headwater wetlands following an extreme wildfire

    Treesearch

    Jonathan Long; Javis Davis

    2016-01-01

    Wildfire can damage headwater wetlands, yet the value of post-fire restoration treatments in channels has been contested. Staff from the White Mountain Apache Tribe, students from the local Cibecue Community School, and researchers from the U.S. Forest Service collaboratively recorded channel responses over 13 years at two headwater wetlands lying within watersheds...

  14. Carbon storage in US wetlands

    PubMed Central

    Nahlik, A. M.; Fennessy, M. S.

    2016-01-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites—indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change. PMID:27958272

  15. Carbon storage in US wetlands

    NASA Astrophysics Data System (ADS)

    Nahlik, A. M.; Fennessy, M. S.

    2016-12-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites--indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change.

  16. Tree rings record 100 years of hydrologic change within a wetland

    USGS Publications Warehouse

    Yanosky, Thomas M.; Kappel, William M.

    1997-01-01

    Hydrology and tree growth were investigated within a small wetland in the Tully Valley of central New York, about 20 miles south of Syracuse. In late 1994 it was noted that some wetland trees were dying, and local residents reported that flow of a small stream draining the wetland seemingly increased and became more brackish since the mid to late 1980s. The wetland is about 3 miles north of an extensive salt mining operation known to have degraded local water quality, but no effects of mining had been confirmed previously near the wetland. The oldest wetland trees started to grow before the onset of mining in 1889, and thus tree-ring studies were undertaken not only to investi-gate recent hydrologic change within the wetland, but also to search for evidence of any other changes during the last 100 years.

  17. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.

    2014-01-01

    We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked

  18. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland.

    PubMed

    Casey, R E; Taylor, M D; Klaine, S J

    2001-01-01

    Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.

  19. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Depression Wetlands in the Upper Des Plaines River Basin

    DTIC Science & Technology

    2006-05-01

    Wetlands and Coastal Ecology Branch; Dr. David J. Tazik, Chief, Eco- system Evaluation and Engineering Division; and Dr. Edwin A. Theriot, Direc- tor, EL...wetlands (Euliss and Mushet 1996, Azous and Horner 2001, Bhaduri et al. 1997) and nutrient loading into those wetlands. The overall LU score is...Euliss, N. H., and Mushet , D. M. (1996). “Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

  20. Effect of phosphate, iron and sulfate reduction on arsenic dynamics and bioaccumulation in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Moon, H. S.; Myneni, S.; Jaffe, P. R.

    2016-12-01

    Constructed wetlands are economically viable and highly efficient in the treatment of high As waters discharged from smelting process in the mining industry. However, arsenic (As) dynamics and bioaccumulation in constructed wetlands coupled to nutrients loading and associated biogeochemical changes are confounding and not well understood. In this study, we investigated the effect of phosphate, iron and sulfate reduction on As dynamics in the wetland rhizosphere and its bioaccumulation in plants using greenhouse mesocosms. Results show that high Fe (50µM ferrihydrite/g soil) and SO42- (5mM) treatments are most favorable for As sequestration in soils in the presence of wetland plants (Scirpus actus), probably because the biodegradable plant exudates released into the rhizosphere facilitates the microbial reduction of Fe(III), SO42- and As(V) to sequester As by precipitation/coprecipitation. Whereas, from the transition of oxidizing to reducing conditions, the loading of high phosphate (100µM) enhances the As release into groundwater and its accumulation in the plants, due to the competitive sorption between phosphate and arsenate as well as the reductive dissolution of Fe and As. As retention in soils and accumulation in plants were mainly controlled by SO42- rather than Fe levels. Compared with low SO42- (0.1mM) treatment, high SO42- resulted in 2 times more As in soils, 30 times more As in roots, and 49% less As in leaves. The As levels in soils are negatively correlated with the As levels in plant roots. An As speciation analysis in pore water indicated that 19% more dissolved As was reduced under high SO42- than low SO42- levels, and 30% more As(III) was detected under high PO43- than low PO43- levels, which is consistent with the fact that more dissimilatory arsenate-respiring bacteria were found under high SO42- and high PO43- levels.

  1. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    PubMed

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  2. Nesting and foraging behavior of red-winged blackbirds in stormwater wetlands

    USGS Publications Warehouse

    Sparling, D.W.; Eisemann, J.; Kuenzel, W.

    2007-01-01

    Stormwater wetlands are a common part of urban and suburban landscapes. These constructed wetlands provide first-order treatment of effluent from roads, parking lots, lawns and other surfaces. They also provide habitat for wetland-associated birds. Thus, there is a concern that birds may be attracted to potentially toxic habitats. This study assesses nesting success and forging behavior of Red-winged Blackbirds (Agelaius phoeniceus) in retention stormwater wetlands based on drainage type. Drainage categories included residential, commercial, and highway sites. Commercial sites had the lowest nesting success and the lowest diversity of invertebrate foods. Mean nest success values for all three types of wetlands, especially for highway drainages, were comparable to published values from natural wetlands. Over two years of study highway ponds collectively served as source populations whereas residential and commercial sites were population sinks in one year and sources in the other. Red-wings using highway sites had the highest foraging efficiency as determined by the frequency and duration of forays. Residential sites had the greatest human disturbance and generally had intermediate-quality habitat and nesting success. We conclude that while stormwater wetlands collect run off and accompanying pollutants, they can still be valuable habitats for nesting birds in urban and suburban areas. We recommend a few management strategies that can increase avian use of these habitats. ?? Springer Science+Business Media, LLC 2007.

  3. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    PubMed

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  4. Building a potential wetland restoration indicator for the contiguous United States

    PubMed Central

    Horvath, Elena K.; Christensen, Jay R.; Mehaffey, Megan H.; Neale, Anne C.

    2018-01-01

    Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the

  5. Building a potential wetland restoration indicator for the contiguous United States.

    PubMed

    Horvath, Elena K; Christensen, Jay R; Mehaffey, Megan H; Neale, Anne C

    2017-01-01

    Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the

  6. Hydrology of Mid-Atlantic Freshwater Wetlands

    EPA Science Inventory

    Hydrology is a key variable in the structure and function of a wetland; it is a primary determinant of wetland type, and it drives many of the functions a wetland performs and in turn the services it provides. However, wetland hydrology has been understudied. Efforts by Riparia s...

  7. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis.

    PubMed

    Mao, Dehua; Luo, Ling; Wang, Zongming; Wilson, Maxwell C; Zeng, Yuan; Wu, Bingfang; Wu, Jianguo

    2018-09-01

    Agricultural activity is widely recognized as a leading driver of natural wetland loss in many parts of the world. However, little is known about the spatiotemporal patterns of conversion between natural wetlands and farmland in China. This information deficiency has limited decision-making for the sustainable management of natural wetland ecosystems. In this study, we explicitly quantified bidirectional natural wetland-farmland conversions during the periods of 1990-2000 and 2000-2010 at multiple spatiotemporal scales. Our results revealed that about 60% (15,765km 2 ) of China's lost natural wetlands were due to agricultural encroachment for grain production, 74.7% (11,778km 2 ) of which occurred from 1990 to 2000. Natural wetland conversion to farmland was highest in Northeast China (13,467km 2 or 85.4%), whereas the natural wetlands in Northwest China demand extra attention because of a notable increase of agricultural encroachment. Natural wetlands in the humid zone experienced tremendous agricultural encroachment, leading to a loss of 10,649km 2 , accounting for 67.5% of the total agriculture-induced natural wetland loss in China. On the other hand, a total of 1369km 2 of natural wetlands were restored from farmland, with 66.3% of this restoration occurring between 2000 and 2010, primarily in Northeast China and the humid zone. Although a series of national policies and population pressure resulted in agricultural encroachment into natural wetlands, there are also policies and management measures protecting and restoring natural wetlands in China. The spatial differences in natural wetland-farmland conversions among different geographic regions and climatic zones suggest that China must develop place-based sustainable management policies and plans for natural wetlands. This study provides important scientific information necessary for developing such policies and implementation plans. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. User's guide to the wetland creation/restoration data base, version 2

    USGS Publications Warehouse

    Miller, Lee; Auble, Gregor T.; Schneller-McDonald, Keith

    1991-01-01

    at least some of its functions) is similar to constructing a picture from a number of puzzle pieces--missing pieces represent data gaps or information that is not available. Articles range from specific case studies, to overviews of restoration methods and techniques, to planning restoration projects and assessing programmatic and administrative backgrounds and interactions.In this data base, the term "restoration" is applied loosely to include rehabilitation of wetlands. It may refer to a number of situations or actions including, but not limited to:1. breaching dikes or plugging drains;2. water pollution clean-up;3. conversion of eutrophic conditions;4. wastewater treatment;5. recolonization of previously disturbed or denuded areas;6. amelioration of adverse conditions (erosion, wave, or wind action);7. soil treatment --mulching, fertilization;8. rerouting streams --may include construction of meander patterns;9. monitoring natural vegetation; or0. excluding grazers (geese, cattle) and monitoring results.This report describes the format and content of Version 2 of the WCR data base. Version 2 differs from the previous version described in SchnellerMcDonald et al. (1988): several fields have been dropped and condensed and new records have been added. Version 2 includes all records distributed with the earlier version and its updates. We recommend you replace any previous version with Version 2.

  9. Measuring bulrush culm relationships to estimate plant biomass within a southern California treatment wetland

    USGS Publications Warehouse

    Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.

    2010-01-01

    Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.

  10. The HLA-A*31:01 allele: influence on carbamazepine treatment

    PubMed Central

    Yip, Vincent Lai Ming; Pirmohamed, Munir

    2017-01-01

    Carbamazepine (CBZ) is an effective anticonvulsant that can sometimes cause hypersensitivity reactions that vary in frequency and severity. Strong associations have been reported between specific human leukocyte antigen (HLA) alleles and susceptibility to CBZ hypersensitivity reactions. Screening for HLA-B*15:02 is mandated in patients from South East Asia because of a strong association with Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). HLA-A*31:01 predisposes to multiple phenotypes of CBZ hypersensitivity including maculopapular exanthema, hypersensitivity syndrome, and SJS/TEN in a range of populations including Europeans, Japanese, South Koreans and Han Chinese, although the effect size varies between the different phenotypes and populations. Between 47 Caucasians and 67 Japanese patients would need to be tested for HLA-A*31:01 in order to avoid a single case of CBZ hypersensitivity. A cost-effectiveness study has demonstrated that HLA-A*31:01 screening would be cost-effective. Patient preference assessment has also revealed that patients prefer pharmacogenetic screening and prescription of alternative anticonvulsants compared to current standard of practice without pharmacogenetic testing. For patients who test positive for HLA-A*31:01, alternative treatments are available. When alternatives have failed or are unavailable, HLA-A*31:01 testing can alert clinicians to 1) patients who are at increased risk of CBZ hypersensitivity who can then be targeted for more intensive monitoring and 2) increase diagnostic certainty in cases where hypersensitivity has already occurred, so patients can be advised to avoid structurally related drugs in the future. On the basis of the current evidence, we would favor screening all patients for HLA-A*31:01 and HLA-B*15:02 prior to starting CBZ therapy. PMID:28203102

  11. Factors affecting coastal wetland loss and restoration

    USGS Publications Warehouse

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  12. Understanding the Hydrodynamics of a Coastal Wetland with an Integrated Distributed Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, W.; Sun, G.

    2017-12-01

    Coastal wetlands linking ocean and terrestrial landscape provide important ecosystem services including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitats. Wetland hydrology is the major driving force for wetland formation, structure, function, and ecosystem services. The dynamics of wetland hydrology and energy budget are strongly affected by frequent inundation and drying of wetland soil and vegetation due to tide, sea level rise (SLR) and climatic variability (change). However, the quantitative representation of how the energy budget and groundwater variation of coastal wetlands respond to frequent water level fluctuation is limited, especially at regional scales. This study developed a physically based distributed wetland hydrological model by integrating coastal processes and considering the inundation influence on energy budget and ET. Analysis using in situ measurements and satellite data for a coastal wetland in North Carolina confirm that the model sufficiently captures the wetland hydrologic behaviors. The validated model was then applied to examine the wetland hydrodynamics under a 30-year historical climate forcing (1985-2014) for the wetland region. The simulation reveals that 43% of the study area has inundation events, 63% of which has a frequency higher than 50% each year. The canopy evaporation and transpiration decline dramatically when the inundation level exceeds the canopy height. Additionally, inundation causes about 10% increase of the net shortwave radiation. This study also demonstrates that the critical wetland zones highly influenced by the coastal processes spans 300-800 m from the coastline. The model developed in the study offers a new tool for understanding the complex wetland hydrodynamics in response to natural and human-induced disturbances at landscape to regional scales.

  13. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  14. Testing wetland axioms at a watershed scale: Case studies of the aggregate hydrologic effects of non-adjacent wetlands

    EPA Science Inventory

    Wetlands not adjacent to streams (i.e. “non-adjacent wetlands”) are hypothesized to affect downgradient hydrology in a number of ways. Non-adjacent wetlands may, for example, attenuate peak flows, serve as focal points for groundwater recharge, and decrease streamflow...

  15. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendleton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low ( 5.51. All years combined use of wetlands by broods was greater on wetlands with pH 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  16. Long-term Strategic Planning for a Resilient Metro Colombo: An Economic Case for Wetland Conservation and Management

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.

    2015-12-01

    Colombo faces recurrent floods that threaten its long-term economic development. Its urban wetlands have been identified by local agencies as a critical component of its flood reduction system, but they have declined rapidly in recent years due to continuous infilling, unmanaged land development and dredging to create lakes. In collaboration with government agencies, NGOs and local universities, the World Bank has carried out a Robust Decision Making analysis to examine the value of Colombo urban wetlands, both in the short-term and long-term, and identify what are the most viable strategies available to increase the city's flood resilience in an unclear future (in terms of climate change and patterns of urban development). This has involved the use of numerous hydrological and socio-economic scenarios as well as the evaluation of some wetlands benefits, like ecosystem services, wastewater treatment, or recreational services. The analysis has determined that if all urban wetlands across the Colombo catchment were lost, in some scenarios the metropolitan area would have to cope with an annual average flood loss of approximately 1% of Colombo GDP in the near future. For long-term strategies, trade-offs between urban development, lake creation and wetland conservation were analyzed and it was concluded that an active management of urban wetlands was the lowest regret option. Finally, the analysis also revealed that in the future, with climate change and fast urban development, wetlands will not be sufficient to protect Colombo against severe floods. Pro-active urban planning and land-use management are therefore necessary, both to protect existing wetlands and to reduce future exposure. The use of many different scenarios, the consideration of several policy options, and the open participatory process ensured policy-makers' buy-in and lead to the decision to actively protect urban wetlands in Colombo.

