Science.gov

Sample records for a-binding protein acbp

  1. Evolution of the acyl-CoA binding protein (ACBP)

    PubMed Central

    Burton, Mark; Rose, Timothy M.; Færgeman, Nils J.; Knudsen, Jens

    2005-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12–C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for β-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling. PMID:16018771

  2. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Chen, Qin-Fang; Sooriyaarachchi, Sanjeewani; Mowbray, Sherry L.; Napier, Johnathan A.; Tanner, Julian A.; Chye, Mee-Len

    2014-01-01

    Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. PMID:25423293

  3. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted. PMID:27023243

  4. Arabidopsis ACBP6 is an acyl-CoA-binding protein associated with phospholipid metabolism

    PubMed Central

    Chen, Qin-Fang; Xiao, Shi

    2008-01-01

    In our recent paper in Plant Physiology, we showed that the Arabidopsis thaliana 10-kD acyl-CoA-binding protein, ACBP6, is subcellularly localized to the cytosol and that the overexpression of ACBP6 in transgenic Arabidopsis enhanced freezing tolerance. ACBP6-conferred freezing tolerance was independent of induced cold-regulated (COLD-RESPONSIVE) gene expression, but was correlated to an enhanced expression of phospholipase Dδ (PLDδ). Lipid analyses on cold-acclimated freezing-treated ACBP6-overexpressors revealed a decline in phosphatidylcholine (PC) and an elevation of phosphatidic acid (PA) in comparison to wild type. Furthermore, the His-tagged ACBP6 recombinant protein was observed using in vitro filter-binding assays to bind PC, but not PA or lysophosphatidylcholine. Taken together, our results implicate roles for ACBP6 in phospholipid metabolism that is related to gene regulation and PC-binding/transfer. This represents the first report demonstrating the in vitro binding of an ACBP to a phospholipid. The effect of ACBP6 on PLDδ expression is reminiscent of yeast 10-kD ACBP function in the regulation of genes associated with stress responses, fatty acid synthesis and phospholipid synthesis. However, the yeast ACBP regulates the expression of genes involved in phospholipid synthesis by donation of acyl-CoA esters and its binding to phospholipids remains to be demonstrated. PMID:19704440

  5. Structure of armadillo ACBP: a new member of the acyl-CoA-binding protein family

    SciTech Connect

    Costabel, Marcelo D.; Ermácora, Mario R.; Santomé, José A.; Alzari, Pedro M.; Guérin, Diego M. A.

    2006-10-01

    The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long-chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened α-helical bundle (up–down–down–up) motif reported for animal, yeast and insect ACBPs. Conformational differences are located in loops and turns, although these structural differences do not suffice to account for features that could be related to the unusual biochemistry and lipid metabolism of the Harderian gland.

  6. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  7. Functional characterization of a fatty acyl-CoA binding protein (ACBP) from the apicomplexan Cryptosporidium parvum

    PubMed Central

    Zeng, Bin; Cai, Xiaomin; Zhu, Guan

    2006-01-01

    SUMMARY We have identified and conducted functional analysis of a fatty acyl-CoA binding protein (ACBP) gene from the opportunistic protist Cryptosporidium parvum. The CpACBP1 gene encodes a protein of 268 aa that is 3X larger than the typical ACBP proteins (i.e., ∼90 aa) of humans and animals. Sequence analysis indicated that CpACBP1 consists of an N-terminal ACBP domain (∼90 aa) and a C-terminal ankrin repeat sequence (∼170 aa). The entire CpACBP1 ORF was engineered into a maltose-binding protein fusion system and expressed as a recombinant protein for functional analysis. Acyl CoA-binding assays clearly revealed that the preferred binding substrate for CpACBP1 was palmitoyl-CoA. RT-PCR, Western blotting and immuno-labeling analyses clearly showed that the CpACBP1 gene was mainly expressed in the intracellular developmental stages and the level increases during the parasite development. Immunofluorescence microscopy shows that CpACBP1 is associated with the parasitophorous vacuole membrane (PVM), which implies that this protein may be involved in the lipid remodeling in the PVM or the transport of fatty acids across the membrane. PMID:16849800

  8. Transgenic Arabidopsis flowers overexpressing acyl-CoA-binding protein ACBP6 are freezing tolerant.

    PubMed

    Liao, Pan; Chen, Qin-Fang; Chye, Mee-Len

    2014-06-01

    Low temperature stress adversely affects plant growth. It has been shown that the overexpression of ACYL-COENZYME A-BINDING PROTEIN6 (ACBP6) resulted in enhanced freezing tolerance in seedlings and rosettes accompanied by a decrease in phosphatidylcholine (PC), an increase in phosphatidic acid (PA) and an up-regulation of PHOSPHOLIPASE Dδ(PLDδ) in the absence of COLD-RESPONSIVE (COR)-related gene induction. Unlike rosettes, ACBP6-overexpressor (OE) flowers showed elevations in PC and monogalactosyldiacylglycerol (MGDG) accompanied by a decline in PA. The increase in PC species corresponded to a decline in specific PAs. To better understand such differences, the expression of PC-, MGDG-, proline-, ABA- and COR-related genes, and their transcription factors [C-repeat binding factors (CBFs), INDUCER OF CBF EXPRESSION1 (ICE1) and MYB15] was analyzed by quantitative real-time PCR (qRT-PCR). ACBP6-conferred freezing-tolerant flowers showed induction of COR-related genes, CBF genes and ICE1, PC-related genes (PLDδ, CK, CK-LIKE1, CK-LIKE2, CCT1, CCT2, LPCAT1, PLA2α, PAT-PLA-IIβ, PAT-PLA-IIIα, PAT-PLA-IIIδ and PLDζ2), MGDG-related genes (MGD genes and SFR2) and ABA-responsive genes. In contrast, ACBP6-conferred freezing-tolerant rosettes were down-regulated in COR-related genes, CBF1, PC-related genes (PEAMT1, PEAMT2, PEAMT3, CK1, CCT1, CCT2, PLA2α, PAT-PLA-IIIδ and PLDζ2), MGDG-related genes (MGD2, MGD3 and SFR2) and some ABA-responsive genes including KIN1 and KIN2. These results suggest that the mechanism in ACBP6-conferred freezing tolerance varies in different organs. PMID:24556610

  9. Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP)

    PubMed Central

    Fritzler, Jason M.; Zhu, Guan

    2012-01-01

    Background Cryptosporidium parvum causes an opportunistic infection in AIDS patients, and no effective treatments are yet available. This parasite possesses a single fatty acyl-CoA binding protein (CpACBP1) that is localized to the unique parasitophorous vacuole membrane (PVM). The major goal of this study was to identify inhibitors from known drugs against CpACBP1 as potential new anti-Cryptosporidium agents. Methods A fluorescence assay was developed to detect CpACBP1 activity and to identify inhibitors by screening known drugs. Efficacies of top CpACBP1 inhibitors against Cryptosporidium growth in vitro were evaluated using a quantitative RT–PCR assay. Results Nitrobenzoxadiazole-labelled palmitoyl-CoA significantly increased the fluorescent emission upon binding to CpACBP1 (excitation/emission 460/538 nm), which was quantified to determine the CpACBP1 activity and binding kinetics. The fluorescence assay was used to screen a collection of 1040 compounds containing mostly known drugs, and identified the 28 most active compounds that could inhibit CpACBP1 activity with sub-micromolar IC50 values. Among them, four compounds displayed efficacies against parasite growth in vitro with low micromolar IC50 values. The effective compounds were broxyquinoline (IC50 64.9 μM), cloxyquin (IC50 25.1 μM), cloxacillin sodium (IC50 36.2 μM) and sodium dehydrocholate (IC50 53.2 μM). Conclusions The fluorescence ACBP assay can be effectively used to screen known drugs or other compound libraries. Novel anti-Cryptosporidium activity was observed in four top CpACBP1 inhibitors, which may be further investigated for their potential to be repurposed to treat cryptosporidiosis and to serve as leads for drug development. PMID:22167242

  10. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation

    PubMed Central

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A.; Suh, Mi Chung; Chye, Mee-Len

    2014-01-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)–flame ionization detector (FID) and GC–mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs. PMID:25053648

  11. The Arabidopsis cytosolic Acyl-CoA-binding proteins play combinatory roles in pollen development.

    PubMed

    Hsiao, An-Shan; Yeung, Edward C; Ye, Zi-Wei; Chye, Mee-Len

    2015-02-01

    In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing β-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development. PMID:25395473

  12. Plant Cytosolic Acyl-CoA-Binding Proteins.

    PubMed

    Ye, Zi-Wei; Chye, Mee-Len

    2016-01-01

    A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters. PMID:26662549

  13. Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acyl-CoA binding proteins (ACBPs) have been identified in most branches of life. A single prototypical ACBP was first discovered in yeast, and was found to play a signficant role in lipid metabolism, among other functions. Plants also contain the prototype small, soluble ACBP, but have also evolve...

  14. The acyl-CoA binding protein is required for normal epidermal barrier function in mice.

    PubMed

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt; Neess, Ditte; Brewer, Jonathan; Hannibal-Bach, Hans Kristian; Helledie, Torben; Fenger, Christina; Due, Marianne; Berzina, Zane; Neubert, Reinhard; Chemnitz, John; Finsen, Bente; Clemmensen, Anders; Wilbertz, Johannes; Saxtorph, Henrik; Knudsen, Jens; Bagatolli, Luis; Mandrup, Susanne

    2012-10-01

    The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP(+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC-FFAs via complex phospholipids in the lamellar bodies. Importantly, we show that ACBP(-/-) mice display a ∼50% increased transepidermal water loss compared with ACBP(+/+) mice. Furthermore, skin and fur sebum monoalkyl diacylglycerol (MADAG) levels are significantly increased, suggesting that ACBP limits MADAG synthesis in sebaceous glands. In summary, our study shows that ACBP is required for production of VLC-FFA for stratum corneum and for maintaining normal epidermal barrier function. PMID:22829653

  15. The effects of down-regulating expression of Arabidopsis thaliana membrane-associated acyl-CoA binding protein 2 on acyl-lipid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple classes of acyl-CoA binding proteins are encoded by plant genomes, including a plant-unique class of predicted integral membrane-proteins. Transcript analysis revealed that both of the integral membrane-acyl-CoA binding proteins of Arabidopsis thaliana, ACBP1 and ACBP2, are expressed in al...

  16. Purification and characterization of variants of acyl-CoA-binding protein in the bovine liver.

    PubMed Central

    Jensen, M S; Højrup, P; Rasmussen, J T; Knudsen, J

    1992-01-01

    Four differently modified forms of acyl-CoA-binding protein (ACBP) were identified in ACBP purified from bovine liver. The majority of the purified ACBP was focused at pH 5.9 in isoelectric focusing and could be shown to be N-acetylated ACBP without any further modifications. Two minor peaks were focused at pH 5.25 and 4.85 respectively. Mass spectrometry and sequence determination showed that the pI 5.25 form was acetylated at Lys18 and that the pI 4.85 form was malonylated in the same position. Furthermore, it could be shown that non-enzymic glycosylation occurred during purification. The acetylated and malonylated variants of ACBP were only found in adult cattle. Images Fig. 5. PMID:1622397

  17. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes

    PubMed Central

    Xia, Ye; Yu, Keshun; Gao, Qing-ming; Wilson, Ella V.; Navarre, Duroy; Kachroo, Pradeep; Kachroo, Aardra

    2012-01-01

    Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipid levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR) due to the plants inability to generate SAR inducing signal(s). Together, these data show that ACBP3, ACBP4, and ACBP6 are required for cuticle development as well as defense against microbial pathogens. PMID:23060893

  18. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice.

    PubMed

    Budry, Lionel; Bouyakdan, Khalil; Tobin, Stephanie; Rodaros, Demetra; Marcher, Ann-Britt; Mandrup, Susanne; Fulton, Stephanie; Alquier, Thierry

    2016-10-15

    Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration of ACBP or its cleaved fragment, commonly referred to as endozepines, induces proconflict and anxiety-like behaviour in rodents. For this reason, ACBP is known as an anxiogenic peptide. However, the role of endogenous ACBP in anxiety-like behaviour and anxiolytic responses to diazepam has not been investigated. To address this question, we assessed anxiety behaviour and anxiolytic responses to diazepam in two complementary loss-of-function mouse models including astrocyte-specific ACBP KO (ACBP(GFAP) KO) and whole-body KO (ACBP KO) mice. Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam. PMID:27363924

  19. A putative acyl-CoA-binding protein is a major phloem sap protein in rice (Oryza sativa L.).

    PubMed

    Suzui, Nobuo; Nakamura, Shin-ichi; Fujiwara, Toru; Hayashi, Hiroaki; Yoneyama, Tadakatsu

    2006-01-01

    The N-terminal amino-acid sequence of a major rice phloem-sap protein, named RPP10, was determined. RPP10 is encoded by a single gene in the rice genome. Its complete amino-acid sequence, predicted from the corresponding rice full-length cDNA, showed high similarity to plant acyl-CoA-binding proteins (ACBPs). Western blot analysis using anti-ACBP antiserum revealed that putative ACBP is abundant in the phloem sap of rice plants, and is also present in sieve-tube exudates of winter squash (Cucurbita maxima), oilseed rape (Brassica napus), and coconut palm (Cocos nucifera). These findings give rise to the idea that ACBP may involve lipid metabolism and regulation in the phloem. PMID:16804052

  20. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26747650

  1. Deciphering the roles of acyl-CoA-binding proteins in plant cells.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed. PMID:26340904

  2. Molecular cloning and chromosomal localization of a pseudogene related to the human Acyl-CoA binding protein/diazepam binding inhibitor

    SciTech Connect

    Gersuk, V.H.; Rose, T.M.; Todaro, G.J.

    1995-01-20

    The acyl-CoA binding protein (ACBP) and the diazepam binding inhibitor (DBI) or endozepine are independent isolates of a single 86-amino-acid, 10-kDa protein. ACBP/DBI is highly conserved between species and has been identified in several diverse organisms, including human, cow, rat, frog, duck, insects, plants, and yeast. Although the genomic locus has not yet been cloned in humans, complementary DNA clones with different 5{prime} ends have been isolated and characterized. These cDNA clones appear to be encoded by a single gene. However, Southern blot analyses, in situ hybridizations, and somatic cell hybrid chromosomal mapping all suggest that there are multiple ACBP/DBI-related sequences in the genome. To identify potential members of this gene family, degenerate oligonucleotides corresponding to highly conserved regions of ACBP/DBI were used to screen a human genomic DNA library using the polymerase chain reaction. A novel gene, DBIP1, that is closely related to ACBP/DBI but is clearly distinct was identified. DBIP1 bears extensive sequence homology to ACBP/DBI but lacks the introns predicted by rat and duck genomic sequence studies. A 1-base deletion in the coding region results in a frameshift and, along with the absence of introns and the lack of a detectable transcript, suggests that DBIP1 is a pseudogene. ACBP/DBI has previously been mapped to chromosome 2, although this was recently disputed, and a chromosome 6 location was suggested. We show that ACBP/DBI is correctly placed on chromosome 2 and that the gene identified on chromosome 6 is DBIP1. 33 refs., 3 figs., 1 tab.

  3. Isolation and characterization of a humoral factor that stimulates transcription of the acyl-CoA-binding protein in the pheromone gland of the silkmoth, Bombyx mori.

    PubMed

    Ohnishi, Atsushi; Koshino, Hiroyuki; Takahashi, Shunya; Esumi, Yasuaki; Matsumoto, Shogo

    2005-02-11

    Acyl-CoA binding protein (ACBP) is a highly conserved 10-kDa intracellular lipid-binding protein that binds straight-chain (C14-C22) acyl-CoA esters with high affinity and is expressed in a wide variety of species ranging from yeast to mammals. Functionally, ACBP can act as an acyl-CoA carrier or as an acyl-CoA pool maker within the cell. Much work on the biochemical properties regarding the ACBP has been performed using various vertebrate and plant tissues, as well as different types of cells in culture, the regulatory mechanisms underlying ACBP gene expression have remained poorly understood. By exploiting the unique sex pheromone production system in the moth pheromone gland (PG), we report that transcription of a specific ACBP termed pheromone gland ACBP is triggered by a hemolymph-based humoral factor. Following purification and structure elucidation by means of high resolution electrospray ionization mass spectrometry and NMR analyses, in conjunction with stereochemical analyses using acid hydrolysates, the humoral factor was identified to be beta-D-glucosyl-O-L-tyrosine. Examination of the hemolymph titers during development revealed that the amount of beta-D-glucosyl-O-L-tyrosine dramatically rose prior to eclosion and reached a maximum of 5 mg/ml (about 1 mg/pupa) on the day preceding eclosion, which was consistent with the effective dose of beta-D-glucosyl-O-L-tyrosine in stimulating pheromone gland ACBP transcription in vivo. Furthermore, in vitro assays using trimmed PG indicated that beta-D-glucosyl-O-L-tyrosine acts directly on the PG. These results provide the first evidence that transcription of some ACBPs can be triggered by specific humoral factors. PMID:15590686

  4. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  5. Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus

    PubMed Central

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul

    2012-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. PMID:22345450

  6. Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro.

    PubMed

    Pasternack, M S; Bleier, K J; McInerney, T N

    1991-08-01

    The physiologic substrates of cytotoxic T lymphocyte granule-associated serine esterases (referred to hereafter as proteases or "granzymes"), and the role of these enzymes in cell-mediated activity remain unclear. We have developed an assay for possible ligands of the trypsin-like dimeric serine protease granzyme A based on Western immunoblotting techniques. This protein-binding assay demonstrates the selective binding of granzyme A to several proteins present in the target cell P815. The binding specificity is preserved when enzyme binding is performed in the presence of excess competing proteins, including such cationic species as lysozyme and RNase. Enzyme binding is inhibited, however, by heat or detergent inactivation of granzyme A. Subcellular fractionation of target cells shows that the nuclear fraction contains most granzyme A binding reactivity, which is recovered in the nuclear salt wash fraction. A protein with Mr = 100,000 and two closely migrating proteins with Mr = 35,000 and 38,000 are the predominant reactive moieties, and the N-terminal sequence of the 100-kDa protein confirmed that this protein was murine nucleolin. Incubation of granzyme A with nucleolin generates a discrete proteolytic cleavage product of Mr = 88,000. Since nucleolin is known to shuttle between nucleus and cytoplasm, the interaction of granzyme A and nucleolin may be important in the process of apoptosis which accompanies cytotoxic T lymphocyte-mediated lysis of target cells. PMID:1860869

  7. Human testis expresses a specific poly(A)-binding protein.

    PubMed

    Féral, C; Guellaën, G; Pawlak, A

    2001-05-01

    In testis mRNA stability and translation initiation are extensively under the control of poly(A)-binding proteins (PABP). Here we have cloned a new human testis-specific PABP (PABP3) of 631 amino acids (70.1 kDa) with 92.5% identical residues to the ubiquitous PABP1. A northern blot of multiple human tissues hybridised with PABP3- and PABP1-specific oligonucleotide probes revealed two PABP3 mRNAs (2.1 and 2.5 kb) detected only in testis, whereas PABP1 mRNA (3.2 kb) was present in all tested tissues. In human adult testis, PABP3 mRNA expression was restricted to round spermatids, whereas PABP1 was expressed in these cells as well as in pachytene spermatocytes. PABP3-specific antibodies identified a protein of 70 kDa in human testis extracts. This protein binds poly(A) with a slightly lower affinity as compared to PABP1. The human PABP3 gene is intronless with a transcription start site 61 nt upstream from the initiation codon. A sequence of 256 bp upstream from the transcription start site drives the promoter activity of PABP3 and its tissue-specific expression. The expression of PABP3 might be a way to bypass PABP1 translational repression and to produce the amount of PABP needed for active mRNA translation in spermatids. PMID:11328870

  8. Lipid A binding proteins in macrophages detected by ligand blotting

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.

    1987-05-01

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.

  9. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  10. Poly(A) binding proteins: are they all created equal?

    PubMed

    Goss, Dixie J; Kleiman, Frida Esther

    2013-01-01

    The PABP family of proteins were originally thought of as a simple shield for the mRNA poly(A) tail. Years of research have shown that PABPs interact not only with the poly(A) tail, but also with specific sequences in the mRNA, having a general and specific role on the metabolism of different mRNAs. The complexity of PABPs function is increased by the interactions of PABPs with factors involved in different cellular functions. PABPs participate in all the metabolic pathways of the mRNA: polyadenylation/deadenylation, mRNA export, mRNA surveillance, translation, mRNA degradation, microRNA-associated regulation, and regulation of expression during development. In this review, we update information on the roles of PABPs and emerging data on the specific interactions of PABP homologs. Specific functions of individual members of PABPC family in development and viral infection are beginning to be elucidated. However, the interactions are complex and recent evidence for exchange of nuclear and cytoplasmic forms of the proteins, as well as post-translational modifications, emphasize the possibilities for fine-tuning the PABP metabolic network. PMID:23424172

  11. WISE 3.4 micron Detection of PTF10acbp

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.; Hoffman, D.; Masci, F.; Conrow, T.; Kasliwal, M. M.; Helou, G.; Ofek, E. O.; Kulkarni, S. R.; Surace, J.

    2011-01-01

    The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010 AJ 140, 1868) scanned the position of PTF10acbp (ATEL #3094), the luminous red nova in the spiral galaxy UGC 11973, 23 times between 2010 June 17 and June 23, and again 30 times between 2010 December 12 and December 16, just five days after the transient's discovery. The June observations were made during the WISE cryogenic survey yielding images at 3.4, 4.6, 12 and 22 microns.

  12. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins.

    PubMed

    Burgess, Hannah M; Gray, Nicola K

    2012-05-01

    Cytoplasmic poly(A)-binding proteins (PABPs) regulate mRNA stability and translation. Although predominantly localized in the cytoplasm, PABP proteins also cycle through the nucleus. Recent work has established that their steady-state localization can be altered by cellular stresses such as ultraviolet (UV) radiation, and infection by several viruses, resulting in nuclear accumulation of PABPs. Here, we present further evidence that their interaction with and release from mRNA and translation complexes are important in determining their sub-cellular distribution and propose an integrated model for regulated nucleo-cytoplasmic transport of PABPs. PMID:22896784

  13. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. PMID:26614673

  14. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule

    PubMed Central

    Fan, Jinjiang; Liu, Jun; Culty, Martine; Papadopoulos, Vassilios

    2010-01-01

    Golgi body-mediated signaling has been linked to its fragmentation and regeneration during the mitotic cycle of the cell. During this process, Golgi-resident proteins are released to the cytosol and interact with other signaling molecules to regulate various cellular processes. Acyl-coenzyme A binding domain containing 3 protein (ACBD3) is a Golgi protein involved in several signaling events. ACBD3 protein was previously known as peripheral-type benzodiazepine receptor and cAMP-dependent protein kinase associated protein 7 (PAP7), Golgi complex-associated protein of 60 kDa (GCP60), Golgi complex-associated protein 1 (GOCAP1), and Golgi phosphoprotein 1 (GOLPH1). In this review, we present the gene ontology of ACBD3, its relations to other Acyl-coenzyme A binding protein (ACBP) domain containing proteins, and its biological function in steroidogenesis, apoptosis, neurogenesis, and embryogenesis. We also discuss the role of ACBD3 in asymmetric cell division and cancer. New findings about ACBD3 may help understand this newly characterized signaling molecule and stimulate further research into its role in molecular endocrinology, neurology, and stem cell biology. PMID:20043945

  15. Poly(A)-binding proteins are required for diverse biological processes in metazoans.

    PubMed

    Smith, Richard W P; Blee, Tajekesa K P; Gray, Nicola K

    2014-08-01

    PABPs [poly(A)-binding proteins] bind to the poly(A) tail of eukaryotic mRNAs and are conserved in species ranging from yeast to human. The prototypical cytoplasmic member, PABP1, is a multifunctional RNA-binding protein with roles in global and mRNA-specific translation and stability, consistent with a function as a central regulator of mRNA fate in the cytoplasm. More limited insight into the molecular functions of other family members is available. However, the consequences of disrupting PABP function in whole organisms is less clear, particularly in vertebrates, and even more so in mammals. In the present review, we discuss current and emerging knowledge with respect to the functions of PABP family members in whole animal studies which, although incomplete, already underlines their biological importance and highlights the need for further intensive research in this area. PMID:25110030

  16. Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation.

    PubMed

    Friend, Kyle; Brook, Matthew; Bezirci, F Betül; Sheets, Michael D; Gray, Nicola K; Seli, Emre

    2012-07-01

    Oocyte maturation and early embryonic development require the cytoplasmic polyadenylation and concomitant translational activation of stored maternal mRNAs. ePAB [embryonic poly(A)-binding protein, also known as ePABP and PABPc1-like] is a multifunctional post-transcriptional regulator that binds to poly(A) tails. In the present study we find that ePAB is a dynamically modified phosphoprotein in Xenopus laevis oocytes and show by mutation that phosphorylation at a four residue cluster is required for oocyte maturation. We further demonstrate that these phosphorylations are critical for cytoplasmic polyadenylation, but not for ePAB's inherent ability to promote translation. Our results provide the first insight into the role of post-translational modifications in regulating PABP protein activity in vivo. PMID:22497250

  17. Poly(A)-binding proteins are required for diverse biological processes in metazoans

    PubMed Central

    Smith, Richard W.P.; Blee, Tajekesa K.P.; Gray, Nicola K.

    2014-01-01

    PABPs [poly(A)-binding proteins] bind to the poly(A) tail of eukaryotic mRNAs and are conserved in species ranging from yeast to human. The prototypical cytoplasmic member, PABP1, is a multifunctional RNA-binding protein with roles in global and mRNA-specific translation and stability, consistent with a function as a central regulator of mRNA fate in the cytoplasm. More limited insight into the molecular functions of other family members is available. However, the consequences of disrupting PABP function in whole organisms is less clear, particularly in vertebrates, and even more so in mammals. In the present review, we discuss current and emerging knowledge with respect to the functions of PABP family members in whole animal studies which, although incomplete, already underlines their biological importance and highlights the need for further intensive research in this area. PMID:25110030

  18. Poly(A)-binding proteins: structure, domain organization, and activity regulation.

    PubMed

    Eliseeva, I A; Lyabin, D N; Ovchinnikov, L P

    2013-12-01

    RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed. PMID:24490729

  19. Control of synaptic plasticity and memory via suppression of poly(A)-binding protein.

    PubMed

    Khoutorsky, Arkady; Yanagiya, Akiko; Gkogkas, Christos G; Fabian, Marc R; Prager-Khoutorsky, Masha; Cao, Ruifeng; Gamache, Karine; Bouthiette, Frederic; Parsyan, Armen; Sorge, Robert E; Mogil, Jeffrey S; Nader, Karim; Lacaille, Jean-Claude; Sonenberg, Nahum

    2013-04-24

    Control of protein synthesis is critical for synaptic plasticity and memory formation. However, the molecular mechanisms linking neuronal activity to activation of mRNA translation are not fully understood. Here, we report that the translational repressor poly(A)-binding protein (PABP)-interacting protein 2A (PAIP2A), an inhibitor of PABP, is rapidly proteolyzed by calpains in stimulated neurons and following training for contextual memory. Paip2a knockout mice exhibit a lowered threshold for the induction of sustained long-term potentiation and an enhancement of long-term memory after weak training. Translation of CaMKIIα mRNA is enhanced in Paip2a⁻/⁻ slices upon tetanic stimulation and in the hippocampus of Paip2a⁻/⁻ mice following contextual fear learning. We demonstrate that activity-dependent degradation of PAIP2A relieves translational inhibition of memory-related genes through PABP reactivation and conclude that PAIP2A is a pivotal translational regulator of synaptic plasticity and memory. PMID:23622065

  20. Two-dimensional /sup 1/H NMR studies on cyclophilin, a cytosolic cyclosporin A binding protein

    SciTech Connect

    Dalgarno, D.C.; Harding, M.W.; Lazarides, A.; Handschumacher, R.E.; Armitage, I.M.

    1986-05-01

    Cyclophilin (CyP) is a specific cytosolic cyclosporin A (CsA) binding protein (163 residues) that has been implicated in the pharmacological action of this potent immunosuppressant. One and two-dimensional /sup 1/H NMR methods are being employed to elucidate the solution structural properties of CyP particularly as they relate to the binding site of CsA. The focal point for these studies is the single Trp (residue number120) in CyP which, in the 1:1 CyP:CsA complex (K/sub d/approx.2 x 10/sup -7/M), shows a 2 fold enhancement in its intrinsic fluorescence. Using 2D /sup 1/H NMR methods, a low resolution structure has been derived for a very hydrophobic domain containing the Trp residue using interresidue n.O.e. data between assigned spin systems and a distance geometry algorithm. The structure of this hydrophobic domain will be discussed in relation to the predicted ..cap alpha../..beta.. secondary structure of this protein and comparisons made between its structure in the drug free and complexed form of the protein.

  1. Poly(A) RNA and Paip2 act as allosteric regulators of poly(A)-binding protein.

    PubMed

    Lee, Seung Hwan; Oh, Jungsic; Park, Jonghyun; Paek, Ki Young; Rho, Sangchul; Jang, Sung Key; Lee, Jong-Bong

    2014-02-01

    When bound to the 3' poly(A) tail of mRNA, poly(A)-binding protein (PABP) modulates mRNA translation and stability through its association with various proteins. By visualizing individual PABP molecules in real time, we found that PABP, containing four RNA recognition motifs (RRMs), adopts a conformation on poly(A) binding in which RRM1 is in proximity to RRM4. This conformational change is due to the bending of the region between RRM2 and RRM3. PABP-interacting protein 2 actively disrupts the bent structure of PABP to the extended structure, resulting in the inhibition of PABP-poly(A) binding. These results suggest that the changes in the configuration of PABP induced by interactions with various effector molecules, such as poly(A) and PABP-interacting protein 2, play pivotal roles in its function. PMID:24293655

  2. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  3. The poly(A)-binding protein Nab2 functions in RNA polymerase III transcription

    PubMed Central

    Reuter, L. Maximilian; Meinel, Dominik M.; Sträßer, Katja

    2015-01-01

    RNA polymerase III (RNAPIII) synthesizes most small RNAs, the most prominent being tRNAs. Although the basic mechanism of RNAPIII transcription is well understood, recent evidence suggests that additional proteins play a role in RNAPIII transcription. Here, we discovered by a genome-wide approach that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNAPIII transcribed genes. The occupancy of Nab2 at RNAPIII transcribed genes is dependent on transcription. Using a novel temperature-sensitive allele of NAB2, nab2-34, we show that Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. Furthermore, Nab2 interacts with RNAPIII, TFIIIB, and RNAPIII transcripts. Importantly, impairment of Nab2 function causes an RNAPIII transcription defect in vivo and in vitro. Taken together, we establish Nab2, an important mRNA biogenesis factor, as a novel player required for RNAPIII transcription by stabilizing TFIIIB and RNAPIII at promoters. PMID:26220998

  4. Cytoplasmic poly(A) binding protein C4 serves a critical role in erythroid differentiation.

    PubMed

    Kini, Hemant K; Kong, Jian; Liebhaber, Stephen A

    2014-04-01

    The expression of an mRNA is strongly impacted by its 3' poly(A) tail and associated poly(A)-binding proteins (PABPs). Vertebrates encode six PABP isoforms that vary in abundance, distribution, developmental control, and subcellular localization. Here we demonstrate that the minor PABP isoform PABPC4 is expressed in erythroid cells and impacts the steady-state expression of a subset of erythroid mRNAs. Motif analyses reveal a high-value AU-rich motif in the 3' untranslated regions (UTRs) of PABPC4-impacted mRNAs. This motif enhances the association of PABPC4 with mRNAs containing critically shortened poly(A) tails. This association may serve to protect a subset of mRNAs from accelerated decay. Finally, we demonstrate that selective depletion of PABPC4 in an erythroblast cell line inhibits terminal erythroid maturation with corresponding alterations in the erythroid gene expression. These observations lead us to conclude that PABPC4 plays an essential role in posttranscriptional control of a major developmental pathway. PMID:24469397

  5. Polyalanine-independent Conformational Conversion of Nuclear Poly(A)-binding Protein 1 (PABPN1)*

    PubMed Central

    Winter, Reno; Kühn, Uwe; Hause, Gerd; Schwarz, Elisabeth

    2012-01-01

    Oculopharyngeal muscular dystrophy is a late-onset disease caused by an elongation of a natural 10-alanine segment within the N-terminal domain of the nuclear poly(A)-binding protein 1 (PABPN1) to maximally 17 alanines. The disease is characterized by intranuclear deposits consisting primarily of PABPN1. In previous studies, we could show that the N-terminal domain of PABPN1 forms amyloid-like fibrils. Here, we analyze fibril formation of full-length PABPN1. Unexpectedly, fibril formation was independent of the presence of the alanine segment. With regard to fibril formation kinetics and resistance against denaturants, fibrils formed by full-length PABPN1 had completely different properties from those formed by the N-terminal domain. Fourier transformed infrared spectroscopy and limited proteolysis showed that fibrillar PABPN1 has a structure that differs from native PABPN1. Circumstantial evidence is presented that the C-terminal domain is involved in fibril formation. PMID:22570486

  6. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay.

    PubMed

    Bresson, Stefan M; Conrad, Nicholas K

    2013-01-01

    Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. PMID:24146636

  7. Cytoplasmic Poly(A) Binding Protein C4 Serves a Critical Role in Erythroid Differentiation

    PubMed Central

    Kini, Hemant K.; Kong, Jian

    2014-01-01

    The expression of an mRNA is strongly impacted by its 3′ poly(A) tail and associated poly(A)-binding proteins (PABPs). Vertebrates encode six PABP isoforms that vary in abundance, distribution, developmental control, and subcellular localization. Here we demonstrate that the minor PABP isoform PABPC4 is expressed in erythroid cells and impacts the steady-state expression of a subset of erythroid mRNAs. Motif analyses reveal a high-value AU-rich motif in the 3′ untranslated regions (UTRs) of PABPC4-impacted mRNAs. This motif enhances the association of PABPC4 with mRNAs containing critically shortened poly(A) tails. This association may serve to protect a subset of mRNAs from accelerated decay. Finally, we demonstrate that selective depletion of PABPC4 in an erythroblast cell line inhibits terminal erythroid maturation with corresponding alterations in the erythroid gene expression. These observations lead us to conclude that PABPC4 plays an essential role in posttranscriptional control of a major developmental pathway. PMID:24469397

  8. Dietary n-3 polyunsaturated fatty acids increase T-lymphocyte phospholipid mass and acyl-CoA binding protein expression.

    PubMed

    Collison, Lauren W; Collison, Robert E; Murphy, Eric J; Jolly, Christopher A

    2005-01-01

    Dietary flaxseed oil, which is enriched in alpha-linolenic acid, and fish oil, which is enriched in EPA and DHA, possess anti-inflammatory properties when compared with safflower oil, which is enriched in linoleic acid. The influence of flaxseed oil and fish oil feeding on lipid metabolism in T-lymphocytes is currently unknown. This study directly compared the effects of feeding safflower oil, flaxseed oil, and fish oil for 8 wk on splenic T-lymphocyte proliferation, phospholipid mass, and acyl-CoA binding protein expression in the rat. The data show that both flaxseed oil and fish oil increased acyl-CoA binding protein expression and phosphatidic acid mass in unstimulated T-lymphocytes when compared with safflower oil feeding. Fish oil feeding increased cardiolipin mass, whereas flaxseed oil had no effect. After stimulation, flaxseed oil and fish oil blunted T-lymphocyte interleukin-2 production and subsequent proliferation, which was associated with the lack of increased acyl-CoA binding protein expression. The results reported show evidence for a novel mechanism by which dietary flaxseed oil and fish oil suppress T-lymphocyte proliferation via changes in acyl-CoA binding protein expression and phospholipid mass. PMID:15825833

  9. Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis.

    PubMed Central

    Drawbridge, J; Grainger, J L; Winkler, M M

    1990-01-01

    Poly(A)-binding proteins (PABPs) are the best characterized messenger RNA-binding proteins of eucaryotic cells and have been identified in diverse organisms such as mammals and yeasts. The in vitro poly(A)-binding properties of these proteins have been studied intensively; however, little is known about their function in cells. In this report, we show that sea urchin eggs have two molecular weight forms of PABP (molecular weights of 66,000 and 80,000). Each of these has at least five posttranslationally modified forms. Both sea urchin PABPs are found in approximately 1:1 ratios in both cytoplasmic and nuclear fractions of embryonic cells. Quantification in eggs and embryos revealed that sea urchin PABPs are surprisingly abundant, composing about 0.6% of total cellular protein. This is 50 times more than required to bind all the poly(A) in the egg based on the binding stoichiometry of 1 PABP per 27 adenosine residues. We found that density gradient centrifugation strips PABP from poly(A) and therefore underestimates the amount of PABP complexed to poly(A)+ RNA in cell homogenates. However, large-pore gel filtration chromatography could be used to separate intact poly(A)-PABP complexes from free PABP. Using the gel filtration method, we found that the threefold increase in poly(A) content of the egg after fertilization is paralleled by an approximate fivefold increase in the amount of bound PABP. Furthermore, both translated and nontranslated poly(A)+ RNAs appear to be complexed to PABP. As expected from the observation that PABPs are so abundant, greater than 95% of the PABP of the cell is uncomplexed protein. Images PMID:2196442

  10. Identification of C1q as a Binding Protein for Advanced Glycation End Products.

    PubMed

    Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji

    2016-01-26

    Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway. PMID:26731343

  11. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-01-01

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs. PMID:18305831

  12. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice.