  17. A meta-analysis of coastal wetland ecosystem services in Liaoning Province, China

    NASA Astrophysics Data System (ADS)

    Sun, Baodi; Cui, Lijuan; Li, Wei; Kang, Xiaoming; Pan, Xu; Lei, Yinru

    2018-01-01

    Wetlands are impacted by economic and political initiatives, and their ecosystem services are attracting increasing public attention. It is crucial that management decisions for wetland ecosystem services quantify the economic value of the ecosystem services. In this paper, we aimed to estimate a monetary value for coastal wetland ecosystem services in Liaoning Province, China. We selected 433 observations from 85 previous coastal wetland economic evaluations (mostly in China) including detailed spatial and economic characteristics in each wetland, then used a meta-analysis scale transfer method to calculate the total value of coastal wetland ecosystem services in Liaoning Province. Our results demonstrated that, on average, the ecosystem services provided by seven different coastal wetland types were worth US40,648 per ha per year, and the total value was 28,990,439,041 in 2013. Shallow marine waters accounted for the largest proportion (83.97%). Variables with a significant positive effect on the ecosystem service values included GDP per capita, population density, distance from the wetland to the city center and the year of evaluation, while wetland size and latitude had negative relationships.

  18. Wetlands: Earth's Kidneys

    EPA Science Inventory

    Wetlands are unique, diverse, and productive habitats that emerge at the fringe of aquatic and upland land systems. The U.S. Environmental Protection Agency (EPA) defines wetlands as "areas that are regularly inundated by surface water or groundwater and characterized by a preva...

  19. ANNUAL WATER BUDGETS FOR A FORESTED SINKHOLE WETLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Dr. Andrew Jason; Neary, Vincent S

    2012-01-01

    Annual water budgets spanning two years, 2004 and 2005, are constructed for a sinkhole wetland in the Tennessee Highland Rim following conversion of 13 % of its watershed to impervious surfaces. The effect of watershed development on the hydrology of the study wetland was significant. Surface runoff was the dominant input, with a contribution of 61.4 % of the total. An average of 18.9 % of gross precipitation was intercepted by the canopy and evaporated. Seepage from the surface water body to the local groundwater system accounted for 83.1 % of the total outflow. Deep recharge varied from 43.2 %more » (2004) to 12.1 % (2005) of total outflow. Overall, evapotranspiration accounted for 72.4 % of the total losses, with an average of 65.7 % lost from soil profile storage. The annual water budgets indicate that deep recharge is a significant hydrologic function performed by isolated sinkhole wetlands, or karst pans, on the Tennessee Highland Rim. Continued hydrologic monitoring of sinkhole wetlands are needed to evaluate hydrologic function and response to anthropogenic impacts. The regression technique developed to estimate surface runoff entering the wetland is shown to provide reasonable annual runoff estimates, but further testing is needed.« less

  20. Wetland features and landscape context predict the risk of wetland habitat loss

    Treesearch

    Kevin J. Gutzwiller; Curtis H. Flather

    2011-01-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive...

  1. Importance of hydrologic data for interpreting wetland maps and assessing wetland loss and mitigation

    USGS Publications Warehouse

    Carter, V.

    1991-01-01

    The US Geological Survey collects and disseminates, in written and digital formats, groundwater and surface-water information related to the tidal and nontidal wetlands of the United States. This information includes quantity, quality, and availability of groundwater and surface water; groundwater and surface-water interactions (recharge-discharge); groundwater flow; and the basic surface-water characteristics of streams, rivers, lakes, and wetlands. Water resources information in digital format can be used in geographic information systems (GISs) for many purposes related to wetlands. US Geological Survey wetland-related activities include collection of information important for assessing and mitigating coastal wetland loss and modification, hydrologic data collection and interpretation, GIS activities, identification of national trends in water quality and quantity, and process-oriented wetland research. -Author

  2. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  3. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  4. Microbial Community Structure and Diversity in an Integrated System of Anaerobic-Aerobic Reactors and a Constructed Wetland for the Treatment of Tannery Wastewater in Modjo, Ethiopia

    PubMed Central

    Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng

    2014-01-01

    A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981

  5. [Research progress on wetland ecotourism].

    PubMed

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  6. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments.

    PubMed

    Moreno-Mateos, David; Mander, Ulo; Comín, Francisco A; Pedrocchi, César; Uuemaa, Evelyn

    2008-01-01

    Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.

  7. Native plants for effective coastal wetland restoration

    USGS Publications Warehouse

    Howard, Rebecca J.

    2003-01-01

    Plant communities, along with soils and appropriate water regimes, are essential components of healthy wetland systems. In Louisiana, the loss of wetland habitat continues to be an issue of major concern. Wetland loss is caused by several interacting factors, both natural and human-induced (e.g., erosion and saltwater intrusion from the construction of canals and levees). Recent estimates of annual coastal land loss rates of about 62 km2 (24 mi2 ) over the past decade emphasize the magnitude of this problem. In an attempt to slow the rate of loss and perhaps halt the overall trend, resource managers in Louisiana apply various techniques to restore damaged or degraded habitats to functioning wetland systems.Researchers at the U.S. Geological Survey’s National Wetlands Research Center (NWRC) have cooperated with the Louisiana Department of Natural Resources in studies that address effective restoration strategies for coastal wetlands. The studies have identified differences in growth that naturally exist in native Louisiana wetland plant species and genetic varieties (i.e., clones) within species. Clones of a species have a distinctive genetic identity, and some clones may also have distinctive growth responses under various environmental conditions (i.e., preferences). Indeed, large areas of coastal marsh are typically populated by several clones of a plant species, each growing in a microenvironment suited to its preferences.These studies will provide information that will assist resource managers in selecting plant species and clones of species with known growth characteristics that can be matched to environmental conditions at potential restoration sites. Before the studies began, a collection of several clones from four plant species native to coastal Louisiana was established. The species collected included saltgrass (Distichlis spicata), common reed (Phragmites australis), giant bulrush (Schoenoplectus californicus), and saltmarsh bulrush (Schoenoplectus

  8. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    USGS Publications Warehouse

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  9. Hydrogeomorphic Classification of Wetlands on Mt. Desert Island, Maine, Including Hydrologic Susceptibility Factors for Wetlands in Acadia National Park

    USGS Publications Warehouse

    Nielsen, Martha G.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, developed a hydrogeomorphic (HGM) classification system for wetlands greater than 0.4 hectares (ha) on Mt. Desert Island, Maine, and applied this classification using map-scale data to more than 1,200 mapped wetland units on the island. In addition, two hydrologic susceptibility factors were defined for a subset of these wetlands, using 11 variables derived from landscape-scale characteristics of the catchment areas of these wetlands. The hydrologic susceptibility factors, one related to the potential hydrologic pathways for contaminants and the other to the susceptibility of wetlands to disruptions in water supply from projected future changes in climate, were used to indicate which wetlands (greater than 1 ha) in Acadia National Park (ANP) may warrant further investigation or monitoring. The HGM classification system consists of 13 categories: Riverine-Upper Perennial, Riverine-Nonperennial, Riverine- Tidal, Depressional-Closed, Depressional-Semiclosed, Depressional-Open, Depressional-No Ground-Water Input, Mineral Soil Flat, Organic Soil Flat, Tidal Fringe, Lacustrine Fringe, Slope, and Hilltop/Upper Hillslope. A dichotomous key was developed to aid in the classification of wetlands. The National Wetland Inventory maps produced by the U.S. Fish and Wildlife Service provided the wetland mapping units used for this classification. On the basis of topographic map information and geographic information system (GIS) layers at a scale of 1:24,000 or larger, 1,202 wetland units were assigned a preliminary HGM classification. Two of the 13 HGM classes (Riverine-Tidal and Depressional-No Ground-Water Input) were not assigned to any wetlands because criteria for determining those classes are not available at that map scale, and must be determined by more site-specific information. Of the 1,202 wetland polygons classified, which cover 1,830 ha in ANP, 327 were classified as Slope, 258 were

  10. Fish mortality and physicochemistry in a managed floodplain wetland

    USGS Publications Warehouse

    Sargent, J.C.; Galat, D.L.

    2002-01-01

    Patterns of fish mortality and associated physicochemical factors were studied during late spring in a managed wetland canal along the lower Missouri River, Missouri. Mean dawn dissolved oxygen was lower and mean un-ionized ammonia and turbidity were higher during the fish kill than before or after the kill, or than was observed in a nearby wetland canal where no fish kill occurred. Dissolved oxygen at dawn and un-ionized ammonia concentrations were at critically low and high levels respectively, so that both likely contributed to the fish mortality. Timing and magnitude of observed carcasses suggested that Ameiurus melas Rafinesques was the most tolerant species for the sizes observed compared to Ictiobus cyprinellus Valenciennes, Lepomis macrochirus Rafinesque, Cyprinus carpio Linneaus, and Lepomis cyanellus Rafinesque. Decreasing mean lengths of fish carcasses during the fish kill for C. carpio, L. cyanellus, and A. melas, indicate that smaller fishes may have been more tolerant of harsh environmental conditions than larger individuals of the same species. Differential mortalities among species and sizes during drawdowns in actively managed wetland pools may have intentional and unintentional ramifications on wetland and riverine fish community structure, fish-avian interactions, and implementing an ecosystem management perspective to restoring more naturalized river floodplain wetland functions. Late summer and early autumn draining of managed wetlands might be used to benefit a wider diversity of wildlife and fishes.

  11. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  12. A network model framework for prioritizing wetland conservation in the Great Plains

    USGS Publications Warehouse

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  13. The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges

    PubMed Central

    Barbier, Edward B.; Georgiou, Ioannis Y.; Enchelmeyer, Brian; Reed, Denise J.

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively. PMID:23536815

  14. Emergent macrophytes select for nitrifying and denitrifying microorganisms in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Trias, Rosalia; Ramió Pujol, Sara; Bañeras, Lluis

    2014-05-01

    The use of constructed wetlands for wastewater treatment is a reliable low-cost alternative that has been widely developed during the last years. Several processes involving plants, sediments, and microbial communities contribute to nitrogen removal in wetlands. Vegetation plays an important role in this process, not only by nutrient assimilation but also by the stimulation of the plant associated microbiota. Plants supply oxygen at the close proximity of the root surface that may favour ammonia oxidizers. At the same time, exudation of organic compounds potentially speeds-up denitrification in the anoxic environment. The aim of this work was to understand the plant-microbe interactions at the root level in the Empuriabrava free water surface constructed wetland (Spain). The roots of the macrophytes Typha latifolia, Typha angustifolia, Phragmites australis and Bolboschoenus maritimus were sampled at four dates from January to September 2012, covering all the stages of plant growth. Additionally, sediment surrounding vegetation and non-vegetated sediments were sampled. Microbial community structure was analysed by pyrosequencing of bacterial and archaeal 16S rDNA and functional genes (nirK, nirS, nosZ and amoA). Bacterial communities were significantly different in sediments of the vegetated areas compared to the root surface. Plant roots exhibited a higher proportion of proteobacteria whereas Actinobacteria were dominant in sediments. The nitrifiers Nitrosomonas sp. and Nitrosococcus sp. accounted for less than 1% of all sequences. Archaeal communities were dominated by the Miscellaneous Crenarchaeotic Groups C2 and C3 and Methanomicrobia. Higher relative abundances of MCG were found in roots of P. australis, B. maritimus and T. angustifolia. Ammonia oxidizing archaea accounted for less than 0.1% of all sequences but were consistently more abundant in sediment samples compared to roots. NirK and NirS-type bacterial communities showed clearly distinct distribution

  15. U.S. Fish and Wildlife Service 1979 wetland classification: a review

    USGS Publications Warehouse

    Cowardin, L.M.; Golet, F.C.

    1995-01-01

    In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process.

  16. Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.

    PubMed

    Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H

    2015-01-01

    This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study.

  17. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin

    2017-09-01

    A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.

  18. Using WEED to simulate the global wetland distribution in a ESM

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2016-04-01

    Lakes and wetlands are an important land surface feature. In terms of hydrology, they regulate river discharge, mitigate flood events and constitute a significant surface water storage. Considering physical processes, they link the surface water and energy balances by altering the separation of incoming energy into sensible and latent heat fluxes. Finally, they impact biogeochemical processes and may act as carbon sinks or sources. Most global hydrology and climate models regard wetland extent and properties as constant in time. However, to study interactions between wetlands and different states of climate, it is necessary to implement surface water bodies (thereafter referred to as wetlands) with dynamical behavior into these models. Besides an improved representation of geophysical feedbacks between wetlands, land surface and atmosphere, a dynamical wetland scheme could also provide estimates of soil wetness as input for biogeochemical models, which are used to compute methane production in wetlands. Recently, a model for the representation of wetland extent dynamics (WEED) was developed as part of the hydrology model (MPI-HM) of the Max-Planck-Institute for Meteorology (MPI-M). The WEED scheme computes wetland extent in agreement with the range of observations for the high northern latitudes. It simulates a realistic seasonal cycle which shows sensitivity to northern snow-melt as well as rainy seasons in the tropics. Furthermore, flood peaks in river discharge are mitigated. However, the WEED scheme overestimates wetland extent in the Tropics which might be related to the MPI-HM's simplified potential evapotranspiration computation. In order to overcome this limitation, the WEED scheme is implemented into the MPI-M's land surface model JSBACH. Thus, not only its effect on water fluxes can be investigated but also its impact on the energy cycle, which is not included in the MPI-HM. Furthermore, it will be possible to analyze the physical effects of wetlands in a

  19. Two science communities and coastal wetlands policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeVine, J.B.

    1984-01-01

    This study compares the attitudes of academic and government wetlands scientists about wetlands science and policy. Analysis of one thousand seven hundred responses to Delphi-type questions posed to twenty California scientists on a wide range of issues about California coastal wetlands found significant differences between academic and government scientists about wetlands definitions, threats to wetlands, wetlands policies, wetlands health, and wetlands mitigation strategies. These differences were consistent with descriptive models of political sociology developed by D. Price and C.P. Snow and with normative models of the philosophy of science developed in the renaissance by F. Bacon and R. Descartes. Characteristics,more » preferences, and personality attributes consistent with group functions and roles have been described in these models. These findings have serious implications for policy. When academic and government wetlands scientists act as advisors to the major parties in land use conflicts, basic differences in perspective have contributed to costly contention over the future use of wetlands.« less

  20. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  1. Microbial Enzyme Activities of Wetland Soils as Indicators of Nutrient Condition: A Test in Wetlands of Gulf of Mexico Coastal Watershed

    EPA Science Inventory

    Microbial enzyme activities measured from wetland soils are being tested as indicators of wetland nutrient function and human disturbance. This is part of an assessment of condition of wetlands being conducted by the U.S. EPA Gulf Ecology Division in coastal watersheds along the...

  2. Estimating relative sea-level rise and submergence potential at a coastal wetland

    USGS Publications Warehouse

    Cahoon, Donald R.

    2015-01-01

    A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.

  3. Project W.U.L.P.: Wetland Understanding Leading to Protection. A Comprehensive, Multidisciplinary Wetlands Unit for Middle Schools.