    PubMed

    Yang, Cai-Rong; Lowther, Katie M; Lalioti, Maria D; Seli, Emre

    2016-01-01

    Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos before zygotic genome activation. EPAB is required for translational activation of maternally stored mRNAs in the oocyte and Epab(-/-) female mice are infertile due to impaired oocyte maturation, cumulus expansion, and ovulation. The aim of this study was to characterize the mechanism of follicular somatic cell dysfunction in Epab(-/-) mice. Using a coculture system of oocytectomized cumulus oophorus complexes (OOXs) with denuded oocytes, we found that when wild-type OOXs were cocultured with Epab(-/-) oocytes, or when Epab(-/-) OOXs were cocultured with WT oocytes, cumulus expansion failed to occur in response to epidermal growth factor (EGF). This finding suggests that oocytes and cumulus cells (CCs) from Epab(-/-) mice fail to send and receive the necessary signals required for cumulus expansion. The abnormalities in Epab(-/-) CCs are not due to lower expression of the oocyte-derived factors growth differentiation factor 9 or bone morphogenetic protein 15, because Epab(-/-) oocytes express these proteins at comparable levels with WT. Epab(-/-) granulosa cells (GCs) exhibit decreased levels of phosphorylated MEK1/2, ERK1/2, and p90 ribosomal S6 kinase in response to lutenizing hormone and EGF treatment, as well as decreased phosphorylation of the EGF receptor. In conclusion, EPAB, which is oocyte specific, is required for the ability of CCs and GCs to become responsive to LH and EGF signaling. These results emphasize the importance of oocyte-somatic communication for GC and CC function. PMID:26492470

  13. Poly(A) binding protein abundance regulates eukaryotic translation initiation factor 4F assembly in human cytomegalovirus-infected cells.

    PubMed

    McKinney, Caleb; Perez, Cesar; Mohr, Ian

    2012-04-10

    By commandeering cellular translation initiation factors, or destroying those dispensable for viral mRNA translation, viruses often suppress host protein synthesis. In contrast, cellular protein synthesis proceeds in human cytomegalovirus (HCMV)-infected cells, forcing viral and cellular mRNAs to compete for limiting translation initiation factors. Curiously, inactivating the host translational repressor 4E-BP1 in HCMV-infected cells stimulates synthesis of the cellular poly(A) binding protein (PABP), significantly increasing PABP abundance. Here, we establish that new PABP synthesis is translationally controlled by the HCMV-encoded UL38 mammalian target of rapamycin complex 1-activator. The 5' UTR within the mRNA encoding PABP contains a terminal oligopyrimidine (TOP) element found in mRNAs, the translation of which is stimulated in response to mitogenic, growth, and nutritional stimuli, and proteins encoded by TOP-containing mRNAs accumulated in HCMV-infected cells. Furthermore, UL38 expression was necessary and sufficient to regulate expression of a PABP TOP-containing reporter. Remarkably, preventing the rise in PABP abundance by RNAi impaired eIF4E binding to eIF4G, thereby reducing assembly of the multisubunit initiation factor eIF4F, viral protein production, and replication. This finding demonstrates that viruses can increase host translation initiation factor concentration to foster their replication and defines a unique mechanism whereby control of PABP abundance regulates eIF4F assembly. PMID:22431630

  14. The human IgA-Fc alpha receptor interaction and its blockade by streptococcal IgA-binding proteins.

    PubMed

    Woof, J M

    2002-08-01

    IgA plays a key role in immune defence of the mucosal surfaces. IgA can trigger elimination mechanisms against pathogens through the interaction of its Fc region with Fc alpha Rs (receptors specific for the Fc region of IgA) present on neutrophils, macrophages, monocytes and eosinophils. The human Fc alpha R (CD89) shares homology with receptors specific for the Fc region of IgG (Fc gamma Rs) and IgE (Fc epsilon RIs), but is a more distantly related member of the receptor family. CD89 interacts with residues lying at the interface of the two domains of IgA Fc, a site quite distinct from the homologous regions at the top of IgG and IgE Fc recognized by Fc gamma R and Fc epsilon RI respectively. Certain pathogenic bacteria express surface proteins that bind to human IgA Fc. Experiments with domain-swap antibodies and mutant IgAs indicate that binding of three such proteins (Sir22 and Arp4 of Streptococcus pyogenes and beta protein of group B streptococci) depend on sites in the Fc interdomain region of IgA, the binding region also used by CD89. Further, we have found that the streptococcal proteins can inhibit interaction of IgA with CD89, and have thereby identified a mechanism by which a bacterial IgA-binding protein may modulate IgA effector function. PMID:12196121

  15. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice.

    PubMed

    Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Aydiner, Fulya; Sasson, Isaac; Ilbay, Orkan; Sakkas, Denny; Lowther, Katie M; Mehlmann, Lisa M; Seli, Emre

    2012-08-15

    Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab(-/-) males and Epab(+/-) of both sexes were fertile, Epab(-/-) female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab(-/-) oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab(-/-) germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab(-/-) mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice. PMID:22621333

  16. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice

    PubMed Central

    Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Aydiner, Fulya; Sasson, Isaac; Ilbay, Orkan; Sakkas, Denny; Lowther, Katie M.; Mehlmann, Lisa M.; Seli, Emre

    2014-01-01

    Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab−/− males and Epab+/− of both sexes were fertile, Epab−/− female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab−/− oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab−/− germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab−/− mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice. PMID:22621333

  17. Development of purification processes for fully human bispecific antibodies based upon modification of protein A binding avidity

    PubMed Central

    Tustian, Andrew D.; Endicott, Christine; Adams, Benjamin; Mattila, John; Bak, Hanne

    2016-01-01

    ABSTRACT There is strong interest in the design of bispecific monoclonal antibodies (bsAbs) that can simultaneously bind 2 distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Multiple bispecific formats have been proposed and are currently under development. Regeneron's bispecific technology is based upon a standard fully human IgG antibody in order to minimize immunogenicity and improve the pharmacokinetic profile. A single common light chain and 2 distinct heavy chains combine to form the bispecific molecule. One of the heavy chains contains a chimeric Fc sequence form (called Fc*) that ablates binding to Protein A via the constant region. As a result of co-expression of the 2 heavy chains and the common light chain, 3 products are created, 2 of which are homodimeric for the heavy chains and one that is the desired heterodimeric bispecific product. The Fc* sequence allows selective purification of the FcFc* bispecific product on commercially available affinity columns, due to intermediate binding affinity for Protein A compared to the high avidity FcFc heavy chain homodimer, or the weakly binding Fc*Fc* homodimer. This platform requires the use of Protein A chromatography in both a capture and polishing modality. Several challenges, including variable region Protein A binding, resin selection, selective elution optimization, and impacts upon subsequent non-affinity downstream unit operations, were addressed to create a robust and selective manufacturing process. PMID:26963837

  18. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    PubMed

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  19. Sensitive detection of Bacillus anthracis using a binding protein originating from gamma-phage.

    PubMed

    Fujinami, Yoshihito; Hirai, Yoshikazu; Sakai, Ikuko; Yoshino, Mineo; Yasuda, Jiro

    2007-01-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Therefore, there is a pressing need to develop novel methods for rapid, simple, and precise detection of B. anthracis. Here, we report that the C-terminal region of gamma-phage lysin protein (PlyG) binds specifically to the cell wall of B. anthracis and the recombinant protein corresponding to this region (positions, 156-233), PlyGB, is available as a bioprobe for detection of B. anthracis. Our detection method, based on a membrane direct blot assay using recombinant PlyGB, was more rapid and sensitive than the gamma-phage test and was simpler and more inexpensive than genetic methods such as PCR, or immunological methods using specific antibodies. Furthermore, its specificity was comparable to the gamma-phage test. PlyGB is applicable in conventional methods instead of antibodies and could be a potent tool for detection of B. anthracis. PMID:17310083

  20. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production.

    PubMed

    Schmid, Manfred; Olszewski, Pawel; Pelechano, Vicent; Gupta, Ishaan; Steinmetz, Lars M; Jensen, Torben Heick

    2015-07-01

    Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor. PMID:26119729

  1. Functional compensation for the loss of testis-specific poly(A)-binding protein, PABPC2, during mouse spermatogenesis

    PubMed Central

    KASHIWABARA, Shin-ichi; TSURUTA, Satsuki; OKADA, Keitaro; SAEGUSA, Ayaka; MIYAGAKI, Yu; BABA, Tadashi

    2016-01-01

    Mouse testes contain several isoforms of cytoplasmic poly(A)-binding proteins (PABPCs), including ubiquitous PABPC1 and testis-specific PABPC2/PABPt. PABPC2 is characterized by its absence from translationally active polyribosomes and elongating spermatids. To elucidate the function of PABPC2 in spermatogenesis, we produced mutant mice lacking PABPC2. The PABPC2-null mice showed normal fertility. The processes of spermatogenesis and sperm migration in the testes and epididymides, respectively, were normal in the mutant mice. When the involvement of PABPC2 in translational regulation of haploid-specific mRNAs was examined, these mRNAs were correctly transcribed in round spermatids and translated in elongating spermatids. Moreover, immunoblot analysis revealed low abundance of PABPC2 relative to PABPC1 in spermatogenic cells. These results suggest that PABPC2 may be either functionally redundant with other PABPCs (including PABPC1) or largely dispensable for translational regulation during spermiogenesis. PMID:26971890

  2. Poly(A) Binding Protein 1 Enhances Cap-Independent Translation Initiation of Neurovirulence Factor from Avian Herpesvirus

    PubMed Central

    Tahiri-Alaoui, Abdessamad; Zhao, Yuguang; Sadigh, Yashar; Popplestone, James; Kgosana, Lydia; Smith, Lorraine P.; Nair, Venugopal

    2014-01-01

    Poly(A) binding protein 1 (PABP1) plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5' leader internal ribosome entry site (5L IRES) of an immediate-early (IE) bicistronic mRNA that encodes the neurovirulence protein (pp14) from the avian herpesvirus Marek’s disease virus serotype 1 (MDV1). We provide evidence for the interaction between an internal poly(A) sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A) tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs) targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5' end of the message and that is, from the affinity binding data, still compatible with the formation of ‘closed loop’ structure of mRNA. PMID:25503397

  3. A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast.

    PubMed Central

    Belostotsky, D A; Meagher, R B

    1996-01-01

    Poly(A) tails of eukaryotic mRNAs serve as targets for regulatory proteins affecting mRNA stability and translation. Differential mRNA polyadenylation and deadenylation during gametogenesis and early development are now widely recognized as mechanisms of translational regulation in animals, but they have not been observed in plants. Here, we report that the expression of the PAB5 gene encoding one of the poly(A) binding proteins (PABPs) in Arabidopsis is restricted to pollen and ovule development and early embryogenesis. Furthermore, PAB5 is capable of rescuing a PABP-deficient yeast strain by partially restoring both poly(A) shortening and translational initiation functions of PABP. However, PAB5 did not restore the linkage of deadenylation and decapping, thus demonstrating that this function of PABP is not essential for viability. Also, like endogenous PABP, PAB5 expressed in yeast demonstrated genetic interaction with a recently characterized yeast protein SIS1, which is also involved in translational initiation. We propose that PAB5 encodes a post-transcriptional regulatory factor acting through molecular mechanisms similar to those reported for yeast PABP. This factor may have evolved further to post-transcriptionally regulate plant sexual reproduction and early development. PMID:8776896

  4. Identification of a binding site for the human immunodeficiency virus type 1 nucleocapsid protein.

    PubMed

    Sakaguchi, K; Zambrano, N; Baldwin, E T; Shapiro, B A; Erickson, J W; Omichinski, J G; Clore, G M; Gronenborn, A M; Appella, E

    1993-06-01

    The nucleocapsid (NC) protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is important for encapsidation of the virus genome, RNA dimerization, and primer tRNA annealing in vitro. Here we present evidence from gel mobility-shift experiments indicating that NCp7 binds specifically to an RNA sequence. Two complexes were identified in native gels. The more slowly migrating complex contained two RNA molecules and one peptide, while the more rapidly migrating one is composed of one RNA and one peptide. Further, mutational analysis of the RNA shows that the predicted stem and loop structure of stem-loop 1 plays a critical role. Our results show that NCp7 binds to a unique RNA structure within the psi region; in addition, this structure is necessary for RNA dimerization. We propose that NCp7 binds to the RNA via a direct interaction of one zinc-binding motif to stem-loop 1 followed by binding of the other zinc-binding motif to stem-loop 1, stem-loop 2, or the linker region of the second RNA molecule, forming a bridge between the two RNAs. PMID:8506369

  5. Poly(A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication.

    PubMed

    Wang, Xiaoye; Bai, Juan; Zhang, Lili; Wang, Xianwei; Li, Yufeng; Jiang, Ping

    2012-12-01

    Interactions between host factors and the viral protein play important roles in host adaptation and regulation of virus replication. Poly(A)-binding protein (PABP), a host cellular protein that enhances translational efficiency by circularizing mRNAs, was identified by yeast two-hybrid screening as a cellular partner for PRRSV nucleocapsid (N) protein in porcine alveolar macrophages. The specific interaction of PRRSV N protein with PABP was confirmed in infected cells by co-immunoprecipitation and in vitro by GST pull-down assay. We showed by confocal microscopy that the PABP co-localized with the PRRSV N protein. Using a series of deletion mutants, the interactive domain of N protein with PABP was mapped to a region of amino acids 52-69. For PABP, C-terminal half, which interestingly interacts other translation regulators, was determined to be the domain interactive with N protein. Short hairpin RNA (shRNA)-mediated silencing of PABP in cells resulted in significantly reduced PRRSV RNA synthesis, viral encoded protein expression and viral titer. Overall, the results presented here point toward an important role for PABP in regulating PRRSV replication. PMID:22985629

  6. A novel principle for conferring selectivity to poly(A)-binding proteins: interdependence of two ATP synthase beta-subunit mRNA-binding proteins.

    PubMed

    Andersson, U; Antonicka, H; Houstek, J; Cannon, B

    2000-02-15

    Based on electrophoretic mobility-shift assays and UV cross-linking experiments, we present evidence in the present work for the existence of two mammalian cytosolic proteins that selectively interact with the 3'-untranslated region of the mRNA coding for the catalytic beta-subunit of mitochondrial ATP synthase (beta-mtATPase). One of the proteins, beta-mtATPase mRNA-binding protein (BARB)1, is a novel poly(A)-binding protein that specifically binds the poly(A) tail of the beta-mtATPase transcript. BARB1 achieves this mRNA selectivity through its interaction with a second protein, BARB2, that binds the beta-mtATPase mRNA through a 22-bp element with a uridylate core, located 75 bp upstream of the poly(A) tail. Conversely, in the absence of BARB1, BARB2 is still able to bind the beta-mtATPase mRNA, but does so with lower affinity. Thus the interaction between BARB1 and BARB2 and beta-mtATPase mRNA involves the formation of a complex between the two BARB proteins. We conclude that BARB1 and BARB2 selectively bind the 3'-untranslated region of beta-mtATPase mRNA in a novel and interdependent manner. The complex between these two proteins may be involved in post-transcriptional regulation of gene expression. PMID:10657236

  7. EsiB, a Novel Pathogenic Escherichia coli Secretory Immunoglobulin A-Binding Protein Impairing Neutrophil Activation

    PubMed Central

    Pastorello, Ilaria; Rossi Paccani, Silvia; Rosini, Roberto; Mattera, Rossella; Ferrer Navarro, Mario; Urosev, Dunja; Nesta, Barbara; Lo Surdo, Paola; Del Vecchio, Mariangela; Rippa, Valentina; Bertoldi, Isabella; Gomes Moriel, Danilo; Laarman, Alexander J.; van Strijp, Jos A. G.; Daura, Xavier; Pizza, Mariagrazia; Serino, Laura; Soriani, Marco

    2013-01-01

    ABSTRACT In this study, we have characterized the functional properties of a novel Escherichia coli antigen named EsiB (E. coli secretory immunoglobulin A-binding protein), recently reported to protect mice from sepsis. Gene distribution analysis of a panel of 267 strains representative of different E. coli pathotypes revealed that esiB is preferentially associated with extraintestinal strains, while the gene is rarely found in either intestinal or nonpathogenic strains. These findings were supported by the presence of anti-EsiB antibodies in the sera of patients affected by urinary tract infections (UTIs). By solving its crystal structure, we observed that EsiB adopts a superhelical fold composed of Sel1-like repeats (SLRs), a feature often associated with bacterial proteins possessing immunomodulatory functions. Indeed, we found that EsiB interacts with secretory immunoglobulin A (SIgA) through a specific motif identified by an immunocapturing approach. Functional assays showed that EsiB binding to SIgA is likely to interfere with productive FcαRI signaling, by inhibiting both SIgA-induced neutrophil chemotaxis and respiratory burst. Indeed, EsiB hampers SIgA-mediated signaling events by reducing the phosphorylation status of key signal-transducer cytosolic proteins, including mitogen-activated kinases. We propose that the interference with such immune events could contribute to the capacity of the bacterium to avoid clearance by neutrophils, as well as reducing the recruitment of immune cells to the infection site. PMID:23882011

  8. Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue.

    PubMed

    Chen, Wentao; Dong, Jiajia; Plate, Lars; Mortenson, David E; Brighty, Gabriel J; Li, Suhua; Liu, Yu; Galmozzi, Andrea; Lee, Peter S; Hulce, Jonathan J; Cravatt, Benjamin F; Saez, Enrique; Powers, Evan T; Wilson, Ian A; Sharpless, K Barry; Kelly, Jeffery W

    2016-06-15

    Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function. PMID:27191344

  9. The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes

    PubMed Central

    Martani, Francesca; Marano, Francesca; Bertacchi, Stefano; Porro, Danilo; Branduardi, Paola

    2015-01-01

    When exploited as cell factories, Saccharomyces cerevisiae cells are exposed to harsh environmental stresses impairing titer, yield and productivity of the fermentative processes. The development of robust strains therefore represents a pivotal challenge for the implementation of cost-effective bioprocesses. Altering master regulators of general cellular rewiring represents a possible strategy to evoke shaded potential that may accomplish the desirable features. The poly(A) binding protein Pab1, as stress granules component, was here selected as the target for obtaining widespread alterations in mRNA metabolism, resulting in stress tolerant phenotypes. Firstly, we demonstrated that the modulation of Pab1 levels improves robustness against different stressors. Secondly, the mutagenesis of PAB1 and the application of a specific screening protocol on acetic acid enriched medium allowed the isolation of the further ameliorated mutant pab1 A60-9. These findings pave the way for a novel approach to unlock industrially promising phenotypes through the modulation of a post-transcriptional regulatory element. PMID:26658950

  10. Eukaryotic initiation factor 4B and the poly(A)-binding protein bind eIF4G competitively.

    PubMed

    Cheng, Shijun; Gallie, Daniel R

    2013-01-01

    The eukaryotic translation initiation factor (eIF) 4G functions as a scaffold protein that assembles components of the translation initiation complex required to recruit the 40S ribosomal subunit to an mRNA. Although many eukaryotes express two highly similar eIF4G isoforms, those in plants are highly divergent in size and sequence from one another and are referred to as eIF4G and eIFiso4G. Although the domain organization of eIFiso4G differs substantially from eIF4G orthologs in other species, the domain organization of plant eIF4G is largely unknown despite the fact that it is more similar in size and sequence to eIF4G of other eukaryotes. In this study, we show that eIF4G differs from eIFiso4G in that it contains two distinct interaction domains for the poly(A) binding protein (PABP) and eIF4B but is similar to eIFiso4G in having two eIF4A interaction domains. PABP and eIF4B bind the same N-terminal region of eIF4G as they do to a region C-proximal to the HEAT-1 domain in the middle domain of eIF4G, resulting in competitive binding between eIF4B and PABP to each site. eIF4G also differs from eIFiso4G in that no competitive binding was observed between PABP and eIF4A or between eIF4B and eIF4A to its HEAT-1-containing region. These results demonstrate that despite substantial differences in size, sequence, and domain organization, PABP and eIF4B bind to eIF4G and eIFiso4G competitively. PMID:26824014

  11. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A)-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    PubMed

    Park, Richard; El-Guindy, Ayman; Heston, Lee; Lin, Su-Fang; Yu, Kuan-Ping; Nagy, Mate; Borah, Sumit; Delecluse, Henri-Jacques; Steitz, Joan; Miller, George

    2014-01-01

    Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors. PMID:24705134

  12. Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex

    PubMed Central

    Gratia, Matthieu; Sarot, Emeline; Vende, Patrice; Charpilienne, Annie; Baron, Carolina Hilma; Duarte, Mariela

    2015-01-01

    ABSTRACT Through its interaction with the 5′ translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5′-capped and 3′-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3′ GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3′ end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation

  13. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4.

    PubMed

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5'-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4. PMID:25190455

  14. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4

    PubMed Central

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P.; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5′-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4. PMID:25190455

  15. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein

    PubMed Central

    Shi, Chao; Huang, Xuan; Zhang, Bin; Zhu, Dan; Luo, Huqiao; Lu, Quqin; Xiong, Wen-Cheng; Mei, Lin; Luo, Shiwen

    2015-01-01

    Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells. Conclusions Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD. PMID:26414348

  16. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Morita, Takahiro; Satoh, Ryosuke; Umeda, Nanae; Kita, Ayako; Sugiura, Reiko

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Stress granules (SGs) as a mechanism of doxorubicin tolerance. Black-Right-Pointing-Pointer We characterize the role of stress granules in doxorubicin tolerance. Black-Right-Pointing-Pointer Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. Black-Right-Pointing-Pointer Doxorubicin promotes SG formation when combined with heat shock. Black-Right-Pointing-Pointer Doxorubicin regulates stress granule assembly independent of eIF2{alpha} phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1{sup +}, which encodes a multi-KH type RNA-binding protein, and pab1{sup +}, which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1{sup +} and pab1{sup +} genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2{alpha}, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2{alpha} phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  17. Structure and Mechanism of Dimer-Monomer Transition of a Plant Poly(A)-Binding Protein upon RNA Interaction: Insights into Its Poly(A) Tail Assembly.

    PubMed

    Domingues, Mariane Noronha; Sforça, Mauricio Luis; Soprano, Adriana Santos; Lee, Jack; Souza, Tatiana de Arruda Campos Brasil de; Cassago, Alexandre; Portugal, Rodrigo Villares; Zeri, Ana Carolina de Mattos; Murakami, Mario Tyago; Sadanandom, Ari; Oliveira, Paulo Sergio Lopes de; Benedetti, Celso Eduardo

    2015-07-31

    Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer-monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the β2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors. PMID:26013164

  18. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428

    PubMed Central

    Pozuelo Rubio, Mercedes; Campbell, David G.; Morrice, Nicholas A.; Mackintosh, Carol

    2005-01-01

    PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A–14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding. PMID:16153182

  19. The Transformation Suppressor Pdcd4 Is a Novel Eukaryotic Translation Initiation Factor 4A Binding Protein That Inhibits Translation

    PubMed Central

    Yang, Hsin-Sheng; Jansen, Aaron P.; Komar, Anton A.; Zheng, Xiaojing; Merrick, William C.; Costes, Sylvain; Lockett, Stephen J.; Sonenberg, Nahum; Colburn, Nancy H.

    2003-01-01

    Pdcd4 is a novel transformation suppressor that inhibits tumor promoter-induced neoplastic transformation and the activation of AP-1-dependent transcription required for transformation. A yeast two-hybrid analysis revealed that Pdcd4 associates with the eukaryotic translation initiation factors eIF4AI and eIF4AII. Immunofluorescent confocal microscopy showed that Pdcd4 colocalizes with eIF4A in the cytoplasm. eIF4A is an ATP-dependent RNA helicase needed to unwind 5′ mRNA secondary structure. Recombinant Pdcd4 specifically inhibited the helicase activity of eIF4A and eIF4F. In vivo translation assays showed that Pdcd4 inhibited cap-dependent but not internal ribosome entry site (IRES)-dependent translation. In contrast, Pdcd4D418A, a mutant inactivated for binding to eIF4A, failed to inhibit cap-dependent or IRES-dependent translation or AP-1 transactivation. Recombinant Pdcd4 prevented eIF4A from binding to the C-terminal region of eIF4G (amino acids 1040 to 1560) but not to the middle region of eIF4G(amino acids 635 to 1039). In addition, both Pdcd4 and Pdcd4D418A bound to the middle region of eIF4G. The mechanism by which Pdcd4 inhibits translation thus appears to involve inhibition of eIF4A helicase, interference with eIF4A association-dissociation from eIF4G, and inhibition of eIF4A binding to the C-terminal domain of eIF4G. Pdcd4 binding to eIF4A is linked to its transformation-suppressing activity, as Pdcd4-eIF4A binding and consequent inhibition of translation are required for Pdcd4 transrepression of AP-1. PMID:12482958

  20. Induction of expression and co-localization of heat shock polypeptides with the polyalanine expansion mutant of poly(A)-binding protein N1 after chemical stress

    SciTech Connect

    Wang Qishan Bag, Jnanankur

    2008-05-23

    Formation of nuclear inclusions consisting of aggregates of a polyalanine expansion mutant of nuclear poly(A)-binding protein (PABPN1) is the hallmark of oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant disease. Patients with this disorder exhibit progressive swallowing difficulty and drooping of their eye lids, which starts around the age of 50. Previously we have shown that treatment of cells expressing the mutant PABPN1 with a number of chemicals such as ibuprofen, indomethacin, ZnSO{sub 4}, and 8-hydroxy-quinoline induces HSP70 expression and reduces PABPN1 aggregation. In these studies we have shown that expression of additional HSPs including HSP27, HSP40, and HSP105 were induced in mutant PABPN1 expressing cells following exposure to the chemicals mentioned above. Furthermore, all three additional HSPs were translocated to the nucleus and probably helped to properly fold the mutant PABPN1 by co-localizing with this protein.

  1. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    SciTech Connect

    Higgins, Matthew K.

    2008-03-01

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way.

  2. Cruentaren A Binds F1F0 ATP Synthase To Modulate the Hsp90 Protein Folding Machinery

    PubMed Central

    2015-01-01

    The molecular chaperone Hsp90 requires the assistance of immunophilins, co-chaperones, and partner proteins for the conformational maturation of client proteins. Hsp90 inhibition represents a promising anticancer strategy due to the dependence of numerous oncogenic signaling pathways upon Hsp90 function. Historically, small molecules have been designed to inhibit ATPase activity at the Hsp90 N-terminus; however, these molecules also induce the pro-survival heat shock response (HSR). Therefore, inhibitors that exhibit alternative mechanisms of action that do not elicit the HSR are actively sought. Small molecules that disrupt Hsp90-co-chaperone interactions can destabilize the Hsp90 complex without induction of the HSR, which leads to inhibition of cell proliferation. In this article, selective inhibition of F1F0 ATP synthase by cruentaren A was shown to disrupt the Hsp90-F1F0 ATP synthase interaction and result in client protein degradation without induction of the HSR. PMID:24450340

  3. Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria.

    PubMed

    Akbar, S Md; Sreeramulu, K; Sharma, Hari C

    2016-06-01

    Intrinsic protein fluorescence is due to aromatic amino acids, mainly tryptophan, which can be selectively measured by exciting at 295 nm. Changes in emission spectra of tryptophan are due to the protein conformational transitions, subunit association, ligand binding or denaturation, which affect the local environment surrounding the indole ring. In this study, tryptophan fluorescence was monitored in intact mitochondria at 333 nm following excitation at 295 nm in presence of insecticides using spectrofluorometer. Methyl-parathion, carbofuran, and endosulfan induced Trp fluorescence quenching and release of cytochrome c when incubated with the mitochondria, except fenvalarate. Mechanism of insecticide-induced mitochondrial toxicity for the tested insecticides has been discussed. Reduction in the intensity of tryptophan emission spectra of mitochondrial membrane proteins in presence of an increasing concentration of a ligand can be used to study the interaction of insecticides/drugs with the intact mitochondria. Furthermore, this assay can be readily adapted for studying protein-ligand interactions in intact mitochondria and in other cell organelles extending its implications for pesticide and pharma industry and in drug discovery. PMID:26905428

  4. At the right place at the right time: novel CENP-A binding proteins shed light on centromere assembly.

    PubMed

    Silva, Mariana C C; Jansen, Lars E T

    2009-10-01

    Centromeres, the chromosomal loci that form the sites of attachment for spindle microtubules during mitosis, are identified by a unique chromatin structure generated by nucleosomes containing the histone H3 variant CENP-A. The apparent epigenetic mode of centromere inheritance across mitotic and meiotic divisions has generated much interest in how CENP-A assembly occurs and how structurally divergent centromeric nucleosomes can specify the centromere complex. Although a substantial number of proteins have been implicated in centromere assembly, factors that can bind CENP-A specifically and deliver nascent protein to the centromere were, thus far, lacking. Several recent reports on experiments in fission yeast and human cells have now shown significant progress on this problem. Here, we discuss these new developments and their implications for epigenetic centromere inheritance. PMID:19590885

  5. The Chondroitin Sulfate A-binding Site of the VAR2CSA Protein Involves Multiple N-terminal Domains*

    PubMed Central

    Dahlbäck, Madeleine; Jørgensen, Lars M.; Nielsen, Morten A.; Clausen, Thomas M.; Ditlev, Sisse B.; Resende, Mafalda; Pinto, Vera V.; Arnot, David E.; Theander, Thor G.; Salanti, Ali

    2011-01-01

    Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated by a parasite expressed protein named VAR2CSA. A vaccine protecting pregnant women against placental malaria should induce antibodies inhibiting the interaction between VAR2CSA and CSA. Much effort has been put into defining the part of the 350 kDa VAR2CSA protein that is responsible for binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with high affinity, however to date no sub-fragment of VAR2CSA has been shown to interact with CSA with similar affinity or specificity. In this study, we used a biosensor technology to examine the binding properties of a panel of truncated VAR2CSA proteins. The experiments indicate that the core of the CSA-binding site is situated in three domains, DBL2X-CIDRPAM and a flanking domain, located in the N-terminal part of VAR2CSA. Furthermore, recombinant VAR2CSA subfragments containing this region elicit antibodies with high parasite adhesion blocking activity in animal immunization experiments. PMID:21398524

  6. Identification of a binding site of the human immunodeficiency virus envelope protein gp120 to neuronal-specific tubulin.

    PubMed

    Avdoshina, Valeria; Taraballi, Francesca; Dedoni, Simona; Corbo, Claudia; Paige, Mikell; Saygideğer Kont, Yasemin; Üren, Aykut; Tasciotti, Ennio; Mocchetti, Italo

    2016-04-01

    Human immunodeficiency virus-1 (HIV) promotes synaptic simplification and neuronal apoptosis, and causes neurological impairments termed HIV-associated neurological disorders. HIV-associated neurotoxicity may be brought about by acute and chronic mechanisms that still remain to be fully characterized. The HIV envelope glycoprotein gp120 causes neuronal degeneration similar to that observed in HIV-associated neurocognitive disorders subjects. This study was undertaken to discover novel mechanisms of gp120 neurotoxicity that could explain how the envelope protein promotes neurite pruning. Gp120 has been shown to associate with various intracellular organelles as well as microtubules in neurons. We then analyzed lysates of neurons exposed to gp120 with liquid chromatography mass spectrometry for potential protein interactors. We found that one of the proteins interacting with gp120 is tubulin β-3 (TUBB3), a major component of neuronal microtubules. We then tested the hypothesis that gp120 binds to neuronal microtubules. Using surface plasmon resonance, we confirmed that gp120 binds with high affinity to neuronal-specific TUBB3. We have also identified the binding site of gp120 to TUBB3. We then designed a small peptide (Helix-A) that displaced gp120 from binding to TUBB3. To determine whether this peptide could prevent gp120-mediated neurotoxicity, we cross-linked Helix-A to mesoporous silica nanoparticles (Helix-A nano) to enhance the intracellular delivery of the peptide. We then tested the neuroprotective property of Helix-A nano against three strains of gp120 in rat cortical neurons. Helix-A nano prevented gp120-mediated neurite simplification as well as neuronal loss. These data propose that gp120 binding to TUBB3 could be another mechanism of gp120 neurotoxicity. We propose a novel direct mechanism of human immunodeficiency virus neurotoxicity. Our data show that the viral protein gp120 binds to neuronal specific tubulin β-3 and blocks microtubule transport

  7. Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication.

    PubMed

    Kobayashi, Mariko; Arias, Carolina; Garabedian, Alexandra; Palmenberg, Ann C; Mohr, Ian

    2012-10-01

    Although picornavirus RNA genomes contain a 3'-terminal poly(A) tract that is critical for their replication, the impact of encephalomyocarditis virus (EMCV) infection on the host poly(A)-binding protein (PABP) remains unknown. Here, we establish that EMCV infection stimulates site-specific PABP proteolysis, resulting in accumulation of a 45-kDa N-terminal PABP fragment in virus-infected cells. Expression of a functional EMCV 3C proteinase was necessary and sufficient to stimulate PABP cleavage in uninfected cells, and bacterially expressed 3C cleaved recombinant PABP in vitro in the absence of any virus-encoded or eukaryotic cellular cofactors. N-terminal sequencing of the resulting C-terminal PABP fragment identified a 3C(pro) cleavage site on PABP between amino acids Q437 and G438, severing the C-terminal protein-interacting domain from the N-terminal RNA binding fragment. Single amino acid substitution mutants with changes at Q437 were resistant to 3C(pro) cleavage in vitro and in vivo, validating that this is the sole detectable PABP cleavage site. Finally, while ongoing protein synthesis was not detectably altered in EMCV-infected cells expressing a cleavage-resistant PABP variant, viral RNA synthesis and infectious virus production were both reduced. Together, these results establish that the EMCV 3C proteinase mediates site-specific PABP cleavage and demonstrate that PABP cleavage by 3C regulates EMCV replication. PMID:22837200

  8. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis.

    PubMed

    Wang, Qishan; Bag, Jnanankur

    2006-02-17

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including alpha-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of the MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis. PMID:16378590

  9. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction

    PubMed Central

    Ray, Swagat; Anderson, Emma C.

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression. PMID:26936655

  10. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis

    SciTech Connect

    Wang Qishan; Bag, Jnanankur . E-mail: jbag@uoguelph.ca

    2006-02-17

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including {alpha}-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of the MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis.

  11. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    PubMed

    Ray, Swagat; Anderson, Emma C

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression. PMID:26936655

  12. Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein.

    PubMed

    Arnold, Michelle M; Brownback, Catie Small; Taraporewala, Zenobia F; Patton, John T

    2012-07-01

    The rotavirus (RV) non-structural protein NSP3 forms a dimer that has binding domains for the translation initiation factor eIF4G and for a conserved 3'-terminal sequence of viral mRNAs. Through these activities, NSP3 has been proposed to promote viral mRNA translation by directing circularization of viral polysomes. In addition, by disrupting interactions between eIF4G and the poly(A)-binding protein (PABP), NSP3 has been suggested to inhibit translation of host polyadenylated mRNAs and to stimulate relocalization of PABP from the cytoplasm to the nucleus. Herein, we report the isolation and characterization of SA11-4Fg7re, an SA11-4F RV derivative that contains a large sequence duplication initiating within the genome segment (gene 7) encoding NSP3. Our analysis showed that mutant NSP3 (NSP3m) encoded by SA11-4Fg7re is almost twice the size of the wild-type protein and retains the capacity to dimerize. However, in comparison to wild-type NSP3, NSP3m has a decreased capacity to interact with eIF4G and to suppress the translation of polyadenylated mRNAs. In addition, NSP3m fails to induce the nuclear accumulation of PABP in infected cells. Despite the defective activities of NSP3m, the levels of viral protein and progeny virus produced in SA11-4Fg7re- and SA11-4F-infected cells were indistinguishable. Collectively, these data are consistent with a role for NSP3 in suppressing host protein synthesis through antagonism of PABP activity, but also suggest that NSP3 functions may have little or no impact on the efficiency of virus replication in widely used RV-permissive cell lines. PMID:22442114

  13. The Crystal Structure of PPIL1 Bound to Cyclosporine A Suggests a Binding Mode for a Linear Epitope of the SKIP Protein

    PubMed Central

    Stegmann, Christian M.; Lührmann, Reinhard; Wahl, Markus C.

    2010-01-01

    Background The removal of introns from pre-mRNA is carried out by a large macromolecular machine called the spliceosome. The peptidyl-prolyl cis/trans isomerase PPIL1 is a component of the human spliceosome and binds to the spliceosomal SKIP protein via a binding site distinct from its active site. Principal Findings Here, we have studied the PPIL1 protein and its interaction with SKIP biochemically and by X-ray crystallography. A minimal linear binding epitope derived from the SKIP protein could be determined using a peptide array. A 36-residue region of SKIP centred on an eight-residue epitope suffices to bind PPIL1 in pull-down experiments. The crystal structure of PPIL1 in complex with the inhibitor cyclosporine A (CsA) was obtained at a resolution of 1.15 Å and exhibited two bound Cd2+ ions that enabled SAD phasing. PPIL1 residues that have previously been implicated in binding of SKIP are involved in the coordination of Cd2+ ions in the present crystal structure. Employing the present crystal structure, the determined minimal binding epitope and previously published NMR data [1], a molecular docking study was performed. In the docked model of the PPIL1·SKIP interaction, a proline residue of SKIP is buried in a hydrophobic pocket of PPIL1. This hydrophobic contact is encircled by several hydrogen bonds between the SKIP peptide and PPIL1. Conclusion We characterized a short, linear epitope of SKIP that is sufficient to bind the PPIL1 protein. Our data indicate that this SKIP peptide could function in recruiting PPIL1 into the core of the spliceosome. We present a molecular model for the binding mode of SKIP to PPIL1 which emphasizes the versatility of cyclophilin-type PPIases to engage in additional interactions with other proteins apart from active site contacts despite their limited surface area. PMID:20368803

  14. Regulation of poly(A) binding protein function in translation: Characterization of the Paip2 homolog, Paip2B

    PubMed Central

    Berlanga, Juan José; Baass, Alexis; Sonenberg, Nahum

    2006-01-01

    The 5′ cap and 3′ poly(A) tail of eukaryotic mRNAs act synergistically to enhance translation. This synergy is mediated via interactions between eIF4G (a component of the eIF4F cap binding complex) and poly(A) binding protein (PABP). Paip2 (PABP-interacting protein 2) binds PABP and inhibits translation both in vitro and in vivo by decreasing the affinity of PABP for polyadenylated RNA. Here, we describe the functional characteristics of Paip2B, a Paip2 homolog. A full-length brain cDNA of Paip2B encodes a protein that shares 59% identity and 80% similarity with Paip2 (Paip2A), with the highest conservation in the two PABP binding domains. Paip2B acts in a manner similar to Paip2A to inhibit translation of capped and polyadenylated mRNAs both in vitro and in vivo by displacing PABP from the poly(A) tail. Also, similar to Paip2A, Paip2B does not affect the translation mediated by the internal ribosome entry site (IRES) of hepatitis C virus (HCV). However, Paip2A and Paip2B differ with respect to both mRNA and protein distribution in different tissues and cell lines. Paip2A is more highly ubiquitinated than is Paip2B and is degraded more rapidly by the proteasome. Paip2 protein degradation may constitute a primary mechanism by which cells regulate PABP activity in translation. PMID:16804161

  15. Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP).

    PubMed

    Casper, Ingrid; Nowag, Sebastian; Koch, Kathrin; Hubrich, Thomas; Bollmann, Franziska; Henke, Jenny; Schmitz, Katja; Kleinert, Hartmut; Pautz, Andrea

    2013-09-01

    Affinity purification using the 3'-untranslated region (3'-UTR) of the human inducible nitric oxide synthase (iNOS) mRNA identified the cytosolic poly(A)-binding protein (PABP) as a protein interacting with the human iNOS 3'-UTR. Downregulation of PABP expression by RNA interference resulted in a marked reduction of cytokine-induced iNOS mRNA expression without changes in the expression of mRNAs coding for the major subunit of the RNA polymerase II (Pol 2A) or β2-microglobuline (β2M). Along with the mRNA also iNOS protein expression was reduced by siPABP-treatment, whereas in the same cells protein expression of STAT-1α, NF-κB p65, or GAPDH was not altered. Reporter gene analyses showed no change of the inducibility of the human 16kb iNOS promoter in siPABP cells. In contrast, the siPABP-mediated decline of iNOS expression correlated with a reduction in the stability of the iNOS mRNA. As the stability of the Pol 2A and β2M mRNA was not changed, siPABP-treatment seems to have a specific effect on iNOS mRNA decay. UV-crosslinking experiments revealed that PABP interacts with one binding site in the 5'-UTR and two different binding sites in the 3'-UTR of the human iNOS mRNA. Mutation or deletion of the binding site in the 5'-UTR but not in the 3'-UTR reduced luciferase expression in DLD-1 cells transfected with iNOS-5'-UTR or iNOS-3'-UTR luciferase reporter constructs. In summary, our data demonstrate that PABP by binding to specific sequence elements in the 5'-UTR post-transcriptionally enhances human iNOS mRNA stability and thereby iNOS expression. PMID:23711718

  16. Poly(A)-binding proteins are required for microRNA-mediated silencing and to promote target deadenylation in C. elegans.

    PubMed

    Flamand, Mathieu N; Wu, Edlyn; Vashisht, Ajay; Jannot, Guillaume; Keiper, Brett D; Simard, Martin J; Wohlschlegel, James; Duchaine, Thomas F

    2016-07-01

    Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3' termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans PABPs (PAB-1 and PAB-2) in miRNA-mediated silencing, and elucidate their mechanisms of action using concerted genetics, protein interaction analyses, and cell-free assays. We find that C. elegans PABPs are required for miRNA-mediated silencing in embryonic and larval developmental stages, where they act through a multi-faceted mechanism. Depletion of PAB-1 and PAB-2 results in loss of both poly(A)-dependent and -independent translational silencing. PABPs accelerate miRNA-mediated deadenylation, but this contribution can be modulated by 3'UTR sequences. While greater distances with the poly(A) tail exacerbate dependency on PABP for deadenylation, more potent miRNA-binding sites partially suppress this effect. Our results refine the roles of PABPs in miRNA-mediated silencing and support a model wherein they enable miRNA-binding sites by looping the 3'UTR poly(A) tail to the bound miRISC and deadenylase. PMID:27095199

  17. Poly(A)-binding proteins are required for microRNA-mediated silencing and to promote target deadenylation in C. elegans

    PubMed Central

    Flamand, Mathieu N.; Wu, Edlyn; Vashisht, Ajay; Jannot, Guillaume; Keiper, Brett D.; Simard, Martin J.; Wohlschlegel, James; Duchaine, Thomas F.

    2016-01-01

    Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3′ termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans PABPs (PAB-1 and PAB-2) in miRNA-mediated silencing, and elucidate their mechanisms of action using concerted genetics, protein interaction analyses, and cell-free assays. We find that C. elegans PABPs are required for miRNA-mediated silencing in embryonic and larval developmental stages, where they act through a multi-faceted mechanism. Depletion of PAB-1 and PAB-2 results in loss of both poly(A)-dependent and -independent translational silencing. PABPs accelerate miRNA-mediated deadenylation, but this contribution can be modulated by 3′UTR sequences. While greater distances with the poly(A) tail exacerbate dependency on PABP for deadenylation, more potent miRNA-binding sites partially suppress this effect. Our results refine the roles of PABPs in miRNA-mediated silencing and support a model wherein they enable miRNA-binding sites by looping the 3′UTR poly(A) tail to the bound miRISC and deadenylase. PMID:27095199

  18. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants.

    PubMed

    Gallie, Daniel R

    2014-09-01

    Translation initiation in eukaryotes requires the involvement of multiple initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA and assemble the 80 S ribosome at the correct initiation codon. eIF4F, composed of eIF4E, eIF4A, and eIF4G, binds to the 5'-cap structure of an mRNA and prepares an mRNA for recruitment of a 40 S subunit. eIF4B promotes the ATP-dependent RNA helicase activity of eIF4A and eIF4F needed to unwind secondary structure present in a 5'-leader that would otherwise impede scanning of the 40 S subunit during initiation. The poly(A) binding protein (PABP), which binds the poly(A) tail, interacts with eIF4G and eIF4B to promote circularization of an mRNA and stimulates translation by promoting 40 S subunit recruitment. Thus, these factors serve essential functions in the early steps of protein synthesis. Their assembly and function requires multiple interactions that are competitive in nature and determine the nature of interactions between the termini of an mRNA. In this review, the domain organization and partner protein interactions are presented for the factors in plants which share similarities with those in animals and yeast but differ in several important respects. The functional consequences of their interactions on factor activity are also discussed. PMID:26779409

  19. Nanopore detachment kinetics of poly(A) binding proteins from RNA molecules reveals the critical role of C-terminus interactions.

    PubMed

    Lin, Jianxun; Fabian, Marc; Sonenberg, Nahum; Meller, Amit

    2012-03-21

    The ubiquitous and abundant cytoplasmic poly(A) binding protein (PABP) is a highly conserved multifunctional protein, many copies of which bind to the poly(A) tail of eukaryotic mRNAs to promote translation initiation. The N-terminus of PABP is responsible for the high binding specificity and affinity to poly(A), whereas the C-terminus is known to stimulate PABP multimerization on poly(A). Here, we use single-molecule nanopore force spectroscopy to directly measure interactions between poly(A) and PABPs. Both electrical and biochemical results show that the C-C domain interaction between two consecutive PABPs promotes cooperative binding. Up to now, investigators have not been able to probe the detailed polarity configuration (i.e., the internal arrangement of two PABPs on a poly(A) streak in which the C-termini face toward or away from each other). Our nanopore force spectroscopy system is able to distinguish the cooperative binding conformation from the noncooperative one. The ∼50% cooperative binding conformation of wild-type PABPs indicates that the C-C domain interaction doubles the cooperative binding probability. Moreover, the longer dissociation time of a cooperatively bound poly(A)/PABP complex as compared with a noncooperatively bound one indicates that the cooperative mode is the most stable conformation for PABPs binding onto the poly(A). However, ∼50% of the poly(A)/PABP complexes exhibit a noncooperative binding conformation, which is in line with previous studies showing that the PABP C-terminal domain also interacts with additional protein cofactors. PMID:22455926

  20. Cardiolipin Molecular Species with Shorter Acyl Chains Accumulate in Saccharomyces cerevisiae Mutants Lacking the Acyl Coenzyme A-binding Protein Acb1p

    PubMed Central

    Rijken, Pieter J.; Houtkooper, Riekelt H.; Akbari, Hana; Brouwers, Jos F.; Koorengevel, Martijn C.; de Kruijff, Ben; Frentzen, Margrit; Vaz, Frédéric M.; de Kroon, Anton I. P. M.

    2009-01-01

    The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p as a tool to modulate the cellular acyl chain content. Despite the presence of an intact CL remodeling system, acyl chains shorter than 16 carbon atoms (C16) were found to accumulate in CL in cells lacking Acb1p. Further experiments revealed that Taz1p, a key CL remodeling enzyme, was not responsible for the shortening of CL in the absence of Acb1p. This left de novo CL synthesis as the only possible source of acyl chains shorter than C16 in CL. Experiments in which the substrate specificity of the yeast cardiolipin synthase Crd1p and the acyl chain composition of individual short CL species were investigated, indicated that both CL precursors (i.e. phosphatidylglycerol and CDP-diacylglycerol) contribute to comparable extents to the shorter acyl chains in CL in acb1 mutants. Based on the findings, we conclude that the fatty acid composition of mature CL in yeast is governed by the substrate specificity of the CL-specific lipase Cld1p and the fatty acid composition of the Taz1p substrates. PMID:19656950

  1. Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q.

    PubMed

    Svitkin, Yuri V; Yanagiya, Akiko; Karetnikov, Alexey E; Alain, Tommy; Fabian, Marc R; Khoutorsky, Arkady; Perreault, Sandra; Topisirovic, Ivan; Sonenberg, Nahum

    2013-01-01

    Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3' poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5' m(7)G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs. PMID:23700384

  2. Differential Localization of the Two T. brucei Poly(A) Binding Proteins to the Nucleus and RNP Granules Suggests Binding to Distinct mRNA Pools

    PubMed Central

    Kramer, Susanne; Bannerman-Chukualim, Bridget; Ellis, Louise; Boulden, Elizabeth A.; Kelly, Steve; Field, Mark C.; Carrington, Mark

    2013-01-01

    The number of paralogs of proteins involved in translation initiation is larger in trypanosomes than in yeasts or many metazoan and includes two poly(A) binding proteins, PABP1 and PABP2, and four eIF4E variants. In many cases, the paralogs are individually essential and are thus unlikely to have redundant functions although, as yet, distinct functions of different isoforms have not been determined. Here, trypanosome PABP1 and PABP2 have been further characterised. PABP1 and PABP2 diverged subsequent to the differentiation of the Kinetoplastae lineage, supporting the existence of specific aspects of translation initiation regulation. PABP1 and PABP2 exhibit major differences in intracellular localization and distribution on polysome fractionation under various conditions that interfere with mRNA metabolism. Most striking are differences in localization to the four known types of inducible RNP granules. Moreover, only PABP2 but not PABP1 can accumulate in the nucleus. Taken together, these observations indicate that PABP1 and PABP2 likely associate with distinct populations of mRNAs. The differences in localization to inducible RNP granules also apply to paralogs of components of the eIF4F complex: eIF4E1 showed similar localization pattern to PABP2, whereas the localisation of eIF4E4 and eIF4G3 resembled that of PABP1. The grouping of translation initiation as either colocalizing with PABP1 or with PABP2 can be used to complement interaction studies to further define the translation initiation complexes in kinetoplastids. PMID:23382864

  3. Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding

    NASA Astrophysics Data System (ADS)

    Tiana, Guido; Camilloni, Carlo

    2012-12-01

    The atomistic characterization of the transition state (TS) is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically sound set of folding trajectories. Here we show that a biasing algorithm, based on the physics of the ratchet-and-pawl, can be used to approximate efficiently the transition state. The basic idea is that the algorithmic ratchet exerts a force on the protein when it is climbing the free-energy barrier, while it is inactive when it is descending. The transition state can be identified as the point of the trajectory where the ratchet changes regime. Besides discussing this strategy in general terms, we test it within a protein model whose transition state can be studied independently by plain molecular dynamics simulations. Finally, we show its power in explicit-solvent simulations, obtaining and characterizing a set of transition-state conformations for Acyl-Coenzyme A-Binding Protein (ACBP) and Chymotrypsin Inhibitor 2 (CI2).

  4. Poly(A)-binding protein facilitates translation of an uncapped/nonpolyadenylated viral RNA by binding to the 3' untranslated region.

    PubMed

    Iwakawa, Hiro-Oki; Tajima, Yuri; Taniguchi, Takako; Kaido, Masanori; Mise, Kazuyuki; Tomari, Yukihide; Taniguchi, Hisaaki; Okuno, Tetsuro

    2012-08-01

    Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA. PMID:22593149

  5. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay

    PubMed Central

    Fatscher, Tobias; Boehm, Volker; Weiche, Benjamin

    2014-01-01

    Nonsense-mediated mRNA decay (NMD) eliminates different classes of mRNA substrates including transcripts with long 3′ UTRs. Current models of NMD suggest that the long physical distance between the poly(A) tail and the termination codon reduces the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and the eukaryotic release factor 3a (eRF3a) during translation termination. In the absence of PABPC1 binding, eRF3a recruits the NMD factor UPF1 to the terminating ribosome, triggering mRNA degradation. Here, we have used the MS2 tethering system to investigate the suppression of NMD by PABPC1. We show that tethering of PABPC1 between the termination codon and a long 3′ UTR specifically inhibits NMD-mediated mRNA degradation. Contrary to the current model, tethered PABPC1 mutants unable to interact with eRF3a still efficiently suppress NMD. We find that the interaction of PABPC1 with eukaryotic initiation factor 4G (eIF4G), which mediates the circularization of mRNAs, is essential for NMD inhibition by tethered PABPC1. Furthermore, recruiting either eRF3a or eIF4G in proximity to an upstream termination codon antagonizes NMD. While tethering of an eRF3a mutant unable to interact with PABPC1 fails to suppress NMD, tethered eIF4G inhibits NMD in a PABPC1-independent manner, indicating a sequential arrangement of NMD antagonizing factors. In conclusion, our results establish a previously unrecognized link between translation termination, mRNA circularization, and NMD suppression, thereby suggesting a revised model for the activation of NMD at termination codons upstream of long 3′ UTR. PMID:25147240

  6. Poly(A)-Binding Protein Facilitates Translation of an Uncapped/Nonpolyadenylated Viral RNA by Binding to the 3′ Untranslated Region

    PubMed Central

    Iwakawa, Hiro-oki; Tajima, Yuri; Taniguchi, Takako; Kaido, Masanori; Mise, Kazuyuki; Tomari, Yukihide; Taniguchi, Hisaaki

    2012-01-01

    Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5′ cap and a 3′ poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3′ untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3′CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3′CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3′CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3′ UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3′CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3′CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3′ UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3′CITE as substitutes for the 3′ poly(A) tail and the 5′ cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA. PMID:22593149

  7. Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14-3-3 Proteins.

    PubMed

    Xiao, Yihong; Wu, Weining; Gao, Jiming; Smith, Nikki; Burkard, Christine; Xia, Dong; Zhang, Minxia; Wang, Chengbao; Archibald, Alan; Digard, Paul; Zhou, En-Min; Hiscox, Julian A

    2016-05-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry worldwide and hence global food security, exacerbated by a newly emerged highly pathogenic (HP-PRRSV) strain from China. PRRSV nonstructural protein 2 (nsp2) is a multifunctional polypeptide with strain-dependent influences on pathogenicity. A number of discrete functional regions have been identified on the protein. Quantitative label free proteomics was used to identify cellular binding partners of nsp2 expressed by HP-PRRSV. This allowed the identification of potential cellular interacting partners and the discrimination of nonspecific interactions. The interactome data were further investigated and validated using biological replicates and also compared with nsp2 from a low pathogenic (LP) strain of PRRSV. Validation included both forward and reverse pulldowns and confocal microscopy. The data indicated that nsp2 interacted with a number of cellular proteins including 14-3-3, CD2AP, and other components of cellular aggresomes. The hyper-variable region of nsp2 protein was identified as a binding platform for association with 14-3-3 proteins. PMID:26709850

  8. Poly-A binding protein-1 localization to a subset of TAR DNA-binding protein of 43 kDa inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72

    PubMed Central

    McGurk, Leeanne; Lee, Virginia, M.; Trojanowksi, John Q.; Van Deerlin, Vivianna M.; Lee, Edward B.; Bonini, Nancy M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease in which the loss of spinal cord motor neurons leads to paralysis and death within a few years of clinical disease onset. In almost all cases of ALS, TAR DNA binding protein of 43 kDa (TDP-43) forms cytoplasmic neuronal inclusions. A second causative gene for a subset of ALS is fused in sarcoma (FUS), an RNA binding protein that also forms cytoplasmic inclusions in spinal cord motor neurons. Poly A binding protein 1 (PABP-1) is a marker of stress granules, i.e. accumulations of proteins and RNA indicative of translational arrest in cells under stress. We report on the colocalization PABP-1 to both TDP-43 and FUS inclusions in 4 patient cohorts: ALS without a mutation, ALS with an intermediate poly glutamine repeat expansion in ATXN2, ALS with a GGGGCC-hexanucleotide repeat expansion in C9orf72, and ALS with basophilic inclusion body disease. Notably, PABP-1 colocalization to TDP-43 was twice as frequent in ALS with C9orf72 expansions compared to ALS with no mutation. This study highlights PABP-1 as a protein important to the pathology of ALS and indicates that the proteomic profile of TDP-43 inclusions in ALS may be different depending on the causative genetic mutation. PMID:25111021

  9. African Swine Fever Virus Protein A238L Interacts with the Cellular Phosphatase Calcineurin via a Binding Domain Similar to That of NFAT

    PubMed Central

    Miskin, James E.; Abrams, Charles C.; Dixon, Linda K.

    2000-01-01

    The African swine fever virus protein A238L inhibits activation of NFAT transcription factor by binding calcineurin and inhibiting its phosphatase activity. NFAT controls the expression of many immunomodulatory proteins. Here we describe a 14-amino-acid region of A238L that is needed and sufficient for binding to calcineurin. By introducing mutations within this region, we have identified a motif (PxIxITxC/S) required for A238L binding to calcineurin; a similar motif is found in NFAT proteins. Peptides corresponding to this domain of A238L bind calcineurin but do not inhibit its phosphatase activity. Binding of A238L to calcineurin stabilizes the A238L protein in cells. Although A238L-mediated suppression of NF-κB-dependent gene expression occurs by a different mechanism, the A238L-calcineurin interaction may be required to stabilize A238L. PMID:11000210

  10. Performance of the MM/GBSA scoring using a binding site hydrogen bond network-based frame selection: the protein kinase case.

    PubMed

    Adasme-Carreño, Francisco; Muñoz-Gutierrez, Camila; Caballero, Julio; Alzate-Morales, Jans H

    2014-07-21

    A conformational selection method, based on hydrogen bond (Hbond) network analysis, has been designed in order to rationalize the configurations sampled using molecular dynamics (MD), which are commonly used in the estimation of the relative binding free energy of ligands to macromolecules through the MM/GBSA or MM/PBSA method. This approach makes use of protein-ligand complexes obtained from X-ray crystallographic data, as well as from molecular docking calculations. The combination of several computational approaches, like long MD simulations on protein-ligand complexes, Hbond network-based selection by scripting techniques and finally MM/GBSA, provides better statistical correlations against experimental binding data than previous similar reported studies. This approach has been successfully applied in the ranking of several protein kinase inhibitors (CDK2, Aurora A and p38), which present both diverse and related chemical structures. PMID:24901037

  11. Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72.

    PubMed

    McGurk, Leeanne; Lee, Virginia M; Trojanowksi, John Q; Van Deerlin, Vivianna M; Lee, Edward B; Bonini, Nancy M

    2014-09-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease in which the loss of spinal cord motor neurons leads to paralysis and death within a few years of clinical disease onset. In almost all cases of ALS, transactive response DNA binding protein of 43 kDa (TDP-43) forms cytoplasmic neuronal inclusions. A second causative gene for a subset of ALS is fused in sarcoma, an RNA binding protein that also forms cytoplasmic inclusions in spinal cord motor neurons. Poly-A binding protein-1 (PABP-1) is a marker of stress granules (i.e. accumulations of proteins and RNA indicative of translational arrest in cells under stress). We report on the colocalization of PABP-1 to both TDP-43 and fused-in-sarcoma inclusions in 4 patient cohorts: ALS without a mutation, ALS with an intermediate polyglutamine repeat expansion in ATXN2, ALS with a GGGGCC hexanucleotide repeat expansion in C9orf72, and ALS with basophilic inclusion body disease. Notably, PABP-1 colocalization to TDP-43 was twice as frequent in ALS with C9orf72 expansions compared to ALS with no mutation. This study highlights PABP-1 as a protein that is important to the pathology of ALS and indicates that the proteomic profile of TDP-43 inclusions in ALS may differ depending on the causative genetic mutation. PMID:25111021

  12. Novel β-Propeller of the BTB-Kelch Protein Krp1 Provides a Binding Site for Lasp-1 That Is Necessary for Pseudopodial Extension*♦

    PubMed Central

    Gray, Christopher H.; McGarry, Lynn C.; Spence, Heather J.; Riboldi-Tunnicliffe, Alan; Ozanne, Bradford W.

    2009-01-01

    Kelch-related protein 1 (Krp1) is up-regulated in oncogene-transformed fibroblasts. The Kelch repeats interact directly with the actin-binding protein Lasp-1 in membrane ruffles at the tips of pseudopodia, where both proteins are necessary for pseudopodial elongation. Herein, we investigate the molecular basis for this interaction. Probing an array of overlapping decapeptides of Rattus norvegicus (Rat) Krp1 with recombinant Lasp-1 revealed two binding sites; one (317YDPMENECYLT327) precedes the first of five Kelch repeats, and the other (563TEVNDIWKYEDD574) is in the last of the five Kelch repeats. Mutational analysis established that both binding sites are necessary for Krp1-Lasp-1 interaction in vitro and function in vivo. The crystal structure of the C-terminal domain of rat Krp1 (amino acids 289–606) reveals that both binding sites are brought into close proximity by the formation of a novel six-bladed β-propeller, where the first blade is not formed by a Kelch repeat. PMID:19726686

  13. Evidence That Eukaryotic Translation Elongation Factor 1A (eEF1A) Binds the Gcn2 Protein C Terminus and Inhibits Gcn2 Activity*♦

    PubMed Central

    Visweswaraiah, Jyothsna; Lageix, Sebastien; Castilho, Beatriz A.; Izotova, Lara; Kinzy, Terri Goss; Hinnebusch, Alan G.; Sattlegger, Evelyn

    2011-01-01

    The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His6-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His6-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis. PMID:21849502

  14. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity.

    PubMed

    Visweswaraiah, Jyothsna; Lageix, Sebastien; Castilho, Beatriz A; Izotova, Lara; Kinzy, Terri Goss; Hinnebusch, Alan G; Sattlegger, Evelyn

    2011-10-21

    The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis. PMID:21849502

  15. AUF-1 and YB-1 independently regulate β-globin mRNA in developing erythroid cells through interactions with poly(A)-binding protein

    PubMed Central

    van Zalen, Sebastiaan; Lombardi, Alyssa A.; Jeschke, Grace R.; Hexner, Elizabeth O.; Russell, J. Eric

    2015-01-01

    The normal expression of β-globin protein in mature erythrocytes is critically dependent on post-transcriptional events in erythroid progenitors that ensure the high stability of β-globin mRNA. Previous work has revealed that these regulatory processes require AUF-1 and YB-1, two RNA-binding proteins that assemble an mRNP β-complex on the β-globin 3′UTR. Here, we demonstrate that the β-complex organizes during the erythropoietic interval when both β-globin mRNA and protein accumulate rapidly, implicating the importance of this regulatory mRNP to normal erythroid differentiation. Subsequent functional analyses link β-complex assembly to the half-life of β-globin mRNA in vivo, providing a mechanistic basis for this regulatory activity. AUF-1 and YB-1 appear to serve a redundant post-transcriptional function, as both β-complex assembly and β-globin mRNA levels are reduced by coordinate depletion of the two factors, and can be restored by independent rescue with either factor alone. Additional studies demonstrate that the β-complex assembles more efficiently on polyadenylated transcripts, implicating a model in which the β-complex enhances the binding of PABPC1 to the poly(A) tail, inhibiting mRNA deadenylation and consequently effecting the high half-life of β-globin transcripts in erythroid progenitors. These data specify a post-transcriptional mechanism through which AUF1 and YB1 contribute to the normal development of erythropoietic cells, as well as to non-hematopoietic tissues in which AUF1-and YB1-based regulatory mRNPs have been observed to assemble on heterologous mRNAs. PMID:25720531

  16. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets

    PubMed Central

    Soupene, Eric; Wang, Derek; Kuypers, Frans A

    2015-01-01

    The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nutrients and proteins with the host cell. We show that host lipids are scavenged and modified into bacterial-specific lipids by the action of a shared human-bacterial acylation mechanism. The bacterial acylating enzymes for the essential lipids 1-acyl-sn-glycerol 3-phosphate and 1-acyl-sn-phosphatidylcholine were identified as CT453 and CT775, respectively. Bacterial CT775 was found to be associated with lipid droplets (LDs). During the development of C. trachomatis, the human acyl-CoA carrier hACBD6 was recruited to cytosolic LDs and translocated into the inclusion. hACBD6 protein modulated the activity of CT775 in an acyl-CoA dependent fashion and sustained the activity of the bacterial acyltransferase by buffering the concentration of acyl-CoAs. We propose that disruption of the binding activity of the acyl-CoA carrier might represent a new drug-target to prevent growth of C. trachomatis. PMID:25604091

  17. Structure of an Odorant-Vinding Protein form the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive

    SciTech Connect

    N Leite; R Krogh; W Xu; Y Ishida; J Iulek; W Leal; G Oliva

    2011-12-31

    The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 {angstrom} resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six {alpha}-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this 'lid' may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

  18. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein.

    PubMed Central

    Svennelid, F; Olsson, A; Piotrowski, M; Rosenquist, M; Ottman, C; Larsson, C; Oecking, C; Sommarin, M

    1999-01-01

    The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth. PMID:10590165

  19. Analysis of human follistatin structure: identification of two discontinuous N-terminal sequences coding for activin A binding and structural consequences of activin binding to native proteins.

    PubMed

    Wang, Q; Keutmann, H T; Schneyer, A L; Sluss, P M

    2000-09-01

    A primary physiological function of follistatin is the binding and neutralization of activin, a transforming growth factor-beta family growth factor, and loss of function mutations are lethal. Despite the critical biological importance of follistatin's neutralization of activin, the structural basis of activin's binding to follistatin is poorly understood. The purposes of these studies were 1) to identify the primary sequence(s) within the N-terminal domain of the follistatin coding for activin binding, and 2) to determine whether activin binding to the native protein causes changes in other structural domains of follistatin. Synthetic peptide mimotopes identified within a 63-residue N-terminal domain two discontinuous sequences capable of binding labeled activin A. The first is located in a region (amino acids 3-26) of follistatin, a site previously identified by directed mutagenesis as important for activin binding. The second epitope, predicted to be located between amino acids 46 and 59, is newly identified. Although the sequences 3-26 and 46-59 code for activin binding, native follistatin only binds activin if disulfide bonding is intact. Furthermore, pyridylethylation of Cys residues followed by N-terminal sequencing and amino acid analysis revealed that all of the Cys residues in follistatin are involved in disulfide bonds and lack reactive free sulfhydryl groups. Specific ligands were used to probe the structural effects of activin binding on the other domains of the full-length molecule, comprised largely of the three 10-Cys follistatin module domains. No effects on ligand binding to follistatin-like module I or II were observed after the binding of activin A to native protein. In contrast, activin binding diminished recognition of domain III and enhanced that of the C domain by their respective monoclonal antibody probes, indicating an alteration of the antigenic structures of these regions. Thus, subsequent to activin binding, interactions are likely to

  20. Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins.

    PubMed

    Schmid, Manfred; Poulsen, Mathias Bach; Olszewski, Pawel; Pelechano, Vicent; Saguez, Cyril; Gupta, Ishaan; Steinmetz, Lars M; Moore, Claire; Jensen, Torben Heick

    2012-07-27

    Poly(A) (pA) tail binding proteins (PABPs) control mRNA polyadenylation, stability, and translation. In a purified system, S. cerevisiae PABPs, Pab1p and Nab2p, are individually sufficient to provide normal pA tail length. However, it is unknown how this occurs in more complex environments. Here we find that the nuclear exosome subunit Rrp6p counteracts the in vitro and in vivo extension of mature pA tails by the noncanonical pA polymerase Trf4p. Moreover, PABP loading onto nascent pA tails is controlled by Rrp6p; while Pab1p is the major PABP, Nab2p only associates in the absence of Rrp6p. This is because Rrp6p can interact with Nab2p and displace it from pA tails, potentially leading to RNA turnover, as evidenced for certain pre-mRNAs. We suggest that a nuclear mRNP surveillance step involves targeting of Rrp6p by Nab2p-bound pA-tailed RNPs and that pre-mRNA abundance is regulated at this level. PMID:22683267

  1. Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay.

    PubMed

    Grenier St-Sauveur, Valérie; Soucek, Sharon; Corbett, Anita H; Bachand, François

    2013-12-01

    The 3' end of most eukaryotic transcripts is decorated by poly(A)-binding proteins (PABPs), which influence the fate of mRNAs throughout gene expression. However, despite the fact that multiple PABPs coexist in the nuclei of most eukaryotes, how functional interplay between these nuclear PABPs controls gene expression remains unclear. By characterizing the ortholog of the Nab2/ZC3H14 zinc finger PABP in Schizosaccharomyces pombe, we show here that the two major fission yeast nuclear PABPs, Pab2 and Nab2, have opposing roles in posttranscriptional gene regulation. Notably, we find that Nab2 functions in gene-specific regulation in a manner opposite to that of Pab2. By studying the ribosomal-protein-coding gene rpl30-2, which is negatively regulated by Pab2 via a nuclear pre-mRNA decay pathway that depends on the nuclear exosome subunit Rrp6, we show that Nab2 promotes rpl30-2 expression by acting at the level of the unspliced pre-mRNA. Our data support a model in which Nab2 impedes Pab2/Rrp6-mediated decay by competing with Pab2 for polyadenylated transcripts in the nucleus. The opposing roles of Pab2 and Nab2 reveal that interplay between nuclear PABPs can influence gene regulation. PMID:24081329

  2. In the absence of cellular poly (A) binding protein, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-06-03

    Highlights: {yields} PABP knock down and cell apoptosis. {yields} Nuclear translocation of GAPDH in PABP depleted cells. {yields} Role of p53 in apoptosis of PABP depleted cells. {yields} Bax translocation and cytochrome C release and caspase 3 activation following PABP depletion. {yields} Association of p53 with Bcl2 and Bax. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) interacts with 3' poly (A) tract of eukaryotic mRNA and is important for both translation and stability of mRNA. Previously, we have shown that depletion of PABP by siRNA prevents protein synthesis and consequently leads to cell death through apoptosis. In the present investigation, we studied the mechanism of cell apoptosis. We show that in the absence of PABP, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53. As a result, p53 translocated to the mitochondria to initiate Bax mediated apoptosis.

  3. Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae.

    PubMed

    Roque, Sylvain; Cerciat, Marie; Gaugué, Isabelle; Mora, Liliana; Floch, Aurélie G; de Zamaroczy, Miklos; Heurgué-Hamard, Valérie; Kervestin, Stephanie

    2015-01-01

    Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination. PMID:25411355

  4. Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: new insights into acyl chain remodeling of cardiolipin.

    PubMed

    Rijken, Pieter J; Houtkooper, Riekelt H; Akbari, Hana; Brouwers, Jos F; Koorengevel, Martijn C; de Kruijff, Ben; Frentzen, Margrit; Vaz, Frédéric M; de Kroon, Anton I P M

    2009-10-01

    The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p as a tool to modulate the cellular acyl chain content. Despite the presence of an intact CL remodeling system, acyl chains shorter than 16 carbon atoms (C16) were found to accumulate in CL in cells lacking Acb1p. Further experiments revealed that Taz1p, a key CL remodeling enzyme, was not responsible for the shortening of CL in the absence of Acb1p. This left de novo CL synthesis as the only possible source of acyl chains shorter than C16 in CL. Experiments in which the substrate specificity of the yeast cardiolipin synthase Crd1p and the acyl chain composition of individual short CL species were investigated, indicated that both CL precursors (i.e. phosphatidylglycerol and CDP-diacylglycerol) contribute to comparable extents to the shorter acyl chains in CL in acb1 mutants. Based on the findings, we conclude that the fatty acid composition of mature CL in yeast is governed by the substrate specificity of the CL-specific lipase Cld1p and the fatty acid composition of the Taz1p substrates. PMID:19656950

  5. Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae

    PubMed Central

    Roque, Sylvain; Cerciat, Marie; Gaugué, Isabelle; Mora, Liliana; Floch, Aurélie G.; de Zamaroczy, Miklos; Heurgué-Hamard, Valérie

    2015-01-01

    Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination. PMID:25411355

  6. Hebrew as a Binding Force.

    ERIC Educational Resources Information Center

    Fischler, Ben-Zion

    1990-01-01

    The role of the Hebrew language as a cohesive force and the history of modern Hebrew instruction are chronicled. It is proposed that despite the scattering of its speakers and periods of use only as a literary or business language, Hebrew has been a binding force for the Jewish people. It was with considerable struggle that Hebrew gained…

  7. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  8. Nuclear inclusions mimicking poly(A)-binding protein nuclear 1 inclusions in a case of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia with a novel mutation in the valosin-containing protein gene.

    PubMed

    Matsubara, Shiro; Shimizu, Toshio; Komori, Takashi; Mori-Yoshimura, Madoka; Minami, Narihiro; Hayashi, Yukiko K

    2016-07-01

    A middle-aged Japanese man presented with slowly progressive asymmetric weakness of legs and arm but had neither ptosis nor dysphagia. He had a family history of similar condition suggestive of autosomal dominant inheritance. A muscle biopsy showed mixture of neurogenic atrophy and myopathy with rimmed vacuoles. Furthermore we found intranuclear inclusions that had a fine structure mimicking that of inclusions reported in oculopharyngeal muscular dystrophy (OPMD). Immunohistochemical staining for polyadenylate-binding nuclear protein 1, which is identified within the nuclear inclusions of OPMD, demonstrated nuclear positivity in this case. However, OPMD was thought unlikely based on the clinical features and results of genetic analyses. Instead, a novel mutation in valosin-containing protein, c.376A>T (p.Ile126Phe), was revealed. A diagnosis of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia was made. This is the first report of polyadenylate-binding nuclear protein 1-positive nuclear inclusions in the muscle of this condition. PMID:27209344

  9. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3

    PubMed Central

    2011-01-01

    Background Striatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between

  10. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay.

    PubMed

    Zhou, Zishan; Wang, Zeyu; Liu, Yuxiao; Liang, Gemei; Shu, Changlong; Song, Fuping; Zhou, Xueping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie

    2016-08-01

    Cry1Ac toxin-binding proteins from Helicoverpa armigera brush border membrane vesicles were identified by an improved pull-down method that involves coupling Cry1Ac to CNBr agarose combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). According to the LC-MS/MS results, Cry1Ac toxin could bind to six classes of aminopeptidase-N, alkaline phosphatase, cadherin-like protein, ATP-binding cassette transporter subfamily C protein (ABCC2), actin, ATPase, polycalin, and some other proteins not previously characterized as Cry toxin-binding molecules such as dipeptidyl peptidase or carboxyl/choline esterase and some serine proteases. This is the first report that suggests the direct binding of Cry1Ac toxin to ABCC2 in H. armigera. PMID:27037552

  11. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids.

    PubMed Central

    Wadum, Majken C T; Villadsen, Jens K; Feddersen, Søren; Møller, Rikke S; Neergaard, Thomas B F; Kragelund, Birthe B; Højrup, Peter; Faergeman, Nils J; Knudsen, Jens

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl-CoA-binding protein were replaced by cysteine residues, which were covalently modified with 6-bromoacetyl-2-dimethylaminonaphthalene to make the two fluorescent acyl-CoA indicators (FACIs) FACI-24 and FACI-53. FACI-24 and FACI-53 showed fluorescence emission maximum at 510 and 525 nm respectively, in the absence of ligand (excitation 387 nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495 nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460 nm upon binding of C14-C20 saturated and unsaturated acyl-CoA esters. Both indicators bind long-chain (>C14) acyl-CoA esters with high specificity and affinity (K(d)=0.6-1.7 nM). FACI-53 showed a high fluorescence yield for C8-C12 acyl chains. It is shown that FACI-24 acts as a sensitive acyl-CoA sensor for measuring the concentration of free acyl-CoA, acyl-CoA synthetase activity and the concentrations of free fatty acids after conversion of the fatty acid into their respective acyl-CoA esters. PMID:12071849

  12. Investigation on the conA binding properties of Klebsiella pneumoniae.

    PubMed

    Anuar, A S S; Tay, S T

    2014-12-01

    Klebsiella pneumoniae is a healthcare-associated bacterial pathogen which causes severe diseases in immunocompromised individuals. Concanavalin A (conA), a lectin which recognizes proteins with mannose or glucose residues, has been reported to agglutinate K. pneumoniae and hence, is postulated to have therapeutical potential for K. pneumoniae-induced liver infection. This study investigated the conA binding properties of a large collection of clinical isolates of K. pneumoniae. ConA agglutination reaction was demonstrated by 94 (51.4%) of 183 K. pneumoniae isolates using a microtiter plate assay. The conA agglutination reactions were inhibited in the presence of 2.5 mg/ml D-mannose and 2.5 mg/ml glucose, and following pretreatment of the bacterial suspension with protease and heating at 80ºC. Majority of the positive isolates originated from respiratory specimens. Isolation of conA-binding proteins from K. pneumoniae ATCC 700603 strain was performed using conA affinity column and the conA binding property of the eluted proteins was confirmed by western blotting analysis using conA-HRP conjugates. Proteins with molecular weights ranging from 35 to 60 kDa were eluted from the conA affinity column, of which four were identified as outer membrane protein precursor A (37 kDa), outer membrane protein precursor C (40 kDa), enolase (45 kDa) and chaperonin (60 kDa) using mass spectrometry analysis. Several conA binding proteins (including 45 and 60 kDa) were found to be immunogenic when reacted with rabbit anti-Klebsiella antibody. The function and interplay of the conA binding proteins in bacterium-host cell relationship merits further investigation. PMID:25776607

  13. Structures of Triacetyloleandomycin and Mycalamide A Bind to the Large Ribosomal Subunit of Haloarcula marismortui

    SciTech Connect

    Gürel, Güliz; Blaha, Gregor; Steitz, Thomas A.; Moore, Peter B.