    ERIC Educational Resources Information Center

    Braun, Dave; And Others

    This multidisciplinary, progressional unit involves students in discovering wetlands and why such areas are important, and in learning they can make a difference in saving wetlands. The unit is designed to be taught with two options: (1) entirely in the classroom; and (2) a combination of classroom and field experience. Fourteen classroom lessons…

  4. Wetland soils, hydrology and geomorphology

    Treesearch

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  5. Flooding Frequency Alters Vegetation in Isolated Wetlands

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2006-01-01

    Many isolated wetlands in central Florida occur as small, shallow depressions scattered throughout the karst topography of the region. In these wetlands, the water table approaches land surface seasonally, and water levels and flooding frequency are largely determined by differences between precipitation and evapotranspiration. Because much of the region is flat with little topographic relief, small changes in wetland water levels can cause large changes in wetland surface area. Persistent changes in wetland flooding frequencies, as a result of changes in rainfall or human activity, can cause a substantial change in the vegetation of thousands of acres of land. Understanding the effect that flooding frequency has on wetland vegetation is important to assessing the overall ecological status of wetlands. Wetland bathymetric mapping, when combined with water-level data and vegetation assessments, can enable scientists to determine the frequency of flooding at different elevations in a wetland and describe the effects of flooding frequency on wetland vegetation at those elevations. Five cypress swamps and five marshes were studied by the U.S. Geological Survey (USGS) during 2000-2004, as part of an interdisciplinary study of isolated wetlands in central Florida (Haag and others, 2005). Partial results from two of these marshes are described in this report.

  6. Range-wide wetland associations of the King Rail: A multi-scale approach

    USGS Publications Warehouse

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.; Laxson, Thomas A.

    2015-01-01

    King Rail populations have declined and identifying wetland features that influence King Rail occupancy can help prevent further population declines. We integrated continent-wide marsh bird survey data with spatial wetland data from the National Wetland Inventory (NWI) to examine wetland features that influenced King Rail occupancy throughout the species’ range. We analyzed wetland data at 7 spatial scales to examine the scale(s) at which 68 wetland features were most strongly related to King Rail occupancy. Occupancy was most strongly associated with estuarine features and brackish and tidal saltwater regimes. King Rail occupancy was positively associated with emergent and scrub-shrub wetlands and negatively associated with forested wetlands. The best spatial scale for assessing King Rail occupancy differed among wetland features; we could not identify one spatial scale (among all wetland features) that best explained variation in occupancy. Future research on King Rail habitat that includes multiple spatial scales is more likely to identify the suite of features that influence occupancy. Our results indicate that NWI data may be useful for predicting occupancy based on broad habitat features across the King Rail’s range, which may help inform management decisions for this and other wetland-dependent birds.

  7. Tropical wetlands: A missing link in the global carbon cycle?

    PubMed Central

    Sjögersten, Sofie; Black, Colin R; Evers, Stephanie; Hoyos-Santillan, Jorge; Wright, Emma L; Turner, Benjamin L

    2014-01-01

    Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global change models to make accurate predictions about future climate. We show that the available data on in situ carbon gas fluxes in undisturbed forested tropical wetlands indicate marked spatial and temporal variability in CO2 and CH4 emissions, with exceptionally large fluxes in Southeast Asia and the Neotropics. By upscaling short-term measurements, we calculate that approximately 90 ± 77 Tg CH4 year−1 and 4540 ± 1480 Tg CO2 year−1 are released from tropical wetlands globally. CH4 fluxes are greater from mineral than organic soils, whereas CO2 fluxes do not differ between soil types. The high CO2 and CH4 emissions are mirrored by high rates of net primary productivity and litter decay. Net ecosystem productivity was estimated to be greater in peat-forming wetlands than on mineral soils, but the available data are insufficient to construct reliable carbon balances or estimate gas fluxes at regional scales. We conclude that there is an urgent need for systematic data on carbon dynamics in tropical wetlands to provide a robust understanding of how they differ from well-studied northern wetlands and allow incorporation of tropical wetlands into global climate change models. PMID:26074666

  8. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    PubMed

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands. © 2014 SETAC.

  9. Factors affecting wetland connectivity for wintering semipalmated sandpipers (Calidris pusilla) in the Caribbean

    USGS Publications Warehouse

    Parks, Morgan A.; Collazo, Jaime A.; Ramos Alvarez, Katsi R.

    2016-01-01

    Wetland connectivity provides migratory shorebirds varying options to meet energy requirements to survive and complete their annual cycle. Multiple factors mediate movement and residency of spatially segregated wetlands. Information on these factors is lacking in the tropics, yet such information is invaluable for conservation design. The influence of seven biotic and abiotic factors on local movement and residency rates of Semipalmated Sandpipers (Calidris pusilla) among three major wetlands in southwestern Puerto Rico in 2013–2014 was assessed using multi-state models. The model with highest support (AICc wi= 0.78) indicated that weekly residency rates increased seasonally, and were positively influenced by bird abundance and the interaction of prey density and rainfall. Movement rates were negatively influenced by inter-wetland distance, which varied annually, ranging from 0.01 ± 0.004 to 0.33 ± 0.08. Age class (adult, juvenile), extent of shoreline habitat (km), and body condition (estimated percent fat) did not influence residency rates (95% CIs overlapped Betas). Our findings indicated that coastal wetlands in southwestern Puerto Rico were connected, pointing at the joint value of salt flats and mangroves for overwintering Semipalmated Sandpipers. Connectivity between different types of wetlands likely widens resource diversity, which is essential for coping with unpredictable environments. Additional work is needed to generalize our understanding of inter-wetland dynamics and their potential benefits to inform shorebird conservation strategies in the Caribbean.

  10. A restoration framework to build coastal wetland resiliency

    EPA Science Inventory

    An increase in the frequency and intensity of storms and flooding events are adversely impacting coastal wetlands. Coastal wetlands provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including spec...

  11. Stochastic modeling of wetland-groundwater systems

    NASA Astrophysics Data System (ADS)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  12. Lake Superior Coastal Wetland Fish Assemblages and ...

    EPA Pesticide Factsheets

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  13. A SYNOPTIC APPROACH FOR ASSESSING CUMULATIVE IMPACTS TO WETLANDS

    EPA Science Inventory

    The US Environmental Protection Agency's Wetlands Research Program has developed the synoptic approach as a proposed method for assessing cumulative impacts to wetlands by providing both a general and a comprehensive view of the environment. It can also be applied more broadly to...

  14. Prairie wetland complexes as landscape functional units in a changing climate

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.; Voldseth, Richard A.; Millett, Bruce; Naugle, David E.; Tulbure, Mirela; Carroll, Rosemary W.H.; Tracy, John; Olawsky, Craig

    2010-01-01

    The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.

  15. A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2014-12-01

    Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) between aquifers and inundated GIWs drive differences in water level responses to atmospheric fluxes, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. When distributed across the landscape, these reversals in local groundwater fluxes are predicted to collectively buffer the surficial aquifer and its regulation of baseflow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we integrated models of daily soil moisture, upland water table, and wetland stage dynamics to simulate hydrology of a low-relief landscape with GIWs. Simulations explored the influences of cumulative wetland area, individual wetland size, climate, and soil texture on water table and baseflow variation. Increasing cumulative wetland area and decreasing individual wetland size reduced water table variation and the frequency of extremely shallow and deep water tables. This buffering effect extended to baseflow deliveries, decreasing the standard deviation of daily baseflow by as much as 50%. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the important role of small GIWs in regulating regional hydrology. Recent U.S. Supreme Court rulings have limited federal protections for GIWs except where a "significant nexus" to a navigable water body is demonstrated. Our results suggest that GIWs regulate downstream baseflow, even where water in GIWs may never physically reach downstream systems, providing a significant "hydraulic" nexus to distant water bodies.

  16. A smart market for nutrient credit trading to incentivize wetland construction

    NASA Astrophysics Data System (ADS)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  17. Integrating geographically isolated wetlands into land ...

    EPA Pesticide Factsheets

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support. In a nutshell: Wetlands in general receive insufficient protection and this is particularly true for geographically isolated wetlands (GIWs), which are completely surrounded by upland areas GIWs have recently gained policy attention because they provide important ecosystem services, but like most wetlands, their loss and degradation continues Knowledge of the hydrologic connections of GIWs to downstream waters is necessary for th

  18. Hydrologic considerations in defining isolated wetlands

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  19. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass

    USDA-ARS?s Scientific Manuscript database

    : Constructed wetlands (CW) offer a mechanism to meet regulatory standards for wastewater treatment while minimizing energy inputs. To optimize CW wastewater polishing activities and investigate integration of CW with energy production from anaerobic digestion we constructed a pair of three-tier ch...

  20. Floodplain Hydrodynamics and Ecosystem Function in a Dryland Wetland

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Sandi, S. G.; Saco, P. M.; Wen, L.; Saintilan, N.; Kuczera, G. A.

    2017-12-01

    The Macquarie Marshes is a floodplain wetland system located in the semiarid region of south-east Australia, regularly flooded by small channels and creeks that get their water from a regulated river system. Flood-dependent vegetation in the wetland includes semi-permanent wetland areas (reed beds, lagoons, and mixed marsh), and floodplain forests and woodlands mainly dominated by River Red Gum (Eucalyptus Camaldulensis). These plant communities support a rich ecosystem and provide sanctuary for birds, frogs and fish and their ecological importance has been recognized under the Ramsar convention. During droughts, wetland vegetation can deteriorate or transition to terrestrial vegetation. Most recently, during the Millennium drought (2001-2009) large areas of water couch and common reeds transitioned to terrestrial vegetation and many patches of River Red Gum reported up to an 80% mortality. Since then, a significant recovery has occurred after a few years of record or near record rainfall. In order to support management decisions regarding watering of the wetland from the upstream reservoir, we have developed an eco-hydraulic model that relates vegetation distribution to the inundation regime (present and past) determined by floodplain hydrodynamics. The model couples hydrodynamic simulations with a rules-based vegetation module that considers water requirements for different plant associations and transition rules accounting for patch dynamics and vegetation resilience. The model has been setup and calibrated with satellite-derived inundation and vegetation maps as well as fractional cover products during the period from 1991 to 2013. We use the model to predict short-term wetland evolution under dry and wet future conditions.

  1. Wetlands for Wastewater: a Visual Approach to Microbial Dynamics

    NASA Astrophysics Data System (ADS)

    Joubert, L.; Wolfaardt, G.; Du Plessis, K.

    2007-12-01

    The complex character of distillery wastewater comprises high concentrations of sugars, lignins, hemicelluloses, dextrans, resins, polyphenols and organic acids which are recalcitrant to biodegradation. Microorganisms play a key role in the production and degradation of organic matter, environmental pollutants, and cycling of nutrients and metals. Due to their short life cycles microbes respond rapidly to external nutrient loading, with major consequences for the stability of biological systems. We evaluated the feasibility of wetlands to treat winery and distillery effluents in experimental systems based on constructed wetlands, including down-scaled on-site distillery wetlands, small-scale controlled greenhouse systems, and bench-scale mesocosms. Chemical, visual and molecular fingerprinting (t-RFLP) techniques were applied to study the dynamics of planktonic and attached (biofilm) communities at various points in wetlands of different size, retention time and geological substrate, and under influence of shock nutrient loadings. Variable- Pressure Scanning Electron Microscopy (VP-SEM) was applied to visualize microbial colonization, morphotype diversity and distribution, and 3D biofilm architecture. Cross-taxon and predator-prey interactions were markedly influenced by organic loading, while the presence of algae affected microbial community composition and biofilm structure. COD removal varied with geological substrate, and was positively correlated with retention time in gravel wetlands. Planktonic and biofilm communities varied markedly in different regions of the wetland and over time, as indicated by whole-community t-RFLP and VP-SEM. An integrative visual approach to community dynamics enhanced data retrieval not afforded by molecular techniques alone. The high microbial diversity along spatial and temporal gradients, and responsiveness to the physico-chemical environment, suggest that microbial communities maintain metabolic function by modifying species

  2. HYDROLOGIC CHARACTERISTICS OF A MANAGED WETLAND AND A NATURAL RIVERINE WETLAND ALONG THE KANKAKEE RIVER IN NORTHWESTERN INDIANA. SCIENTIFIC INVESTIGATIONS REPORT 2006-5222.

    EPA Science Inventory

    Characteristics of ground-water/surface-water interactions were identified at a managed wetland (Hog Marsh) and a natural riverine wetland (LaSalle) located on the north and south sides, respectively, of the Kankakee River in northwestern Indiana. Hog Marsh covers about 390 hecta...

  3. Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants

    USGS Publications Warehouse

    Stumpner, Elizabeth; Kraus, Tamara; Liang, Yan; Bachand, Sandra M.; Horwath, William R.; Bachand, Philip A.M.

    2018-01-01

    In many regions of the world, subsidence of organic rich soils threatens levee stability and freshwater supply, and continued oxidative loss of organic matter contributes to greenhouse gas production. To counter subsidence in the Sacramento-San Joaquin Delta of northern California, we examined the feasibility of using constructed wetlands receiving drainage water treated with metal-based coagulants to accrete mineral material along with wetland biomass, while also sequestering carbon in wetland sediment. Nine field-scale wetlands were constructed which received local drainage water that was either untreated (control), or treated with polyaluminum chloride (PAC) or iron sulfate (FeSO4) coagulants. After 23 months of flooding and coagulant treatment, sediment samples were collected near the inlet, middle, and outlet of each wetland to determine vertical accretion rates, bulk density, sediment composition, and carbon sequestration rates. Wetlands treated with PAC had the highest and most spatially consistent vertical accretion rates (~6 cm year-1), while the FeSO4 wetlands had similarly high accretion rates near the inlet but rates similar to the untreated wetland (~1.5 cm year-1) at the middle and outlet sites. The composition of the newly accreted sediment in the PAC and FeSO4 treatments was high in the added metal (aluminum and iron, respectively), but the percent metal by weight was similar to native soils of California. As has been observed in other constructed wetlands, the newly accreted sediment material had lower bulk densities than the native soil material (0.04-0.10 g cm-3 versus 0.2-0.3 g cm-3), suggesting these materials will consolidate over time. Finally, this technology accelerated carbon burial, with rates in PAC treated wetland (0.63 kg C m-2 yr-1) over 2-fold greater than the untreated control (0.28 kg C m-2 yr-1). This study demonstrates the feasibility of using constructed wetlands treated with coagulants to reverse subsidence by accreting the

  4. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  5. Diversity of wetland plants used traditionally in China: a literature review.