    2010-01-14

    Structures have been obtained for the complexes that triacetyloleandomycin and mycalamide A form with the large ribosomal subunit of Haloarcula marismortui. Triacetyloleandomycin binds in the nascent peptide tunnel and inhibits the activity of ribosomes by blocking the growth of the nascent peptide chain. Mycalamide A binds to the E site and inhibits protein synthesis by occupying the space normally occupied by the CCA end of E-site-bound tRNAs.

  14. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    PubMed Central

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls. PMID:27489856

  15. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    PubMed

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls. PMID:27489856

  16. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  17. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  18. The CD11c antigen couples concanavalin A binding to generation of superoxide anion in human phagocytes.

    PubMed Central

    Lacal, P M; Balsinde, J; Cabañas, C; Bernabeu, C; Sánchez-Madrid, F; Mollinedo, F

    1990-01-01

    We have found that an anti-CD11c monoclonal antibody (MAb) inhibits the respiratory burst induced in phorbol 12-myristate 13-acetate (PMA)-differentiated U937 cells as well as in human peripheral blood monocytes and neutrophils upon cell stimulation with concanavalin A. The MAb had no effect, however, when the added stimulus was fMet-Leu-Phe or PMA. Flow cytometry analyses indicated that concanavalin A was able to interact with CD11c. The anti-CD11c MAb inhibited significantly concanavalin A binding to differentiated U937 cells, and concanavalin A blocked binding of anti-CD11c MAb to the cells. Binding of labelled concanavalin A to membrane proteins which were separated by PAGE and transferred to nitrocellulose paper indicated that proteins with apparent molecular masses similar to those of CD11c (150 kDa) and CD18 (95 kDa) molecules were the main concanavalin A-binding proteins in differentiated U937 cells as well as in mature neutrophils. Similar experiments carried out in the presence of the anti-CD11c MAb showed a specific and significant inhibition of concanavalin A binding to the CD11c molecule. These results indicate that concanavalin A binds to the CD11c molecule and this binding is responsible for the concanavalin A-induced respiratory burst in PMA-differentiated U937 cells as well as in human mature monocytes and neutrophils. Images Fig. 2. Fig. 3. PMID:1973035

  19. An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria

    PubMed Central

    Sanchez-Alberola, Neus; Campoy, Susana; Emerson, David; Barbé, Jordi

    2015-01-01

    ABSTRACT The SOS response is a transcriptional regulatory network governed by the LexA repressor that activates in response to DNA damage. In the Betaproteobacteria, LexA is known to target a palindromic sequence with the consensus sequence CTGT-N8-ACAG. We report the characterization of a LexA regulon in the iron-oxidizing betaproteobacterium Sideroxydans lithotrophicus. In silico and in vitro analyses show that LexA targets six genes by recognizing a binding motif with the consensus sequence GAACGaaCGTTC, which is strongly reminiscent of the Bacillus subtilis LexA-binding motif. We confirm that the closely related Gallionella capsiferriformans shares the same LexA-binding motif, and in silico analyses indicate that this motif is also conserved in the Nitrosomonadales and the Methylophilales. Phylogenetic analysis of LexA and the alpha subunit of DNA polymerase III (DnaE) reveal that the organisms harboring this noncanonical LexA form a compact taxonomic cluster within the Betaproteobacteria. However, their lexA gene is unrelated to the standard Betaproteobacteria lexA, and there is evidence of its spread through lateral gene transfer. In contrast to other reported cases of noncanonical LexA-binding motifs, the regulon of S. lithotrophicus is comparable in size and function to that of many other Betaproteobacteria, suggesting that a convergent SOS regulon has reevolved under the control of a new LexA protein. Analysis of the DNA-binding domain of S. lithotrophicus LexA reveals little sequence similarity with that of other LexA proteins targeting similar binding motifs, suggesting that network structure may limit site evolution or that structural constrains make the B. subtilis-type motif an optimal interface for multiple LexA sequences. IMPORTANCE Understanding the evolution of transcriptional systems enables us to address important questions in microbiology, such as the emergence and transfer potential of different regulatory systems to regulate virulence or

  20. Scatchard analysis of fluorescent concanavalin A binding to lymphocytes

    SciTech Connect

    Gordon, I.L.

    1995-07-01

    Standard Scatchard analysis of ligand binding to cell receptors requires the use of isotopes and is imprecise at low ligand concentrations. To evaluate the feasibility of Scatchard analysis via fluorescence flow cytometry, the binding of fluorescein isothio-cyanate-derivatized concanavalin A (FITC-ConA) to murine lymphocytes at 4{degrees}C was compared to {sup 125}I-ConA binding. A FACS IV flow cytometer was used for analysis of cells after fluorescent ligand binding. A simple spectrophotometric technique was used to calibrate the relation between cytometer-determined fluorescence and ligand binding per cell. As FITC-ConA binding showed a quasi-Gaussian distribution, the mean number of molecules bound per cell was easily calculated. Scatchard analysis of FITC-ConA binding yielded results (1.9 x 10{sup 6} receptors/cell, K = 3.6 x 10{sup -15}) similar to those obtained With {sup 125}I-ConA (1.4 x 10{sup 6} receptors/cell, K = 5.2 x 10{sup -15}). Cytometric Scatchard plots showed less scatter and seemed more precise, suggesting superiority to radioactive ligand measurements, particularly at low ligand concentrations. 32 refs., 4 figs., 1 tab.

  1. Isolation and detection of human IgA using a streptococcal IgA-binding peptide.

    PubMed

    Sandin, Charlotta; Linse, Sara; Areschoug, Thomas; Woof, Jenny M; Reinholdt, Jesper; Lindahl, Gunnar

    2002-08-01

    Bacterial proteins that bind to the Fc part of IgG have found widespread use in immunology. A similar protein suitable for the isolation and detection of human IgA has not been described. Here, we show that a 50-residue synthetic peptide, designated streptococcal IgA-binding peptide (Sap) and derived from a streptococcal M protein, can be used for single-step affinity purification of human IgA. High affinity binding of IgA required the presence in Sap of a C-terminal cysteine residue, not present in the intact M protein. Passage of human serum through a Sap column caused depletion of >99% of the IgA, and elution of the column allowed quantitative recovery of highly purified IgA, for which the proportions of the IgA1 and IgA2 subclasses were the same as in whole serum. Moreover, immobilized Sap could be used for single-step purification of secretory IgA of both subclasses from human saliva, with a recovery of approximately 45%. The Sap peptide could also be used to specifically detect IgA bound to Ag. Together, these data indicate that Sap is a versatile Fc-binding reagent that may open new possibilities for the characterization of human IgA. PMID:12133959

  2. Identification of FAM96B as a novel prelamin A binding partner

    SciTech Connect

    Xiong, Xing-Dong; Wang, Junwen; Zheng, Huiling; Jing, Xia; Liu, Zhenjie; Zhou, Zhongjun; Liu, Xinguang

    2013-10-11

    Highlights: •We screen the binding protein of prelamin A by yeast two-hybrid screen. •FAM96B colocalizes with prelamin A in HEK-293 cells. •FAM96B physically interacts with prelamin A. -- Abstract: Prelamin A accumulation causes nuclear abnormalities, impairs nuclear functions, and eventually promotes cellular senescence. However, the underlying mechanism of how prelamin A promotes cellular senescence is still poorly understood. Here we carried out a yeast two-hybrid screen using a human skeletal muscle cDNA library to search for prelamin A binding partners, and identified FAM96B as a prelamin A binding partner. The interaction of FAM96B with prelamin A was confirmed by GST pull-down and co-immunoprecipitation experiments. Furthermore, co-localization experiments by fluorescent confocal microscopy revealed that FAM96B colocalized with prelamin A in HEK-293 cells. Taken together, our data demonstrated the physical interaction between FAM96B and prelamin A, which may provide some clues to the mechanisms of prelamin A in premature aging.

  3. Fibronectin is a binding partner for the myelin-associated glycoprotein (siglec-4a).

    PubMed

    Strenge, K; Brossmer, R; Ihrig, P; Schauer, R; Kelm, S

    2001-06-22

    The myelin-associated glycoprotein (MAG) mediates cell-cell interactions between myelinating glial cells and neurons. Here we describe the extracellular matrix glycoprotein fibronectin as a binding partner of MAG. It has been identified by affinity precipitation with MAG-Fc from NG108-15 cells and by microsequencing of two peptides derived from a 210-kDa protein band. Western blot analysis showed that fibronectin is also present in MAG binding partners isolated from N(2)A (murine neuroblastoma) cells, rat brain and rat spinal cord. Different fibronectin isoforms have been isolated from brains of young and adult rats, indicating that the expression of MAG binding fibronectin changes during development. PMID:11423128

  4. 14-3-3θ is a binding partner of rat Eag1 potassium channels.

    PubMed

    Hsu, Po-Hao; Miaw, Shi-Chuen; Chuang, Chau-Ching; Chang, Pei-Yu; Fu, Ssu-Ju; Jow, Guey-Mei; Chiu, Mei-Miao; Jeng, Chung-Jiuan

    2012-01-01

    The ether-à-go-go (Eag) potassium (K(+)) channel belongs to the superfamily of voltage-gated K(+) channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1)-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+) currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+) channel in neurons. PMID:22911758

  5. Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering

    PubMed Central

    Lee, Sang-Chul; Park, Keunwan; Han, Jieun; Lee, Joong-jae; Kim, Hyun Jung; Hong, Seungpyo; Heu, Woosung; Kim, Yu Jung; Ha, Jae-Seok; Lee, Seung-Goo; Cheong, Hae-Kap; Jeon, Young Ho; Kim, Dongsup; Kim, Hak-Sung

    2012-01-01

    Repeat proteins have recently been of great interest as potential alternatives to immunoglobulin antibodies due to their unique structural and biophysical features. We here present the development of a binding scaffold based on variable lymphocyte receptors, which are nonimmunoglobulin antibodies composed of Leucine-rich repeat modules in jawless vertebrates, by module engineering. A template scaffold was first constructed by joining consensus repeat modules between the N- and C-capping motifs of variable lymphocyte receptors. The N-terminal domain of the template scaffold was redesigned based on the internalin-B cap by analyzing the modular similarity between the respective repeat units using a computational approach. The newly designed scaffold, termed “Repebody,” showed a high level of soluble expression in bacteria, displaying high thermodynamic and pH stabilities. Ease of molecular engineering was shown by designing repebodies specific for myeloid differentiation protein-2 and hen egg lysozyme, respectively, by a rational approach. The crystal structures of designed repebodies were determined to elucidate the structural features and interaction interfaces. We demonstrate general applicability of the scaffold by selecting repebodies with different binding affinities for interleukin-6 using phage display. PMID:22328160

  6. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    PubMed

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. PMID:26676327

  7. Activation of the Klebsiella pneumoniae nifU promoter: identification of multiple and overlapping upstream NifA binding sites.

    PubMed Central

    Cannon, W V; Kreutzer, R; Kent, H M; Morett, E; Buck, M

    1990-01-01

    The Klebsiella pneumoniae nifU promoter is positively controlled by the NifA protein and requires a form of RNA polymerase holoenzyme containing the rpoN encoded sigma factor, sigma 54. Occupancy of the K. pneumoniae nifU promoter by NifA was examined using in vivo dimethyl sulphate footprinting. Three binding sites for NifA (Upstream Activator Sequences, UASs 1, 2 and 3) located at -125, -116 and -72 were identified which conform to the UAS consensus sequence TGT-N10-ACA. An additional NifA binding site was identified at position -90. The UASs located at -125 (UAS1) and -116 (UAS2) overlap and do not appear to bind NifA as independent sites. They may represent a NifA binding site interacting with two NifA dimers. UAS3 is located at -72, and abuts a binding site for integration host factor (IHF) and is not normally highly occupied by NifA. In the absence of IHF UAS3 showed increased occupancy by NifA. Mutational and footprinting analysis of the three UASs indicates (1) IHF and NifA can compete for binding and that this competition influences the level of expression from the nifU promoter (2) that UAS2 is a principle sequence of the UAS 1,2 region required for activation and (3) that none of the NifA binding sites interacts with NifA independently. In vivo KMnO4 footprinting demonstrated that NifA catalyses open complex formation at the nifU promoter. IHF was required for maximal expression from the nifU and nifH promoters in Escherichia coli, and for the establishment of a Nif+ phenotype in E. coli from the nif plasmid pRD1. Images PMID:2186362

  8. Nuclear AP/sub 4/A-binding activity of sea urchin embryos changes in relation to the initiation of S phase

    SciTech Connect

    Morioka, M.; Shimada, H.

    1986-01-01

    The AP/sub 4/A-binding activity of sea urchin embryos was studied using radioactively labelled diadenosine 5', 5'''-P/sup 1/,P/sup 4/-tetraphosphate (Ap/sub 4/A). Among various subcellular components that can bind (/sup 3/H)AP/sub 4/A, nuclei alone showed the highly specific Ap/sub 4/A-binding activity which was not influenced by the presence of AP/sub 4/A, AP/sub 5/A and GP/sub 4/G. The addition of an excess amount of ATP only slightly reduced the binding of (/sup 3/H)AP/sub 4/A to the nuclei. It was found that AP/sub 4/A binds to the residual proteinaceous structure of nuclei which was resistant to the extraction with 2 M NaCl. The nuclear AP/sub 4/A-binding activity fluctuated cyclically during each cell cycle, with at transient increase at the beginning of S phase followed by an abrupt-decrease within 10 min. When the initiation of S phase was blocked, the increase in the AP/sub 4/A-binding activity was also prevented. It seems that the binding of AP/sub 4/A to the nuclear structural protein is involved in the initiation of S phase.

  9. A binding question: the evolution of the receptor concept

    PubMed Central

    Maehle, Andreas-Holger

    2009-01-01

    In present-day pharmacology and medicine, it is usually taken for granted that cells contain a host of highly specific receptors. These are defined as proteins on or within the cell that bind with specificity to particular drugs, chemical messenger substances or hormones and mediate their effects on the body. However, it is only relatively recently that the notion of drug-specific receptors has become widely accepted, with considerable doubts being expressed about their existence as late as the 1960s. When did the receptor concept emerge, how did it evolve and why did it take so long to become established? PMID:19837460

  10. Concanavalin A binding glycoproteins in subcellular fractions from the developing rat cerebral cortex.

    PubMed

    Rudge, J S; Murphy, S

    1984-09-01

    Synaptic plasma membrane (SPM) and mitochondrial fractions were prepared from 3-50-day rat cerebral cortex and their purity assessed. The fractions were subjected to electrophoresis on slab gels, stained for protein, and overlaid with 125I-concanavalin A (ConA). ConA binding glycoproteins (CABGs) were revealed by autoradiography. In the SPM fraction CABGs of MW 25,000, 63,000, 80,000, 115,000, 174,000, and 239,000 increased while those of MW 47,000, 75,000, and 190,000 decreased developmentally. In the mitochondrial fraction, CABGs of MW 25,000, 44,000, 115,000 and 174,000 increased while those of 34,000, 43,000, 47,000, 51,000, 80,000, 107,000, and 195,000 decreased developmentally. CABGs of MW 32,000, 63,000, 88,000, 153,000, 190,000, and 239,000 appear to be unique to the SPM fraction and those of MW 34,000, 107,000, and 195,000 are unique to the mitochondrial fraction. PMID:6747641

  11. Lin28A Binds Active Promoters and Recruits Tet1 to Regulate Gene Expression.

    PubMed

    Zeng, Yaxue; Yao, Bing; Shin, Jaehoon; Lin, Li; Kim, Namshik; Song, Qifeng; Liu, Shuang; Su, Yijing; Guo, Junjie U; Huang, Luoxiu; Wan, Jun; Wu, Hao; Qian, Jiang; Cheng, Xiaodong; Zhu, Heng; Ming, Guo-li; Jin, Peng; Song, Hongjun

    2016-01-01

    Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal enrichment of Lin28A binding around transcription start sites and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and have implications for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems. PMID:26711009

  12. 49 CFR 375.403 - How must I provide a binding estimate?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false How must I provide a binding estimate? 375.403... TRANSPORTATION OF HOUSEHOLD GOODS IN INTERSTATE COMMERCE; CONSUMER PROTECTION REGULATIONS Estimating Charges § 375.403 How must I provide a binding estimate? (a) You may provide a guaranteed binding estimate...

  13. OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii

    PubMed Central

    Lin, Ming-Feng; Tsai, Pei-Wen; Chen, Jeng-Yi; Lin, Yun-You; Lan, Chung-Yu

    2015-01-01

    Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding. PMID:26484669

  14. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets

    PubMed Central

    Begonja, Antonija Jurak; Pluthero, Fred G.; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W.; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M.; Kahr, Walter H. A.; Hartwig, John H.

    2015-01-01

    Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. PMID:25838348

  15. NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: model of the possible lipid A-binding site.

    PubMed

    Yang, Yinshan; Boze, Hélène; Chemardin, Patrick; Padilla, André; Moulin, Guy; Tassanakajon, Anchalee; Pugnière, Martine; Roquet, Françoise; Destoumieux-Garzón, Delphine; Gueguen, Yannick; Bachère, Evelyne; Aumelas, André

    2009-03-01

    The anti-lipopolysaccharide factor ALF-Pm3 is a 98-residue protein identified in hemocytes from the black tiger shrimp Penaeus monodon. It was expressed in Pichia pastoris from the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter as a folded and (15)N uniformly labeled rALF-Pm3 protein. Its 3D structure was established by NMR and consists of three alpha-helices packed against a four-stranded beta-sheet. The C(34)-C(55) disulfide bond was shown to be essential for the structure stability. By using surface plasmon resonance, we demonstrated that rALF-Pm3 binds to LPS, lipid A and to OM-174, a soluble analogue of lipid A. Biophysical studies of rALF-Pm3/LPS and rALF-Pm3/OM-174 complexes indicated rather high molecular sized aggregates, which prevented us to experimentally determine by NMR the binding mode of these lipids to rALF-Pm3. However, on the basis of striking structural similarities to the FhuA/LPS complex, we designed an original model of the possible lipid A-binding site of ALF-Pm3. Such a binding site, located on the ALF-Pm3 beta-sheet and involving seven charged residues, is well conserved in ALF-L from Limulus polyphemus and in ALF-T from Tachypleus tridentatus. In addition, our model is in agreement with experiments showing that beta-hairpin synthetic peptides corresponding to ALF-L beta-sheet bind to LPS. Delineating lipid A-binding site of ALFs will help go further in the de novo design of new antibacterial or LPS-neutralizing drugs. PMID:19107926

  16. The Pentapeptide Repeat Proteins

    SciTech Connect

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  17. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice.

    PubMed

    Lanfray, Damien; Caron, Alexandre; Roy, Marie-Claude; Laplante, Mathieu; Morin, Fabrice; Leprince, Jérôme; Tonon, Marie-Christine; Richard, Denis

    2016-01-01

    Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway. PMID:26880548

  18. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice

    PubMed Central

    Lanfray, Damien; Caron, Alexandre; Roy, Marie-Claude; Laplante, Mathieu; Morin, Fabrice; Leprince, Jérôme; Tonon, Marie-Christine; Richard, Denis

    2016-01-01

    Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway. DOI: http://dx.doi.org/10.7554/eLife.11742.001 PMID:26880548

  19. Identification of FAM96B as a novel prelamin A binding partner.

    PubMed

    Xiong, Xing-Dong; Wang, Junwen; Zheng, Huiling; Jing, Xia; Liu, Zhenjie; Zhou, Zhongjun; Liu, Xinguang

    2013-10-11

    Prelamin A accumulation causes nuclear abnormalities, impairs nuclear functions, and eventually promotes cellular senescence. However, the underlying mechanism of how prelamin A promotes cellular senescence is still poorly understood. Here we carried out a yeast two-hybrid screen using a human skeletal muscle cDNA library to search for prelamin A binding partners, and identified FAM96B as a prelamin A binding partner. The interaction of FAM96B with prelamin A was confirmed by GST pull-down and co-immunoprecipitation experiments. Furthermore, co-localization experiments by fluorescent confocal microscopy revealed that FAM96B colocalized with prelamin A in HEK-293 cells. Taken together, our data demonstrated the physical interaction between FAM96B and prelamin A, which may provide some clues to the mechanisms of prelamin A in premature aging. PMID:24041693

  20. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer

    PubMed Central

    2014-01-01

    Background A great challenge of cancer chemotherapy is to eliminate cancer cells and concurrently maintain the quality of life (QOL) for cancer patients. Previously, we identified a novel anti-cancer bioactive peptide (ACBP), a peptide induced in goat spleen or liver following immunization with human gastric cancer protein extract. ACBP alone exhibited anti-tumor activity without measurable side effects. Thus, we hypothesize that ACBP and combined chemotherapy could improve the efficacy of treatment and lead to a better QOL. Results In this study, ACBP was isolated and purified from immunized goat liver, and designated as ACBP-L. The anti-tumor activity was investigated in a previously untested human gastric cancer MGC-803 cell line and tumor model. ACBP-L inhibited cell proliferation in vitro in a dose and time dependent manner, titrated by MTT assay. The effect of ACBP-L on cell morphology was observed through light and scanning electron microscopy. In vivo ACBP-L alone significantly inhibited MGC-803 tumor growth in a xenograft nude mouse model without measurable side effects. Treatment with the full dosage of Cisplatin alone (5 mg/kg every 5 days) strongly suppressed tumor growth. However, the QOL in these mice had been significantly affected when measured by food intakes and body weight. The combinatory regiment of ACBP-L with a fewer doses of Cisplatin (5 mg/kg every 10 days) resulted in a similar anti-tumor activity with improved QOL. 18F-FDG PET/CT scan was used to examine the biological activity in tumors of live animals and indicated the consistent treatment effects. The tumor tissues were harvested after treatment, and ACBP-L and Cisplatin treatment suppressed Bcl-2, and induced Bax, Caspase 3, and Caspase 8 molecules as detected by RT-PCR and immunohistochemistry. The combinatory regiment induced stronger Bax and Caspase 8 protein expression. Conclusion Our current finding in this gastric cancer xenograft animal model demonstrated that ACBP-L could

  1. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  2. Bisphenol A binds to Ras proteins and competes with guanine nucleotide exchange: implications for GTPase-selective antagonists.

    PubMed

    Schöpel, Miriam; Jockers, Katharina F G; Düppe, Peter M; Autzen, Jasmin; Potheraveedu, Veena N; Ince, Semra; Yip, King Tuo; Heumann, Rolf; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2013-12-12

    We show for the first time that bisphenol A (10) has the capacity to interact directly with K-Ras and that Rheb weakly binds to bisphenol A (10) and 4,4'-biphenol derivatives. We have characterized these interactions at atomic resolution suggesting that these compounds sterically interfere with the Sos-mediated nucleotide exchange in H- and K-Ras. We show that 4,4'-biphenol (5) selectively inhibits Rheb signaling and induces cell death suggesting that this compound might be a novel candidate for treatment of tuberous sclerosis-mediated tumor growth. Our results propose a new mode of action for bisphenol A (10) that advocates a reduced exposure to this compound in our environment. Our data may lay the foundation for the future design of GTPase-selective antagonists with higher affinity to benefit of the treatment of cancer because K-Ras inhibition is regarded to be a promising strategy with a potential therapeutic window for targeting Sos in Ras-driven tumors. PMID:24266771

  3. EFIA/YB-1 is a component of cardiac HF-1A binding activity and positively regulates transcription of the myosin light-chain 2v gene.

    PubMed Central

    Zou, Y; Chien, K R

    1995-01-01

    Transient assays in cultured ventricular muscle cells and studies in transgenic mice have identified two adjacent regulatory elements (HF-1a and HF-1b/MEF-2) as required to maintain ventricular chamber-specific expression of the myosin light-chain 2v (MLC-2v) gene. A rat neonatal heart cDNA library was screened with an HF-1a binding site, resulting in the isolation of EFIA, the rat homolog of human YB-1. Purified recombinant EFIA/YB-1 protein binds to the HF-1a site in a sequence-specific manner and contacts a subset of the HF-1a contact points made by the cardiac nuclear factor(s). The HF-1a sequence contains AGTGG, which is highly homologous to the inverted CCAAT core of the EFIA/YB-1 binding sites and is found to be essential for binding of the recombinant EFIA/YB-1. Antiserum against Xenopus YB-3 (100% identical in the DNA binding domain and 89% identical in overall amino acid sequence to rat EFIA) can specifically abolish a component of the endogenous HF-1a complex in the rat cardiac myocyte nuclear extracts. In cotransfection assays, EFIA/YB-1 increased 250-bp MLC-2v promoter activity by 3.4-fold specifically in the cardiac cell context and in an HF-1a site-dependent manner. EFIA/YB-1 complexes with an unknown protein in cardiac myocyte nuclear extracts to form the endogenous HF-1a binding activity. Immunocoprecipitation revealed that EFIA/YB-1 has a major associated protein of approximately 30 kDa (p30) in cardiac muscle cells. This study suggests that EFIA/YB-1, together with the partner p30, binds to the HF-1a site and, in conjunction with HF-1b/MEF-2, mediates ventricular chamber-specific expression of the MLC-2v gene. PMID:7760795

  4. Increased /sup 125/I-labelled concanavalin A binding to erythrocytes in diabetes mellitus

    SciTech Connect

    Okada, Y.; Arima, T.; Okazaki, S.; Nakata, K.; Nagashima, H.; Yamabuki, T.

    1982-03-01

    Percentage binding of /sup 125/I-labelled concanavalin A to erythrocytes in diabetic patients was significantly higher than that in normal subjects (12.2 +- 2.8 versus 8.1 +- 1.8%, mean +- SD, p < 0.001). Insulin-dependent diabetic patients showed significantly higher concanavalin A binding than non-insulin-dependent diabetic subjects (15.0 +- 1.4 versus 11.4 +- 2.5%, p < 0.01). There was a highly significant correlation between percentage binding of /sup 125/I-labelled concanavalin A and glycosylated haemoglobin.

  5. Cooperation of Escherichia coli Hfq hexamers in DsrA binding

    PubMed Central

    Wang, Weiwei; Wang, Lijun; Zou, Yang; Zhang, Jiahai; Gong, Qingguo; Wu, Jihui; Shi, Yunyu

    2011-01-01

    Hfq is a bacterial post-transcriptional regulator. It facilitates base-pairing between sRNA and target mRNA. Hfq mediates DsrA-dependent translational activation of rpoS mRNA at low temperatures. rpoS encodes the stationary-phase σ factor σS, which is the central regulator in general stress response. However, structural information on Hfq–DsrA interaction is not yet available. Although Hfq is reported to hydrolyze ATP, the ATP-binding site is still unknown. Here, we report a ternary crystal complex structure of Escherichia coli Hfq bound to a major Hfq recognition region on DsrA (AU6A) together with ADP, and a crystal complex structure of Hfq bound to ADP. AU6A binds to the proximal and distal sides of two Hfq hexamers. ADP binds to a purine-selective site on the distal side and contacts conserved arginine or glutamine residues on the proximal side of another hexamer. This binding mode is different from previously postulated. The cooperation of two different Hfq hexamers upon nucleic acid binding in solution is verified by fluorescence polarization and solution nuclear magnetic resonance (NMR) experiments using fragments of Hfq and DsrA. Fluorescence resonance energy transfer conducted with full-length Hfq and DsrA also supports cooperation of Hfq hexamers upon DsrA binding. The implications of Hfq hexamer cooperation have been discussed. PMID:21979921

  6. Control of repeat protein curvature by computational protein design

    PubMed Central

    Park, Keunwan; Shen, Betty W.; Parmeggiani, Fabio; Huang, Po-Ssu; Stoddard, Barry L.; Baker, David

    2014-01-01

    Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat protein scaffolds, and apply it to leucine rich repeat proteins. First, a set of self-compatible building block modules are designed that when polymerized each generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom designed shapes are generated by appropriately combining building block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat protein curvature. PMID:25580576

  7. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region.

    PubMed

    Wang, Guirong; Wu, Kongming; Liang, Gemei; Guo, Yuyuan

    2005-08-01

    Cadherins belong to one of the families of animal glycoproteins responsible for calcium-dependent cell-cell adhesion. Recent literatures showed that the cadherin-like in midgut of several insects served as the receptor of Bt toxin Cry1A and the variation of cadherin-like is related to insect's resistance to Cry1A. The full-length cDNA encoding cadherin-like of Helicoverpa armigera is cloned by degenerate PCR and RACE techniques and the gene was designated as BtR-harm, which is 5581 bp in full-length, encoding 1730 amino acid residues (BtR-harm was deposited in GenBank and the accession number is AF519180). Its predicted molecular weight and isoelectric point were 195.39 kDa and 4.23, respectively. The inferred amino acid sequence includes a signal sequence, 11 cadherin repeats, a membrane-proximal region, a transmembrane region and a cytoplasmic region. Sequence analysis indicated that the deduced protein sequence was most similar to the cadherin-like from Heliothis virescens with 84.2% identity and highly similar to three other lepidopteran cadherin from Bombyx mori, Manduca sexta and Pectinophora gossypiella, with the sequence identities of 60.3.6%, 57.5% and 51.0%, respectively. The cDNA encoding cadherin gene was expressed successfully in E. coli and the recombinant proteins can bind with Cry1Ac. Truncation analysis and binding experiment of BtR-harm revealed that the Cry1A binding region was a contiguous 244-amino acid sequence, which located between amino acid 1217 and 1461. Semi-quantitative RT-PCR analysis showed that BtR-harm was highly expressed in midgut of H. armigera, very low expressed in foregut and hindgut and was not expressed in other tissues. After H. armigera producing resistance to Cry1Ac, the expression quantity of BtR-harm significantly decreased in midgut of H. armigera. It is the first confirmation that BtR-harm can function as receptor of Cry1Ac in H. armigera and the binding region was located on a contiguous 244 amino acid sequence

  8. RAFT polymers for protein recognition

    PubMed Central

    Tominey, Alan F; Liese, Julia; Wei, Sun; Kowski, Klaus

    2010-01-01

    Summary A new family of linear polymers with pronounced affinity for arginine- and lysine-rich proteins has been created. To this end, N-isopropylacrylamide (NIPAM) was copolymerized in water with a binding monomer and a hydrophobic comonomer using a living radical polymerization (RAFT). The resulting copolymers were water-soluble and displayed narrow polydispersities. They formed tight complexes with basic proteins depending on the nature and amount of the binding monomer as well as on the choice of the added hydrophobic comonomer. PMID:20703378

  9. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers.

    PubMed

    Zhao, Xinai; de Palma, Justina; Oane, Rowena; Gamuyao, Rico; Luo, Ming; Chaudhury, Abdul; Hervé, Philippe; Xue, Qingzhong; Bennett, John

    2008-05-01

    Hybrids lose heterotic yield advantage when multiplied sexually via meiosis. A potential alternative breeding system for hybrids is apospory, where female gametes develop without meiosis. Common among grasses, apospory begins in the nucellus, where aposporous initials (AIs) appear near the sexual megaspore mother cell (MeMC). The cellular origin of AIs is obscure, but one possibility, suggested by the mac1 and msp1 mutants of maize and rice, is that AIs are apomeiotic derivatives of the additional MeMCs that appear when genetic control over sporocyte numbers is relaxed. MULTIPLE SPOROCYTES1 (MSP1) encodes a leucine-rich-repeat receptor kinase, which is orthologous to EXS/EMS1 in Arabidopsis. Like mac1 and msp1, exs/ems1 mutants produce extra sporocytes in the anther instead of a tapetum, causing male sterility. This phenotype is copied in mutants of TAPETUM DETERMINANT1 (TPD1), which encodes a small protein hypothesized to be an extracellular ligand of EXS/EMS1. Here we show that rice contains two TPD1-like genes, OsTDL1A and OsTDL1B. Both are co-expressed with MSP1 in anthers during meiosis, but only OsTDL1A and MSP1 are co-expressed in the ovule. OsTDL1A binds to the leucine-rich-repeat domain of MSP1 in yeast two-hybrid assays and bimolecular fluorescence complementation in onion cells; OsTDL1B lacks this capacity. When driven by the maize Ubiquitin1 promoter, RNA interference against OsTDL1A phenocopies msp1 in the ovule but not in the anther. Thus, RNAi produces multiple MeMCs without causing male sterility. We conclude that OsTDL1A binds MSP1 in order to limit sporocyte numbers. OsTDL1A-RNAi lines may be suitable starting points for achieving synthetic apospory in rice. PMID:18248596

  10. A functional variant at miR-34a binding site in toll-like receptor 4 gene alters susceptibility to hepatocellular carcinoma in a Chinese Han population.

    PubMed

    Jiang, Zi-Cheng; Tang, Xian-Mei; Zhao, Ying-Ren; Zheng, Lei

    2014-12-01

    Toll-like receptor 4 (TLR4) plays a key role in prompting the innate or immediate response. A growing body of evidence suggests that genetic variants of TLR4 gene were associated with the development of cancers. This study aimed to investigate the relationship of a functional variant (rs1057317) at microRNA-34a (miR-34a) binding site in toll-like receptor 4 gene and the risk of hepatocellular carcinoma. A single center-based case-control study was conducted. In this study, the polymerase chain reaction (PCR) and direct sequencing were used to genotype sequence variants of TLR4 in 426 hepatocellular carcinoma cases and 438 controls. The modification of rs1057317 on the binding of hsa-miR-34a to TLR4 messenger RNA (mRNA) was measured by luciferase activity assay. Individuals carrying the AA genotypes for the rs1057317 were associated significantly with increased risk of hepatocellular carcinoma comparing with those carrying wild-type homozygous CC genotypes (adjusted odds ratio [OR] by sex and age, from 1.116 to 2.452, P = 0.013). The activity of the reporter vector was lower in the reporter vector carrying C allele than the reporter vector carrying A allele. Furthermore, the expression of TLR4 was detected in the peripheral blood mononucleated cell of hepatocellular carcinoma (HCC) patients, suggesting that mRNA and protein levels of TLR4 might be associated with SNP rs1057317. Collectively, these results suggested that the risk of hepatocellular carcinoma was associated with a functional variant at miR-34a binding site in toll-like receptor 4 gene. miR-34a/TLR4 axis may play an important role in the development of hepatocellular carcinoma. PMID:25179842

  11. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  12. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration.

    PubMed

    Janssens, Veerle; Zwaenepoel, Karen; Rossé, Carine; Petit, Marleen M R; Goris, Jozef; Parker, Peter J

    2016-04-15

    Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded byPPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn(2+)-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP-PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130-LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics. PMID:26945059

  13. Structure-Affinity Properties of a High-Affinity Ligand of FKBP12 Studied by Molecular Simulations of a Binding Intermediate

    PubMed Central

    Olivieri, Lilian; Gardebien, Fabrice

    2014-01-01

    With a view to explaining the structure-affinity properties of the ligands of the protein FKBP12, we characterized a binding intermediate state between this protein and a high-affinity ligand. Indeed, the nature and extent of the intermolecular contacts developed in such a species may play a role on its stability and, hence, on the overall association rate. To find the binding intermediate, a molecular simulation protocol was used to unbind the ligand by gradually decreasing the biasing forces introduced. The intermediate was subsequently refined with 17 independent stochastic boundary molecular dynamics simulations that provide a consistent picture of the intermediate state. In this state, the core region of the ligand remains stable, notably because of the two anchoring oxygen atoms that correspond to recurrent motifs found in all FKBP12 ligand core structures. Besides, the non-core regions participate in numerous transient intermolecular and intramolecular contacts. The dynamic aspect of most of the contacts seems important both for the ligand to retain at least a part of its configurational entropy and for avoiding a trapped state along the binding pathway. Since the transient and anchoring contacts contribute to increasing the stability of the intermediate, as a corollary, the dissociation rate constant of this intermediate should be decreased, resulting in an increase of the affinity constant . The present results support our previous conclusions and provide a coherent rationale for explaining the prevalence in high-affinity ligands of (i) the two oxygen atoms found in carbonyl or sulfonyl groups of dissimilar core structures and of (ii) symmetric or pseudo-symmetric mobile groups of atoms found as non-core moieties. Another interesting aspect of the intermediate is the distortion of the flexible 80 s loop of the protein, mainly in its tip region, that promotes the accessibility to the bound state. PMID:25502559

  14. Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome

    PubMed Central

    Waldminghaus, Torsten; Weigel, Christoph; Skarstad, Kirsten

    2012-01-01

    In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks. PMID:22373925

  15. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  16. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  17. Association analysis of bovine bactericidal/permeability-increasing protein gene polymorphisms with somatic cell score in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactericidal/permeability-increasing (BPI) protein is expressed primarily in bovine neutrophils and epithelial cells and functions as a binding protein of bacterial lipopolysaccharide produced by Gram-negative bacteria. The protein is important in host defense against bacterial infections and may pl...