    PubMed

    Zhang, Yin; Xu, Hualin; Chen, Hui; Wang, Fei; Huai, Huyin

    2014-10-15

    In comparison with terrestrial plants, those growing in wetlands have been rarely studied ethnobotanically, including in China, yet people living in or near wetlands can accumulate much knowledge of the uses of local wetland plants. A characteristic of wetlands, cutting across climatic zones, is that many species are widely distributed, providing opportunities for studying general patterns of knowledge of the uses of plants across extensive areas, in the present case China. There is urgency in undertaking such studies, given the rapid rates of loss of traditional knowledge of wetland plants as is now occurring. There have been very few studies specifically on the traditional knowledge of wetland plants in China. However, much information on such knowledge does exist, but dispersed through a wide body of literature that is not specifically ethnobotanical, such as regional Floras. We have undertaken an extensive study of such literature to determine which species of wetland plants have been used traditionally and the main factors influencing patterns shown by such knowledge. Quantitative techniques have been used to evaluate the relative usefulness of different types of wetland plants and regression analyses to determine the extent to which different quantitative indices give similar results. 350 wetland plant species, belonging to 66 families and 187 genera, were found to have been used traditionally in China for a wide range of purposes. The top ten families used, in terms of numbers of species, were Poaceae, Polygonaceae, Cyperaceae, Lamiaceae, Asteraceae, Ranunculaceae, Hydrocharitaceae, Potamogetonaceae, Fabaceae, and Brassicaceae, in total accounting for 58.6% of all species used. These families often dominate wetland vegetation in China. The three most widely used genera were Polygonum, Potamogeton and Cyperus. The main uses of wetlands plants, in terms of numbers of species, were for medicine, food, and forage. Three different ways of assigning an importance

  6. Using Water Depth Sensors and High-resolution Topographic Mapping to Inform Wetland Management at a Globally Important Stopover Site for Migratory Shorebirds

    NASA Astrophysics Data System (ADS)

    Schaffer-Smith, D.; Swenson, J. J.; Reiter, M. E.; Isola, J. E.

    2017-12-01

    Over 50% of western hemisphere shorebird species are in decline due to ongoing habitat loss and habitat degradation. Wetland dependent shorebirds prefer shallowly flooded habitats (water depth <5cm), yet most wetlands are not managed to optimize shallow areas. In-situ water depth measurements and microtopography data coupled with satellite image analysis can assist in understanding habitat suitability patterns at broad spatial scales. We generated detailed bathymetry, and estimated spatial daily water depths, the proportion of wetland area providing flooded habitat within the optimal depth range, and the volume of water present in 23 managed wetlands in the Sacramento Valley of California, a globally important shorebird stopover site. Using 30 years of satellite imagery, we estimated suitable habitat extent across the landscape under a range of climate conditions. While spring shorebird abundance has historically peaked in early April, we found that maximum optimal habitat extent occurred after mid-April. More than 50% of monitored wetlands provided limited optimal habitat (<5% of total wetland extent) during the peak of migration between mid-March and mid-April. Furthermore, the duration of suitable habitat presence was fleeting; only 4 wetlands provided at least 10 consecutive days with >5% optimal habitat during the peak of migration. Wetlands with a higher percent clay content and lower topographic variability were more likely to provide a greater extent and duration of suitable habitat. We estimated that even in a relatively wet El-Nino year as little as 0.01%, to 10.72% of managed herbaceous wetlands in the Sacramento Valley provided optimal habitat for shorebirds at the peak of migration in early April. In an extreme drought year, optimal habitat decreased by 80% compared to a wet year Changes in the timing of wetland irrigation and drawdown schedules and the design of future wetland restoration projects could increase the extent and duration of optimal

  7. North American Wetlands and Mosquito Control

    PubMed Central

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  8. Monitoring wetlands change using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Hardin, D. L.

    1981-01-01

    A wetlands monitoring study was initiated as part of Delaware's LANDSAT applications demonstration project. Classifications of digital data are conducted in an effort to determine the location and acreage of wetlands loss or gain, species conversion, and application for the inventory and typing of freshwater wetlands. A multi-seasonal approach is employed to compare data from two different years. Unsupervised classifications were conducted for two of the four dates examined. Initial results indicate the multi-seasonal approach allows much better separation of wetland types for both tidal and non-tidal wetlands than either season alone. Change detection is possible but generally misses the small acreages now impacted by man.

  9. Constructed Wetlands for Treatment of Organic and Engineered Nanomaterial Contaminants of Emerging Concerns (WaterRF Report 4334)

    EPA Science Inventory

    The goal of this project was to determine hydraulic and carbon loading rates for constructed wetlands required for achieving different levels of organic and nanomaterial contaminants of emerging concern (CECs) removal in constructed wetlands. Specific research objectives included...

  10. Biogeochemical and hydrological controls in mobilizing Se in a saline wetland environment

    NASA Astrophysics Data System (ADS)

    Datta, S.; Hettiarachchi, G. M.; Crawford, M.; Karna, R.; Allmendinger, N. E.; Khatiwada, R.

    2010-12-01

    Selenium (Se) contamination in watersheds remains a challenge to water and land and wildlife managers throughout the west and mid west of US. In that sense, understanding the fundamentals of Se mobilization, fixation and bioconcentration is the current research endeavor. The challenge for Se research is developing watershed-geochemical models that are well founded in Se geochemical/biologcial principles that can be applied in a wide range of situations to inform decisions. Pariette Wetlands, a 9000 acre Bureau of Land Management controlled wetland system composed of 20 ponds located at the confluence of Pariette Draw and the Green River is the present location of this study. The agricultural and irrigation practices and the water-rock interactions leading to salinization can be associated with changes in Se chemistry in the rivers. Since its inception Pariette Wetlands has been home to a rich and diverse wetland ecosystem located in the arid Uintah Basin of Northeastern Utah. Detailed sampling of surficial sediments (0-1 m) from stream banks, channel beds and for water sampling have been undergone in 2 separate field trips throughout the entire reach of the wetland. To establish Pariette Draw’s contribution of Se to the Green river, water and sediments were also sampled from the Green River up and downstream of its confluence with Pariette Draw. In situ measurements of water parameters within the wetland suggest a clear trend of increased pH from upstream, 8, to downstream, 9.2 and combined with TDS suggest a pH controlled saline environment system. The headwaters near Flood Control Dam have an added input of Se from a possible irrigation source upstream in Pleasant Valley area while Se drastically decreases downstream towards the Red Head Pond. Se fractionation in sediments is being analyzed via a sequential extraction procedure to locate the labile fractions of mostly inorganic bound Se. Solid state speciation of Se via μ-XRF aided μ-XANES is being combined

  11. Hydrologic Education and Undergraduate Research in a Passive Wetland Treatment System

    NASA Astrophysics Data System (ADS)

    Fredrick, K. C.; Lohr, L.

    2012-12-01

    Legacy coal mine drainage has been found to impair surface water throughout southwestern Pennsylvania. Though few of our incoming students know what "acid mine drainage" is, nearly all have seen the orange streams and seeps that are its most obvious characteristic. On the other end of the spectrum, our geology majors are typically finding jobs in the oil and gas industry related to shale gas, or in environmental fields especially related to local and regional surface water. To take advantage of their early familiarity with local stream impacts and the likelihood they will have to deal with mine effluent during their post-academic careers, we have leveraged a local passive wetland treatment system to bring a relevant, real-life scenario into the classroom and lab. Moraine State Park, in western PA, is centered on Lake Arthur, an artificial reservoir of Muddy Creek. The park, particularly the lake, is a destination for recreational visitors, including boating and fishing enthusiasts. There is concern among visitors and park administrators about the health of the local streams and the lake. The area has been extensively undermined, with most coal mines sealed prior to the damming of the reservoir. One such instance of these sealed mine ports failed along one of the many embayments of Lake Arthur and a passive treatment system was installed. It was used as an example of the environmental impacts to the area for park guests, with an access road and signage. However, at this time, the three-pond system may be failing, five years beyond its projected life span and showing signs of stress and downstream contamination. Though the system is small, it provides a robust opportunity for hydrologic and geochemical analyses. We have used the pond system extensively for undergraduate research. Over the past five years, a Master's thesis was completed, and numerous undergraduate projects followed. Students have measured precipitate thickness and deposition rates, endeavored to

  12. [Research progress on food sources and food web structure of wetlands based on stable isotopes].

    PubMed

    Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo

    2017-07-18

    The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.

  13. Are isolated wetlands groundwater recharge hotspots?

    NASA Astrophysics Data System (ADS)

    Webb, A.; Wicks, C. M.; Brantley, S. T.; Golladay, S. W.

    2017-12-01

    Geographically isolated wetlands (GIWs) are a common landscape feature in the mantled karst terrain of the Dougherty Plain physiographic district in Southwestern Georgia. These wetlands support a high diversity of obligate/facultative wetland flora and fauna, including several endangered species. While the ecological value of these wetlands is well documented, the hydrologic effects of GIWs on larger watershed processes, such as water storage and aquifer recharge, are less clear. Our project seeks to understand the spatial and temporal variation in recharge across GIWs on this mantled karst landscape. In particular, our first step is to understand the role of isolated wetlands (presumed sinkholes) in delivering water into the underlying aquifer. Our hypothesis is that many GIWs are actually water-filled sinkholes and are locations of focused recharge feeding either the underlying upper Floridan aquifer or the nearby creeks. If we are correct, then these sinkholes should exhibit "drains", i.e., conduits into the limestone bedrock. Thus, the purposes of our initial study are to image the soil-limestone contact (the buried epikarstic surface) and determine if possible subsurface drains exist. Our field work was conducted at the Joseph W Jones Ecological Research Center. During the dry season, we conducted ground penetrating radar (GPR) surveys as grids and lines across a large wetland and across a field with no surface expression of a wetland or sinkhole. We used GPR (200 MHz antenna) with 1-m spacing between antenna and a ping rate of 1 ping per 40 centimeters. Our results show that the epikarstic surface exhibits a drain underneath the wetland (sinkhole) and that no similar feature was seen under the field, even though the survey grid and spacing were similar. As our project progresses, we will survey additional wetlands occurring across varying soil types to determine the spatial distribution between surface wetlands and subsurface drains.

  14. Ecosystem development after mangrove wetland creation: plant-soil change across a 20-year chronosequence

    USGS Publications Warehouse

    Osland, Michael J.; Spivak, Amanda C.; Nestlerode, Janet A.; Lessmann, Jeannine M.; Almario, Alejandro E.; Heitmuller, Paul T.; Russell, Marc J.; Krauss, Ken W.; Alvarez, Federico; Dantin, Darrin D.; Harvey, James E.; From, Andrew S.; Cormier, Nicole; Stagg, Camille L.

    2012-01-01

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10-30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0-10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.

  15. USGS research on Florida's isolated freshwater wetlands

    USGS Publications Warehouse

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  16. Remotely sensed MODIS wetland components for assessing the variability of methane emissions in Indian tropical/subtropical wetlands

    NASA Astrophysics Data System (ADS)

    Bansal, Sangeeta; Katyal, Deeksha; Saluja, Ridhi; Chakraborty, Monojit; Garg, J. K.

    2018-02-01

    Temperature and area fluctuations in wetlands greatly influence its various physico-chemical characteristics, nutrients dynamic, rates of biomass generation and decomposition, floral and faunal composition which in turn influence methane (CH4) emission rates. In view of this, the present study attempts to up-scale point CH4 flux from the wetlands of Uttar Pradesh (UP) by modifying two-factor empirical process based CH4 emission model for tropical wetlands by incorporating MODIS derived wetland components viz. wetland areal extent and corresponding temperature factors (Ft). This study further focuses on the utility of remotely sensed temperature response of CH4 emission in terms of Ft. Ft is generated using MODIS land surface temperature products and provides an important semi-empirical input for up-scaling CH4 emissions in wetlands. Results reveal that annual mean Ft values for UP wetlands vary from 0.69 (2010-2011) to 0.71(2011-2012). The total estimated area-wise CH4 emissions from the wetlands of UP varies from 66.47 Gg yr-1with wetland areal extent and Ft value of 2564.04 km2 and 0.69 respectively in 2010-2011 to 88.39 Gg yr-1with wetland areal extent and Ft value of 2720.16 km2 and 0.71 respectively in 2011-2012. Temporal analysis of estimated CH4 emissions showed that in monsoon season estimated CH4 emissions are more sensitive to wetland areal extent while in summer season sensitivity of estimated CH4 emissions is chiefly controlled by augmented methanogenic activities at high wetland surface temperatures.

  17. Applicability of a septic tank/engineered wetland coupled system in the treatment and recycling of wastewater from a small community.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es Salaam, Tanzania was monitored to assess its performance. The engineered wetland system (EWS) had two parallel units each with two serial beds packed with different sizes of media and vegetated differently. The larger-sized medium bed was upstream and was planted with Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with Typha (cattails). The ST/EWS coupled system was able to remove ammonia by an average of 60%, nitrate by 71%, sulfate by 55%, chemical oxygen demand by 91%, and fecal coliform as well as total coliform by almost 100%. The effluent from the ST/EWS coupled system is used for irrigation. Notably, users of the recycled irrigation water do not harbor any negative feelings about it. This study demonstrates that it is possible to treat and recycle domestic wastewater using ST/ EWS coupled systems. The study also brings attention to the fact that an ST/EWS coupled system has operation and maintenance (O&M) needs that must be fulfilled for its effectiveness and acceptability. These include removal of unwanted weeds, harvesting of wetland plants when the EWS becomes unappealingly bushy, and routine repair.

  18. Why are Wetlands Important?

    EPA Pesticide Factsheets

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  19. The challenges of remote monitoring of wetlands

    USGS Publications Warehouse

    Gallant, Alisa L.

    2015-01-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Various forms of global change impose compelling needs for timely and reliable information on the status of wetlands worldwide, but several characteristics of wetlands make them challenging to monitor remotely: they lack a single, unifying land-cover feature; they tend to be highly dynamic and their energy signatures are constantly changing; and steep environmental gradients in and around wetlands produce narrow ecotones that often are below the resolving capacity of remote sensors. These challenges and needs set the context for a special issue focused on wetland remote sensing. Contributed papers responded to one of three overarching questions aimed at improving remote, large-area monitoring of wetlands: (1) What approaches and data products are being developed specifically to support regional to global long-term monitoring of wetland landscapes? (2) What are the promising new technologies and sensor/multisensor approaches for more accurate and consistent detection of wetlands? (3) Are there studies that demonstrate how remote long-term monitoring of wetland landscapes can reveal changes that correspond with changes in land cover and land use and/or changes in climate?

  20. Presence of indicator plant species as a predictor of wetland vegetation integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Adams, Jean V.; Gara, Brian

    2013-01-01

    We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.

  1. The Effects of Ultraviolet Radiation on Attached Wetland Algae and Bacteria

    NASA Astrophysics Data System (ADS)

    Thomas, V. K.; Kuehn, K. A.; Francoeur, S. N.

    2005-05-01

    Despite the well-known increases in ultraviolet radiation (UV-R) reaching the Earth's surface due to the destruction of the ozone layer, little is known about effects of UV-R on wetland periphyton. To study the effects of UV-R on wetland periphyton, artificial substrata were placed under acrylic mesocosms in the Paint Creek Wetland, Ypsilanti, MI. One treatment mesocosm excluded light in the UV range (<340nm) and the other allowed the passage of full light. Periphyton attached to artificial substrata was collected on 4 dates during August and September 2004 and analyzed for Chlorophyll a, ash-free dry mass (AFDM), bacterial density, colloidal extracellular polysaccharides (EPS) and algal community composition. Over the length of the experiment the proportion of dead to live bacteria (p<0.02), EPS accrual (μgram glucose equivalents/cm2) (p=0.046), and the ratio of EPS to AFDM (p=0.027) were significantly greater in the UV-R-exposed treatment. These results suggest that ambient levels of UV-R damage periphytic bacteria and increase EPS production by periphyton.

  2. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    PubMed

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  3. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    EPA Science Inventory

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  4. Tracking the fate of nitrate through pulse-flow wetlands: A mesocosm scale 15N enrichment tracer study

    USGS Publications Warehouse

    Messer, Tiffany L.; Burchell, Michael R.; Böhlke, John Karl; Tobias, Craig R.

    2017-01-01

    Quantitative information about the fate of applied nitrate (NO3-N) in pulse-flow constructed wetlands is essential for designing wetland treatment systems and assessing their nitrogen removal services for agricultural and stormwater applications. Although many studies have documented NO3-N losses in wetlands, controlled experiments indicating the relative importance of different processes and N sinks are scarce. In the current study, 15NO3-N isotope enrichment tracer experiments were conducted in wetland mesocosms of two different wetland soil types at two realistic agricultural NO3-N source loads. The 15N label was traced from the source NO3-N into plant biomass, soil (including organic matter and ammonium), and N-gas constituents over 7–10 day study periods. All sinks responded positively to higher NO3-N loading. Plant uptake exceeded denitrification 2–3 fold in the low NO3-N loading experiments, while both fates were nearly equivalent in the high loading experiments. One to two years later, soils largely retained the assimilated tracer N, whereas plants had lost much of it. Results demonstrated that plant and microbial assimilation in the soil (temporary N sinks) can exceed denitrification (permanent N loss) in pulse-flow environments and must be considered by wetland designers and managers for optimizing nitrogen removal potential.

  5. Indicator pathogens, organic matter and LAS detergent removal from wastewater by constructed subsurface wetlands

    PubMed Central

    2014-01-01

    Background Constructed wetland is one of the natural methods of municipal and industrial wastewater treatments with low initial costs for construction and operation as well as easy maintenance. The main objective of this study is to determine the values of indicator bacteria removal, organic matter, TSS, ammonia and nitrate affecting the wetland removal efficiency. Results The average concentration of E. coli and total coliform in the input is 1.127 × 1014 and 4.41 × 1014 MPN/100 mL that reached 5.03 × 1012 and 1.13 × 1014 MPN/100 mL by reducing 95.5% and 74.4% in wetland 2. Fecal streptococcus reached from the average 5.88 × 1014 in raw wastewater to 9.69 × 1012 in the output of wetland 2. Wetland 2 could reduce 1.5 logarithmic units of E. coli. The removal efficiency of TSS for the wetlands is 68.87%, 71.4%, 57.3%, and 66% respectively. Conclusions The overall results show that wetlands in which herbs were planted had a high removal efficiency about the indicator pathogens, organic matter, LAS detergent in comparison to a control wetland (without canes) and could improve physicochemical parameters (DO, ammonia, nitrate, electrical conductivity, and pH) of wastewater. PMID:24581277

  6. Efficiency of a modified backwater wetland in trapping a pesticide mixture

    USDA-ARS?s Scientific Manuscript database

    The pesticide trapping efficiency of a modified backwater wetland amended with a mixture of three pesticides, atrazine, S-metolachlor, and fipronil, using a simulated runoff event, was examined. The 700 m long, 25 m wide wetland, located along the Coldwater River in Tunica County, Mississippi, USA,...

  7. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Jane; Bien, Stephanie; Decker, Ashlee

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluatedmore » from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)« less

  8. Modeling flow in wetlands and underlying aquifers using a discharge potential formulation

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Haitjema, H. M.

    2011-09-01

    SummaryAn accurate assessment of water and nutrient balances in large scale wetland systems such as the Florida Everglades requires conjunctive modeling of surface water flow in wetlands and groundwater flow in underlying aquifers. Earlier work was based on the finite difference code MODFLOW with a special "wetlands package." This model treats the wetland flow as laminar with a very high transmissivity that is proportional to the wetland water depth cubed. However, these MODFLOW solutions appear sensitive to this highly non-linear wetland transmissivity, particularly under conditions of low vegetation density when the model may fail to converge. We propose to formulate the governing differential equation in terms of a discharge potential instead of potentiometric heads as done in MODFLOW, but otherwise using the same assumptions as in its wetlands package. We tested our approach on a few cases of one- and two-dimensional flow, both with a constant and a varying wetland bottom elevation. For the latter the discharge potential represents an irrotational part of the flow field which is combined with a component of the flow field that contains the curl. We found that both the robustness and the accuracy of the solution in terms of potentials was superior to the solution in terms of heads. In some cases the latter solution failed altogether, even for simple one-dimensional flow. We applied our method to model the effects of wetland hydrology on the nutrient redistribution in and near tree islands. We found that the subtle velocity distributions near these tree islands, as resulted from our conjunctive wetlands and groundwater flow solution, could help explain the increased nutrient depositions at these islands, particularly at the head of the islands, where, consequently, most of the vegetation occurs.

  9. Development of an Indicator to Monitor Mediterranean Wetlands

    PubMed Central

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered. PMID:25826210

  10. Development of an indicator to monitor mediterranean wetlands.

    PubMed

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered.

  11. Nitrogen removal in Myriophyllum aquaticum wetland microcosms for swine wastewater treatment: 15 N-labelled nitrogen mass balance analysis.

    PubMed

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; He, Yang; Wu, Jinshui

    2017-01-01

    Ecological treatments are effective for treating agricultural wastewater. In this study, wetland microcosms vegetated with Myriophyllum aquaticum were designed for nitrogen (N) removal from two strengths of swine wastewater, and 15 N-labelled ammonium (NH 4 + -N) was added to evaluate the dominant NH 4 + -N removal pathway. The results showed that 98.8% of NH 4 + -N and 88.3% of TN (TN: 248.6 mg L -1 ) were removed from low-strength swine wastewater (SW1) after an incubation of 21 days, with corresponding values for high-strength swine wastewater (SW2) being 99.2% of NH 4 + -N and 87.8% of TN (TN: 494.9 mg L -1 ). Plant uptake and soil adsorption respectively accounted for 24.0% and 15.6% of the added 15 N. Meanwhile, above-ground tissues of M. aquaticum had significantly higher biomass and TN content than below-ground (P < 0.05). 15 N mass balance analysis indicated that gas losses contributed 52.0% to the added 15 N, but the N 2 O flux constituted only 7.5% of total gas losses. The dynamics of NO 3 - -N and N 2 O flux revealed that strong nitrification and denitrification occurred in M. aquaticum microcosms, which was a dominant N removal pathway. These findings demonstrated that M. aquaticum could feasibly be used to construct wetlands for high N-loaded animal wastewater treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Natural treatment system models for wastewater management: a study from Hyderabad, India.

    PubMed

    Sonkamble, Sahebrao; Wajihuddin, Md; Jampani, Mahesh; Sarah, S; Somvanshi, V K; Ahmed, Shakeel; Amerasinghe, Priyanie; Boisson, Alexandre

    2018-01-01

    Wastewater generated on a global scale has become a significant source of water resources which necessitates appropriate management strategies. However, the complexities associated with wastewater are lack of economically viable treatment systems, especially in low- and middle-income countries. While many types of treatment systems are needed to serve the various local issues, we propose natural treatment systems (NTS) such as natural wetlands that are eco-friendly, cost-effective, and can be jointly driven by public bodies and communities. In order for it to be part of wastewater management, this study explores the NTS potential for removal of pollutants, cost-effectiveness, and reuse options for the 1.20 million m 3 /day of wastewater generated in Hyderabad, India. The pilot study includes hydro-geophysical characterization of natural wetland to determine pollutant removal efficiency and its effective utilization for treated wastewater in the peri-urban habitat. The results show the removal of organic content (76-78%), nutrients (77-97%), and microbes (99.5-99.9%) from the wetland-treated wastewater and its suitability for agriculture applications. Furthermore, the wetland efficiency integrated with engineered interventions led to the development of NTS models with different application scenarios: (i) constructed wetlands, (ii) minimized community wetlands, and (iii) single outlet system, suitable for urban, peri-urban and rural areas, respectively.

  13. Community metabolism during early development of a restored wetland

    USGS Publications Warehouse

    McKenna, J.E.

    2003-01-01

    Productivity is an important ecological function of any natural system and may be quite high in wetlands. Restoration of productive wetlands may play a key role in re-establishing ecological function to portions of the vast areas of wetlands (roughly 86%) drained and otherwise altered in the United States over the past two centuries. A restored wetland at the Montezuma National Wildlife Refuge (upstate New York, USA) was examined to determine if ecological function (i.e., productivity), as well as biotic structure, was restored. Physicochemical conditions and both aquatic and terrestrial productivity were measured at the restoration site and compared with rates and conditions in a reference wetland. Gross aquatic community production rates (based on diurnal oxygen curves) were similar at each site (1,679 and 2,311 g O2 · m−2 · yr−1) and within the range expected for the habitat. Terrestrial Net Aboveground Primary Production rates (measured by monthly biomass changes) (2,400 and 2,500 g dry wt. · m−2 · yr−1) were also similar between sites when tree and herb production were combined. Aquatic respiration rates (3,704 and 4,552 g O2 · m−2· yr−1) were also similar but high, typically more than twice as large as gross aquatic production. As a result, net aquatic production rates at both sites were usually negative, indicating that these small wetlands are organic matter sinks that satisfy aquatic respiration by consumption of both autochthonous aquatic production and imported terrestrial production. They enhance diversity of the local landscape by producing populations of aquatic consumers that cannot be supported by aquatic production alone. Typical wetland conditions and processes developed quickly after restoration, but differences in biotic community structure indicate that observed rates of production and respiration at both sites were maintained by flow through different foodweb pathways. Despite the relatively high process rates, and

  14. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apfelbaum, Steven L.; Duvall, Kenneth W.; Nelson, Theresa M.

    positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.« less

  15. Wetland restoration, flood pulsing, and disturbance dynamics

    USGS Publications Warehouse

    Middleton, Beth A.

    1999-01-01

    While it is generally accepted that flood pulsing and disturbance dynamics are critical to wetland viability, there is as yet no consensus among those responsible for wetland restoration about how best to plan for those phenomena or even whether it is really necessary to do so at all. In this groundbreaking book, Dr. Beth Middleton draws upon the latest research from around the world to build a strong case for making flood pulsing and disturbance dynamics integral to the wetland restoration planning process.While the initial chapters of the book are devoted to laying the conceptual foundations, most of the coverage is concerned with demonstrating the practical implications for wetland restoration and management of the latest ecological theory and research. It includes a fascinating case history section in which Dr. Middleton explores the restoration models used in five major North American, European, Australian, African, and Asian wetland projects, and analyzes their relative success from the perspective of flood pulsing and disturbance dynamics planning.Wetland Restoration also features a wealth of practical information useful to all those involved in wetland restoration and management, including: * A compendium of water level tolerances, seed germination, seedling recruitment, adult survival rates, and other key traits of wetland plant species * A bibliography of 1,200 articles and monographs covering all aspects of wetland restoration * A comprehensive directory of wetland restoration ftp sites worldwide * An extensive glossary of essential terms

  16. Development of a Reference Coastal Wetland set in Southern New England (USA)

    EPA Science Inventory

    Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetland...

  17. Analysis of sediment retention in western riverine wetlands: the Yampa River watershed, Colorado, USA.

    PubMed

    Arp, Christopher D; Cooper, David J

    2004-03-01

    We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m(2) along a first-order subalpine stream to 21.8 kg/m(2) at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6(th)-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R(2) = 0.86, p < 0.01) and bank erosion (R(2) = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.

  18. Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model

    USGS Publications Warehouse

    Zhu, Qing; Liu, Jinxun; Peng, C.; Chen, H.; Fang, X.; Jiang, H.; Yang, G.; Zhu, D.; Wang, W.; Zhou, X.

    2014-01-01

    A new process-based model TRIPLEX-GHG was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new methane (CH4) biogeochemistry module (incorporating CH4 production, oxidation, and transportation processes) and a water table module to investigate CH4 emission processes and dynamics that occur in natural wetlands. Sensitivity analysis indicates that the most sensitive parameters to evaluate CH4 emission processes from wetlands are r (defined as the CH4 to CO2 release ratio) and Q10 in the CH4 production process. These two parameters were subsequently calibrated to data obtained from 19 sites collected from approximately 35 studies across different wetlands globally. Being heterogeneously spatially distributed, r ranged from 0.1 to 0.7 with a mean value of 0.23, and the Q10 for CH4 production ranged from 1.6 to 4.5 with a mean value of 2.48. The model performed well when simulating magnitude and capturing temporal patterns in CH4 emissions from natural wetlands. Results suggest that the model is able to be applied to different wetlands under varying conditions and is also applicable for global-scale simulations.

  19. Climate change and wetland loss impacts on a western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-11-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  20. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Prajapati, Meera; van Bruggen, Johan J. A.; Dalu, Tatenda; Malla, Rabin

    2017-12-01

    The study aimed to evaluate the removal of pollutants by floating treatment wetlands (FTWs) using an edible floating plant, and emergent macrophytes. All experiments were performed under ambient conditions. Physico-chemical parameters were measured, along with microbiological analysis of biofilm within the roots, water column, and sludge and gravel zone. Nitrification and denitrification rates were high in the water zone of Azolla filiculoides, Lemna minor, Lactuca sativa, P. stratiotes, and Phragmites australis. Phosphate removal efficiencies were 23, 10, and 15% for the free-floating hydrophytes, emergent macrophytes, and control and edible plants, respectively. The microbial community was relatively more active in the root zone compared to other zones. Pistia stratiotes was found to be the efficient in ammonium (70%) and total nitrogen (59%) removal. Pistia stratiotes also showed the highest microbial activity of 1306 mg day-1, which was 62% of the total volume. Microbial activity was found in the water zone of all FTWs expect for P. australis. The use of P. stratiotes and the edible plant L. sativa could be a potential option to treat domestic wastewater due to relatively high nutrient and organic matter removal efficiency.

  1. Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem

    USGS Publications Warehouse

    Calhoun, Aram J.K.; Mushet, David M.; Bell, Kathleen P.; Boix, Dani; Fitzsimons, James A.; Isselin-Nondedeu, Francis

    2017-01-01

    Frequent drying of ponded water, and support of unique, highly specialized assemblages of often rare species, characterize temporary wetlands, such as vernal pools, gilgais, and prairie potholes. As small aquatic features embedded in a terrestrial landscape, temporary wetlands enhance biodiversity and provide aesthetic, biogeochemical, and hydrologic functions. Challenges to conserving temporary wetlands include the need to: (1) integrate freshwater and terrestrial biodiversity priorities; (2) conserve entire ‘pondscapes’ defined by connections to other aquatic and terrestrial systems; (3) maintain natural heterogeneity in environmental gradients across and within wetlands, especially gradients in hydroperiod; (4) address economic impact on landowners and developers; (5) act without complete inventories of these wetlands; and (6) work within limited or non-existent regulatory protections. Because temporary wetlands function as integral landscape components, not singly as isolated entities, their cumulative loss is ecologically detrimental yet not currently part of the conservation calculus. We highlight approaches that use strategies for conserving temporary wetlands in increasingly human-dominated landscapes that integrate top-down management and bottom-up collaborative approaches. Diverse conservation activities (including education, inventory, protection, sustainable management, and restoration) that reduce landowner and manager costs while achieving desired ecological objectives will have the greatest probability of success in meeting conservation goals.