  18. Total protein

    MedlinePlus

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  19. Storage Proteins

    PubMed Central

    Fujiwara, Toru; Nambara, Eiji; Yamagishi, Kazutoshi; Goto, Derek B.; Naito, Satoshi

    2002-01-01

    Plants accumulate storage substances such as starch, lipids and proteins in certain phases of development. Storage proteins accumulate in both vegetative and reproductive tissues and serve as a reservoir to be used in later stages of plant development. The accumulation of storage protein is thus beneficial for the survival of plants. Storage proteins are also an important source of dietary plant proteins. Here, we summarize the genome organization and regulation of gene expression of storage protein genes in Arabidopsis. PMID:22303197

  20. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes

    PubMed Central

    Zhao, Tiansuo; Ma, Weidong; Dong, Jie; Zhang, Shengjie; Xin, Wen; Yang, Shengyu; Jia, Li; Hao, Jihui

    2016-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) is over-expressed in many cancers including pancreatic ductal adenocarcinoma (PDAC) and correlated with poor prognosis. We aim to determine the effect of germline genetic variants on the regulation of the homeostasis of the miRNA-gene regulatory loop in HIF1A gene and PDAC risk. HIF1A rs2057482 single nucleotide polymorphism (SNP) was genotyped in 410 PDAC cases and 490 healthy controls. The CC genotype SNP HIF1A is significantly correlated with PDAC risk (OR = 1.719, 95% CI: 1.293–2.286) and shorter overall survival (OS, P<0.0001) compared with the CT/TT alleles group. The C/T variants of rs2057482, a SNP located near the miR-199a binding site in HIF1A, could lead to differential regulation of HIF1A by miR-199a. Specifically, the C allele of rs2057482 weakened miR-199a–induced repression of HIF-1α expression on both mRNA and protein levels. In the PDAC tissue, individuals with the rs2057482-CC genotype expressed significantly higher levels of HIF-1α protein than those with the rs2057482-CT/TT genotype (P<0.0001). Both the CC genotype of SNP HIF1A and increased HIF-1α expression are significantly associated with shorter OS of patients with PDAC. After adjusted by TNM staging, differentiation grade, and the levels of CA19-9, both SNP HIF1A and HIF-1α expression retained highly significance on OS (P<0.0001). Taken together, our study demonstrates that host genetic variants could disturb the regulation of the miR-199a/HIF1A regulatory loop and alter PDAC risk and poor prognosis. In conclusion, the rs2057482-CC genotype increases the susceptibility to PDAC and associated with cancer progression. PMID:26872370

  1. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes.

    PubMed

    Wang, Xiuchao; Ren, He; Zhao, Tiansuo; Ma, Weidong; Dong, Jie; Zhang, Shengjie; Xin, Wen; Yang, Shengyu; Jia, Li; Hao, Jihui

    2016-03-22

    Hypoxia-inducible factor-1 alpha (HIF-1α) is over-expressed in many cancers including pancreatic ductal adenocarcinoma (PDAC) and correlated with poor prognosis. We aim to determine the effect of germline genetic variants on the regulation of the homeostasis of the miRNA-gene regulatory loop in HIF1A gene and PDAC risk. HIF1A rs2057482 single nucleotide polymorphism (SNP) was genotyped in 410 PDAC cases and 490 healthy controls. The CC genotype SNP HIF1A is significantly correlated with PDAC risk (OR = 1.719, 95% CI: 1.293-2.286) and shorter overall survival (OS, P<0.0001) compared with the CT/TT alleles group. The C/T variants of rs2057482, a SNP located near the miR-199a binding site in HIF1A, could lead to differential regulation of HIF1A by miR-199a. Specifically, the C allele of rs2057482 weakened miR-199a-induced repression of HIF-1α expression on both mRNA and protein levels. In the PDAC tissue, individuals with the rs2057482-CC genotype expressed significantly higher levels of HIF-1α protein than those with the rs2057482-CT/TT genotype (P<0.0001). Both the CC genotype of SNP HIF1A and increased HIF-1α expression are significantly associated with shorter OS of patients with PDAC. After adjusted by TNM staging, differentiation grade, and the levels of CA19-9, both SNP HIF1A and HIF-1α expression retained highly significance on OS (P<0.0001). Taken together, our study demonstrates that host genetic variants could disturb the regulation of the miR-199a/HIF1A regulatory loop and alter PDAC risk and poor prognosis. In conclusion, the rs2057482-CC genotype increases the susceptibility to PDAC and associated with cancer progression. PMID:26872370

  2. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  3. Human IgA-binding Peptides Selected from Random Peptide Libraries

    PubMed Central

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-01-01

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1–A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (Kd = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (Kd = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination. PMID:23076147

  4. Canonical and Noncanonical Sites Determine NPT2A Binding Selectivity to NHERF1 PDZ1

    PubMed Central

    Mamonova, Tatyana; Zhang, Qiangmin; Khajeh, Jahan Ali; Bu, Zimei; Bisello, Alessandro; Friedman, Peter A.

    2015-01-01

    Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) is a scaffolding protein containing 2 PDZ domains that coordinates the assembly and trafficking of transmembrane receptors and ion channels. Most target proteins harboring a C-terminus recognition motif bind more-or-less equivalently to the either PDZ domain, which contain identical core-binding motifs. However some substrates such as the type II sodium-dependent phosphate co-transporter (NPT2A), uniquely bind only one PDZ domain. We sought to define the structural determinants responsible for the specificity of interaction between NHERF1 PDZ domains and NPT2A. By performing all-atom/explicit-solvent molecular dynamics (MD) simulations in combination with biological mutagenesis, fluorescent polarization (FP) binding assays, and isothermal titration calorimetry (ITC), we found that in addition to canonical interactions of residues at 0 and -2 positions, Arg at the -1 position of NPT2A plays a critical role in association with Glu43 and His27 of PDZ1 that are absent in PDZ2. Experimentally introduced mutation in PDZ1 (Glu43Asp and His27Asn) decreased binding to NPT2A. Conversely, introduction of Asp183Glu and Asn167His mutations in PDZ2 promoted the formation of favorable interactions yielding micromolar KDs. The results describe novel determinants within both the PDZ domain and outside the canonical PDZ-recognition motif that are responsible for discrimination of NPT2A between two PDZ domains. The results challenge general paradigms for PDZ recognition and suggest new targets for drug development. PMID:26070212

  5. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). PMID:26096503

  6. Protein Stains to Detect Antigen on Membranes.

    PubMed

    Dsouza, Anil; Scofield, R Hal

    2015-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after western blotting. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. "Detection" is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical. PMID:26139252

  7. Dietary Proteins

    MedlinePlus

    ... grains and beans. Proteins from meat and other animal products are complete proteins. This means they supply all of the amino acids the body can't make on its own. Most plant proteins are incomplete. You should eat different types of plant proteins every day to get ...

  8. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  9. Lipoprotein(a) binds to fibronectin and has serine proteinase activity capable of cleaving it.

    PubMed Central

    Salonen, E M; Jauhiainen, M; Zardi, L; Vaheri, A; Ehnholm, C

    1989-01-01

    The plasma concentration of human lipoprotein(a) [Lp(a)] is correlated with the risk of heart disease. A distinct feature of the Lp(a) particle is the apolipoprotein (a) [apo(a)], which is associated with apoB-100, the main protein component of low-density lipoprotein. We now report that apo(a), which has extensive homology to plasminogen, binds to immobilized fibronectin. The binding of Lp(a) was localized to the C-terminal heparin-binding domain of fibronectin. Incubation of Lp(a) with fibronectin resulted in fragmentation of fibronectin. The cleavage pattern, as visualized by gel electrophoresis and immunoblotting, was reproducibly obtained with Lp(a) purified from five different individuals and was distinct from that obtained upon proteolysis of fibronectin by plasmin or kallikrein. The use of synthetic peptide substrates demonstrated that the amino acid specificity for Lp(a) was arginine rather than lysine. The proteolytic activity of Lp(a) was localized to apo(a) and experiments with inhibitors indicated that the proteolytic activity was of serine proteinase-type. Images PMID:2531657

  10. Protein Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Sam K. C.

    Proteins are an abundant component in all cells, and almost all except storage proteins are important for biological functions and cell structure. Food proteins are very complex. Many have been purified and characterized. Proteins vary in molecular mass, ranging from approximately 5000 to more than a million Daltons. They are composed of elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Twenty α-amino acids are the building blocks of proteins; the amino acid residues in a protein are linked by peptide bonds. Nitrogen is the most distinguishing element present in proteins. However, nitrogen content in various food proteins ranges from 13.4 to 19.1% (1) due to the variation in the specific amino acid composition of proteins. Generally, proteins rich in basic amino acids contain more nitrogen.

  11. Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides.

    PubMed Central

    Baumann, M H; Kallijärvi, J; Lankinen, H; Soto, C; Haltia, M

    2000-01-01

    Inheritance of the apolipoprotein E (apoE) epsilon 4 allele is a risk factor for late-onset Alzheimer's disease (AD). Biochemically apoE is present in AD plaques and neurofibrillary tangles of the AD brain. There is a high avidity and specific binding of apoE and the amyloid beta-peptide (A beta). In addition to AD apoE is also present in many other cerebral and systemic amyloidoses, Down's syndrome and prion diseases but the pathophysiological basis for its presence is still unknown. In the present study we have compared the interaction of apoE with A beta, the gelsolin-derived amyloid fragment AGel(183-210) and the amyloidogenic prion fragments PrP(109-122) and PrP(109-141). We show that, similar to A beta, also AGel and PrP fragments can form a complex with apoE, and that the interaction between apoE and the amyloidogenic protein fragments is mediated through the same binding site on apoE. We also show that apoE increases the thioflavin-T fluorescence of PrP and AGel and that apoE influences the content of beta-sheet conformation of these amyloidogenic fragments. Our results indicate that amyloids and amyloidogenic prion fragments share a similar structural motif, which is recognized by apoE, possibly through a single binding site, and that this motif is also responsible for the amyloidogenicity of these fragments. PMID:10861213

  12. Suppression of conformational heterogeneity at a protein-protein interface.

    PubMed

    Deis, Lindsay N; Wu, Qinglin; Wang, You; Qi, Yang; Daniels, Kyle G; Zhou, Pei; Oas, Terrence G

    2015-07-21

    Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins. PMID:26157136

  13. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection

    PubMed Central

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier

    2015-01-01

    ABSTRACT Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a

  14. Purification of GST-Tagged Proteins.

    PubMed

    Schäfer, Frank; Seip, Nicole; Maertens, Barbara; Block, Helena; Kubicek, Jan

    2015-01-01

    This protocol describes the purification of recombinant proteins fused to glutathione S-transferase (GST, GST-tagged proteins) by Glutathione Affinity purification. The GST tag frequently increases the solubility of the fused protein of interest and thus enables its purification and subsequent functional characterization. The GST-tagged protein specifically binds to glutathione immobilized to a matrix (e.g., agarose) and can be easily separated from a cell lysate by a bind-wash-elute procedure. GST-tagged proteins are often used to study protein-protein interactions, again making use of glutathione affinity in a procedure called a GST pull-down assay. The protocol is designed to process 200 ml of E. coli culture expressing intermediate to high amounts of a GST-tagged protein (~25 mg l(-1)). Depending on the expression rate or the available culture volume, the scale can be increased or decreased linearly. The protocol can also be used to purify GST-tagged proteins from other expression systems, such as insect or mammalian cells. Tips are provided to aid in modifying certain steps if proteins shall be recovered from alternative expression systems. PMID:26096507

  15. Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles

    PubMed Central

    Fiorucci, Sébastien; Zacharias, Martin

    2010-01-01

    Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756

  16. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  17. Whey Protein

    MedlinePlus

    ... shows that taking whey protein in combination with strength training increases lean body mass, strength, and muscle size. ... grams/kg of whey protein in combination with strength training for 6-10 weeks. For HIV/AIDS-related ...

  18. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  19. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  20. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  1. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction. PMID:21848803

  2. Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2011-03-01

    Proteins combine properties of solids, liquids, and glasses. Schrödinger anticipated the main features of biomolecules long ago by stating that they had to be solid-like, but able to assume many different conformations. Indeed proteins can assume a gigantic number of conformational substates with the same primary sequence but different conformations. The different substates are described as craters in a very-high-dimensional energy landscape. The energy landscape is organized in a hierarchy of tiers, craters within craters within craters. Protein motions are pictured as transition between substates - jumps from crater to crater. Initially we assumed that these jumps were controlled by internal barriers between substates, but experiments have shown that nature selected a different approach. Proteins are surrounded by one to two layers of water and are embedded in a bulk solvent. Structural motions of the protein are controlled by the alpha fluctuations in the solvent surrounding the protein. Some internal motions most likely involving side chains are controlled electrostatically by beta fluctuations in the hydration shell. The dynamics of proteins is consequently dominated by the environment (H. Frauenfelder et al. PNAS 106, 5129 (2009). One can speculate that this organization permits exchange of information among biomolecules. The energy landscape is not just organized into two tiers, alpha and beta, but cryogenic experiments have revealed more tiers and protein more properties similar to that of glasses. While proteins function at ambient temperatures, cryogenic studies are necessary to understand the physics relevant for biology.

  3. Molecular cloning of a human protein that binds to the retinoblastoma protein and chromosomal mapping

    SciTech Connect

    Saijo, M.; Sakai, Y.; Taya, Y.

    1995-06-10

    We have isolated distinct clones for cellular proteins that bind to the retinoblastoma protein by direct screening of cDNA expression libraries using purified pRB as a probe. The total nucleotide sequence of one of these clones, RBQ-3, was determined and found to encode a protein of 66 kDa localized in the nucleus. The RBQ-3 preferentially binds to underphosphory-lated pRB. The region used for binding to this protein was mapped to the E1A-binding pocket B of pRB, which has sequence similarity to the general transcription factor TFIIB. We have mapped the gene to 1q32 using polymerase chain reaction analysis on a human-hamster hybrid cell panel and chromosomal fluorescence in situ hybridization. 64 refs., 7 figs.

  4. Interfacial Protein-Protein Associations

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2014-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface – with areas of high protein density (i.e. strongly-interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e. partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e. clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage. PMID:24274729

  5. Analysis of PGC-1{alpha} variants Gly482Ser and Thr612Met concerning their PPAR{gamma}2-coactivation function

    SciTech Connect

    Nitz, Inke . E-mail: initz@molnut.uni-kiel.de; Ewert, Agnes; Klapper, Maja; Doering, Frank

    2007-02-09

    Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) is a cofactor involved in adaptive thermogenesis, fatty acid oxidation, and gluconeogenesis. Dysfunctions of this protein are likely to contribute to the development of obesity and the metabolic syndrome. This is in part but not definitely confirmed by results of population studies. The aim of this study was to investigate if common genetic variants rs8192678 (Gly482Ser) and rs3736265 (Thr612Met) in the PGC-1{alpha} gene lead to a functional consequence in cofactor activity using peroxisome proliferator-activated receptor-{gamma} 2 (PPAR{gamma}2) as interacting transcription factor. Reporter gene assays in HepG2 cells with wildtype and mutant proteins of both PGC1{alpha} and PPAR{gamma}2 (Pro12Ala, rs1801282) using the acyl-CoA-binding protein (ACBP) promoter showed no difference in coactivator activity. This is First study implicating that the Gly482Ser and Thr612Met polymorphisms in PGC-1{alpha} and Pro12Ala polymorphism in PPAR{gamma}2 do not affect the functional integrity of these proteins.

  6. Whey Protein

    MedlinePlus

    ... intolerance, for replacing or supplementing milk-based infant formulas, and for reversing weight loss and increasing glutathione ( ... allergic reactions compared to infants who receive standard formula. However, taking why protein might not be helpful ...

  7. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  8. Involvement of tryptophan residues at the coenzyme A binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum.

    PubMed

    Shanmugasundaram, T; Kumar, G K; Wood, H G

    1988-08-23

    Carbon monoxide dehydrogenase (CODH) from Clostridium thermoaceticum plays a central role in the newly discovered acetyl-CoA pathway [Wood, H.G., Ragsdale, S.W., & Pezacka, E. (1986) FEMS Microbiol. Rev. 39, 345-362]. The enzyme catalyzes the formation of acetyl-CoA from methyl, carbonyl, and CoA groups, and it has specific binding sites for these moieties. In this study, we have determined the role of tryptophans at these subsites. N-Bromosuccinimide (NBS) oxidation of the exposed and reactive tryptophans (5 out of a total of approximately 20) of CODH at pH 5.5 results in the partial inactivation of the exchange reaction (approximately 50%) involving carbon monoxide and the carbonyl group of the acetyl-CoA. Also, about 70% of the acetyl-CoA synthesis was abolished as a result of NBS modification. The presence of CoA (10 microM) produced complete protection against the partial inhibition of the exchange activity and the overall synthesis of acetyl-CoA caused by NBS. Additionally, none of the exposed tryptophans of CODH was modified in the presence of CoA. Ligands such as the methyl or the carbonyl groups did not afford protection against these inactivations or the modification of the exposed tryptophans. A significant fraction of the accessible fluorescence of CODH was shielded in the presence of CoA against acrylamide quenching. On the basis of these observations, it appears that certain tryptophans are involved at or near the CoA binding site of CODH. PMID:3219350

  9. Designed protein-protein association.

    PubMed

    Grueninger, Dirk; Treiber, Nora; Ziegler, Mathias O P; Koetter, Jochen W A; Schulze, Monika-Sarah; Schulz, Georg E

    2008-01-11

    The analysis of natural contact interfaces between protein subunits and between proteins has disclosed some general rules governing their association. We have applied these rules to produce a number of novel assemblies, demonstrating that a given protein can be engineered to form contacts at various points of its surface. Symmetry plays an important role because it defines the multiplicity of a designed contact and therefore the number of required mutations. Some of the proteins needed only a single side-chain alteration in order to associate to a higher-order complex. The mobility of the buried side chains has to be taken into account. Four assemblies have been structurally elucidated. Comparisons between the designed contacts and the results will provide useful guidelines for the development of future architectures. PMID:18187656

  10. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  11. Isolation and characterization of a new zinc-binding protein from albacore tuna plasma

    SciTech Connect

    Dyke, B.; Hegenauer, J.; Saltman, P.; Laurs, R.M.

    1987-06-02

    The protein responsible for sequestering high levels of zinc in the plasma of the albacore tuna (Thunnus alalunga) has been isolated by sequential chromatography. The glycoprotein has a molecular weight of 66,000. Approximately 8.2% of its amino acid residues are histidines. Equilibrium dialysis experiments show it to bind 3 mol of zinc/mol of protein. The stoichiometric constant for the association of zinc with a binding site containing three histidines was determined to be 10/sup 9.4/. This protein is different from albumin and represents a previously uncharacterized zinc transport protein.

  12. Isolation and characterization of a new zinc-binding protein from albacore tuna plasma.

    PubMed

    Dyke, B; Hegenauer, J; Saltman, P; Laurs, R M

    1987-06-01

    The protein responsible for sequestering high levels of zinc in the plasma of the albacore tuna (Thunnus alalunga) has been isolated by sequential chromatography. The glycoprotein has a molecular weight of 66,000. Approximately 8.2% of its amino acid residues are histidines. Equilibrium dialysis experiments show it to bind 3 mol of zinc/mol of protein. The stoichiometric constant for the association of zinc with a binding site containing three histidines was determined to be 10(9.4). This protein is different from albumin and represents a previously uncharacterized zinc transport protein. PMID:3607021

  13. A binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function.

    PubMed

    Zeng, Menglong; Shang, Yuan; Guo, Tingfeng; He, Qinghai; Yung, Wing-Ho; Liu, Kai; Zhang, Mingjie

    2016-05-31

    Shank and SAPAP (synapse-associated protein 90/postsynaptic density-95-associated protein) are two highly abundant scaffold proteins that directly interact with each other to regulate excitatory synapse development and plasticity. Mutations of SAPAP, but not other reported Shank PDZ domain binders, share a significant overlap on behavioral abnormalities with the mutations of Shank both in patients and in animal models. The molecular mechanism governing the exquisite specificity of the Shank/SAPAP interaction is not clear, however. Here we report that a sequence preceding the canonical PDZ domain of Shank, together with the elongated PDZ BC loop, form another binding site for a sequence upstream of the SAPAP PDZ-binding motif, leading to a several hundred-fold increase in the affinity of the Shank/SAPAP interaction. We provide evidence that the specific interaction afforded by this newly identified site is required for Shank synaptic targeting and the Shank-induced synaptic activity increase. Our study provides a molecular explanation of how Shank and SAPAP dosage changes due to their gene copy number variations can contribute to different psychiatric disorders. PMID:27185935

  14. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  15. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  16. Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus.

    PubMed

    Zhang, Suisheng; Köhler, Carsten; Hemmerich, Peter; Grosse, Frank

    2004-02-15

    Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), is an F-actin binding protein that is particularly enriched in the nucleolus of mouse cells. Here, we show that the nucleolar localization of NDH II of murine 3T3 cells depended on an ongoing rRNA synthesis. NDH II migrated out of the nucleolus after administration of 0.05 microg/ml actinomycin D, while nucleolin and the upstream binding factor (UBF) remained there. In S phase-arrested mouse cells, NDH II was frequently found at the nucleolar periphery, where it was accompanied by newly synthesized nucleolar RNA. Human NDH II was mainly distributed through the whole nucleoplasm and not enriched in the nucleoli. However, in the human breast carcinoma cell line MCF-7, NDH II was also found at the nucleolar periphery, together with the tumor suppressor protein p53. Both NDH II and p53 were apparently attached to the F-actin-based filamentous network that surrounded the nucleoli. Accordingly, this subnuclear structure was sensitive to F-actin depolymerizing agents. Depolymerization with gelsolin led to a striking accumulation of NDH II in the nucleoli of MCF-7 cells. This effect was abolished by RNase, which extensively released nucleolus-bound NDH II when added together with gelsolin. Taken together, these results support the idea that an actin-based filamentous network may anchor NDH II at the nucleolar periphery for pre-ribosomal RNA processing, ribosome assembly, and/or transport. PMID:14729462

  17. The sea urchin mitochondrial transcription factor A binds and bends DNA efficiently despite its unusually short C-terminal tail.

    PubMed

    Malarkey, Christopher S; Lionetti, Claudia; Deceglie, Stefania; Roberti, Marina; Churchill, Mair E A; Cantatore, Palmiro; Loguercio Polosa, Paola

    2016-07-01

    Mitochondrial transcription factor A (TFAM) is a key component for the protection and transcription of the mitochondrial genome. TFAM belongs to the high mobility group (HMG) box family of DNA binding proteins that are able to bind to and bend DNA. Human TFAM (huTFAM) contains two HMG box domains separated by a linker region, and a 26 amino acid C-terminal tail distal to the second HMG box. Previous studies on huTFAM have shown that requisites for proper DNA bending and specific binding to the mitochondrial genome are specific intercalating residues and the C-terminal tail. We have characterized TFAM from the sea urchin Paracentrotus lividus (suTFAM). Differently from human, suTFAM contains a short 9 amino acid C-terminal tail, yet it still has the ability to specifically bind to mtDNA. To provide information on the mode of binding of the protein we used fluorescence resonance energy transfer (FRET) assays and found that, in spite of the absence of a canonical C-terminal tail, suTFAM distorts DNA at a great extent and recognizes specific target with high affinity. Site directed mutagenesis showed that the two Phe residues placed in corresponding position of the two intercalating Leu of huTFAM are responsible for the strong bending and the great binding affinity of suTFAM. PMID:27101895

  18. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/. PMID:26935399

  19. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  20. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGESBeta

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  1. Conformational Selection in a Protein-Protein Interaction revealed by Dynamic Pathway Analysis

    PubMed Central

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-01-01

    SUMMARY Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding. PMID:26725117

  2. A binding mode hypothesis of tiagabine confirms liothyronine effect on γ-aminobutyric acid transporter 1 (GAT1).

    PubMed

    Jurik, Andreas; Zdrazil, Barbara; Holy, Marion; Stockner, Thomas; Sitte, Harald H; Ecker, Gerhard F

    2015-03-12

    Elevating GABA levels in the synaptic cleft by inhibiting its reuptake carrier GAT1 is an established approach for the treatment of CNS disorders like epilepsy. With the increasing availability of crystal structures of transmembrane transporters, structure-based approaches to elucidate the molecular basis of ligand-transporter interaction also become feasible. Experimental data guided docking of derivatives of the GAT1 inhibitor tiagabine into a protein homology model of GAT1 allowed derivation of a common binding mode for this class of inhibitors that is able to account for the distinct structure-activity relationship pattern of the data set. Translating essential binding features into a pharmacophore model followed by in silico screening of the DrugBank identified liothyronine as a drug potentially exerting a similar effect on GAT1. Experimental testing further confirmed the GAT1 inhibiting properties of this thyroid hormone. PMID:25679268

  3. Exploring the capabilities of TDDFT calculations to explain the induced chirality upon a binding process: A simple case, 3-carboxycoumarin

    NASA Astrophysics Data System (ADS)

    Varlan, Aurica; Hillebrand, Mihaela

    2013-03-01

    The induced circular dichroism (ICD) spectra of 3-carboxycoumarin recorded at pH 7.4 in the presence of human and bovine serum albumins were used in correlation with theoretical (TDDFT) calculations to obtain the binding constants and information on the conformational changes of the ligand in the binding site. As it was shown that for the carboxylic acids or the carboxylate ions, the asymmetry element correlated with the occurrence of the ICD band in the presence of proteins is the torsion (τ) of the COOH (COO-) group in respect with the planar π system, TDDFT calculations were performed considering all the geometries characterized by 0 ⩽ |τ| ⩽ 90 deg. The simulated circular dichroism spectrum shows that the sequence of the signs and positions of the bands are correctly predicted as compared to the experimental ICD spectrum for a torsion of the carboxylate group in the range of 60-70 deg.

  4. A Binding Mode Hypothesis of Tiagabine Confirms Liothyronine Effect on γ-Aminobutyric Acid Transporter 1 (GAT1)

    PubMed Central

    2015-01-01

    Elevating GABA levels in the synaptic cleft by inhibiting its reuptake carrier GAT1 is an established approach for the treatment of CNS disorders like epilepsy. With the increasing availability of crystal structures of transmembrane transporters, structure-based approaches to elucidate the molecular basis of ligand–transporter interaction also become feasible. Experimental data guided docking of derivatives of the GAT1 inhibitor tiagabine into a protein homology model of GAT1 allowed derivation of a common binding mode for this class of inhibitors that is able to account for the distinct structure–activity relationship pattern of the data set. Translating essential binding features into a pharmacophore model followed by in silico screening of the DrugBank identified liothyronine as a drug potentially exerting a similar effect on GAT1. Experimental testing further confirmed the GAT1 inhibiting properties of this thyroid hormone. PMID:25679268

  5. The role of GW182 proteins in miRNA-mediated gene silencing.

    PubMed

    Braun, Joerg E; Huntzinger, Eric; Izaurralde, Elisa

    2013-01-01

    GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets. PMID:23224969

  6. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities

    SciTech Connect

    Swanson, M.S.; Dreyfuss, G.

    1988-05-01

    Several proteins of heterogeneous nuclear ribonucleoprotein (hnRNP) particles display very high binding affinities for different ribonucleotide homopolymers. The specificity of some of these proteins at high salt concentrations and in the presence of heparin allows for their rapid one-step purification from HeLa nucleoplasm. The authors show that the hnRNP proteins are poly(U)-binding proteins and compare their specificity to that of the previously described cytoplasmic poly(A)-binding protein. These findings provide a useful tool for the classification and purification of hnRNP proteins from various tissues and organisms and indicate that different hnRNP proteins have different RNA-binding specificities.

  7. A General Strategy for the Semisynthesis of Ratiometric Fluorescent Sensor Proteins with Increased Dynamic Range.

    PubMed

    Xue, Lin; Prifti, Efthymia; Johnsson, Kai

    2016-04-27

    We demonstrate how a combination of self-labeling protein tags and unnatural amino acid technology permits the semisynthesis of ratiometric fluorescent sensor proteins with unprecedented dynamic range in vitro and on live cells. To generate such a sensor, a binding protein is labeled with a fluorescent competitor of the analyte using SNAP-tag in conjugation with a second fluorophore that is positioned in vicinity of the binding site of the binding protein using unnatural amino acid technology. Binding of the analyte by the sensor displaces the tethered fluorescent competitor from the binding protein and disrupts fluorescence resonance energy transfer between the two fluorophores. Using this design principle, we generate a ratiometric fluorescent sensor protein for methotrexate that exhibits large dynamic ranges both in vitro (ratio changes up to 32) and on cell surfaces (ratio change of 13). The performance of these semisynthetic sensor proteins makes them attractive for applications in basic research and diagnostics. PMID:27071001

  8. Detection and properties of A-factor-binding protein from Streptomyces griseus

    SciTech Connect

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T. )

    1989-08-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding {sup 3}H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.

  9. Coordinate estrogen-regulated instability of serum protein-coding messenger RNAs in Xenopus laevis.

    PubMed

    Pastori, R L; Moskaitis, J E; Buzek, S W; Schoenberg, D R

    1991-04-01

    Estrogen causes the cytoplasmic destabilization of albumin and gamma-fibrinogen mRNA in Xenopus laevis liver. The purpose of the present study was to determine whether mRNA destabilization is a generalized phenomenon in response to estrogen, or whether this process is restricted to a particular class of mRNAs. To address this, we have expanded our bank of serum protein-coding cDNA clones to include transferrin, the second protein of inter-alpha-trypsin inhibitor and clone 12B, for which there is no mammalian homolog. Together with albumin and gamma-fibrinogen, these represent more than 85% of the mRNAs encoding liver secreted proteins. Estrogen administration to male Xenopus or to liver explant cultures causes the generalized disappearance of all of these mRNAs. In contrast, estrogen has no effect on actin, ferritin, or poly(A)-binding protein mRNA, all of which encode intracellular proteins. We have previously demonstrated that albumin mRNA is degraded in both messenger ribonucleoprotein and polysome fractions. Sucrose gradient analysis demonstrates the same pattern for degradation of all other serum protein-coding mRNAs. Estrogen has no effect on the amounts or gradient distribution of actin, ferritin, or poly(A)-binding protein mRNA. We conclude that regulated destabilization of mRNAs encoding secreted proteins is a generalized phenomenon in response to estrogen stimulation of Xenopus liver. PMID:1922078

  10. Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition.

    PubMed

    Wagh, Dhananjay; Pothineni, Venkata Raveendra; Inayathullah, Mohammed; Liu, Song; Kim, Kwang-Min; Rajadas, Jayakumar

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA), a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 μg/mL (250 μM). Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia. PMID:25709405

  11. The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues

    PubMed Central

    2004-01-01

    The yeast SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein Ykt6 was shown to mediate palmitoylation of the fusion factor Vac8 in a reaction essential for the fusion of vacuoles. Here I present evidence that hYkt6 (human Ykt6) has self-palmitoylating activity. Incubation of recombinant hYkt6 with [3H]Pal-CoA ([3H]palmitoyl-CoA) leads to covalent attachment of palmitate to C-terminal cysteine residues. The N-terminal domain of human Ykt6 contains a Pal-CoA binding site and is required for the reaction. PMID:15479160

  12. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  13. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  14. Transcription Activation by NtcA in the Absence of Consensus NtcA-Binding Sites in an Anabaena Heterocyst Differentiation Gene Promoter

    PubMed Central

    Camargo, Sergio; Valladares, Ana; Flores, Enrique

    2012-01-01

    Heterocyst differentiation is orchestrated by the N control transcriptional regulator NtcA and the differentiation-specific factor HetR. In Anabaena sp. strain PCC 7120, the devBCA operon is expressed from two different promoters activated upon N stepdown. The distal devB promoter (transcription start point [TSP] located at position −704) represents a canonical class II NtcA-activated promoter, including a consensus NtcA-binding site centered 39.5 nucleotides upstream from the TSP. Transcription activation from a second TSP (−454) requires NtcA and is impaired in hetR mutants. In a wild-type background, three different DNA fragments, including both or each individual promoter, directed gfp expression localized mainly to proheterocysts and heterocysts. Expression was undetectable in an ntcA background and, for the fragment including the proximal promoter alone, also in a hetR background. In spite of the absence of consensus NtcA-binding sequences between the two TSPs, NtcA was shown to interact with this DNA region, and NtcA and its effector, 2-oxoglutarate, were necessary and sufficient for in vitro transcription from the −454 TSP. No HetR binding to the DNA or in vitro transcription from the proximal devB TSP promoted by HetR alone were detected. However, a moderate positive effect of HetR on NtcA binding to the DNA between the two devB TSPs was observed. The proximal devB promoter appears to represent a suboptimal NtcA-activated promoter for which HetR may act as a coactivator, with the physiological effect of restricting gene activation to conditions of prevalence of high NtcA and HetR levels, such as those taking place during heterocyst differentiation. PMID:22467790

  15. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  16. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens

    PubMed Central

    Koh, Cho Yeow; Kallur Siddaramaiah, Latha; Ranade, Ranae M.; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J. Robert; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Fan, Erkang; Hol, Wim G. J.

    2015-01-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallo­graphically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS. PMID:26249349

  17. Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins.

    PubMed

    Cruz-Teran, Carlos A; Carlin, Kevin B; Efimenko, Kirill; Genzer, Jan; Rao, Balaji M

    2016-08-30

    While nonspecific adsorption is widely used for immobilizing proteins on solid surfaces, the random nature of protein adsorption may reduce the activity of immobilized proteins due to occlusion of the active site. We hypothesized that the orientation a protein assumes on a given surface can be controlled by systematically introducing mutations into a region distant from its active site, thereby retaining activity of the immobilized protein. To test this hypothesis, we generated a combinatorial protein library by randomizing six targeted residues in a binding protein derived from highly stable, nonimmunoglobulin Sso7d scaffold; mutations were targeted in a region that is distant from the binding site. This library was screened to isolate binders that retain binding to its cognate target (chicken immunoglobulin Y, cIgY) as well as exhibit adsorption on unmodified silica at pH 7.4 and high ionic strength conditions. A single mutant, Sso7d-2B5, was selected for further characterization. Sso7d-2B5 retained binding to cIgY with an apparent dissociation constant similar to that of the parent protein; both mutant and parent proteins saturated the surface of silica with similar densities. Strikingly, however, silica beads coated with Sso7d-2B5 could achieve up to 7-fold higher capture of cIgY than beads coated with the parent protein. These results strongly suggest that mutations introduced in Sso7d-2B5 alter its orientation relative to the parent protein, when adsorbed on silica surfaces. Our approach also provides a generalizable strategy for introducing mutations in proteins so as to improve their activity upon immobilization, and has direct relevance to development of protein-based biosensors and biocatalysts. PMID:27490089

  18. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  19. Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis

    PubMed Central

    Mirouze, Nicolas; Bidnenko, Elena; Noirot, Philippe; Auger, Sandrine

    2015-01-01

    Under nitrogen limitation conditions, Bacillus subtilis induces a sophisticated network of adaptation responses. More precisely, the B. subtilis TnrA regulator represses or activates directly or indirectly the expression of a hundred genes in response to nitrogen availability. The global TnrA regulon have already been identified among which some directly TnrA-regulated genes have been characterized. However, a genome-wide mapping of in vivo TnrA-binding sites was still needed to clearly define the set of genes directly regulated by TnrA. Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we now provide in vivo evidence that TnrA reproducibly binds to 42 regions on the chromosome. Further analysis with real-time in vivo transcriptional profiling, combined with results from previous reports, allowed us to define the TnrA primary regulon. We identified 35 promoter regions fulfilling three criteria necessary to be part of this primary regulon: (i) TnrA binding in ChIP-on-chip experiments and/or in previous in vitro studies; (ii) the presence of a TnrA box; (iii) TnrA-dependent expression regulation. In addition, the TnrA primary regulon delimitation allowed us to improve the TnrA box consensus. Finally, our results reveal new interconnections between the nitrogen regulatory network and other cellular processes. PMID:25755103

  20. A Functional Variant at miR-520a Binding Site in PIK3CA Alters Susceptibility to Colorectal Cancer in a Chinese Han Population

    PubMed Central

    Ding, Lifang; Jiang, Zao; Chen, Qiaoyun; Qin, Rong; Fang, Yue

    2015-01-01

    An increasing body of evidence has indicated that polymorphisms in the miRNA binding site of target gene can alter the ability of miRNAs to bind their target genes and modulate the risk of cancer. We aimed to investigate the association between a miR-520a binding site polymorphism rs141178472 in the PIK3CA 3′-UTR and the risk of colorectal cancer (CRC) in a Chinese Han population. The polymorphism rs141178472 was analyzed in a case-control study, including 386 CRC patients and 394 age- and sex-matched controls; the relationship between the polymorphism and the risk of colorectal cancer was examined. Individuals carrying the rs141178472 CC genotype or C allele had an increased risk of developing CRC (CC versus TT, OR (95% CI): 1.716 (1.084–2.716), P = 0.022; C versus T, OR (95% CI): 1.258 (1.021–1.551), P = 0.033). Furthermore, the expression of PIK3CA was detected in the peripheral blood mononucleated cell of CRC patients, suggesting that mRNA levels of PIK3CA might be associated with SNP rs141178472. These findings provide evidence that a miR-520a binding site polymorphism rs141178472 in the PIK3CA 3′-UTR may play a role in the etiology of CRC. PMID:25834816

  1. Dynamics of Protein Folding and Cofactor Binding Monitored by Single-Molecule Force Spectroscopy

    PubMed Central

    Cao, Yi; Li, Hongbin

    2011-01-01

    Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function. PMID:22004755

  2. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    SciTech Connect

    MacDonald, P.N.; Ong, D.E. ); Bok, D. )

    1990-06-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  3. Localization of Cellular Retinol-Binding Protein and Retinol-Binding Protein in Cells Comprising the Blood-Brain Barrier of Rat and Human

    NASA Astrophysics Data System (ADS)

    MacDonald, Paul N.; Bok, Dean; Ong, David E.

    1990-06-01

    Brain is not generally recognized as an organ that requiries vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the endothelial cells of the brain microvasculature and within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  4. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  5. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  6. Binding-regulated click ligation for selective detection of proteins.

    PubMed

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins. PMID:26599478

  7. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  8. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  9. Protein folding, protein homeostasis, and cancer

    PubMed Central

    Van Drie, John H.

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery. PMID:21272445

  10. Split-Protein Systems: Beyond Binary Protein-Protein Interactions

    PubMed Central

    Shekhawat, Sujan S.; Ghosh, Indraneel

    2011-01-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome [1], a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, E. coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  11. Split-protein systems: beyond binary protein-protein interactions.

    PubMed

    Shekhawat, Sujan S; Ghosh, Indraneel

    2011-12-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  12. Protein in diet

    MedlinePlus

    ... basic structure of protein is a chain of amino acids. You need protein in your diet to help ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a number ...

  13. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  14. Protein electrophoresis - serum

    MedlinePlus

    ... digestive tract to absorb proteins ( protein-losing enteropathy ) Malnutrition Kidney disorder called nephrotic syndrome Scarring of the ... may indicate: Abnormally low level of LDL cholesterol Malnutrition Increased gamma globulin proteins may indicate: Bone marrow ...

  15. Domains mediate protein-protein interactions and nucleate protein assemblies.

    PubMed

    Costa, S; Cesareni, G

    2008-01-01

    Cell physiology is governed by an intricate mesh of physical and functional links among proteins, nucleic acids and other metabolites. The recent information flood coming from large-scale genomic and proteomic approaches allows us to foresee the possibility of compiling an exhaustive list of the molecules present within a cell, enriched with quantitative information on concentration and cellular localization. Moreover, several high-throughput experimental and computational techniques have been devised to map all the protein interactions occurring in a living cell. So far, such maps have been drawn as graphs where nodes represent proteins and edges represent interactions. However, this representation does not take into account the intrinsically modular nature of proteins and thus fails in providing an effective description of the determinants of binding. Since proteins are composed of domains that often confer on proteins their binding capabilities, a more informative description of the interaction network would detail, for each pair of interacting proteins in the network, which domains mediate the binding. Understanding how protein domains combine to mediate protein interactions would allow one to add important features to the protein interaction network, making it possible to discriminate between simultaneously occurring and mutually exclusive interactions. This objective can be achieved by experimentally characterizing domain recognition specificity or by analyzing the frequency of co-occurring domains in proteins that do interact. Such approaches allow gaining insights on the topology of complexes with unknown three-dimensional structure, thus opening the prospect of adopting a more rational strategy in developing drugs designed to selectively target specific protein interactions. PMID:18491061

  16. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  17. Protein sensing with engineered protein nanopores*

    PubMed Central

    Mohammad, Mohammad M.; Movileanu, Liviu

    2013-01-01

    The use of nanopores is a powerful new frontier in single-molecule sciences. Nanopores have been used effectively in exploring various biophysical features of small polypeptides and proteins, such as their folding state and structure, ligand interactions, and enzymatic activity. In particular, the α-hemolysin protein pore (αHL) has been used extensively for the detection, characterization and analysis of polypeptides, because this protein nanopore is highly robust, versatile and tractable under various experimental conditions. Inspired by the mechanisms of protein translocation across the outer membrane translocases of mitochondria, we have shown the ability to use nanopore-probe techniques in controlling a single protein using engineered αHL pores. Here, we provide a detailed protocol for the preparation of αHL protein nanopores. Moreover, we demonstrate that placing attractive electrostatic traps is instrumental in tackling single-molecule stochastic sensing of folded proteins. PMID:22528256

  18. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration.

    PubMed

    Burrows, Carla; Abd Latip, Normala; Lam, Sarah-Jane; Carpenter, Lee; Sawicka, Kirsty; Tzolovsky, George; Gabra, Hani; Bushell, Martin; Glover, David M; Willis, Anne E; Blagden, Sarah P

    2010-09-01

    The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration. PMID:20430826

  19. A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2012-12-01

    Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium. PMID:22782112

  20. Crystal Structures of the Tryptophan Repressor binding Protein WrbA and complexes with Flavin Mononucleotide

    SciTech Connect

    Gorman,J.; Shapiro, L.

    2005-01-01

    The tryptophan repressor binding protein WrbA binds to the tryptophan repressor protein TrpR. Although the biological role of WrbA remains unclear, it has been proposed to function in enhancing the stability of TrpR-DNA complexes. Sequence database analysis has identified WrbA as a founding member of a flavodoxin-like family of proteins. Here we present crystal structures of WrbA from Deinococcus radiodurans and Pseudomonas aeruginosa and their complexes with flavin mononucleotide. The protomer structure is similar to that of previously determined long-chain flavodoxins; however, each contains a conserved inserted region unique to the WrbA family. Interestingly, each WrbA protein forms a homotetramer with 222 symmetry, unique among flavodoxin-like proteins, in which each protomer binds one flavin mononucleotide cofactor molecule.

  1. Nanotechnologies in protein microarrays.

    PubMed

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures. PMID:26039143

  2. Activation of an Endoribonuclease by Non-intein Protein Splicing.

    PubMed

    Campbell, Stephen J; Stern, David B

    2016-07-29

    The Chlamydomonas reinhardtii chloroplast-localized poly(A)-binding protein RB47 is predicted to contain a non-conserved linker (NCL) sequence flanked by highly conserved N- and C-terminal sequences, based on the corresponding cDNA. RB47 was purified from chloroplasts in association with an endoribonuclease activity; however, protein sequencing failed to detect the NCL. Furthermore, while recombinant RB47 including the NCL did not display endoribonuclease activity in vitro, versions lacking the NCL displayed strong activity. Both full-length and shorter forms of RB47 could be detected in chloroplasts, with conversion to the shorter form occurring in chloroplasts isolated from cells grown in the light. This conversion could be replicated in vitro in chloroplast extracts in a light-dependent manner, where epitope tags and protein sequencing showed that the NCL was excised from a full-length recombinant substrate, together with splicing of the flanking sequences. The requirement for endogenous factors and light differentiates this protein splicing from autocatalytic inteins, and may allow the chloroplast to regulate the activation of RB47 endoribonuclease activity. We speculate that this protein splicing activity arose to post-translationally repair proteins that had been inactivated by deleterious insertions or extensions. PMID:27311716

  3. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  4. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  5. Sorghum and millet proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum and millet proteins are an important source of dietary protein for significant numbers of people living throughout Africa and parts of Asia. Compared to other food proteins, such as those found in milk, eggs and wheat, little is known about the functionality of sorghum and millet proteins. ...

  6. Whey protein fractionation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated whey protein products from cheese whey, such as whey protein concentrate (WPC) and whey protein isolate (WPI), contain more than seven different types of proteins: alpha-lactalbumin (alpha-LA), beta-lactoglobulin (beta-LG), bovine serum albumin (BSA), immunoglobulins (Igs), lactoferrin ...

  7. Protein in diet

    MedlinePlus

    ... protein. The basic structure of protein is a chain of amino acids. You need protein in your diet to help your body repair cells and make new ones. Protein is also important for growth and development in children, teens, and pregnant women.

  8. Techniques in protein methylation.

    PubMed

    Lee, Jaeho; Cheng, Donghang; Bedford, Mark T

    2004-01-01

    Proteins can be methylated on the side-chain nitrogens of arginine and lysine residues or on carboxy-termini. Protein methylation is a way of subtly changing the primary sequence of a peptide so that it can encode more information. This common posttranslational modification is implicated in the regulation of a variety of processes including protein trafficking, transcription and protein-protein interactions. In this chapter, we will use the arginine methyltransferases to illustrate different approaches that have been developed to assess protein methylation. Both in vivo and in vitro methylation techniques are described, and the use of small molecule inhibitors of protein methylation will be demonstrated. PMID:15173617

  9. Biochemical Approaches for Discovering Protein-Protein Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-protein interactions or protein complexes are indigenous to nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For ex...

  10. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  11. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  12. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  13. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2008-04-08

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  14. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2010-10-05

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  15. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    SciTech Connect

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von . E-mail: m.vonitzstein@griffith.edu.au

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.

  16. Designing Fluorinated Proteins.

    PubMed

    Marsh, E N G

    2016-01-01

    As methods to incorporate noncanonical amino acid residues into proteins have become more powerful, interest in their use to modify the physical and biological properties of proteins and enzymes has increased. This chapter discusses the use of highly fluorinated analogs of hydrophobic amino acids, for example, hexafluoroleucine, in protein design. In particular, fluorinated residues have proven to be generally effective in increasing the thermodynamic stability of proteins. The chapter provides an overview of the different fluorinated amino acids that have been used in protein design and the various methods available for producing fluorinated proteins. It discusses model proteins systems into which highly fluorinated amino acids have been introduced and the reasons why fluorinated residues are generally stabilizing, with particular reference to thermodynamic and structural studies from our laboratory. Lastly, details of the methodology we have developed to measure the thermodynamic stability of oligomeric fluorinated proteins are presented, as this may be generally applicable to many proteins. PMID:27586337

  17. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  18. PINT: Protein-protein Interactions Thermodynamic Database.

    PubMed

    Kumar, M D Shaji; Gromiha, M Michael

    2006-01-01

    The first release of Protein-protein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of protein-protein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available at http://www.bioinfodatabase.com/pint/index.html. PMID:16381844

  19. Functional insights into recombinant TROSPA protein from Ixodes ricinus.

    PubMed

    Figlerowicz, Marek; Urbanowicz, Anna; Lewandowski, Dominik; Jodynis-Liebert, Jadwiga; Sadowski, Czeslaw

    2013-01-01

    Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia. PMID:24204685

  20. KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer.

    PubMed

    Kim, Minsuh; Suh, Young-Ah; Oh, Ju-Hee; Lee, Bo Ra; Kim, Joon; Jang, Se Jin

    2016-01-01

    Aberrant Wnt/β-catenin signalling is implicated in the progression of several human cancers, including non-small cell lung cancer (NSCLC). However, mutations in Wnt/β-catenin pathway components are uncommon in NSCLC, and their epigenetic control remains unclear. Here, we show that KIF3A, a member of the kinesin-2 family, plays a role in suppressing Wnt/β-catenin signalling in NSCLC cells. KIF3A knockdown increases both β-catenin levels and transcriptional activity with concomitant promotion of malignant potential, such as increased proliferation and migration and upregulation of stemness markers. Because KIF3A binds β-arrestin, KIF3A depletion allows β-arrestin to form a complex with DVL2 and axin, stabilizing β-catenin. Although primary cilia, whose biogenesis requires KIF3A, are thought to restrain the Wnt response, pharmacological inhibition of ciliogenesis failed to increase β-catenin activity in NSCLC cells. A correlation between KIF3A loss and a poorer NSCLC prognosis as well as β-catenin and cyclin D1 upregulation further suggests that KIF3A suppresses Wnt/β-catenin signalling and tumourigenesis in NSCLC. PMID:27596264

  1. The relationship of rat liver overt carnitine palmitoyltransferase to the mitochondrial malonyl-CoA binding entity and to the latent palmitoyltransferase.

    PubMed Central

    Ghadiminejad, I; Saggerson, E D

    1990-01-01

    1. Confirming previous work [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382], malonyl-CoA-inhibitable carnitine palmitoyltransferase (CPT1) from rat liver was found to be localized in outer rather than in inner mitochondrial membranes. 2. Antisera were raised against a liver mitochondrial CPT of Mr 68,000, which was presumed to be the latent from of the enzyme (CPT2). These antisera cross-reacted with solubilized CPT extracted from liver inner mitochondrial membranes and with polypeptides of Mr 68,000 and 60,000 in immunoblots of both inner and outer mitochondrial membranes. The antisera also precipitated CPT activity from detergent-treated total membrane and outer-membrane preparations. 3. The antisera did not precipitate [14C]malonyl-CoA binding material obtained either from total membranes or from outer membranes. 4. It was concluded that liver CPT1 and CPT2 have some epitopes in common and may have a similar subunit size. In addition, CPT1 and the entity that binds malonyl-CoA must be separated polypeptides. Images Fig. 2. Fig. 3. PMID:2241911

  2. KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer

    PubMed Central

    Kim, Minsuh; Suh, Young-Ah; Oh, Ju-Hee; Lee, Bo Ra; Kim, Joon; Jang, Se Jin

    2016-01-01

    Aberrant Wnt/β-catenin signalling is implicated in the progression of several human cancers, including non-small cell lung cancer (NSCLC). However, mutations in Wnt/β-catenin pathway components are uncommon in NSCLC, and their epigenetic control remains unclear. Here, we show that KIF3A, a member of the kinesin-2 family, plays a role in suppressing Wnt/β-catenin signalling in NSCLC cells. KIF3A knockdown increases both β-catenin levels and transcriptional activity with concomitant promotion of malignant potential, such as increased proliferation and migration and upregulation of stemness markers. Because KIF3A binds β-arrestin, KIF3A depletion allows β-arrestin to form a complex with DVL2 and axin, stabilizing β-catenin. Although primary cilia, whose biogenesis requires KIF3A, are thought to restrain the Wnt response, pharmacological inhibition of ciliogenesis failed to increase β-catenin activity in NSCLC cells. A correlation between KIF3A loss and a poorer NSCLC prognosis as well as β-catenin and cyclin D1 upregulation further suggests that KIF3A suppresses Wnt/β-catenin signalling and tumourigenesis in NSCLC. PMID:27596264

  3. A spider toxin, ω-agatoxin IV A, binds to fixed as well as living tissues: cytochemical visualization of P/Q-type calcium channels.

    PubMed

    Nakanishi, Setsuko

    2016-08-01

    ω-Agatoxin IV A, a peptidyl toxin from Agelenopsis aperta venom, selectively binds to voltage-gated P/Q-type calcium channels. ω-Agatoxin IV A has been used as a selective tool in pharmacological and electrophysiological studies. Visualization of P/Q-type calcium channels has previously been accomplished using biotin-conjugated ω-Agatoxin IV A in freshly prepared mouse cerebellar and hippocampal slices (Nakanishi et al, J. Neurosci. Res., 41: , 532, 1995). Here biotinylated ω-agatoxin IV A was applied to transcardially fixed brain slices prepared with various fixatives. ω-Agatoxin IV A did not bind to fixed tissues from P/Q-type calcium channel knockout mice, confirming that binding to normal, fixed tissues was not an artifact. Using transmission electron microscopy, locations of biotinylated ω-agatoxin IV A binding sites visualized with gold-conjugated streptavidin showed a similar pattern to those visualized with antibody. The ability of biotinylated ω-agatoxin IV A to bind to fixed tissue provides a new cytochemical technique to study molecular architecture of synapses. PMID:27095701

  4. A Single Mutation in the Glycophorin A Binding Site of Hepatitis A Virus Enhances Virus Clearance from the Blood and Results in a Lower Fitness Variant

    PubMed Central

    Costafreda, M. Isabel; Ribes, Enric; Franch, Àngels; Bosch, Albert

    2012-01-01

    Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site. PMID:22593170

  5. Bridging the divide between sensory integration and binding theory: Using a binding-like neural synchronization mechanism to model sensory enhancements during multisensory interactions.

    PubMed

    Billock, Vincent A; Tsou, Brian H

    2014-07-01

    Neural information combination problems are ubiquitous in cognitive neuroscience. Two important disciplines, although conceptually similar, take radically different approaches to these problems. Sensory binding theory is largely grounded in synchronization of neurons responding to different aspects of a stimulus, resulting in a coherent percept. Sensory integration focuses more on the influences of the senses on each other and is largely grounded in the study of neurons that respond to more than one sense. It would be desirable to bridge these disciplines, so that insights gleaned from either could be harnessed by the other. To link these two fields, we used a binding-like oscillatory synchronization mechanism to simulate neurons in rattlesnake that are driven by one sense but modulated by another. Mutual excitatory coupling produces synchronized trains of action potentials with enhanced firing rates. The same neural synchronization mechanism models the behavior of a population of cells in cat visual cortex that are modulated by auditory activation. The coupling strength of the synchronizing neurons is crucial to the outcome; a criterion of strong coupling (kept weak enough to avoid seriously distorting action potential amplitude) results in intensity-dependent sensory enhancement-the principle of inverse effectiveness-a key property of sensory integration. PMID:24456391

  6. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  7. Ubiquitously expressed transcript is a novel interacting protein of protein inhibitor of activated signal transducer and activator of transcription 2

    PubMed Central

    KONG, XIANG; MA, SHIKUN; GUO, JIAQIAN; MA, YAN; HU, YANQIU; WANG, JIANJUN; ZHENG, YING

    2015-01-01

    Protein inhibitor of activated signal transducer and activator of transcription 2 (PIAS2) is a member of the PIAS protein family. This protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. To improve understanding of the physiological roles of PIAS2, the current study used a yeast two-hybrid system to screen mouse stem cell cDNA libraries for proteins that interact with PIAS2. The screening identified an interaction between PIAS2 and ubiquitously expressed transcript (UXT). UXT, also termed androgen receptor trapped clone-27, is an α-class prefoldin-type chaperone that acts as a coregulator for various transcription factors, including nuclear factor-κB and androgen receptor (AR). A direct interaction between PIAS2 and UXT was confirmed by direct yeast two-hybrid analysis. In vitro evidence of the association of UXT with PIAS2 was obtained by co-immunoprecipitation. Colocalization between PIAS2 and UXT was identified in the nucleus and cytoplasm of HEK 293T and human cervical carcinoma HeLa cells. The results of the current study suggested that UXT is a binding protein of PIAS2, and interaction between PIAS2 and UXT may be important for the transcriptional activation of AR. PMID:25434787

  8. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  9. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana

    PubMed Central

    Guelette, Brandon S.; Benning, Urs F.; Hoffmann-Benning, Susanne

    2012-01-01

    The phloem plays a crucial role in assimilate and nutrient transport, pathogen response, and plant growth and development. Yet, few species have yielded pure phloem exudate and, if proteins need to be analysed, those species may not have sequenced genomes, making identification difficult. The enrichment of Arabidopsis thaliana phloem exudate in amounts large enough to allow for metabolite and protein analysis is described. Using this method, it was possible to identify 65 proteins present in the Arabidopsis phloem exudate. The majority of these proteins could be grouped by response to pathogens, stress, or hormones, carbon metabolism, protein interaction, modification, and turnover, and transcription factors. It was also possible to detect 11 proteins that play a role in lipid/fatty acid metabolism (aspartic protease, putative 3-β-hydroxysteroid dehydrogenase, UDP-sulphoquinovose synthase/SQD1, lipase, PIG-P-like protein: phosphatidylinositol-N-acetylglucosaminyltransferase), storage (glycine-rich protein), binding (annexin, lipid-associated family protein, GRP17/oleosin), and/or signalling (annexin, putative lipase, PIG-P-like protein). Along with putative lipid-binding proteins, several lipids and fatty acids could be identified. Only a few examples exist of lipids (jasmonic acid, oxylipins) or lipid-binding proteins (DIR1, acyl-CoA-binding protein) in the phloem. Finding hydrophobic compounds in an aqueous environment is not without precedence in biological systems: human blood contains a variety of lipids, many of which play a significant role in human health. In blood, lipids are transported while bound to proteins. The present findings of lipids and lipid-binding proteins in phloem exudates suggest that a similar long-distance lipid signalling exists in plants and may play an important role in plant growth and development. PMID:22442409

  10. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation

    PubMed Central

    Tcherkezian, Joseph; Brittis, Perry A.; Thomas, Franziska; Roux, Philippe P.; Flanagan, John G.

    2010-01-01

    Summary Extracellular signals regulate protein translation in many cell functions. A key advantage of control at the translational level is the opportunity to regulate protein synthesis within specific cellular subregions. However, little is known about mechanisms that may link extracellular cues to translation with spatial precision. Here we show that a transmembrane receptor, DCC, forms a binding complex containing multiple translation components, including eukaryotic initiation factors, ribosomal large and small subunits, and monosomes. In neuronal axons and dendrites DCC colocalizes in particles with translation machinery, and newly synthesized protein. The extracellular ligand netrin promoted DCC-mediated translation and disassociation of translation components. The functional and physical association of a cell surface receptor with the translation machinery leads to a generalizable model for localization and extracellular regulation of protein synthesis, based on a transmembrane translation regulation complex. PMID:20434207

  11. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  12. Protein S blood test

    MedlinePlus

    ... a normal substance in your body that prevents blood clotting. A blood test can be done to see ... family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with ...

  13. Protein electrophoresis - urine

    MedlinePlus

    ... nephropathy Kidney failure Multiple myeloma Nephrotic syndrome Acute urinary tract infection Risks There are no risks associated with this ... Primary amyloidosis Protein in diet Protein urine test Urinary tract infection - adults Update Date 5/29/2014 Updated by: ...

  14. [Protein-losing enteropathy].

    PubMed

    Amiot, A

    2015-07-01

    Protein-losing enteropathy is a rare syndrome of gastrointestinal protein loss. The primary causes can be classified into lymphatic leakage due to increased interstitial pressure and increased leakage of protein-rich fluids due to erosive or non-erosive gastrointestinal disorders. The diagnosis of protein-losing enteropathy should be considered in patients with chronic diarrhea and peripheral oedema. The diagnosis of protein-losing enteropathy is most commonly based on the determination of fecal alpha-1 antitrypsin clearance. Most protein-losing enteropathy cases are the result of either lymphatic obstruction or a variety of gastrointestinal disorders and cardiac diseases, while primary intestinal lymphangiectasia (Waldmann's disease) is less common. Treatment of protein-losing enteropathy targets the underlying disease but also includes dietary modification, such as high-protein and low-fat diet along with medium-chain triglyceride supplementation. PMID:25618488

  15. Learning about Proteins

    MedlinePlus

    ... body, and protecting you from disease. All About Amino Acids When you eat foods that contain protein, the ... called amino (say: uh-MEE-no) acids. The amino acids then can be reused to make the proteins ...

  16. Hydrodynamic effects in proteins

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Cieplak, Marek

    2011-01-01

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.

  17. Hydrodynamic effects in proteins.

    PubMed

    Szymczak, Piotr; Cieplak, Marek

    2011-01-26

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins. PMID:21406855

  18. Hydrogen-deuterium exchange mass spectrometry reveals the interaction of Fenna-Matthews-Olson protein and chlorosome CsmA protein

    PubMed Central

    Huang, Richard Y-C.; Wen, Jianzhong; Blankenship, Robert E.; Gross, Michael L.

    2011-01-01

    In green-sulfur bacterial photosynthesis, excitation energy absorbed by a peripheral antenna structure known as the chlorosome is sequentially transferred through a baseplate protein to the Fenna-Matthews-Olson (FMO) antenna protein and into the reaction center, which is embedded in the cytoplasmic membrane. The molecular details of the optimized photosystem architecture required for efficient energy transfer are only partially understood. We address here the question of how the baseplate interacts with the FMO protein by applying hydrogen/deuterium exchange coupled with enzymatic digestion and mass spectrometry analysis to reveal the binding interface of the FMO antenna protein and the CsmA baseplate protein. Several regions on the FMO protein, represented by peptides consisting of 123-129, 140-149, 150-162, 191-208 and 224-232, show significant decreases of deuterium uptake after CsmA binding. The results indicate that the CsmA protein interacts with the Bchl a #1 side of the FMO protein. A global picture including peptide-level details for the architecture of the photosystem from green sulfur bacteria can now be drawn. PMID:22142245

  19. Understanding protein folding: small proteins in silico.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-01-01

    Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins. PMID:18036571

  20. Imaging Protein-protein Interactions in vivo

    PubMed Central

    Seegar, Tom; Barton, William

    2010-01-01

    Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface. PMID:20972411

  1. CSF myelin basic protein

    MedlinePlus

    CSF myelin basic protein is a test to measure the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF). The CSF ... less than 4 ng/mL of myelin basic protein in the CSF. Normal value ranges may vary ...

  2. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  3. Palmitoylation of Hedgehog proteins.

    PubMed

    Buglino, John A; Resh, Marilyn D

    2012-01-01

    Hedgehog (Hh) proteins are secreted signaling proteins that contain amide-linked palmitate at the N-terminus and cholesterol at the C-terminus. Palmitoylation of Hh proteins is critical for effective long- and short-range signaling. The palmitoylation reaction occurs during transit of Hh through the secretory pathway, most likely in the lumen of the ER. Attachment of palmitate to Hh proteins is independent of cholesterol modification and autoprocessing and is catalyzed by Hhat (Hedgehog acyltransferase). Hhat is a member of the membrane bound O-acyltransferase (MBOAT) family, a subgroup of multipass membrane proteins that catalyze transfer of fatty acyl groups to lipids and proteins. Several classes of secreted proteins have recently been shown to be substrates for MBOAT acyltransferases, including Hh proteins and Spitz (palmitoylated by Hhat), Wg/Wnt proteins (modified with palmitate and/or palmitoleate by Porcupine) and ghrelin (octanoylated by ghrelin O-acyltransferase). These findings highlight protein fatty acylation as a mechanism that not only influences membrane binding of intracellular proteins but also regulates the signaling range and efficacy of secreted proteins. PMID:22391306

  4. Protein electrophoresis - serum

    MedlinePlus

    Normal value ranges are: Total protein: 6.4 to 8.3 g/dL (grams per deciliter) Albumin: 3.5 to 5.0 g/dL Alpha-1 ... Decreased total protein may indicate: Abnormal loss of protein from the digestive tract or the inability of the digestive tract ...

  5. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  6. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  7. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  8. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  9. Protein - Which is Best?

    PubMed

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  10. Optical Control of Protein–Protein Interactions via Blue Light-Induced Domain Swapping

    PubMed Central

    2015-01-01

    The design of new optogenetic tools for controlling protein function would be facilitated by the development of protein scaffolds that undergo large, well-defined structural changes upon exposure to light. Domain swapping, a process in which a structural element of a monomeric protein is replaced by the same element of another copy of the same protein, leads to a well-defined change in protein structure. We observe domain swapping in a variant of the blue light photoreceptor photoactive yellow protein in which a surface loop is replaced by a well-characterized protein–protein interaction motif, the E-helix. In the domain-swapped dimer, the E-helix sequence specifically binds a partner K-helix sequence, whereas in the monomeric form of the protein, the E-helix sequence is unable to fold into a binding-competent conformation and no interaction with the K-helix is seen. Blue light irradiation decreases the extent of domain swapping (from Kd = 10 μM to Kd = 300 μM) and dramatically enhances the rate, from weeks to <1 min. Blue light-induced domain swapping thus provides a novel mechanism for controlling of protein–protein interactions in which light alters both the stability and the kinetic accessibility of binding-competent states. PMID:25003701

  11. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells

    PubMed Central

    Duren, Ryan P.; Boudreaux, Seth P.; Conneely, Orla M.

    2016-01-01

    Members of the NR4A subfamily of orphan nuclear receptors regulate cell fate decisions via both genomic and non-genomic mechanisms in a cell and tissue selective manner. NR4As play a key role in maintenance of hematopoietic stem cell homeostasis and are critical tumor suppressors of acute myeloid leukemia (AML). Expression of NR4As is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescue of NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyltransferase to epigenetically activate NR4A bound enhancers via acetylation at histone H3K27. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells. PMID:26938745

  12. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  13. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  14. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  15. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  16. Selective Precipitation of Proteins.

    PubMed

    Matulis, Daumantas

    2016-01-01

    Selective precipitation of proteins can be used as a bulk method to recover the majority of proteins from a crude lysate, as a selective method to fractionate a subset of proteins from a protein solution, or as a very specific method to recover a single protein of interest from a purification step. This unit describes a number of methods suitable for selective precipitation. In each of the protocols that are outlined, the physical or chemical basis of the precipitation process, the parameters that can be varied for optimization, and the basic steps for developing an optimized precipitation are described. PMID:26836410

  17. Endoplasmic Reticulum Chaperone Protein GRP-78 Mediates Endocytosis of Dentin Matrix Protein 1*S⃞

    PubMed Central

    Ravindran, Sriram; Narayanan, Karthikeyan; Eapen, Asha Sarah; Hao, Jianjun; Ramachandran, Amsaveni; Blond, Sylvie; George, Anne

    2008-01-01

    Dentin matrix protein 1 (DMP1), a phosphorylated protein present in the mineral phase of both vertebrates and invertebrates, is a key regulatory protein during biogenic formation of mineral deposits. Previously we showed that DMP1 is localized in the nuclear compartment of preosteoblasts and preodontoblasts. In the nucleus DMP1 might play an important role in the regulation of genes that control osteoblast or odontoblast differentiation. Here, we show that cellular uptake of DMP1 occurs through endocytosis. Interestingly, this process is initiated by DMP1 binding to the glucose-regulated protein-78 (GRP-78) localized on the plasma membrane of preodontoblast cells. Binding of DMP1 to GRP-78 receptor was determined to be specific and saturable with a binding dissociation constant KD = 85 nm. We further depict a road map for the endocytosed DMP1 and demonstrate that the internalization is mediated primarily by caveolae and that the vesicles containing DMP1 are routed to the nucleus along microtubules. Immunohistochemical analysis and binding studies performed with biotin-labeled DMP1 confirm spatial co-localization of DMP1 and GRP-78 in the preodontoblasts of a developing mouse molar. Co-localization of DMP1 with GRP-78 was also observed in T4-4 preodontoblast cells, dental pulp stem cells, and primary preodontoblasts. By small interfering RNA techniques, we demonstrate that the receptor for DMP1 is GRP-78. Therefore, binding of DMP1 with GRP-78 receptor might be an important mechanism by which DMP1 is internalized and transported to the nucleus during bone and tooth development. PMID:18757373

  18. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  19. Mechanism of protein decarbonylation.

    PubMed

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J

    2013-12-01

    Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. PMID:24044890

  20. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  1. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  2. Structure of the mammalian TSPO/PBR protein.

    PubMed

    Jaremko, Mariusz; Jaremko, Łukasz; Jaipuria, Garima; Becker, Stefan; Zweckstetter, Markus

    2015-08-01

    The 3D structure of the 18-kDa transmembrane (TM) protein TSPO (translocator protein)/PBR (peripheral benzodiazepine receptor), which contains a binding site for benzodiazepines, is important to better understand its function and regulation by endogenous and synthetic ligands. We have recently determined the structure of mammalian TSPO/PBR in complex with the diagnostic ligand PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; Jaremko et al. (2014) Science 343: , 1363-1366], providing for the first time atomic-level insight into the conformation of this protein, which is up-regulated in various pathological conditions including Alzheimer's disease and Parkinson's disease. Here, we review the studies which have probed the structural properties of mammalian TSPO/PBR as well as the homologues bacterial tryptophan-rich sensory proteins (TspOs) over the years and provide detailed insight into the 3D structure of mouse TSPO (mTSPO)/PBR in complex with PK11195. PMID:26551694

  3. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  4. Phage display of proteins.

    PubMed

    Kościelska, K; Kiczak, L; Kasztura, M; Wesołowska, O; Otlewski, J

    1998-01-01

    In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature. PMID:9918498

  5. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli.

    PubMed

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaA(ATP) is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells. PMID:27446932

  6. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli

    PubMed Central

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaAATP is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells. PMID:27446932

  7. Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity.

    PubMed

    Wu, Yong-Zheng; Manevich, Yefim; Baldwin, James L; Dodia, Chandra; Yu, Kevin; Feinstein, Sheldon I; Fisher, Aron B

    2006-03-17

    Peroxiredoxin 6 (Prdx6) is a "moonlighting" protein with both GSH peroxidase and phospholipase A(2) (PLA(2)) activities. This protein is responsible for degradation of internalized dipalmitoylphosphatidylcholine, the major phospholipid component of lung surfactant. The PLA(2) activity is inhibited by surfactant protein A (SP-A). We postulate that SP-A regulates the PLA(2) activity of Prdx6 through direct protein-protein interaction. Recombinant human Prdx6 and SP-A isolated from human alveolar proteinosis fluid were studied. Measurement of kinetic constants at pH 4.0 (maximal PLA(2) activity) showed K(m)0.35 mm and V(max) 138 nmol/min/mg of protein. SP-A inhibited PLA(2) activity non-competitively with K(i) 10 mug/ml and was Ca(2+) -independent. Activity at pH 7.4 was approximately 50% less, and inhibition by SP-A was partially dependent on Ca(2+). Interaction of SP-A and Prdx6 at pH 7.4 was shown by Prdx6-mediated inhibition of SP-A binding to agarose beads, a pull-down assay using His-tagged Prdx6 and Ni(2) -chelating beads, co-immunoprecipitation from lung epithelial cells and from a binary mixture of the two proteins, binding after treatment with a trifunctional cross-linker, and size-exclusion chromatography. Analysis by static light scattering and surface plasmon resonance showed calcium-independent SP-A binding to Prdx6 at pH 4.0 and partial Ca(2+) dependence of binding at pH 7.4. These results indicate a direct interaction between SP-A and Prdx6, which provides a mechanism for regulation of the PLA(2) activity of Prdx6 by SP-A. PMID:16330552

  8. Identification of a common protein association region in the neuronal Cdk5 activator.

    PubMed

    Wang, X; Ching, Y P; Lam, W H; Qi, Z; Zhang, M; Wang, J H

    2000-10-13

    Cyclin-dependent protein kinase 5 (Cdk5) depends on the association with neuronal Cdk5 activator (Nck5a) for kinase activity. A variety of cellular proteins have been shown to undergo high affinity association with Nck5a, including three novel proteins, C42, C48, and C53 found by a yeast two-hybrid screen (Ching, Y. P., Qi, Z., and Wang, J. H. (2000) Gene 242, 285-294). The three proteins show competitive binding to Nck5a suggesting that they bind at a common site. The binding site has been mapped to a region of 26 amino acid residues (residues 145 to 170) at the N-terminal boundary of the kinase activation domain of Nck5a. This region of Nck5a contains an amphipathic alpha-helix whose hydrophobic face is involved in Cdk5 activation (Chin, K. T., Ohki, S, Tang, D., Cheng, H. C., Wang, J. H. , and Zhang, M. (1999) J. Biol. Chem. 274, 7120-7127). Several lines of evidence suggest that Nck5a interacts with the binding proteins at the hydrophilic face of the amphipathic alpha-helix. First, the Nck5a-(145-170) peptide can bind Cdk5 and Nck5a-binding proteins simultaneously. Second, the association of Nck5a-(145-170) to C48 can be markedly reduced by high ionic strength whereas the interaction between Nck5a and Cdk5 is not affected. Third, substitution of Glu(157) by glutamine in Nck5a-(145-170) abolishes the peptide's ability to bind to the three Nck5a-binding proteins without diminishing its Cdk5 binding activity. PMID:10915792

  9. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol.

    PubMed

    Ueno, Kazuma; Nagano, Makoto; Shimizu, Shigeki; Toshima, Junko Y; Toshima, Jiro

    2016-07-01

    Lipid droplets (LDs) are ubiquitous organelles, enclosed in a monolayer of phospholipid, which store excess fatty acids as neutral lipids such as triacylglycerol and sterol esters. Previous studies have revealed that LDs contain many proteins with various functions required for lipid metabolism and vesicular trafficking. Among them, Lds (Lipid Droplet in Sporulation) proteins, Lds1p and Lds2p, are reportedly induced and localized to LDs during yeast sporulation, but their cellular function has not been clarified. Here we show that the Lds proteins, Lds1p, Lds2p and Rrt8p, are expressed and localized at LDs in vegetative cells, being required for proper localization of plasma membrane proteins. We found that deletion of Lds genes led to mis-sorting of Wsc1p, a cell wall stress sensor, from the plasma membrane to the vacuole. We also demonstrated that lack of these proteins partially suppressed the growth defect and mis-sorting of the high-affinity tryptophan transporter Tat2p, induced by impairment of ergosterol biosynthesis. Furthermore, we identified Sec39p/Dsl3p, a component of the DSL1 tethering complex that mediates the interaction with COPI vesicles, as a binding partner for Lds2p. These results suggest a possible role of Lds proteins in maintenance of membrane lipid homeostasis and accompanying membrane protein transport. PMID:27216456

  10. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  11. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  12. Protein-protein docking with backbone flexibility.

    PubMed

    Wang, Chu; Bradley, Philip; Baker, David

    2007-10-19

    Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer backbones rigid for algorithmic simplicity and computational efficiency. Here we present a reformulation of the Rosetta docking method that incorporates explicit backbone flexibility in protein-protein docking. The new method is based on a "fold-tree" representation of the molecular system, which seamlessly integrates internal torsional degrees of freedom and rigid-body degrees of freedom. Problems with internal flexible regions ranging from one or more loops or hinge regions to all of one or both partners can be readily treated using appropriately constructed fold trees. The explicit treatment of backbone flexibility improves both sampling in the vicinity of the native docked conformation and the energetic discrimination between near-native and incorrect models. PMID:17825317

  13. Energy design for protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Ravikant, D. V. S.; Elber, Ron

    2011-08-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions.