  2. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    PubMed

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  3. The carbon balance of North American wetlands

    USGS Publications Warehouse

    Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C.

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH 4) yr-1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands

  4. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    PubMed

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  5. Preliminary assessment of DOC and THM precursor loads from a freshwater restored wetland, an agricultural field, and a tidal wetland in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Fujii, R.; Bergamaschi, B.A.; Ganju, N.K.; Fleck, J.A.; Burow-Fogg, K.R.; Schoellhamer, D.; Deverel, S.J.

    2003-01-01

    Water exported from the Sacramento-San Joaquin River Delta supplies drinking water to more than 22 million people in California. At certain times of the year, Delta waters contain relatively high concentrations of dissolved organic carbon (DOC) and bromide. During these times, chlorination of Delta water for drinking water disinfection will form disinfection byproducts, such as trihalomethanes (THMs), that can exceed the U.S. Environmental Protection Agency's maximum contaminant level for THMs of 80 mg/L. Important sources of DOC and THM precursors (types of DOC that form THMs when chlorinated) to the Delta include rivers, drainage water from peat islands, water from wetlands and areas with extensive riparian vegetation, and in-channel growth of algae and macrophytes. Due to proposed ecosystem restoration and creation of wetlands in the Delta, there is an urgent need for information on the relative loads of DOC and THM precursors produced from three different land uses: restored wetlands constructed for subsidence mitigation, tidal wetlands, and agricultural operations. We have been conducting research in the Delta to provide this information. A restored wetland and agricultural field located on Twitchell Island, and a tidal wetland on Browns Island have been monitored for flow, DOC, and THM precursors. Initial results indicate that the loads of DOC and THM precursors are similar for the restored wetland (surface water only) and the agricultural field. These land uses produce DOC loads of about 14 and 11 g C/m2/yr, respectively, and THM precursor loads of about 1.7 and 1.0 g THM/m2/yr, respectively. Estimates of DOC and THM precursor loads for the tidal wetland site on Browns Island and seepage associated with the restored wetland are being developed.

  6. Forestry Best Management Practices for Wetlands in Minnesota

    Treesearch

    Michael J. Phillips

    1997-01-01

    Wetlands are a common landscape feature in Minnesota in spite of significant losses of wetlands to agriculture and development. Prior to European settlement, Minnesota contained 7.5 million ha of wetlands, including both wet, mineral and peat soils. These wetlands covered approximately 35 percent of the state. The current extent of wetlands for Minnesota is...

  7. Habitat edges affect patterns of artificial nest predation along a wetland-meadow boundary

    NASA Astrophysics Data System (ADS)

    Suvorov, Petr; Svobodová, Jana; Albrecht, Tomáš

    2014-08-01

    Wetland habitats are among the most endangered ecosystems in the world. However, little is known about factors affecting the nesting success of birds in pristine grass-dominated wetlands. During three breeding periods we conducted an experiment with artificial ground nests to test two basic mechanisms (the matrix and ecotonal effects) that may result in edge effects on nest predation in grass-dominated wetland habitats. Whereas the matrix effect model supposes that predator penetrate from habitat of higher predator density to habitat of lower predator density, thus causing an edge effect in the latter, according to the ecotonal effect model predators preferentially use edge habitats over habitat interiors. In addition, we tested the edge effect in a wetland habitat using artificial shrub nests that simulated the real nests of small open-cup nesting passerines. In our study area, the lowest predation rates on ground nests were found in wetland interiors and were substantially higher along the edges of both wetland and meadow habitat. However, predation was not significantly different between meadow and wetland interiors, indicating that both mechanisms can be responsible for the edge effect in wetland edges. An increased predation rate along wetland edges was also observed for shrub nests, and resembled the predation pattern of real shrub nests in the same study area. Though we are not able to distinguish between the two mechanisms of the edge effect found, our results demonstrate that species nesting in wetland edges bordering arable land may be exposed to higher predation. Therefore, an increase in the size of wetland patches that would lead to a reduced proportion of edge areas might be a suitable management practice to protect wetland bird species in cultural European landscapes.

  8. Wetland resources investigation based on 3S technology

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Jing, Haitao; Zhang, Lianpeng

    2008-10-01

    Wetland is a special ecosystem between land and water . It can provide massive foods, raw material, water resources and habitat for human being, animals and plants, Wetlands are so important that wetlands' development, management and protection have become the focus of public attention ."3S" integration technology was applied to investigate wetland resources in Shandong Province ,the investigation is based on remote sensing(RS) information, combining wetlandrelated geographic information system(GIS) data concerning existing geology, hydrology, land, lakes, rivers, oceans and environmental protection, using the Global Positioning System (GPS) to determine location accurately and conveniently , as well as multi-source information to demonstrate each other based on "3S" integration technology. In addition, the remote sensing(RS) interpretation shall be perfected by combining house interpretation with field survey and combining interpretation results with known data.By contrasting various types of wetland resources with the TM, ETM, SPOT image and combining with the various types of information, remote sensing interpretation symbols of various types of wetland resources are established respectively. According to the interpretation symbols, we systematically interpret the wetland resources of Shandong Province. In accordance with the purpose of different work, we interpret the image of 1987, 1996 and 2000. Finally, various interpretation results are processed by computer scanning, Vectored, projection transformation and image mosaic, wetland resources distribution map is worked out and wetland resources database of Shandong Province is established in succession. Through the investigation, wetland resource in Shandong province can be divided into 4 major categories and 17 sub-categories. we have ascertained the range and area of each category as well as their present utilization status.. By investigating and calculating, the total area of wetland in Shandong Province is

  9. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    NASA Astrophysics Data System (ADS)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  10. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinusmore » spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.« less

  11. A model of depressional wetland formation in low-relief karst landscapes

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Bianchi, T. S.; Watts, A.

    2014-12-01

    Karst landscapes are formed by the self-reinforcing dissolution of limestone and other soluble rocks, and these positive feedbacks can create a variety of landforms depending on initial topography, climate, bedrock characteristics, and potentially, the activity of biota. In Big Cypress National Preserve (BICY), a low-relief karst landscape in southwestern FL (USA), depressional wetlands, are interspersed within an upland matrix in a regular pattern. This landscape is characterized by over-dispersion of wetland patches, periodic variation in bedrock depth and soil thickness, and distinct bi-modality of these and other soil properties. We hypothesize that the structure of the BICY landscape reflects the concurrent effects of local positive feedbacks among hydroperiod, vegetation productivity and bedrock dissolution; these local processes may ultimately be constrained by landscape scale limitations of water volume. We further hypothesize that low relief and shallow water tables are essential boundary conditions for the emergence of regular patterning of wetlands. To explore these hypotheses, we have developed a quasi-spatial model of a single nascent wetland and its catchment, where the expansion of the wetland basin is driven by acidity associated with belowground root production and aquatic metabolism and their effects on carbonate mineral dissolution, and by the lateral and vertical discharge of water between wetlands and bedrock porosity. This model can, depending on boundary conditions, recreate a range of karst features, including vertical dissolution holes, extensive wetlands that overtake the entire basin, or smaller wetlands whose size equilibrates at a small proportion of the catchment area. This last endpoint, a landform similar to those observed in BICY, occurs only in response to relatively shallow water tables, limited hydrologic inputs, and strong positive feedbacks of biotic activity on dissolution.

  12. Flow regime in a restored wetland determines trophic links and species composition in the aquatic macroinvertebrate community.

    PubMed

    González-Ortegón, E; Walton, M E M; Moghaddam, B; Vilas, C; Prieto, A; Kennedy, H A; Pedro Cañavate, J; Le Vay, L

    2015-01-15

    In a restored wetland (South of Spain), where different flow regimes control water exchange with the adjacent Guadalquivir estuary, the native Palaemon varians coexists with an exotic counterpart species Palaemon macrodactylus. This controlled m\\acrocosm offers an excellent opportunity to investigate how the effects of water management, through different flow regimes, and the presence of a non-native species affect the aquatic community and the trophic niche (by gut contents and C-N isotopic composition) of the native shrimp Palaemon varians. We found that increased water exchange rate (5% day(-1) in mixed ponds vs. 0.1% day(-1) in extensive ponds) modified the aquatic community of this wetland; while extensive ponds are dominated by isopods and amphipods with low presence of P. macrodactylus, mixed ponds presented high biomass of mysids, corixids, copepods and both shrimp species. An estuarine origin of nutrients and primary production might explain seasonal and spatial differences found among ponds of this wetland. A combined analysis of gut contents and isotopic composition of the native and the exotic species showed that: (1) native P. varians is mainly omnivorous (2) while the non-native P. macrodactylus is more zooplanktivorous and (3) a dietary overlap occurred when both species coexist at mixed ponds where a higher water exchange and high abundance of mysids and copepods diversifies the native species' diet. Thus differences in the trophic ecology of both species are clearly explained by water management. This experimental study is a valuable tool for integrated management between river basin and wetlands since it allows quantification of wetland community changes in response to the flow regime. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  14. Constructed wetland as a low cost and sustainable solution for wastewater treatment adapted to rural settlements: the Chorfech wastewater treatment pilot plant.

    PubMed

    Ghrabi, Ahmed; Bousselmi, Latifa; Masi, Fabio; Regelsberger, Martin

    2011-01-01

    The paper presents the detailed design and some preliminary results obtained from a study regarding a wastewater treatment pilot plant (WWTPP), serving as a multistage constructed wetland (CW) located at the rural settlement of 'Chorfech 24' (Tunisia). The WWTPP implemented at Chorfech 24 is mainly designed as a demonstration of sustainable water management solutions (low-cost wastewater treatment), in order to prove the efficiency of these solutions working under real Tunisian conditions and ultimately allow the further spreading of the demonstrated techniques. The pilot activity also aims to help gain experience with the implemented techniques and to improve them when necessary to be recommended for wide application in rural settlements in Tunisia and similar situations worldwide. The selected WWTPP at Chorfech 24 (rural settlement of 50 houses counting 350 inhabitants) consists of one Imhoff tank for pre-treatment, and three stages in series: as first stage a horizontal subsurface flow CW system, as second stage a subsurface vertical flow CW system, and a third horizontal flow CW. The sludge of the Imhoff tank is treated in a sludge composting bed. The performances of the different components as well as the whole treatment system were presented based on 3 months monitoring. The results shown in this paper are related to carbon, nitrogen and phosphorus removal as well as to reduction of micro-organisms. The mean overall removal rates of the Chorfech WWTPP during the monitored period have been, respectively, equal to 97% for total suspended solids and biochemical oxygen demand (BOD5), 95% for chemical oxygen demand, 71% for total nitrogen and 82% for P-PO4. The removal of E. coli by the whole system is 2.5 log units.

  15. A review of models and micrometeorological methods used to estimate wetland evapotranspiration

    USGS Publications Warehouse

    Drexler, J.Z.; Snyder, R.L.; Spano, D.; Paw, U.K.T.

    2004-01-01

    Within the past decade or so, the accuracy of evapotranspiration (ET) estimates has improved due to new and increasingly sophisticated methods. Yet despite a plethora of choices concerning methods, estimation of wetland ET remains insufficiently characterized due to the complexity of surface characteristics and the diversity of wetland types. In this review, we present models and micrometeorological methods that have been used to estimate wetland ET and discuss their suitability for particular wetland types. Hydrological, soil monitoring and lysimetric methods to determine ET are not discussed. Our review shows that, due to the variability and complexity of wetlands, there is no single approach that is the best for estimating wetland ET. Furthermore, there is no single foolproof method to obtain an accurate, independent measure of wetland ET. Because all of the methods reviewed, with the exception of eddy covariance and LIDAR, require measurements of net radiation (Rn) and soil heat flux (G), highly accurate measurements of these energy components are key to improving measurements of wetland ET. Many of the major methods used to determine ET can be applied successfully to wetlands of uniform vegetation and adequate fetch, however, certain caveats apply. For example, with accurate Rn and G data and small Bowen ratio (??) values, the Bowen ratio energy balance method can give accurate estimates of wetland ET. However, large errors in latent heat flux density can occur near sunrise and sunset when the Bowen ratio ?? ??? - 1??0. The eddy covariance method provides a direct measurement of latent heat flux density (??E) and sensible heat flux density (II), yet this method requires considerable expertise and expensive instrumentation to implement. A clear advantage of using the eddy covariance method is that ??E can be compared with Rn-G H, thereby allowing for an independent test of accuracy. The surface renewal method is inexpensive to replicate and, therefore, shows

  16. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    USGS Publications Warehouse

    Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1998-01-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic

  17. Climate change and wetland loss impacts on a Western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-05-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  18. Sources of methylmercury to a wetland-dominated lake in northern Wisconsin.

    PubMed

    Watras, C J; Morrison, K A; Kent, A; Price, N; Regnell, O; Eckley, C; Hintelmann, H; Hubacher, T

    2005-07-01

    Several lines of evidence suggest that wetlands may be a major source of methylmercury (MeHg) to receiving waters, perhaps explaining the strong correlation between concentrations of waterborne MeHg and dissolved organic carbon (DOC) in regions such as northern Wisconsin. We evaluated the relative importance of wetland export in the MeHg budget of a wetland-dominated lake in northern Wisconsin using mass balance. Channelized runoff from a large headwater wetland was the major source of water and total mercury (HgT) to the lake during the study period. The wetland also exported MeHg in high concentrations (0.2-0.8 ng L(-1)), resulting in an export rate similar to those reported for other northern wetlands (ca. 0.3 microg MeHg m(-2) y(-1)). Yet, based on intensive sampling during 2002, the mass of MeHg that accumulated in the lake during summer was an order of magnitude greater than the export of MeHg from the wetland to the lake. Hence, a large in-lake source of MeHg is inferred from the mass balance. Most of the accumulated MeHg built-up in anoxic hypolimnetic waters; and the build-up was roughly balanced by losses of inorganic Hg (Hg(II)) implying a chemical transformation within the anoxic water column. An abundance of sulfate-reducing bacteria (SRB) in hypolimnetic waters, established by DNA analysis of the pelagic microbial community, along with a previous report documenting high methylation rates in the hypolimnion of this lake (ca. 10% d(-1)), suggest that this transformation was microbially mediated. These findings indicate that the direct effect of wetland runoff may be outweighed by indirect effects on the lacustrine MeHg cycle, enhancing the load of Hg(II), the activity of SRB, and the retention of MeHg, especially in northern lakes with flushing times longer than six months.

  19. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Treesearch

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  20. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  1. Hydrology of flooded and wetland forests

    USGS Publications Warehouse

    Williams, T.M.; Krauss, Ken W.; Okruszko, T.; Amatya, D.; Williams, T.M.; Bren, L.; de Jong, C.

    2016-01-01

    In this chapter we will examine the hydrology of forested areas that are subject to soil saturation by rain, groundwater, or surface flooding. They include mangroves and other tidal forests, the forested portions of peatlands, and tree dominated wetlands defined by the Ramsar Convention (Mathews 1993). They also include estuarine tidal forests, palustrine forested wetlands, and the portion of palustrine scrub-shrub which are made up of immature tree species of the Cowardin et al. (1985) classification. A broad outline of ecology of all wetlands are described in Mitsch and Gosselink (2015), wetlands specifically with tidal influence are described by Tiner (2013), while descriptions of northern and southern forested wetlands can be found in Trettin et al. (1996) and Messina and Conner (1998) respectively.

  2. Multiple factors influence the vegetation composition of Southeast U.S. wetlands restored in the Wetlands Reserve Program

    Treesearch

    Diane De Steven; Joel M. Gramling

    2013-01-01

    Degradation of wetlands on agricultural lands contributes to the loss of local or regional vegetation diversity. The U.S. Department of Agriculture’s Wetlands Reserve Program (WRP) funds the restoration of degraded wetlands on private ‘working lands’, but these WRP projects have not been studied in the Southeast United States. Wetland hydrogeomorphic type influences...

  3. Hydrologic indices for nontidal wetlands

    USGS Publications Warehouse

    Lent, Robert M.; Weiskel, Peter K.; Lyford, Forest P.; Armstrong, David S.

    1997-01-01

    Two sets of hydrologic indices were developed to characterize the water-budget components of nontidal wetlands. The first set consisted of six water-budget indices for input and output variables, and the second set consisted of two hydrologic interaction indices derived from the water-budget indices. The indices then were applied to 19 wetlands with previously published water-budget data. Two trilinear diagrams for each wetland were constructed, one for the three input indices and another for the three output indices. These two trilinear diagrams then were combined with a central quadrangle to form a Piper-type diagram, with data points from the trilinear diagrams projected onto the quadrangle. The quadrangle then was divided into nine fields that summarized the water-budget information. Two quantitative "interaction indices" were calculated from two of the six water-budget indices (precipitation and evapotranspiration). They also were obtained graphically from the water-budget indices, which were first projected to the central quadrangle of a Piper-type diagram from the flanking trilinear plots. The first interaction index (l) defines the strength of interaction between a wetland and the surrounding ground- and surface-water system. The second interaction index (S) defines the nature of the interaction between the wetland and the surrounding ground- and surface-water system (source versus sink). Evaluation of these indices using published wetland water-budget data illustrates the usefulness of the technique.

  4. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.

    PubMed

    Evenson, Grey R; Golden, Heather E; Lane, Charles R; McLaughlin, Daniel L; D'Amico, Ellen

    2018-06-01

    Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (<3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic "gatekeepers," preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios

  5. Wetlands and Agriculture in Africa: Major Sources of N2O?

    NASA Astrophysics Data System (ADS)

    Gettel, G. M.

    2015-12-01

    Papyrus wetlands in East Africa are rapidly being converted to agricultural production in an effort to increase food security. This conversion is often seasonal, with wetlands being used for grazing and crop production of maize, sugarcane, and rice during dry seasons, and flooding occurring during wet seasons. An important question with respect to greenhouse gas production is whether wetland conversion to agriculture increases N2O fluxes. This trend has been shown in temperate regions where increased N2O fluxes are positively related to low soil C:N ratios, especially when soil moisture content remains high. In order to examine whether denitrification contributes to N2O flux, we measured potential denitrification rates (PDR by acetylene block method) in intact papyrus wetlands and agricultural converted wetlands in Kenya, Tanzania, Uganda, and Rwanda, and also performed multivariate analysis to relate soil characteristics to PDR. Agricultural land-cover types included maize, sugarcane, rice, and grazing. Results showed that intact wetlands are potentially important sources of N2O, as PDR in papyrus vegetation were consistently the highest (p<0.05; 128 - 601 μg N2O g DW-1 hour-1) while grazing sites showed the lowest (0.1 - 0.5 μg N2O g DW-1 hour-1). Rates were second highest in rice fields (2.3 - 303 μg N2O g DW-1 hour-1), and intermediate in maize and sugarcane (6.5 - 75 μmg N2O g DW-1 hour-1 and 5 - 30 μg N2O g DW-1 hour-1 respectively). PDR across all sites was inversely related to soil C:N ratio, with nitrate consistently limiting PDR in the wetland sites while soil carbon limited PDR in agricultural sites. This is seemingly in contrast with other findings that show that lower C:N ratios result in high N2O fluxes from drained wetland sites. However, flux measurements along with more realistic process-based measurements of denitrification are urgently needed to more fully understand the effect of agricultural conversion of wetlands in East Africa.

  6. Estimating restorable wetland water storage at landscape scales

    EPA Science Inventory

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., the volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many...

  7. Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days.

    PubMed

    Guerra, Heidi B; Park, Kisoo; Kim, Youngchul

    2013-01-01

    Due to the highly variable hydrologic quantity and quality of stormwater runoff, which requires more complex models for proper prediction of treatment, a relatively few and site-specific models for stormwater wetlands have been developed. In this study, regression models based on extensive operational data and wastewater wetlands were adapted to a stormwater wetland receiving both base flow and storm flow from an agricultural area. The models were calibrated in Excel Solver using 15 sets of operational data gathered from random sampling during dry days. The calibrated models were then applied to 20 sets of event mean concentration data from composite sampling during 20 independent rainfall events. For dry days, the models estimated effluent concentrations of nitrogen species that were close to the measured values. However, overestimations during wet days were made for NH(3)-N and total Kjeldahl nitrogen, which resulted from higher hydraulic loading rates and influent nitrogen concentrations during storm flows. The results showed that biological nitrification and denitrification was the major nitrogen removal mechanism during dry days. Meanwhile, during wet days, the prevailing aerobic conditions decreased the denitrification capacity of the wetland, and sedimentation of particulate organic nitrogen and particle-associated forms of nitrogen was increased.

  8. Proceedings of a conference on sustainability of wetlands and water resources: how well can riverine wetlands continue to support society into the 21st century?

    Treesearch

    Marjorie M. Holland; Melvin L. Warren; John A. Stanturf; [Editors

    2002-01-01

    The conference focused on recent work in freshwater wetlands [both natural and constructed] with a view toward understanding wetland processes in a watershed context. Since humans have played important roles in watershed dynamics for years, attention was given to the human dimensions of wetland and watershed uses. Contributed sessions were organized on: biogeochemical...

  9. Structural and Functional Loss in Restored Wetland Ecosystems

    PubMed Central

    Moreno-Mateos, David; Power, Mary E.; Comín, Francisco A.; Yockteng, Roxana

    2012-01-01

    Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread. PMID:22291572

  10. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  11. Natural attenuation of chlorinated hydrocarbons in a freshwater wetland

    USGS Publications Warehouse

    Lora, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Alleman, Bruce C.; Leeson, Andrea

    1997-01-01

    Natural attenuation of chlorinated volatile organic compounds (VOC's) occurs as ground water discharges from a sand aquifer to a freshwater wetland at Aberdeen Proving Ground, Md. Field and laboratory results indicate that biotransformation in the anaerobic wetland sediments is an important attenuation process. Relatively high concentrations of the parent compounds trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (PCA) and low or undetectable concentrations of daughter products were measured in the aquifer. In contrast, relatively high concentrations of the daughter products cis- and trans-1,2-dichloroethylene (12DCE); vinyl chloride (VC); 1,1,2-trichloroethane (112TCA); and 1,2-dichloroethane (12DCA) were measured in ground water in the wetland sediments, although total VOC concentrations decreased upward from about 1 mu mol/L (micromoles per liter) at the base of the wetland sediments to less than 0.2 near the surface. Microcosm experiments showed that 12DCE and VC are produced from anaerobic degradation of both TCE and PCA; PCA degradation also produced 112TCA and 12DCA.

  12. Conservation of Louisiana's coastal wetland forests

    Treesearch

    Jim L. Chambers; Richard F. Keim; William H. Conner; John W. Jr. Day; Stephen P. Faulkner; Emile S. Gardiner; Melinda s. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer

    2006-01-01

    Large-scale efforts to protect and restore coastal wetlands and the concurrent renewal of forest harvesting in cypress-tupelo swamps have brought new attention to Louisiana's coastal wetland forests in recent years. Our understanding of these coastal wetland forests has been limited by inadequate data and the lack of a comprehensive review of existing information...

  13. A Review of Indicators of Estuarine Tidal Wetland Condition

    EPA Science Inventory

    This review critically evaluates indicators of tidal wetland condition based on 36 indicator development studies and indicators developed as part of U.S. state tidal wetland monitoring programs. Individual metrics were evaluated based on relative scores on two sets of evaluation ...

  14. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    PubMed

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  15. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  16. Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands.

    PubMed

    Forbes, Margaret G; Dickson, Kenneth R; Golden, Teresa D; Hudak, Paul; Doyle, Robert D

    2004-02-01

    Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.

  17. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  18. Reconstruction of a constructed wetland with horizontal subsurface flow after 18 years of operation.

    PubMed

    Hudcová, Tereza; Vymazal, Jan; Dunajský, Michal Kriška

    2013-01-01

    The constructed wetland (CW) for 326 PE with horizontal subsurface flow at Kotenčice, Central Bohemia, Czech Republic, was built in 1994. Despite the relatively high efficiency of the CW, the filtration beds suffered from clogging, and therefore it was decided in 2011 to rebuild the whole system. The new treatment system was built as an experimental system consisting of four different combinations of horizontal and vertical beds. The major aim of the design was to determine the best hybrid combination which then could be used in the future for refurbishment of older horizontal flow CWs or for the new systems. The mechanical pretreatment consists of mechanical bar screens, a new Imhoff tank, and the original settling tank which has been converted into the accumulation tank from where the wastewater is pumped into the wetlands. The filters are planted with Phragmites australis, Phalaris arundinacea, Iris pseudacorus, Iris sibirica, Glyceria maxima and Lythrum salicaria in order to evaluate and compare various plant species' effect on the treatment process. The new technology includes a tertiary treatment which consists of a greenhouse with a photo-reactor for the cultivation of algae and hydroponic systems (residual nutrients removal), sludge reed-beds and a composting field.

  19. National Wetlands Mitigation Action Plan

    EPA Pesticide Factsheets

    On December 26, 2002, EPA and the Corps of Engineers announced the release of a comprehensive, interagency National Wetlands Mitigation Action Plan to further achievement of the goal of no net loss of wetlands.

  20. Stream Dissolved Organic Matter Quantity and Quality Along a Wetland-Cropland Catchment Gradient

    NASA Astrophysics Data System (ADS)

    McDonough, O.; Hosen, J. D.; Lang, M. W.; Oesterling, R.; Palmer, M.

    2012-12-01

    Wetlands may be critical sources of dissolved organic matter (DOM) to stream networks. Yet, more than half of wetlands in the continental United States have been lost since European settlement, with the majority of loss attributed to agriculture. The degree to which agricultural loss of wetlands impacts stream DOM is largely unknown and may have important ecological implications. Using twenty headwater catchments on the Delmarva Peninsula (Maryland, USA), we investigated the seasonal influence of wetland and cropland coverage on downstream DOM quantity and quality. In addition to quantifying bulk downstream dissolved organic carbon (DOC) concentration, we used a suite of DOM UV-absorbance metrics and parallel factor analysis (PARAFAC) modeling of excitation-emission fluorescence spectra (EEMs) to characterize DOM composition. Percent bioavailable DOC (%BDOC) was measured during the Spring sampling using a 28-day incubation. Percent wetland coverage and % cropland within the watersheds were significantly negatively correlated (r = -0.93, p < 0.001). Results show that % wetland coverage was positively correlated with stream DOM concentration, molecular weight, aromaticity, humic-like fluorescence, and allochthonous origin. Conversely, increased wetland coverage was negatively correlated with stream DOM protein-like fluorescence. Percent BDOC decreased with DOM humic-like fluorescence and increased with protein-like fluorescence. We observed minimal seasonal interaction between % wetland coverage and DOM concentration and composition across Spring, Fall, and Winter sampling seasons. However, principal component analysis suggested more pronounced seasonal differences exist in stream DOM. This study highlights the influence of wetlands on downstream DOM in agriculturally impacted landscapes where loss of wetlands to cultivation may significantly alter stream DOM quantity and quality.

  1. AmeriFlux US-Myb Mayberry Wetland

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Myb Mayberry Wetland. Site Description - The Mayberry Wetland site is a 300-acre restored wetland on Sherman Island, north of Mayberry Slough, that is on the property of Mayberry Farms and managed by the California Department of Water Resources and Ducks Unlimited. During Summer 2010, the site was restored from a pepperweed and annual grassland pasture to a wetland through a project managed by Bryan Brock (bpbrock@water.ca.gov). A flux tower equipped to analyze energy, H2O, CO2, and CH4 fluxes was installed on October 14, 2010. At the time of installation, flooding of the site had only recently begun after extensive reconstruction of the wetland bathymetry conducted during the summer. Although some small patches of tules remain within the site, the site is a patchwork of deep and shallow open water with some remaining vegetation. Currently, there is an intention to flood-to-kill the current pepperweed and upland grasses and let the wetland plants propagate naturally, so no additional plant manipulation will occur.

  2. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For themore » first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native

  3. Sediment retention in a bottomland hardwood wetland in Eastern Arkansas

    USGS Publications Warehouse

    Kleiss, B.A.

    1996-01-01

    One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.

  4. Rural domestic wastewater treatment in Norway and Poland: experiences, cooperation and concepts on the improvement of constructed wetland technology.

    PubMed

    Paruch, A M; Mæhlum, T; Obarska-Pempkowiak, H; Gajewska, M; Wojciechowska, E; Ostojski, A

    2011-01-01

    This article describes Norwegian and Polish experiences concerning domestic wastewater treatment obtained during nearly 20 years of operation for constructed wetland (CW) systems in rural areas and scattered settlements. The Norwegian CW systems revealed a high performance with respect to the removal of organic matter, biogenic elements and faecal indicator bacteria. The performance of the Polish CW systems was unstable, and varied between unsatisfied and satisfied treatment efficiency provided by horizontal and vertical flow CWs, respectively. Therefore, three different concepts related to the improvement of CW technology have been developed and implemented in Poland. These concepts combined some innovative solutions originally designed in Norway (e.g. an additional treatment step in biofilters) with Polish inspiration for new CWs treating rural domestic wastewater. The implementation of full-scale systems will be evaluated with regard to treatment efficiency and innovative technology; based on this, a further selection of the most favourable CW for rural areas and scattered settlements will be performed.