  14. PUB1: a major yeast poly(A)+ RNA-binding protein.

    PubMed Central

    Matunis, M J; Matunis, E L; Dreyfuss, G

    1993-01-01

    The expression of RNA polymerase II transcripts can be regulated at the posttranscriptional level by RNA-binding proteins. Although extensively characterized in metazoans, relatively few RNA-binding proteins have been characterized in the yeast Saccharomyces cerevisiae. Three major proteins are cross-linked by UV light to poly(A)+ RNA in living S. cerevisiae cells. These are the 72-kDa poly(A)-binding protein and proteins of 60 and 50 kDa (S.A. Adam, T.Y. Nakagawa, M.S. Swanson, T. Woodruff, and G. Dreyfuss, Mol. Cell. Biol. 6:2932-2943, 1986). Here, we describe the 60-kDa protein, one of the major poly(A)+ RNA-binding proteins in S. cerevisiae. This protein, PUB1 [for poly(U)-binding protein 1], was purified by affinity chromatography on immobilized poly(rU), and specific monoclonal antibodies to it were produced. UV cross-linking demonstrated that PUB1 is bound to poly(A)+ RNA (mRNA or pre-mRNA) in living cells, and it was detected primarily in the cytoplasm by indirect immunofluorescence. The gene for PUB1 was cloned and sequenced, and the sequence was found to predict a 51-kDa protein with three ribonucleoprotein consensus RNA-binding domains and three glutamine- and asparagine-rich auxiliary domains. This overall structure is remarkably similar to the structures of the Drosophila melanogaster elav gene product, the human neuronal antigen HuD, and the cytolytic lymphocyte protein TIA-1. Each of these proteins has an important role in development and differentiation, potentially by affecting RNA processing. PUB1 was found to be nonessential in S. cerevisiae by gene replacement; however, further genetic analysis should reveal important features of this class of RNA-binding proteins. Images PMID:8413213

  15. The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions.

    PubMed

    Little, Richard; Dixon, Ray

    2003-08-01

    The expression of genes required for the synthesis of molybdenum nitrogenase in Azotobacter vinelandii is controlled by the NifL-NifA transcriptional regulatory complex in response to nitrogen, carbon, and redox status. Activation of nif gene expression by the transcriptional activator NifA is inhibited by direct protein-protein interaction with NifL under conditions unfavorable for nitrogen fixation. We have recently shown that the NifL-NifA system responds directly to physiological concentrations of 2-oxoglutarate, resulting in relief of NifA activity from inhibition by NifL under conditions when fixed nitrogen is limiting. The inhibitory activity of NifL is restored under conditions of excess combined nitrogen through the binding of the signal transduction protein Av GlnK to the carboxyl-terminal domain of NifL. The amino-terminal domain of NifA comprises a GAF domain implicated in the regulatory response to NifL. A truncated form of NifA lacking this domain is not responsive to 2-oxoglutarate in the presence of NifL, suggesting that the GAF domain is required for the response to this ligand. Using isothermal titration calorimetry, we demonstrate stoichiometric binding of 2-oxoglutarate to both the isolated GAF domain and the full-length A. vinelandii NifA protein with a dissociation constant of approximately 60 microm. Limited proteolysis experiments indicate that the binding of 2-oxoglutarate increases the susceptibility of the GAF domain to trypsin digestion and also prevents NifL from protecting these cleavage sites. However, protection by NifL is restored when the non-modified (non-uridylylated) form of Av GlnK is also present. Our results suggest that the binding of 2-oxoglutarate to the GAF domain of NifA may induce a conformational change that prevents inhibition by NifL under conditions when fixed nitrogen is limiting. PMID:12759352

  16. Mechanisms Regulating Protein Localization.

    PubMed

    Bauer, Nicholas C; Doetsch, Paul W; Corbett, Anita H

    2015-10-01

    Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation. PMID:26172624

  17. Electrophoretic separation of proteins.

    PubMed

    Chakavarti, Bulbul; Chakavarti, Deb

    2008-01-01

    Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit compositions, and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. The combination of pore size and protein charge, size, and shape determines the migration rate of the protein. In this unit, the standard Laemmli method is described for discontinuous gel electrophoresis under denaturing conditions, i.e., in the presence of sodium dodecyl sulfate (SDS). PMID:19066548

  18. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  19. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  20. Principles of Flexible Protein-Protein Docking

    PubMed Central

    Andrusier, Nelly; Mashiach, Efrat; Nussinov, Ruth; Wolfson, Haim J.

    2008-01-01

    Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem. PMID:18655061

  1. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. PMID:26320628

  2. Elastic proteins and elastomeric protein alloys.

    PubMed

    Aghaei-Ghareh-Bolagh, Behnaz; Mithieux, Suzanne M; Weiss, Anthony S

    2016-06-01

    The elastomeric proteins elastin and resilin have been used extensively in the fabrication of biomaterials for tissue engineering applications due to their unique mechanical and biological properties. Tropoelastin is the soluble monomer component of elastin. Tropoelastin and resilin are both highly elastic with high resilience, substantial extensibility, high durability and low energy loss, which makes them excellent candidates for the fabrication of elastic tissues that demand regular and repetitive movement like the skin, lung, blood vessels, muscles and vocal folds. Combinations of these proteins with silk fibroin further enhance their biomechanical and biological properties leading to a new class of protein alloy materials with versatile properties. In this review, the properties of tropoelastin-based and resilin-based biomaterials with and without silk are described in concert with examples of their applications in tissue engineering. PMID:26780495

  3. Insights into the evolution and domain structure of ataxin-2 proteins across eukaryotes

    PubMed Central

    2014-01-01

    Background Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. Results We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. Conclusion Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species. PMID:25027299

  4. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  5. Protein oxidation and peroxidation.

    PubMed

    Davies, Michael J

    2016-04-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  6. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  7. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  8. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  9. Protein-protein interactions as drug targets.

    PubMed

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-10-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3. PMID:26510391

  10. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  11. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  12. Consensus protein design.

    PubMed

    Porebski, Benjamin T; Buckle, Ashley M

    2016-07-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  13. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression.

    PubMed

    Huang, De-Shuang; Zhang, Lei; Han, Kyungsook; Deng, Suping; Yang, Kai; Zhang, Hongbo

    2014-01-01

    In order to transform protein sequences into the feature vectors, several works have been done, such as computing auto covariance (AC), conjoint triad (CT), local descriptor (LD), moran autocorrelation (MA), normalized moreaubroto autocorrelation (NMB) and so on. In this paper, we shall adopt these transformation methods to encode the proteins, respectively, where AC, CT, LD, MA and NMB are all represented by '+' in a unified manner. A new method, i.e. the combination of least squares regression with '+' (abbreviated as LSR(+)), will be introduced for encoding a protein-protein correlation-based feature representation and an interacting protein pair. Thus there are totally five different combinations for LSR(+), i.e. LSRAC, LSRCT, LSRLD, LSRMA and LSRNMB. As a result, we combined a support vector machine (SVM) approach with LSR(+) to predict protein-protein interactions (PPI) and PPI networks. The proposed method has been applied on four datasets, i.e. Saaccharomyces cerevisiae, Escherichia coli, Homo sapiens and Caenorhabditis elegans. The experimental results demonstrate that all LSR(+) methods outperform many existing representative algorithms. Therefore, LSR(+) is a powerful tool to characterize the protein-protein correlations and to infer PPI, whilst keeping high performance on prediction of PPI networks. PMID:25059329

  14. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  15. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  16. Glycolipid transfer proteins

    PubMed Central

    Brown, Rhoderick E.; Mattjus, Peter

    2007-01-01

    Glycolipid transfer proteins (GLTPs) are small (24 kD), soluble, ubiquitous proteins characterized by their ability to accelerate the intermembrane transfer of glycolipids in vitro. GLTP specificity encompasses both sphingoid- and glycerol-based glycolipids, but with a strict requirement that the initial sugar residue be beta-linked to the hydrophobic lipid backbone. The 3D protein structures of GLTP reveal liganded structures with unique lipid binding modes. The biochemical properties of GLTP action at the membrane surface have been studied rather comprehensively, but the biological role of GLTP remains enigmatic. What is clear is that GLTP differs distinctly from other known glycolipid-binding proteins, such as nonspecific lipid transfer proteins, lysosomal sphingolipid activator proteins, lectins, lung surfactant proteins as well as other lipid binding/transfer proteins. Based on the unique conformational architecture that targets GLTP to membranes and enables glycolipid binding, GLTP is now considered the prototypical and founding member of a new protein superfamily in eukaryotes. PMID:17320476

  17. Engineering therapeutic protein disaggregases.

    PubMed

    Shorter, James

    2016-05-15

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  18. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  19. Consensus protein design

    PubMed Central

    Porebski, Benjamin T.; Buckle, Ashley M.

    2016-01-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  20. Acanthamoeba castellanii STAT protein.

    PubMed

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  1. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  2. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  3. Designer protein delivery: From natural to engineered affinity-controlled release systems.

    PubMed

    Pakulska, Malgosia M; Miersch, Shane; Shoichet, Molly S

    2016-03-18

    Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design. PMID:26989257

  4. Apratoxin Kills Cells by Direct Blockade of the Sec61 Protein Translocation Channel.

    PubMed

    Paatero, Anja O; Kellosalo, Juho; Dunyak, Bryan M; Almaliti, Jehad; Gestwicki, Jason E; Gerwick, William H; Taunton, Jack; Paavilainen, Ville O

    2016-05-19

    Apratoxin A is a cytotoxic natural product that prevents the biogenesis of secretory and membrane proteins. Biochemically, apratoxin A inhibits cotranslational translocation into the ER, but its cellular target and mechanism of action have remained controversial. Here, we demonstrate that apratoxin A prevents protein translocation by directly targeting Sec61α, the central subunit of the protein translocation channel. Mutagenesis and competitive photo-crosslinking studies indicate that apratoxin A binds to the Sec61 lateral gate in a manner that differs from cotransin, a substrate-selective Sec61 inhibitor. In contrast to cotransin, apratoxin A does not exhibit a substrate-selective inhibitory mechanism, but blocks ER translocation of all tested Sec61 clients with similar potency. Our results suggest that multiple structurally unrelated natural products have evolved to target overlapping but non-identical binding sites on Sec61, thereby producing distinct biological outcomes. PMID:27203376

  5. Protein metabolism and requirements.

    PubMed

    Biolo, Gianni

    2013-01-01

    Skeletal muscle adaptation to critical illness includes insulin resistance, accelerated proteolysis, and increased release of glutamine and the other amino acids. Such amino acid efflux from skeletal muscle provides precursors for protein synthesis and energy fuel to the liver and to the rapidly dividing cells of the intestinal mucosa and the immune system. From these adaptation mechanisms, severe muscle wasting, glutamine depletion, and hyperglycemia, with increased patient morbidity and mortality, may ensue. Protein/amino acid nutrition, through either enteral or parenteral routes, plays a pivotal role in treatment of metabolic abnormalities in critical illness. In contrast to energy requirement, which can be accurately assessed by indirect calorimetry, methods to determine individual protein/amino acid needs are not currently available. In critical illness, a decreased ability of protein/amino acid intake to promote body protein synthesis is defined as anabolic resistance. This abnormality leads to increased protein/amino acid requirement and relative inefficiency of nutritional interventions. In addition to stress mediators, immobility and physical inactivity are key determinants of anabolic resistance. The development of mobility protocols in the intensive care unit should be encouraged to enhance the efficacy of nutrition. In critical illness, protein/amino acid requirement has been defined as the intake level associated with the lowest rate of catabolism. The optimal protein-sparing effects in patients receiving adequate energy are achieved when protein/amino acids are administered at rates between 1.3 and 1.5 g/kg/day. Extra glutamine supplementation is required in conditions of severe systemic inflammatory response. Protein requirement increases during hypocaloric feeding and in patients with acute renal failure on continuous renal replacement therapy. Evidence suggests that receiving adequate protein/amino acid intake may be more important than achieving

  6. Binding Efficiency of Protein-Protein Complexes

    PubMed Central

    Day, Eric S.; Cote, Shaun M.; Whitty, Adrian

    2012-01-01

    We examine the relationship between binding affinity and interface size for reversible protein-protein interactions (PPI), using cytokines from the tumor necrosis factor (TNF) superfamily and their receptors as a test case. Using surface plasmon resonance, we measured single-site binding affinities for the large receptor TNFR1 binding to its ligands TNFα (KD = 1.4 ± 0.4 nM) and lymphotoxin-α (KD = 50 ± 10 nM), and also for the small receptor Fn14 binding to TWEAK (KD = 70 ± 10 nM). We additionally assembled data for all other TNF/TNFR family complexes for which reliable single site binding affinities have been reported. We used these values to calculate the binding efficiency – defined as binding energy per Å2 of surface area buried at the contact interface – for the nine of these complexes for which co-crystal structures are available, and compared the results to those for a set of 144 protein-protein complexes with published affinity values. The results show that the most efficient PPI complexes generate ~20 cal.mol−1/Å2 of binding energy. A minimum contact area of ~500 Å2 is required for a stable complex, required to generate sufficient interaction energy to pay the entropic cost of co-localizing two proteins from 1 M solution. The most compact and efficient TNF/TNFR complex was BAFF/BR3, which achieved ~80% of the maximum achievable binding efficiency. Other small receptors also gave high binding efficiencies, while the larger receptors generated only 44-49% of this limit despite interacting primarily through just a single small domain. The results provide new insight into how much binding energy can be generated by a PPI interface of a given size, and establish a quantitative method to predict how large a natural or engineered contact interface must be to achieve a given level of binding affinity. PMID:23088250

  7. Cloning and expression of a queen pheromone-binding protein in the honeybee: an olfactory-specific, developmentally regulated protein.

    PubMed

    Danty, E; Briand, L; Michard-Vanhée, C; Perez, V; Arnold, G; Gaudemer, O; Huet, D; Huet, J C; Ouali, C; Masson, C; Pernollet, J C

    1999-09-01

    Odorant-binding proteins (OBPs) are small abundant extracellular proteins thought to participate in perireceptor events of odor-pheromone detection by carrying, deactivating, and/or selecting odor stimuli. The honeybee queen pheromone is known to play a crucial role in colony organization, in addition to drone sex attraction. We identified, for the first time in a social insect, a binding protein called antennal-specific protein 1 (ASP1), which binds at least one of the major queen pheromone components. ASP1 was characterized by cDNA cloning, expression in Pichia pastoris, and pheromone binding. In situ hybridization showed that it is specifically expressed in the auxiliary cell layer of the antennal olfactory sensilla. The ASP1 sequence revealed it as a divergent member of the insect OBP family. The recombinant protein presented the exact characteristics of the native protein, as shown by mass spectrometry, and N-terminal sequencing and exclusion-diffusion chromatography showed that recombinant ASP1 is dimeric. ASP1 interacts with queen pheromone major components, opposite to another putative honeybee OBP, called ASP2. ASP1 biosynthetic accumulation, followed by nondenaturing electrophoresis during development, starts at day 1 before emergence, in concomitance with the functional maturation of olfactory neurons. The isobar ASP1b isoform appears simultaneously to ASP1a in workers, but only at approximately 2 weeks after emergence in drones. Comparison of in vivo and heterologous expressions suggests that the difference between ASP1 isoforms might be because of dimerization, which might play a physiological role in relation with mate attraction. PMID:10460253

  8. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery. PMID:25815400

  9. Poxviral Ankyrin Proteins

    PubMed Central

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  10. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  11. Proteins and glasses

    SciTech Connect

    Frauenfelder, H.

    1997-12-31

    The structure, the energy landscape, and the dynamics of proteins and glasses are similar. Both types of systems display characteristic nonexponential time dependencies of relaxation phenomena. Experiments suggest that both, proteins and glasses, are heterogeneous and that this fact causes the observed time dependence. This result is discussed in terms of the rough energy landscape characteristic of complex systems.

  12. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented. PMID:27444727

  13. The AVIT protein family

    PubMed Central

    Kaser, Alexandra; Winklmayr, Martina; Lepperdinger, Günther; Kreil, Günther

    2003-01-01

    Homologues of a protein originally isolated from snake venom and frog skin secretions are present in many vertebrate species. They contain 80–90 amino acids, 10 of which are cysteines with identical spacing. Various names have been given to these proteins, such as mamba intestinal protein 1 (MIT1), Bv8 (Bombina variegata molecular mass ∼8 kDa), prokineticins and endocrine-gland vascular endothelial growth factor (EG-VEGF). Their amino-terminal sequences are identical, and so we propose that the sequence of their first four residues, AVIT, is used as a name for this family. From a comparison of the sequences, two types of AVIT proteins can be discerned. These proteins seem to be distributed widely in mammalian tissues and are known to bind to G-protein-coupled receptors. Members of this family have been shown to stimulate contraction of the guinea pig ileum, to cause hyperalgesia after injection into rats and to be active as specific growth factors. Moreover, the messenger RNA level of one of these AVIT proteins changes rhythmically in the region of the brain known as the suprachiasmatic nucleus. This shows that members of this new family of small proteins are involved in diverse biological processes. PMID:12728244

  14. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  15. Heat shock protein 20 (HSP20) is a novel substrate for protein kinase D1 (PKD1)

    PubMed Central

    Sin, Yuan Yan

    2015-01-01

    Heat shock protein 20 (HSP20) has cardioprotective qualities, which are triggered by PKA phosphorylation. PKD1 is also a binding partner for HSP20, and this prompted us to investigate whether the chaperone was a substrate for PKD1. We delineate the PKD1 binding sites on HSP20 and show for the first time HSP20 is a substrate for PKD1. Phosphorylation of HSP20 by PKD1 is diminished by pharmacological or siRNA reduction of PKD1 activity and is enhanced following PKD1 activation. Our results suggest that both PKA and PKD1 can both phosphorylate HSP20 on serine 16 but that PKA is the most dominant. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd. PMID:26443497

  16. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties.

    PubMed

    Miyachi, Ayaka; Takahashi, Tsuyoshi; Matsumura, Sachiko; Mihara, Hisakazu

    2010-06-11

    Self-assembly of peptides and proteins is a key feature of biological functions. Short amphiphilic peptides designed with a beta-sheet structure can form sophisticated nanofiber structures, and the fibers are available as nanomaterials for arranging biomolecules. Peptide FI (H-PKFKIIEFEP-OH) self-assembles into nanofibers with a coiled fine structure, as reported in our previous work. We have constructed anchor molecules that have both a binding moiety for the fiber structure and a functional unit capable of capturing target molecules, with the purpose of arranging proteins on the designed peptide nanofibers. Designed anchors containing an alkyl chain as a binding unit and biotin as a functional moiety were found to bind to peptide fibers FI and F2i (H-ALEAKFAAFEAKLA-NH(2)). The surface-exposed biotin moiety on the fibers could capture an anti-biotin antibody. Moreover, hydrophobic dipeptide anchor units composed of iminodiacetate connected to Phe-Phe or Ile-Ile and a peptide composed of six histidine residues connected to biotin could also connect FI peptide fibers to the anti-biotin antibody through the chelation of Ni(2+) ions. This strategy of using designed anchors opens a novel approach to constructing nanoscale protein arrays on peptide nanomaterials. PMID:20419712

  17. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  18. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  19. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  20. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  1. Protein sequence databases.

    PubMed

    Apweiler, Rolf; Bairoch, Amos; Wu, Cathy H

    2004-02-01

    A variety of protein sequence databases exist, ranging from simple sequence repositories, which store data with little or no manual intervention in the creation of the records, to expertly curated universal databases that cover all species and in which the original sequence data are enhanced by the manual addition of further information in each sequence record. As the focus of researchers moves from the genome to the proteins encoded by it, these databases will play an even more important role as central comprehensive resources of protein information. Several the leading protein sequence databases are discussed here, with special emphasis on the databases now provided by the Universal Protein Knowledgebase (UniProt) consortium. PMID:15036160

  2. Proteins in unexpected locations.

    PubMed Central

    Smalheiser, N R

    1996-01-01

    Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer. PMID:8862516

  3. Isotype-specific immunoregulation; characterization and function of Fc receptors on T-T hybridomas which produce murine IgA-binding factor.

    PubMed

    Kurita, T; Kiyono, H; Komiyama, K; Grossi, C E; Mestecky, J; McGhee, J R

    1986-06-01

    Several methods have been used in the present study to characterize Fc receptors (FcR) expressed on T-T hybridomas derived from mouse Peyer's patch T helper (Th) cell clones that preferentially support IgA responses. These T hybridomas (designated Th HA cells) produce IgA-binding factor (IBF alpha) which regulates antigen-dependent IgA responses. The ultrastructure of Th HA cells and the distribution of Fc alpha R on these cell lines were determined by colloidal gold (CG) immunoelectron microscopy (IEM). When Th HA cells were incubated with purified mouse IgA followed by CG-labeled anti-IgA, an even pattern of CG was distributed on the cell membrane. To ensure that binding occurred through Fc alpha R, Th HA cells were mixed with MOPC 315 IgA anti-DNP, followed by staining with CG-labeled TNP-human serum albumin. This resulted in an identical pattern of gold particle distribution, confirming expression of Fc alpha R on Th HA cells. No Fc mu R or Fc gamma 1R were detectable on Th HA cells by IEM. Immunocytoadherence with TNP-conjugated erythrocytes confirmed that Th HA cells were Fc alpha R+; however, no IgM or IgG rosettes were seen. When these cell lines were analyzed by flow cytometry (FACS) using IgA, IgM, or IgG1 and FITC-labeled anti-H chain-specific antibodies, 55 to 65% of cultured Th HA cells expressed Fc alpha R, and 11 to 18% expressed Fc mu R; however, no Fc gamma 1R was detectable on Th HA cells. The use of ELISA with Th HA cells as antigen confirmed the expression of Fc alpha R and the presence of less Fc mu R on these two cell lines. Solubilized membrane fractions derived from Th HA cells were tested for the presence of FcR by ELISA and for biologic function for support of IgA responses in Peyer's patch B cell cultures. Both Fc alpha R and Fc mu R were detected in fractions derived from Th HA cells. Furthermore, these fractions supported in vitro IgA anti-sheep erythrocyte responses, comparable to those obtained with Th HA cell culture supernatants

  4. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.

    PubMed

    Xie, Li; Liang, Tao; Kang, Youhou; Lin, Xianguang; Sobbi, Roozbeh; Xie, Huanli; Chao, Christin; Backx, Peter; Feng, Zhong-Ping; Shyng, Show-Ling; Gaisano, Herbert Y

    2014-10-01

    Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating

  5. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    (-)- and (+)-enantiomers of pindolol (1 microM and 0.1 mM, respectively). 6. There was an excellent correlation (r = 0.90, P = 0.0001) between the pEC50 values (ranging from 6.4 to 8.7) of the 19 agonists tested at adenylate cyclase and their pKD for 5-HT1A recognition sites. Apparent pKB values of antagonists at adenylate cyclase and their pKD values for 5-HT1A binding sites were also significantly correlated. 7. This study further indicates that the 5-HT1A recognition site and the 5-HT receptor mediating inhibition of adenylate cyclase in hippocampus are the same.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3207999

  6. The Movable Type Method Applied to Protein-Ligand Binding.

    PubMed

    Zheng, Zheng; Ucisik, Melek N; Merz, Kenneth M

    2013-12-10

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term "movable type". Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the free

  7. The Movable Type Method Applied to Protein-Ligand Binding

    PubMed Central

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  8. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  9. Complement factor H in its alternative identity as adrenomedullin-binding protein 1.

    PubMed

    Sim, Robert B; Ferluga, Janez; Al-Rashidi, Hanan; Abbow, Hussein; Schwaeble, Wilhelm; Kishore, Uday

    2015-11-01

    Complement factor H has been extensively studied since its discovery 50 years ago, and its role in the complement system is quite well established. It has another role, however, as a binding protein for the regulatory peptide adrenomedullin. Part of this role appears to be protection of adrenomedullin from proteolytic degradation. The binding interaction is unusual and merits further investigation. Adrenomedullin has potential therapeutic uses in diseases affecting the vasculature, and factor H has been administered with adrenomedullin in some animal models of disease. PMID:26597206

  10. Identification of a Binding Site for ASF/SF2 on an RNA Fragment Derived from the Hepatitis delta Virus Genome

    PubMed Central

    Sikora, Dorota; Zhang, Dajiang; Bojic, Teodora; Beeharry, Yasnee; Tanara, Ali; Pelchat, Martin

    2013-01-01

    The hepatitis delta virus (HDV) is a small (∼1700 nucleotides) RNA pathogen which encodes only one open reading frame. Consequently, HDV is dependent on host proteins to replicate its RNA genome. Recently, we reported that ASF/SF2 binds directly and specifically to an HDV-derived RNA fragment which has RNA polymerase II promoter activity. Here, we localized the binding site of ASF/SF2 on the HDV RNA fragment by performing binding experiments using purified recombinant ASF/SF2 combined with deletion analysis and site-directed mutagenesis. In addition, we investigated the requirement of ASF/SF2 for HDV RNA replication using RNAi-mediated knock-down of ASF/SF2 in 293 cells replicating HDV RNA. Overall, our results indicate that ASF/SF2 binds to a purine-rich region distant from both the previously published initiation site of HDV mRNA transcription and binding site of RNAP II, and suggest that this protein is not involved in HDV replication in the cellular system used. PMID:23349975

  11. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    PubMed

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  12. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation

    PubMed Central

    Zhang, Hua; Song, Lei; Cong, Haolong

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5′ untranslated region (5′UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection

  13. Structural Plasticity in Human Heterochromatin Protein

    PubMed Central

    Munari, Francesca; Rezaei-Ghaleh, Nasrollah; Xiang, Shengqi; Fischle, Wolfgang; Zweckstetter, Markus

    2013-01-01

    As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1) proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β) in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes. PMID:23585859

  14. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  15. Predicting Interaction Sites from the Energetics of Isolated Proteins: A New Approach to Epitope Mapping

    PubMed Central

    Scarabelli, Guido; Morra, Giulia; Colombo, Giorgio

    2010-01-01

    Abstract An increasing number of functional studies of proteins have shown that sequence and structural similarities alone may not be sufficient for reliable prediction of their interaction properties. This is particularly true for proteins recognizing specific antibodies, where the prediction of antibody-binding sites, called epitopes, has proven challenging. The antibody-binding properties of an antigen depend on its structure and related dynamics. Aiming to predict the antibody-binding regions of a protein, we investigate a new approach based on the integrated analysis of the dynamical and energetic properties of antigens, to identify nonoptimized, low-intensity energetic interaction networks in the protein structure isolated in solution. The method is based on the idea that recognition sites may correspond to localized regions with low-intensity energetic couplings with the rest of the protein, which allows them to undergo conformational changes, to be recognized by a binding partner, and to tolerate mutations with minimal energetic expense. Upon analyzing the results on isolated proteins and benchmarking against antibody complexes, it is found that the method successfully identifies binding sites located on the protein surface that are accessible to putative binding partners. The combination of dynamics and energetics can thus discriminate between epitopes and other substructures based only on physical properties. We discuss implications for vaccine design. PMID:20441761

  16. Purification and characterization of a mitochondrial, single-stranded-DNA-binding protein from Paracentrotus lividus eggs.

    PubMed

    Roberti, M; Musicco, C; Loguercio Polosa, P; Gadaleta, M N; Quagliariello, E; Cantatore, P

    1997-07-01

    A binding protein for single-stranded DNA was purified from Paracentrotus lividus egg mitochondria to near homogeneity by chromatography on DEAE-Sephacel and single-stranded-DNA-cellulose. The protein consists of a single polypeptide of about 15 kDa. Glycerol gradient sedimentation analysis suggested that P. lividus mitochondrial single-stranded-DNA-binding protein exists as a homo-oligomer, possibly a tetramer, in solution. The protein shows a stronger preference for poly(dT) with respect to single-stranded M13, poly(dI) and poly(dC). Binding to poly(dA) takes place with much lower affinity. The binding-site size, determined by gel mobility-shift experiments with oligonucleotides of different length, is approximately 45 nucleotides. The binding to single-stranded DNA occurs with low or no cooperativity and is not influenced by ionic strength. The protein has a very high affinity for the DNA: its apparent macroscopic association constant is 2x10(9) M(-1), a value which is the highest among the mitochondrial single-stranded-DNA-binding proteins characterized to date. The lack of cooperativity and the high association constant represent distinctive features of this protein and might be related to the peculiar mechanism of sea urchin mitochondrial DNA replication. PMID:9249008

  17. Protein Regulation in Signal Transduction.

    PubMed

    Lee, Michael J; Yaffe, Michael B

    2016-01-01

    SUMMARYCells must respond to a diverse, complex, and ever-changing mix of signals, using a fairly limited set of parts. Changes in protein level, protein localization, protein activity, and protein-protein interactions are critical aspects of signal transduction, allowing cells to respond highly specifically to a nearly limitless set of cues and also to vary the sensitivity, duration, and dynamics of the response. Signal-dependent changes in levels of gene expression and protein synthesis play an important role in regulation of protein levels, whereas posttranslational modifications of proteins regulate their degradation, localization, and functional interactions. Protein ubiquitylation, for example, can direct proteins to the proteasome for degradation or provide a signal that regulates their interactions and/or location within the cell. Similarly, protein phosphorylation by specific kinases is a key mechanism for augmenting protein activity and relaying signals to other proteins that possess domains that recognize the phosphorylated residues. PMID:27252361

  18. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  19. PSC: protein surface classification

    PubMed Central

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-01-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25 857 functional surfaces identified from 24 170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided. PMID:22669905

  20. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  1. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  2. Effects of chronic ethanol consumption on sterol transfer proteins in mouse brain.

    PubMed

    Myers-Payne, S C; Fontaine, R N; Loeffler, A; Pu, L; Rao, A M; Kier, A B; Wood, W G; Schroeder, F

    1996-01-01

    Although lipids are essential to brain function, almost nothing is known of lipid transfer proteins in the brain. Early reports indicates cross-reactivity of brain proteins with antisera against two native liver sterol transfer proteins, sterol carrier protein-2 (SCP-2) and the liver form of fatty acid-binding protein (L-FABP). Herein, polyclonal antibodies raised against the recombinant liver sterol transfer proteins SCP-2 and L-FABP were used to identify the lipid transfer proteins in the brains of alcohol-treated and control mice. L-FABP was not detectable in brain of either control or chronic ethanol-treated mice. In contrast, SCP-2 not only was present, but its level was significantly (p < 0.05) increased 23 and 50%, respectively, in brain homogenates and synaptosomes of mice exposed to alcohol. To determine whether antibodies against the recombinant liver SCP-2 reflected true levels of SCP-2 in brain, the cDNA sequence for brain SCP-2 was isolated from a brain cDNA library. The mouse brain SCP-2 sequence was 99.99% identical to the mouse liver SCP-2 sequence. The translated sequence differed by only one amino acid, and the replacement was conservative. Thus, unlike the fatty acid binding proteins, the SCP-2 moieties of brain and liver are essentially identical. Polyclonal antibodies against acyl-CoA binding protein, a lipid-binding protein that does not bind or transfer sterol, showed that increased levels of brain SCP-2 with chronic ethanol consumption did not represent a general increase in content of all lipid transfer proteins. Changes in the amount of SCP-2 may contribute to membrane tolerance to ethanol. PMID:8522969

  3. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  4. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  5. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  6. Emerging fluorescent protein technologies.

    PubMed

    Enterina, Jhon Ralph; Wu, Lanshi; Campbell, Robert E

    2015-08-01

    Fluorescent proteins (FPs), such as the Aequorea jellyfish green FP (GFP), are firmly established as fundamental tools that enable a wide variety of biological studies. Specifically, FPs can serve as versatile genetically encoded markers for tracking proteins, organelles, or whole cells, and as the basis for construction of biosensors that can be used to visualize a growing array of biochemical events in cells and tissues. In this review we will focus on emerging applications of FPs that represent unprecedented new directions for the field. These emerging applications include new strategies for using FPs in biosensing applications, and innovative ways of using FPs to manipulate protein function or gene expression. PMID:26043278

  7. Piezoelectric allostery of protein.

    PubMed

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins. PMID:27575163

  8. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  9. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  10. Evolution of proteins.

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1971-01-01

    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  11. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  12. A Bayesian Estimator of Protein-Protein Association Probabilities

    SciTech Connect

    Gilmore, Jason M.; Auberry, Deanna L.; Sharp, Julia L.; White, Amanda M.; Anderson, Kevin K.; Daly, Don S.

    2008-07-01

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein pull-down LC-MS assay experiments. BEPro3 is open source software that runs on both Windows XP and Mac OS 10.4 or newer versions, and is freely available from http://www.pnl.gov/statistics/BEPro3.

  13. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG.

    PubMed

    Canon, Francis; Paté, Franck; Cheynier, Véronique; Sarni-Manchado, Pascale; Giuliani, Alexandre; Pérez, Javier; Durand, Dominique; Li, Joaquim; Cabane, Bernard

    2013-02-12

    In the mouth, proline-rich proteins (PRP), which are major components of stimulated saliva, interact with tannins contained in food. We report in vitro interactions of the tannin epigallocatechin gallate (EgCG), with a basic salivary PRP, IB5, studied through electrospray ionization mass spectrometry (ESI-MS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS). In dilute protein (IB5) solutions of low ionic strength (1 mM), the proteins repel each other, and the tannins bind to nonaggregated proteins. ESI-MS experiments determine the populations of nonaggregated proteins that have bound various numbers of tannin molecules. These populations match approximately the Poisson distribution for binding to n = 8 sites on the protein. MS/MS experiments confirm that complexes containing n = 1 to 8 EgCG molecules are dissociated with the same energy. Assuming that the 8 sites are equivalent, we calculate a binding isotherm, with a binding free energy Δμ = 7.26RT(a) (K(d) = 706 μM). In protein solutions that are more concentrated (0.21 mM) and at higher ionic strength (50 mM, pH 5.5), the tannins can bridge the proteins together. DLS experiments measure the number of proteins per aggregate. This number rises rapidly when the EgCG concentration exceeds a threshold (0.2 mM EgCG for 0.21 mM of IB5). SAXS experiments indicate that the aggregates have a core-corona structure. The core contains proteins that have bound at least 3 tannins and the corona has proteins with fewer bound tannins. These aggregates coexist with nonaggregated proteins. Increasing the tannin concentration beyond the threshold causes the transfer of proteins to the aggregates and a fast rise of the number of proteins per aggregate. A poisoned growth model explains this fast rise. Very large cationic aggregates, containing up to 10,000 proteins, are formed at tannin concentrations (2 mM) slightly above the aggregation threshold (0.2 mM). PMID:23297743

  14. DnaT is a PriC-binding protein.

    PubMed

    Huang, Chien-Chih; Huang, Cheng-Yang

    2016-09-01

    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart. PMID:27387236

  15. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  16. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  17. Engineered Proteins for Bioelectrochemistry

    NASA Astrophysics Data System (ADS)

    Akram, Muhammad Safwan; Rehman, Jawad Ur; Hall, Elizabeth A. H.

    2014-06-01

    It is only in the past two decades that excellent protein engineering tools have begun to meet parallel advances in materials chemistry, nanofabrication, and electronics. This is revealing scenarios from which synthetic enzymes can emerge, which were previously impossible, as well as interfaces with novel electrode materials. That means the control of the protein structure, electron transport pathway, and electrode surface can usher us into a new era of bioelectrochemistry. This article reviews the principle of electron transfer (ET) and considers how its application at the electrode, within the protein, and at a redox group is directing key advances in the understanding of protein structure to create systems that exhibit better efficiency and unique bioelectrochemistry.

  18. Protein Model Database

    SciTech Connect

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  19. Untying knots in proteins.

    PubMed

    Sułkowska, Joanna I; Sułkowski, Piotr; Szymczak, Piotr; Cieplak, Marek

    2010-10-13

    A shoelace can be readily untied by pulling its ends rather than its loops. Attempting to untie a native knot in a protein can also succeed or fail depending on where one pulls. However, thermal fluctuations induced by the surrounding water affect conformations stochastically and may add to the uncertainty of the outcome. When the protein is pulled by the termini, the knot can only get tightened, and any attempt at untying results in failure. We show that, by pulling specific amino acids, one may easily retract a terminal segment of the backbone from the knotting loop and untangle the knot. At still other amino acids, the outcome of pulling can go either way. We study the dependence of the untying probability on the way the protein is grasped, the pulling speed, and the temperature. Elucidation of the mechanisms underlying this dependence is critical for a successful experimental realization of protein knot untying. PMID:20857930

  20. Membrane Protein Prediction Methods

    PubMed Central

    Punta, Marco; Forrest, Lucy R.; Bigelow, Henry; Kernytsky, Andrew; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    We survey computational approaches that tackle membrane protein structure and function prediction. While describing the main ideas that have led to the development of the most relevant and novel methods, we also discuss pitfalls, provide practical hints and highlight the challenges that remain. The methods covered include: sequence alignment, motif search, functional residue identification, transmembrane segment and protein topology predictions, homology and ab initio modeling. Overall, predictions of functional and structural features of membrane proteins are improving, although progress is hampered by the limited amount of high-resolution experimental information available. While predictions of transmembrane segments and protein topology rank among the most accurate methods in computational biology, more attention and effort will be required in the future to ameliorate database search, homology and ab initio modeling. PMID:17367718

  1. The identification and functional characterization of WxL proteins from Enterococcus faecium reveal surface proteins involved in extracellular matrix interactions.

    PubMed

    Galloway-Peña, Jessica R; Liang, Xiaowen; Singh, Kavindra V; Yadav, Puja; Chang, Chungyu; La Rosa, Sabina Leanti; Shelburne, Samuel; Ton-That, Hung; Höök, Magnus; Murray, Barbara E

    2015-03-01

    The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain. Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary structural analyses of locus A recombinant WxL domain-containing proteins found they are rich in β-sheet structure and disordered segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggesting a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary, these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and virulence in E. faecium and possibly other Gram-positive bacterial species. PMID:25512313

  2. Bence-Jones protein - quantitative

    MedlinePlus

    Immunoglobulin light chains - urine; Urine Bence-Jones protein ... Bence-Jones proteins are a part of regular antibodies called light chains. These proteins are not normally in urine. Sometimes, when ...

  3. Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria.