  5. Evaluation of a wetland classification system devised for ...

    EPA Pesticide Factsheets

    The manuscript is part of an FY14 RAP product: "Functional Assessment of Alaska Peatlands in Cook Inlet Basin: A report to Region 10". This report included this technical information product which is a manuscript that has now been fully revised, reviewed and published in a scientific peer-reviewed publication with open access (doi:10.1007/s11273-016-9504-0). The journal article scientific abstract is as follows: "Several wetland classification schemes are now commonly used to describe wetlands in the contiguous United States to meet local, regional, and national regulatory requirements. However, these established systems have proven to be insufficient to meet the needs of land managers in Alaska. The wetlands of this northern region are predominantly peatlands, which are not adequately treated by the nationally-used systems, which have few, if any, peatland classes. A new system was therefore devised to classify wetlands in the rapidly urbanizing Cook Inlet Basin of southcentral Alaska, USA. The Cook Inlet Classification (CIC) is based on seven geomorphic and six hydrologic components that incorporate the environmental gradients responsible for the primary sources of variation in peatland ecosystems. The geomorphic and hydrologic components have the added advantage of being detectable on remote sensing imagery, which facilitates regional mapping across large tracts of inaccessible terrain. Three different quantitative measures were used to evaluate the robu

  6. Application of a geomorphic and temporal perspective to wetland management in North America

    USGS Publications Warehouse

    Smith, L.M.; Euliss, N.H.; Wilcox, D.A.; Brinson, M.M.

    2008-01-01

    The failure of managed wetlands to provide a broad suite of ecosystem services (e.g., carbon storage, wildlife habitat, ground-water recharge, storm-water retention) valuable to society is primarily the result of a lack of consideration of ecosystem processes that maintain productive wetland ecosystems or physical and social forces that restrict a manager's ability to apply actions that allow those processes to occur. Therefore, we outline a course of action that considers restoration of ecosystem processes in those systems where off-site land use or physical alterations restrict local management. Upon considering a wetland system, or examining a particular management regime, there are several factors that will allow successful restoration of wetland services. An initial step is examination of the political/social factors that have structured the current ecological condition and whether those realities can be addressed. Most successful restorations of wetland ecosystem services involve cooperation among multiple agencies, acquisition of funds from non-traditional sources, seeking of scientific advice on ecosystem processes, and cultivation of good working relationships among biologists, managers, and maintenance staff. Beyond that, in on-site wetland situations, management should examine the existing hydrogeomorphic situation and processes (e.g., climatic variation, tides, riverine flood-pulse events) responsible for maintenance of ecosystem services within a given temporal framework appropriate for that wetland's hydrologic pattern. We discuss these processes for five major wetland types (depressional, lacustrine, estuarine, riverine, and man-made impoundments) and then provide two case histories in which this approach was applied: Seney National Wildlife Refuge with a restored fen system and Bosque del Apache National Wildlife Refuge where riverine processes have been simulated to restore native habitat. With adequate partnerships and administrative and political

  7. Factors affecting biological recovery of wetland restorations

    DOT National Transportation Integrated Search

    1999-06-01

    This report describes a long-term study to monitor and evaluate the ecosystem recovery of seven wetland restorations in south central Minnesota. The study looks at the impact of planting on wetland restoration success in inland wetlands and develops ...

  8. Using Bayesian Belief Networks to Explore the Effects of Nitrogen Inputs on Wetland Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Spence, P. L.; Jordan, S. J.

    2011-12-01

    Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and waste treatment) and supporting (i.e. nutrient cycling) ecosystem services. Wetlands generally respond both by sequestering Nr (i.e. soil accumulation and biomass assimilation) and converting Nr into inert gaseous forms via biogeochemical processes. It is important for wetlands to be efficient in removing excessive Nr inputs from polluted waters to reduce eutrophication in downstream receiving water bodies while producing negligible amounts of nitrous oxide (N2O), a potent greenhouse gas, which results from incomplete denitrification. Wetlands receiving excessive Nr lose their ability to provide a constant balance between regulating water quality and mitigating climate change. The purpose of this study is to explore the effects of Nr inputs on ecosystem services provided by wetlands using a Bayesian Belief Network (BBN). The network was developed from established relationships between a variety of wetland function indicators and biogeochemical process associated with Nr removal. Empirical data for 34 freshwater wetlands were gathered from a comprehensive review of published peer-reviewed and gray literature. The BBN was trained using 30 wetlands (88% of the freshwater wetland case file) and tested using 4 wetlands (12% of the freshwater wetland case file). Sensitivity analysis suggested that Nr removal, water quality, soil Nr accumulation and N2O emissions had the greatest influence on ecosystem service tradeoffs. The magnitude of Nr inputs did not affect ecosystem services. The network implies that Nr removal efficiency has a greater influence on final ecosystem services associated with water quality impairment and atmospheric pollution. A very low error rate, which was based on 4 wetland

  9. Measured and Calculated Volumes of Wetland Depressions

    EPA Pesticide Factsheets

    Measured and calculated volumes of wetland depressionsThis dataset is associated with the following publication:Wu, Q., and C. Lane. Delineation and quantification of wetland depressions in the Prairie Pothole Region of North Dakota. WETLANDS. The Society of Wetland Scientists, McLean, VA, USA, 36(2): 215-227, (2016).

  10. Hydrodynamic modelling of a tidal delta wetland using an enhanced quasi-2D model

    NASA Astrophysics Data System (ADS)

    Wester, Sjoerd J.; Grimson, Rafael; Minotti, Priscilla G.; Booija, Martijn J.; Brugnach, Marcela

    2018-04-01

    Knowledge about the hydrological regime of wetlands is key to understand their physical and biological properties. Modelling hydrological and hydrodynamic processes within a wetland is therefore becoming increasingly important. 3D models have successfully modelled wetland dynamics but depend on very detailed bathymetry and land topography. Many 1D and 2D models of river deltas highly simplify the interaction between the river and wetland area or simply neglect the wetland area. This study proposes an enhanced quasi-2D modelling strategy that captures the interaction between river discharge and moon tides and the resulting hydrodynamics, while using the scarce data available. The water flow equations are discretised with an interconnected irregular cell scheme, in which a simplification of the 1D Saint-Venant equations is used to define the water flow between cells. The spatial structure of wetlands is based on the ecogeomorphology in complex estuarine deltas. The islands within the delta are modelled with levee cells, creek cells and an interior cell representing a shallow marsh wetland. The model is calibrated for an average year and the model performance is evaluated for another average year and additionally an extreme dry three-month period and an extreme wet three-month period. The calibration and evaluation are done based on two water level measurement stations and two discharge measurement stations, all located in the main rivers. Additional calibration is carried out with field water level measurements in a wetland area. Accurate simulations are obtained for both calibration and evaluation with high correlations between observed and simulated water levels and simulated discharges in the same order of magnitude as observed discharges. Calibration against field measurements showed that the model can successfully simulate the overflow mechanism in wetland areas. A sensitivity analysis for several wetland parameters showed that these parameters are all

  11. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    NASA Astrophysics Data System (ADS)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the

  12. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment.

    PubMed

    Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang

    2016-02-01

    Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.

  13. Effects of energy development on wetland plants and macroinvertebrate communities in Prairie Pothole Region wetlands

    USGS Publications Warehouse

    Preston, Todd M.; Ray, Andrew M.

    2016-01-01

    Energy production in the Williston Basin, USA, results in the coproduction of highly saline, sodium chloride-dominated water (brine). The Prairie Pothole Region (PPR) overlies the northeastern portion of the Williston Basin. Although PPR wetlands span a range of salinity, the dominant salt is sodium sulfate, and salinities are much lower than brine. Introduction of brine to wetlands can result in pronounced water-quality changes; however, the ecological effects of such contamination are poorly understood. We examined the effects of brine contamination on primary productivity, emergent macrophyte tissue chemistry, and invertebrate communities from 10 wetlands in the PPR. Based on a recognized Contamination Index (CI) used to identify brine contamination in the PPR, water-quality samples indicated that six wetlands were uncontaminated while four were contaminated. Across this gradient, we observed a significant decrease in above-ground biomass and a significant increase in tissue chloride concentrations of hardstem bulrush (Schoenoplectus acutus) with increased CI values. Additionally, a significant decrease in macroinvertebrate taxonomic richness with increased CI values was observed. These findings provide needed insight on the biological effects of brine contamination on PPR wetlands.

  14. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.

    PubMed

    Turetsky, Merritt R; Kotowska, Agnieszka; Bubier, Jill; Dise, Nancy B; Crill, Patrick; Hornibrook, Ed R C; Minkkinen, Kari; Moore, Tim R; Myers-Smith, Isla H; Nykänen, Hannu; Olefeldt, David; Rinne, Janne; Saarnio, Sanna; Shurpali, Narasinha; Tuittila, Eeva-Stiina; Waddington, J Michael; White, Jeffrey R; Wickland, Kimberly P; Wilmking, Martin

    2014-07-01

    Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release. © 2014 John Wiley & Sons Ltd.

  15. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands

    USGS Publications Warehouse

    Turetsky, Merritt R.; Kotowska, Agnieszka; Bubier, Jill; Dise, Nancy B.; Crill, Patrick; Hornibrook, Ed R.C.; Minkkinen, Kari; Moore, Tim R.; Myers-Smith, Isla H.; Nykanen, Hannu; Olefeldt, David; Rinne, Janne; Saarnio, Sanna; Shurpali, Narasinha; Tuittila, Eeva-Stiina; Waddington, J. Michael; White, Jeffrey R.; Wickland, Kimberly P.; Wilmking, Martin

    2014-01-01

    Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.

  16. Incorporating H2 Dynamics and Inhibition into a Microbially Based Methanogenesis Model for Restored Wetland Sediments

    NASA Astrophysics Data System (ADS)

    Pal, David; Jaffe, Peter

    2015-04-01

    50% of total CH4 production predictions depending on the inclusion of H2 interactions and other loading parameters. This discrepancy can have a meaningful impact on the estimates of total global CH4 emissions from wetlands, or even change the predicted carbon balance of specific wetlands. Overall, this model indicates the importance of H2 interactions in methanogenesis modeling, and may impact how we manage/design and construct wetlands for treatment or carbon sequestration.

  17. Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata.

    PubMed

    Olguín, Eugenia J; Sánchez-Galván, Gloria; González-Portela, Ricardo E; López-Vela, Melissa

    2008-08-01

    Sugarcane molasses stillage contains a very high concentration of organic matter and toxic/recalcitrant compounds. Its improper disposal has become a global problem and there is very scanty information about its treatment using phytotechnologies. This work aimed at evaluating the performance of subsurface flow constructed wetlands (SSF CWs) mesocosms planted with Pontederia sagittata and operating at two hydraulic retention times (HRTs), compared to an unplanted SSF CWs, for the treatment of diluted stillage subjected to no pre-treatment apart from an adjustment to pH 6.0. CWs were fed with very high surface COD loading rates (i.e. 47.26 and 94.83gCOD/m(2)d). The planted CWs were able to remove COD in the range of 80.24-80.62%, BOD(5) in the range of 82.20-87.31%, TKN in the range of 73.42-76.07%, nitrates from 56-58.74% and sulfates from 68.58-69.45%, depending on the HRT. Phosphate and potassium were not removed. It was concluded that this type of CWs is a feasible option for the treatment of diluted stillage.

  18. Changes in Landscape Pattern of Wetland around Hangzhou Bay

    NASA Astrophysics Data System (ADS)

    Lin, Wenpeng; Li, Yuan; Xu, Dan; Zeng, Ying

    2018-04-01

    Hangzhou Bay is an important estuarial coastal wetland, which offers a large number of land and ecological resources. It plays a significant role in the sustainable development of resources, environment and economy. In this paper, based on the remote sensing images in 1996, 2005 and 2013, we extracted the coastal wetland data and analyzed the wetland landscape pattern of the Hangzhou Bay in the past 20 years. The results show that: (1) the area of coastal wetland is heading downwards in the recent decades. Paddy field and the coastal wetland diminish greatly. (2) the single dynamic degree of wetland of the Hangzhou Bay displays that paddy fields and coastal wetlands are shrinking, but lakes, reservoirs and ponds are constantly expanding. (3) the wetland landscape pattern index shows that total patch area of the coastal wetland and paddy fields have gradually diminished. The Shannon diversity index, the Shannon evenness index as well as the landscape separation index of the coastal wetlands in the Hangzhou Bay increase steadily. The landscape pattern in the study area has shown a trend of high fragmentation, dominance decreases, but some dominant landscape still exist in this region. (4) Urbanization and natural factors lead to the reduction of wetland area. Besides the pressure of population is a major threat to the wetland. The study will provide scientific basis for long-term planning for this region.

  19. Characterization and Placement of Wetlands for Integrated ...

    EPA Pesticide Factsheets

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strategic location of wetlands within agricultural watersheds to maximize the reduction in nutrient loads while minimizing their impact on crop production. Furthermore, agricultural watersheds involve complex interrelated processes requiring a systems approach to evaluate the inherent relationships between wetlands and multiple sediment/nutrient sources (sheet, rill, ephemeral gully, channels) and other conservation practices (filter strips). This study describes new capabilities of the USDA’s Annualized Agricultural Non-Point Source pollutant loading model, AnnAGNPS. A developed AnnAGNPS GIS-based wetland component, AgWet, is introduced to identify potential sites and characterize individual artificial or natural wetlands at a watershed scale. AgWet provides a simplified, semi-automated, and spatially distributed approach to quantitatively evaluate wetlands as potential conservation management alternatives. AgWet is integrated with other AnnAGNPS components providing seamless capabilities of estimating the potential sediment/nutrient reduction of individual wetlands. This technology provides conservationists the capability for improved management of watershed systems and support for nutrient

  20. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass.

    PubMed

    Cohen, Michael F; Hare, Caden; Kozlowski, John; McCormick, Rachel S; Chen, Lily; Schneider, Linden; Parish, Meghan; Knight, Zane; Nelson, Timothy A; Grewell, Brenda J

    2013-01-01

    Constructed wetlands (CW) offer a mechanism to meet increasingly stringent regulatory standards for wastewater treatment while minimizing energy inputs. Additionally, harvested wetland phytomass subjected to anaerobic digestion can serve as a source of biogas methane. To investigate CW wastewater polishing activities and potential energy yield we constructed a pair of secondary wastewater-fed channelized CW modules designed to retain easily harvestable floating aquatic vegetation and maximize exposure of water to roots and sediment. Modules that were regularly harvested averaged a nitrate removal rate of 1.1 g N m(-2) d(-1); harvesting, sedimentation and gasification were responsible for 30.5%, 8.0% and 61.5% of the N losses, respectively. Selective harvesting of a module to maintain dominance of filamentous algae had no effect on nitrate removal rate but lowered productivity by one-half. The average monthly productivity for unselectively harvested modules was 9.3 ± 1.7 g dry wt. m(-2) d(-1) (±SE). Cessation of harvesting in one module resulted in a significant increase in nitrate removal rate and decrease in phosphate removal rate. Compared to the influent, the effluent of the harvested module had significantly lower levels of estrogenic activity, as determined by a quantitative PCR-based juvenile trout bioassay, and significantly lower densities of E. coli. In mixed vertical-flow reactors anaerobic co-digestion of equal dry weight proportions of harvested aquatic vegetation, wine yeast lees and dairy manure was greatly improved when the manure was replaced with the crude glycerol by-product of biodiesel production. Remaining solids were vermicomposted for use as a soil amendment. Our results indicate that incorporation of constructed wetlands into an integrated treatment system can simultaneously enhance the economic and energetic feasibility of wastewater and organic waste treatment processes.