    PubMed

    Liepinsh, Edgars; Makrecka-Kuka, Marina; Volska, Kristine; Kuka, Janis; Makarova, Elina; Antone, Unigunde; Sevostjanovs, Eduards; Vilskersts, Reinis; Strods, Arnis; Tars, Kaspars; Dambrova, Maija

    2016-05-01

    The accumulation of long-chain fatty acids (FAs) and their CoA and carnitine esters is observed in the ischaemic myocardium after acute ischaemia/reperfusion. The aim of the present study was to identify harmful FA intermediates and their detrimental mechanisms of action in mitochondria and the ischaemic myocardium. In the present study, we found that the long-chain acyl-CoA and acylcarnitine content is increased in mitochondria isolated from an ischaemic area of the myocardium. In analysing the FA derivative content, we discovered that long-chain acylcarnitines, but not acyl-CoAs, accumulate at concentrations that are harmful to mitochondria. Acylcarnitine accumulation in the mitochondrial intermembrane space is a result of increased carnitine palmitoyltransferase 1 (CPT1) and decreased carnitine palmitoyltransferase 2 (CPT2) activity in ischaemic myocardium and it leads to inhibition of oxidative phosphorylation, which in turn induces mitochondrial membrane hyperpolarization and stimulates the production of reactive oxygen species (ROS) in cardiac mitochondria. Thanks to protection mediated by acyl-CoA-binding protein (ACBP), the heart is much better guarded against the damaging effects of acyl-CoAs than against acylcarnitines. Supplementation of perfusion buffer with palmitoylcarnitine (PC) before occlusion resulted in a 2-fold increase in the acylcarnitine content of the heart and increased the infarct size (IS) by 33%. A pharmacologically induced decrease in the mitochondrial acylcarnitine content reduced the IS by 44%. Long-chain acylcarnitines are harmful FA intermediates, accumulating in ischaemic heart mitochondria and inducing inhibition of oxidative phosphorylation. Therefore, decreasing the acylcarnitine content via cardioprotective drugs may represent a novel treatment strategy. PMID:26936967

  4. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; De Paula, Iron F; Medina, Jorge M; Silva-Oliveira, Gleidson; Medeiros, Jonas S; Gäde, Gerd; Gondim, Katia C

    2016-02-01

    Adipokinetic hormone (AKH) has been associated with the control of energy metabolism in a large number of arthropod species due to its role on the stimulation of lipid, carbohydrate and amino acid mobilization/release. In the insect Rhodnius prolixus, a vector of Chagas' disease, triacylglycerol (TAG) stores must be mobilized to sustain the metabolic requirements during moments of exercise or starvation. Besides the recent identification of the R. prolixus AKH peptide, other components required for the AKH signaling cascade and its mode of action remain uncharacterized in this insect. In the present study, we identified and investigated the expression profile of the gene encoding the AKH receptor of R. prolixus (RhoprAkhr). This gene is highly conserved in comparison to other sequences already described and its transcript is abundant in the fat body and the flight muscle of the kissing bug. Moreover, RhoprAkhr expression is induced in the fat body at moments of increased TAG mobilization; the knockdown of this gene resulted in TAG accumulation both in fat body and flight muscle after starvation. The inhibition of Rhopr-AKHR transcription as well as the treatment of insects with the peptide Rhopr-AKH in its synthetic form altered the transcript levels of two genes involved in lipid metabolism, the acyl-CoA-binding protein-1 (RhoprAcbp1) and the mitochondrial glycerol-3-phosphate acyltransferase-1 (RhoprGpat1). These results indicate that the AKH receptor is regulated at transcriptional level and is required for TAG mobilization under starvation. In addition to the classical view of AKH as a direct regulator of enzymatic activity, we propose here that AKH signaling may account for the regulation of nutrient metabolism by affecting the expression profile of target genes. PMID:26163435

  5. Functional characterization of protein 4.1 homolog in amphioxus: defining a cryptic spectrin-actin-binding site.

    PubMed

    Wang, Lixia; Wang, Yuan; Li, Zhaohe; Gao, Zhan; Zhang, Shicui

    2013-01-01

    Vertebrate 4.1 proteins have a spectrin-actin-binding (SAB) domain, which is lacking in all the invertebrate 4.1 proteins indentified so far, and it was therefore proposed that the SAB domain emerged with the advent of vertebrates during evolution. Here we demonstrated for the first time that amphioxus (an invertebrate chordate) protein 4.1, though lacking a recognizable SAB, was able to bind both spectrin and actin, with a binding capacity comparable to that of human protein 4.1. Detailed structure-activity analyses revealed that the unique domain U2/3 was a newly identified SAB-like domain capable of interacting with spectrin and actin, suggesting the presence of a "cryptic" SAB domain in amphioxus 4.1 protein. We also showed that amphioxus 4.1 protein gene was the common ancestor of vertebrate 4.1 protein genes, from which 4.1R, 4.1N, 4.1G, and 4.1B genes originated. This work will encourage further study on the structure-activity of invertebrate 4.1 protein and its interacting proteins. PMID:24096627

  6. Functional characterization of protein 4.1 homolog in amphioxus: Defining a cryptic spectrin-actin-binding site

    PubMed Central

    Wang, Lixia; Wang, Yuan; Li, Zhaohe; Gao, Zhan; Zhang, Shicui

    2013-01-01

    Vertebrate 4.1 proteins have a spectrin-actin-binding (SAB) domain, which is lacking in all the invertebrate 4.1 proteins indentified so far, and it was therefore proposed that the SAB domain emerged with the advent of vertebrates during evolution. Here we demonstrated for the first time that amphioxus (an invertebrate chordate) protein 4.1, though lacking a recognizable SAB, was able to bind both spectrin and actin, with a binding capacity comparable to that of human protein 4.1. Detailed structure-activity analyses revealed that the unique domain U2/3 was a newly identified SAB-like domain capable of interacting with spectrin and actin, suggesting the presence of a “cryptic” SAB domain in amphioxus 4.1 protein. We also showed that amphioxus 4.1 protein gene was the common ancestor of vertebrate 4.1 protein genes, from which 4.1R, 4.1N, 4.1G, and 4.1B genes originated. This work will encourage further study on the structure-activity of invertebrate 4.1 protein and its interacting proteins. PMID:24096627

  7. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  8. The Malignant Protein Puzzle.

    PubMed

    Walker, Lary C; Jucker, Mathias

    2016-01-01

    When most people hear the words malignant and brain, cancer immediately comes to mind. But our authors argue that proteins can be malignant too, and can spread harmfully through the brain in neurodegenerative diseases that include Alzheimer's, Parkinson's, CTE, and ALS. Studying how proteins such as PrP, amyloid beta, tau, and others aggregate and spread, and kill brain cells, represents a crucial new frontier in neuroscience. PMID:27408676

  9. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  10. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  11. Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2

    PubMed Central

    Katz, Chen; Benyamini, Hadar; Rotem, Shahar; Lebendiker, Mario; Danieli, Tsafi; Iosub, Anat; Refaely, Hadar; Dines, Monica; Bronner, Vered; Bravman, Tsafrir; Shalev, Deborah E.; Rüdiger, Stefan; Friedler, Assaf

    2008-01-01

    We have characterized the molecular basis of the interaction between ASPP2 and Bcl-2, which are key proteins in the apoptotic pathway. The C-terminal ankyrin repeats and SH3 domain of ASPP2 (ASPP2Ank-SH3) mediate its interactions with the antiapoptotic protein Bcl-2. We used biophysical and computational methods to identify the interaction sites of Bcl-2 and its homologues with ASPP2. Using peptide array screening, we found that ASPP2Ank-SH3 binds two homologous sites in all three Bcl proteins tested: (i) the conserved BH4 motif, and (ii) a binding site for proapoptotic regulators. Quantitative binding studies revealed that binding of ASPP2Ank-SH3 to the Bcl-2 family members is selective at two levels: (i) interaction with Bcl-2-derived peptides is the tightest compared to peptides from the other family members, and (ii) within Bcl-2, binding of ASPP2Ank-SH3 to the BH4 domain is tightest. Sequence alignment of the ASPP2-binding peptides combined with binding studies of mutated peptides revealed that two nonconserved positions where only Bcl-2 contains positively charged residues account for its tighter binding. The experimental binding results served as a basis for docking analysis, by which we modeled the complexes of ASPP2Ank-SH3 with the full-length Bcl proteins. Using peptide arrays and quantitative binding studies, we found that Bcl-2 binds three loops in ASPP2Ank-SH3 with similar affinity, in agreement with our predicted model. Based on our results, we propose a mechanism in which ASPP2 induces apoptosis by inhibiting functional sites of the antiapoptotic Bcl-2 proteins. PMID:18719108

  12. ACBD3 Interaction with TBC1 Domain 22 Protein Is Differentially Affected by Enteroviral and Kobuviral 3A Protein Binding

    PubMed Central

    Greninger, Alexander L.; Knudsen, Giselle M.; Betegon, Miguel; Burlingame, Alma L.; DeRisi, Joseph L.

    2013-01-01

    ABSTRACT Despite wide sequence divergence, multiple picornaviruses use the Golgi adaptor acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GCP60) to recruit phosphatidylinositol 4-kinase class III beta (PI4KIIIβ/PI4KB), a factor required for viral replication. The molecular basis of this convergent interaction and the cellular function of ACBD3 are not fully understood. Using affinity purification-mass spectrometry, we identified the putative Rab33 GTPase-activating proteins TBC1D22A and TBC1D22B as ACBD3-interacting factors. Fine-scale mapping of binding determinants within ACBD3 revealed that the interaction domains for TBC1D22A/B and PI4KB are identical. Affinity purification confirmed that PI4KB and TBC1D22A/B interactions with ACBD3 are mutually exclusive, suggesting a possible regulatory mechanism for recruitment of PI4KB. The C-terminal Golgi dynamics (GOLD) domain of ACBD3 has been previously shown to bind the 3A replication protein from Aichi virus. We find that the 3A proteins from several additional picornaviruses, including hepatitis A virus, human parechovirus 1, and human klassevirus, demonstrate an interaction with ACBD3 by mammalian two-hybrid assay; however, we also find that the enterovirus and kobuvirus 3A interactions with ACBD3 are functionally distinct with respect to TBC1D22A/B and PI4KB recruitment. These data reinforce the notion that ACBD3 organizes numerous cellular functionalities and that RNA virus replication proteins likely modulate these interactions by more than one mechanism. PMID:23572552

  13. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  14. Stretching to Understand Proteins

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2007-03-01

    Mechanical stretching of single proteins has been studied experimentally for about 50 proteins yielding a variety of force patterns and values of the peak forces. We have performed a theoretical survey of 7749 proteins of known native structure and map out the landscape of possible dynamical behaviors unders stretching at constant speed. The model used is constructed based on the native geometry. It is solved by methods of molecular dynamics and validated by comparing the theoretical predictions to experimental results. We characterize the distribution of peak forces and on correlations with the system size and with the structure classification as characterized by the CATH scheme. We identify proteins with the biggest forces and show that they belong to few topology classes. We determine which protein segments act as mechanical clamps and show that, in most cases, they correspond to long stretches of parallel beta-strands, but other mechanisms are also possible. We then consider stretching by fluid flows. We show that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depend strongly on the selection of the amino acid, usually one of the termini, which is anchored. These features offer potentially wider diagnostic tools to investigate structure of proteins compared to experiments based on the atomic force microscopy.

  15. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  16. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  17. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  18. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP).

    PubMed

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D; Blackburn, Elizabeth A; Ball, Kathryn L

    2015-11-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  19. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  20. Multifunctional protein: cardiac ankyrin repeat protein*

    PubMed Central

    Zhang, Na; Xie, Xiao-jie; Wang, Jian-an

    2016-01-01

    Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases. PMID:27143260

  1. Molecular perspective of antibody aggregates and their adsorption on Protein A resin.

    PubMed

    Yu, Deqiang; Song, Yuanli; Huang, Richard Y-C; Swanson, Ryan K; Tan, Zhijun; Schutsky, Elizabeth; Lewandowski, Angela; Chen, Guodong; Li, Zheng Jian

    2016-07-29

    Antibody aggregate is a common issue in therapeutic antibodies, which may compromise product efficacy and cause adverse effects. Antibody aggregate level is normally controlled in bioprocessing by polishing steps after Protein A capture. This paper studied the Higher Order Structures (HOS) of antibody aggregates (dimer H1 and H2) and their adsorption on Protein A resin and thus elucidated the mechanism using Protein A capture for enhanced aggregate removal. The HOS of antibody aggregates and their complex with Protein A were characterized using HDX-MS combined with SEC-MALS, Protein Conformational Array (PCA), and molecular modeling. The aggregate size and Protein A binding ratio suggested that H2 has much more compact structure than H1. HDX-MS and PCA further revealed that H1 was formed by single Fab-Fab interaction while H2 formed by Fab-Fab and likely Fc-Fc interaction. On Protein A resin, both the molar binding ratio and the correlation between protein size and ligand distance support that each monomer can only bind one Protein A ligand, while each dimer can bind two ligands, thus resulting in stronger resin binding. Furthermore, dimer H2 binds stronger than dimer H1 due to its compact structure. By integrating biophysical analysis and molecular modeling with process development, this study revealed the antibody aggregate structures and the mechanism of aggregate removal using Protein A chromatography. It also provided a general strategy for in-depth product and process understanding in antibody and other biologics development. PMID:27344283

  2. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    PubMed Central

    Xu, Xueqing; Chang, Bianca W.; Mans, Ben J.; Ribeiro, Jose M. C.; Andersen, John F.

    2013-01-01

    Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity. PMID:23275168

  3. Bioinformatics and Moonlighting Proteins.

    PubMed

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein-protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations - it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  4. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus.

    PubMed

    Scorsato, Valéria; Lima, Tatiani B; Righetto, Germanna L; Zanchin, Nilson I T; Brandão-Neto, José; Sandy, James; Pereira, Humberto D'Muniz; Ferrari, Állan J R; Gozzo, Fabio C; Smetana, Juliana H C; Aparicio, Ricardo

    2016-01-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase's active site, providing a structural framework for the function of TIPRL in PP2A inhibition. PMID:27489114

  5. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus

    PubMed Central

    Scorsato, Valéria; Lima, Tatiani B.; Righetto, Germanna L.; Zanchin, Nilson I. T.; Brandão-Neto, José; Sandy, James; Pereira, Humberto D’Muniz; Ferrari, Állan J. R.; Gozzo, Fabio C.; Smetana, Juliana H. C.; Aparicio, Ricardo

    2016-01-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition. PMID:27489114

  6. The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1.

    PubMed

    Kahra, Dana; Kovermann, Michael; Wittung-Stafshede, Pernilla

    2016-01-01

    Uptake of copper (Cu) ions into human cells is mediated by the plasma membrane protein Ctr1 and is followed by Cu transfer to cytoplasmic Cu chaperones for delivery to Cu-dependent enzymes. The C-terminal cytoplasmic tail of Ctr1 is a 13-residue peptide harboring an HCH motif that is thought to interact with Cu. We here employ biophysical experiments under anaerobic conditions in peptide models of the Ctr1 C-terminus to deduce Cu-binding residues, Cu affinity, and the ability to release Cu to the cytoplasmic Cu chaperone Atox1. Based on NMR assignments and bicinchoninic acid competition experiments, we demonstrate that Cu interacts in a 1:1 stoichiometry with the HCH motif with an affinity, KD, of ∼10(-14) M. Removing either the Cys residue or the two His residues lowers the Cu-peptide affinity, but site specificity is retained. The C-terminal peptide and Atox1 do not interact in solution in the absence of Cu. However, as directly demonstrated at the residue level via NMR spectroscopy, Atox1 readily acquires Cu from the Cu-loaded peptide. We propose that Cu binding to the Ctr1 C-terminal tail regulates Cu transport into the cytoplasm such that the metal ion is only released to high-affinity Cu chaperones. PMID:26745413

  7. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  8. Self-Assembling Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  9. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  10. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  11. Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction.

    PubMed

    Whitfield, Jason H; Zhang, William H; Herde, Michel K; Clifton, Ben E; Radziejewski, Johanna; Janovjak, Harald; Henneberger, Christian; Jackson, Colin J

    2015-09-01

    Biosensors for signaling molecules allow the study of physiological processes by bringing together the fields of protein engineering, fluorescence imaging, and cell biology. Construction of genetically encoded biosensors generally relies on the availability of a binding "core" that is both specific and stable, which can then be combined with fluorescent molecules to create a sensor. However, binding proteins with the desired properties are often not available in nature and substantial improvement to sensors can be required, particularly with regard to their durability. Ancestral protein reconstruction is a powerful protein-engineering tool able to generate highly stable and functional proteins. In this work, we sought to establish the utility of ancestral protein reconstruction to biosensor development, beginning with the construction of an l-arginine biosensor. l-arginine, as the immediate precursor to nitric oxide, is an important molecule in many physiological contexts including brain function. Using a combination of ancestral reconstruction and circular permutation, we constructed a Förster resonance energy transfer (FRET) biosensor for l-arginine (cpFLIPR). cpFLIPR displays high sensitivity and specificity, with a Kd of ∼14 µM and a maximal dynamic range of 35%. Importantly, cpFLIPR was highly robust, enabling accurate l-arginine measurement at physiological temperatures. We established that cpFLIPR is compatible with two-photon excitation fluorescence microscopy and report l-arginine concentrations in brain tissue. PMID:26061224

  12. Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.

    SciTech Connect

    Brunzelle, J. S.; Wu, R.; Korolev, S. V.; Collart, F. R.; Joachimiak, A.; Anderson, W. F.; Biosciences Division; Northwestern Univ.; Saint Louis Univ. School of Medicine

    2004-12-01

    Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. For example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.

  13. Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction

    PubMed Central

    Whitfield, Jason H; Zhang, William H; Herde, Michel K; Clifton, Ben E; Radziejewski, Johanna; Janovjak, Harald; Henneberger, Christian; Jackson, Colin J

    2015-01-01

    Biosensors for signaling molecules allow the study of physiological processes by bringing together the fields of protein engineering, fluorescence imaging, and cell biology. Construction of genetically encoded biosensors generally relies on the availability of a binding “core” that is both specific and stable, which can then be combined with fluorescent molecules to create a sensor. However, binding proteins with the desired properties are often not available in nature and substantial improvement to sensors can be required, particularly with regard to their durability. Ancestral protein reconstruction is a powerful protein-engineering tool able to generate highly stable and functional proteins. In this work, we sought to establish the utility of ancestral protein reconstruction to biosensor development, beginning with the construction of an l-arginine biosensor. l-arginine, as the immediate precursor to nitric oxide, is an important molecule in many physiological contexts including brain function. Using a combination of ancestral reconstruction and circular permutation, we constructed a Förster resonance energy transfer (FRET) biosensor for l-arginine (cpFLIPR). cpFLIPR displays high sensitivity and specificity, with a Kd of ∼14 µM and a maximal dynamic range of 35%. Importantly, cpFLIPR was highly robust, enabling accurate l-arginine measurement at physiological temperatures. We established that cpFLIPR is compatible with two-photon excitation fluorescence microscopy and report l-arginine concentrations in brain tissue. PMID:26061224

  14. Localization of binding sites in protein structures by optimization of a composite scoring function.

    PubMed

    Rossi, Andrea; Marti-Renom, Marc A; Sali, Andrej

    2006-10-01

    The rise in the number of functionally uncharacterized protein structures is increasing the demand for structure-based methods for functional annotation. Here, we describe a method for predicting the location of a binding site of a given type on a target protein structure. The method begins by constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on the protein surface. The scoring function is a weighted linear combination of the z-scores of various properties of protein structure and sequence, including amino acid residue conservation, compactness, protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set of previously identified instances of the binding-site type on known protein structures. The scoring function can easily incorporate different types of information useful in localization, thus increasing the applicability and accuracy of the approach. To test the method, 1008 known protein structures were split into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various nucleotides, binding sites were correctly identified in 55%-73% of the cases. The method is completely automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics setting. PMID:16963645

  15. Localization of binding sites in protein structures by optimization of a composite scoring function

    PubMed Central

    Rossi, Andrea; Marti-Renom, Marc A.; Sali, Andrej

    2006-01-01

    The rise in the number of functionally uncharacterized protein structures is increasing the demand for structure-based methods for functional annotation. Here, we describe a method for predicting the location of a binding site of a given type on a target protein structure. The method begins by constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on the protein surface. The scoring function is a weighted linear combination of the z-scores of various properties of protein structure and sequence, including amino acid residue conservation, compactness, protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set of previously identified instances of the binding-site type on known protein structures. The scoring function can easily incorporate different types of information useful in localization, thus increasing the applicability and accuracy of the approach. To test the method, 1008 known protein structures were split into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various nucleotides, binding sites were correctly identified in 55%–73% of the cases. The method is completely automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics setting. PMID:16963645

  16. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression.

    PubMed

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. PMID:27371828

  17. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  18. Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein.

    PubMed

    Huemer, H P; Wang, Y; Garred, P; Koistinen, V; Oppermann, S

    1993-08-01

    Herpes simplex virus (HSV) encodes a protein, glycoprotein C (gC), which binds to the third complement component, the central mediator of complement activation. In this study the structural and functional relationships of gC from HSV type 1 (HSV-1) and known human complement regulatory proteins factor H, properdin, factor B, complement receptor 1 (CR1) and 2 (CR2) were investigated. The interaction of gC with C3b was studied using purified complement components, synthetic peptides, antisera against different C3 fragments and anti-C3 monoclonal antibodies (mAb) with known inhibitory effects on C3-ligand interactions. All the mAb that inhibited gC/C3b interactions, in a differential manner, also prevented binding of C3 fragments to factors H, B, CR1 or CR2. No blocking was observed with synthetic peptides representing different C3 regions or with factor B and C3d, whereas C3b, C3c and factor H were inhibitory, as well as purified gC. There was no binding of gC to cobra venom factor (CVF), a C3c-like fragment derived from cobra gland. Purified gC bound to iC3, iC3b and C3c, but failed to bind to C3d. Glycoprotein C bound only weakly to iC3 derived from bovine and porcine plasma, thus indicating a preference of the viral protein for the appropriate host. Binding of gC was also observed to proteolytic C3 fragments, especially to the beta-chain, thus suggesting the importance of the C3 region as a binding site. Purified gC from HSV-1, but not HSV-2, inhibited the binding of factor H and properdin but not of CR1 to C3b. The binding of iC3b to CR2, a molecule involved in B-cell activation and binding of the Epstein-Barr virus, was also inhibited by the HSV-1 protein. As factor H and properdin, the binding of which was inhibited by gC, are important regulators of the alternative complement pathway, these data further support a role of gC in the evasion of HSV from a major first-line host defence mechanism, i.e. the complement system. In addition, the inhibition of the C3/CR

  19. Solid State NMR and Protein-Protein Interactions in Membranes

    PubMed Central

    Miao, Yimin; Cross, Timothy A.

    2013-01-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water soluble proteins and other membrane proteins. PMID:24034903

  20. Solid state NMR and protein-protein interactions in membranes.

    PubMed

    Miao, Yimin; Cross, Timothy A

    2013-12-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins. PMID:24034903

  1. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  2. Histophilus somni Surface Proteins.

    PubMed

    Corbeil, Lynette B

    2016-01-01

    The pathogen surface is usually the first site of interaction with the host. Histophilus somni was earlier thought to only have an outer membrane on its surface. Now it is known that the surface is composed of many virulence factors, including outer membrane proteins, lipooligosaccharide or endotoxin, a fibrillar network, and an exopolysaccharide. Outer membrane blebs, endotoxin, the fibrillar network, and the exopolysaccharide are also shed from the surface. This review will focus on the surface proteins of this pathogen that may colonize the mucosal surface of ruminants as a commensal or may cause pneumonia, septicemia, myocarditis, thrombotic meningoencephalitis, arthritis, and/or abortion. The major outer membrane protein has been well studied. Since its size and epitopes vary from strain to strain, it may be useful for typing strains. Iron-regulated OMPs have also received much attention because of their role in iron uptake for in vivo growth of H. somni. Other OMPs may be protective, based on passive immunization with monospecific antibodies and active immunization experiments. The surface and shed fibrillar network has been shown to be an immunoglobulin-binding protein in that it binds bovine IgG2 by the Fc portion. Two repeat domains (DR1 and DR2) have cytotoxic Fic motifs. Vaccine studies with recombinant DR2 are promising. Studies of the bacterial genome as well as comparison of surface proteins of different strains from the various H. somni syndromes and carrier states will be discussed and have provided much insight into pathogenesis and protection. PMID:26728061

  3. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Horiuchi, Hisanori; Fukuda, Mitsunori

    2006-06-02

    Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.

  4. Plant protein kinase substrates identification using protein microarrays.

    PubMed

    Ma, Shisong; Dinesh-Kumar, Savithramma P

    2015-01-01

    Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays. PMID:25930701

  5. The 3A Protein from Multiple Picornaviruses Utilizes the Golgi Adaptor Protein ACBD3 To Recruit PI4KIIIβ

    PubMed Central

    Greninger, Alexander L.; Knudsen, Giselle M.; Betegon, Miguel; Burlingame, Alma L.

    2012-01-01

    The activity of phosphatidylinositol 4-kinase class III beta (PI4KIIIβ) has been shown to be required for the replication of multiple picornaviruses; however, it is unclear whether a physical association between PI4KIIIβ and the viral replication machinery exists and, if it does, whether association is necessary. We examined the ability of the 3A protein from 18 different picornaviruses to form a complex with PI4KIIIβ by affinity purification of Strep-Tagged transiently transfected constructs followed by mass spectrometry and Western blotting for putative interacting targets. We found that the 3A proteins of Aichi virus, bovine kobuvirus, poliovirus, coxsackievirus B3, and human rhinovirus 14 all copurify with PI4KIIIβ. Furthermore, we found that multiple picornavirus 3A proteins copurify with the Golgi adaptor protein acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GPC60), including those from Aichi virus, bovine kobuvirus, human rhinovirus 14, poliovirus, and coxsackievirus B2, B3, and B5. Affinity purification of ACBD3 confirmed interaction with multiple picornaviral 3A proteins and revealed the ability to bind PI4KIIIβ in the absence of 3A. Mass-spectrometric analysis of transiently expressed Aichi virus, bovine kobuvirus, and human klassevirus 3A proteins demonstrated that the N-terminal glycines of these 3A proteins are myristoylated. Alanine-scanning mutagenesis along the entire length of Aichi virus 3A followed by transient expression and affinity purification revealed that copurification of PI4KIIIβ could be eliminated by mutation of specific residues, with little or no effect on recruitment of ACBD3. One mutation at the N terminus, I5A, significantly reduced copurification of both ACBD3 and PI4KIIIβ. The dependence of Aichi virus replication on the activity of PI4KIIIβ was confirmed by both chemical and genetic inhibition. Knockdown of ACBD3 by small interfering RNA (siRNA) also prevented replication of both Aichi virus and poliovirus

  6. Crystal Structure of DNA Cytidine Deaminase ABOBEC3G Catalytic Deamination Domain Suggests a Binding Mode of Full-length Enzyme to Single-stranded DNA*

    PubMed Central

    Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng; Liu, Shanshan; Zhao, Bin; Lan, Wenxian; Wang, Chunxi; Ding, Jianping; Cao, Chunyang

    2015-01-01

    APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA. PMID:25542899

  7. Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA.

    PubMed

    Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng; Liu, Shanshan; Zhao, Bin; Lan, Wenxian; Wang, Chunxi; Ding, Jianping; Cao, Chunyang

    2015-02-13

    APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA. PMID:25542899

  8. UvrD controls the access of recombination proteins to blocked replication forks.

    PubMed

    Lestini, Roxane; Michel, Bénédicte

    2007-08-22

    Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA. PMID:17641684

  9. UvrD controls the access of recombination proteins to blocked replication forks

    PubMed Central

    Lestini, Roxane; Michel, Bénédicte

    2007-01-01

    Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA. PMID:17641684

  10. How Many Protein-Protein Interactions Types Exist in Nature?

    PubMed Central

    Mitra, Pralay; Zhang, Yang

    2012-01-01

    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  11. How many protein-protein interactions types exist in nature?

    PubMed

    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang

    2012-01-01

    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  12. Computational drug design targeting protein-protein interactions.

    PubMed

    Bienstock, Rachelle J

    2012-01-01

    Novel discoveries in molecular disease pathways within the cell, combined with increasing information regarding protein binding partners has lead to a new approach in drug discovery. There is interest in designing drugs to modulate protein-protein interactions as opposed to solely targeting the catalytic active site within a single enzyme or protein. There are many challenges in this new approach to drug discovery, particularly since the protein-protein interface has a larger surface area, can comprise a discontinuous epitope, and is more amorphous and less well defined than the typical drug design target, a small contained enzyme-binding pocket. Computational methods to predict modes of protein-protein interaction, as well as protein interface hot spots, have garnered significant interest, in order to facilitate the development of drugs to successfully disrupt and inhibit protein-protein interactions. This review summarizes some current methods available for computational protein-protein docking, as well as tabulating some examples of the successful design of antagonists and small molecule inhibitors for protein-protein interactions. Several of these drugs are now beginning to appear in the clinic. PMID:22316151

  13. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  14. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  15. Collapse transition in proteins.

    PubMed

    Ziv, Guy; Thirumalai, D; Haran, Gilad

    2009-01-01

    The coil-globule transition, a tenet of the physics of polymers, has been identified in recent years as an important unresolved aspect of the initial stages of the folding of proteins. We describe the basics of the collapse transition, starting with homopolymers and continuing with proteins. Studies of denatured-state collapse under equilibrium are then presented. An emphasis is placed on single-molecule fluorescence experiments, which are particularly useful for measuring properties of the denatured state even under conditions of coexistence with the folded state. Attempts to understand the dynamics of collapse, both theoretically and experimentally, are then described. Only an upper limit for the rate of collapse has been obtained so far. Improvements in experimental and theoretical methodology are likely to continue to push our understanding of the importance of the denatured-state thermodynamics and dynamics for protein folding in the coming years. PMID:19081910

  16. Polarizable protein packing.

    PubMed

    Ng, Albert H; Snow, Christopher D

    2011-05-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. PMID:21264879

  17. Matricellular proteins and biomaterials

    PubMed Central

    Morris, Aaron H.; Kyriakides, Themis R.

    2014-01-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials. PMID:24657843

  18. Electron transfer in proteins.

    PubMed

    Gray, H B; Winkler, J R

    1996-01-01

    Electron-transfer (ET) reactions are key steps in a diverse array of biological transformations ranging from photosynthesis to aerobic respiration. A powerful theoretical formalism has been developed that describes ET rates in terms of two parameters: the nuclear reorganization energy (lambda) and the electronic-coupling strength (HAB). Studies of ET reactions in ruthenium-modified proteins have probed lambda and HAB in several metalloproteins (cytochrome c, myoglobin, azurin). This work has shown that protein reorganization energies are sensitive to the medium surrounding the redox sites and that an aqueous environment, in particular, leads to large reorganization energies. Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: beta sheets appear to mediate coupling more efficiently than alpha-helical structures, and hydrogen bonds play a critical role in both. PMID:8811189

  19. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  20. Protein crystallization studies

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans

    1996-01-01

    The Structural Biology laboratory at NASA Marshall Spaceflight Center uses x-ray crystallographic techniques to conduct research into the three-dimensional structure of a wide variety of proteins. A major effort in the laboratory involves an ongoing study of human serum albumin (the principal protein in human plasma) and its interaction with various endogenous substances and pharmaceutical agents. Another focus is on antigenic and functional proteins from several pathogenic organisms including the human immunodeficiency virus (HIV) and the widespread parasitic genus, Schistosoma. My efforts this summer have been twofold: first, to identify clinically significant drug interactions involving albumin binding displacement and to initiate studies of the three-dimensional structure of albumin complexed with these agents, and secondly, to establish collaborative efforts to extend the lab's work on human pathogens.

  1. New MAPS for misfolded proteins.

    PubMed

    Volkmar, Norbert; Fenech, Emma; Christianson, John C

    2016-06-28

    Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission. PMID:27350445

  2. SOY PROTEIN NANOPARTICLES AND NANOCOMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein isolate (SPI) is obtained from soybean by removing soybean oil and soy carbohydrates. SPI contains more than 90% protein. Structurally, SPI is a globular protein and its aggregates in water consist of sphere-like protein particles. The number average aggregate size of SPI at pH=5.2 is...

  3. FLOW BEHAVIOR OF PROTEIN BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blending proteins can increase textural strength or enhance taste or mouth feel, such as blending soy with whey to improve taste. In this study, we measured the viscosity of various combinations of six proteins (whey protein isolates, calcium caseinate, soy protein isolates, wheat gluten, egg album...

  4. Bioinformatics and Moonlighting Proteins

    PubMed Central

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein–protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations – it requires the existence of multialigned family protein sequences – but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  5. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  6. Epistasis in protein evolution.

    PubMed

    Starr, Tyler N; Thornton, Joseph W

    2016-07-01

    The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions-called epistasis-within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis-in which one mutation influences the phenotypic effect of few other mutations-is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low-probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  7. Heme-based Sensing by the Mammalian Circadian Protein, CLOCK

    PubMed Central

    Lukat-Rodgers, Gudrun S.; Correia, Cristina; Botuyan, Maria Victoria; Mer, Georges; Rodgers, Kenton R.

    2010-01-01

    Heme is emerging as a key player in the synchrony of circadian-coupled transcriptional regulation. Current evidence suggests that levels of circadian-linked transcription are regulated in response to both the availability of intracellular heme and by heme-based sensing of carbon monoxide and possibly nitric oxide. The protein CLOCK is central to the regulation and maintenance of circadian rhythms in mammals. CLOCK comprises two PAS domains, each with a heme binding site. Our studies focus on the functionality of the Murine CLOCK PAS–A domain (residues 103-265). We show that CLOCK PAS–A binds Fe(III) protoporhyrin IX to form a complex with 1:1 stoichiometry. Optical absorbance and resonance Raman studies reveal that the heme of ferric CLOCK PAS–A is a six-coordinate, low spin complex whose resonance Raman signature is insensitive to pH over the range of protein stability. Ferrous CLOCK PAS–A is a mixture of five-coordinate, high spin and six-coordinate, low spin complexes. Ferrous CLOCK PAS–A forms complexes with CO and NO. Ferric CLOCK PAS–A undergoes reductive nitrosylation in the presence of NO to generate a CLOCK PAS–A–NO, which is a pentacoordinate {FeNO}7 complex. Formation of the highly stable {FeNO}7 heme complex from either ferrous or ferric heme makes possible the binding of NO at very low concentration, a characteristic of NO sensors. Comparison of the spectroscopic properties and CO binding kinetics of CLOCK PAS–A with other CO sensor proteins reveals that CLOCK PAS–A exhibits chemical properties consistent with a heme-based gas sensor protein. PMID:20666392

  8. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation.

    PubMed

    Zekri, Latifa; Kuzuoğlu-Öztürk, Duygu; Izaurralde, Elisa

    2013-04-01

    GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)-binding protein (PABP) and the CCR4-NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4-NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4-NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation. PMID:23463101

  9. Characterization of integral membrane proteins of Leishmania major by Triton X-114 fractionation and analysis of vaccination effects in mice.

    PubMed Central

    Murray, P J; Spithill, T W; Handman, E

    1989-01-01

    The total integral membrane proteins of promastigotes of Leishmania major were extracted by using the Triton X-114 phase separation technique and were characterized by immunoprecipitation, Western blotting (immunoblotting), and lectin chromatography. Of the 40 or more proteins which partitioned into the detergent phase, only about 10 proteins could be surface radioiodinated on live promastigotes, suggesting their surface orientation. The abundance of the gp58-63 antigen varied markedly between two strains of L. major. Sera from patients with visceral leishmaniasis caused by Leishmania donovani chagasi recognized the gp58-63 complex and an additional Mr-42,000 polypeptide shared between L. major and L. donovani chagasi. A subpopulation of six surface proteins, including the abundant gp58-63 antigen and a group of proteins of Mr 81,000 to 105,000, were glycoproteins recognized by antiserum to wheat germ agglutinin- or concanavalin A-binding proteins. The membrane proteins of the LRC-L119 isolate of L. major could successfully vaccinate genetically susceptible mice, thus opening the way for a molecularly defined subunit vaccine composed of glycolipid and membrane protein antigens. Images PMID:2731987

  10. Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer

    PubMed Central

    Horan, Lucas; Yasuhara, Jiro C.; Kohlstaedt, Lori A.; Rio, Donald C.

    2015-01-01

    Splicing of the Drosophila P-element third intron (IVS3) is repressed in somatic tissues due to the function of an exonic splicing silencer (ESS) complex present on the 5′ exon RNA. To comprehensively characterize the mechanisms of this alternative splicing regulation, we used biochemical fractionation and affinity purification to isolate the silencer complex assembled in vitro and identify the constituent proteins by mass spectrometry. Functional assays using splicing reporter minigenes identified the proteins hrp36 and hrp38 and the cytoplasmic poly(A)-binding protein PABPC1 as novel functional components of the splicing silencer. hrp48, PSI, and PABPC1 have high-affinity RNA-binding sites on the P-element IVS3 5′ exon, whereas hrp36 and hrp38 proteins bind with low affinity to the P-element silencer RNA. RNA pull-down and immobilized protein assays showed that hrp48 protein binding to the silencer RNA can recruit hrp36 and hrp38. These studies identified additional components that function at the P-element ESS and indicated that proteins with low-affinity RNA-binding sites can be recruited in a functional manner through interactions with a protein bound to RNA at a high-affinity binding site. These studies have implications for the role of heterogeneous nuclear ribonucleoproteins (hnRNPs) in the control of alternative splicing at cis-acting regulatory sites. PMID:26545814

  11. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation

    PubMed Central

    Zekri, Latifa; Kuzuoğlu-Öztürk, Duygu; Izaurralde, Elisa

    2013-01-01

    GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)-binding protein (PABP) and the CCR4–NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4–NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4–NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation. PMID:23463101

  12. Identification of protein interacting partners using tandem affinity purification.

    PubMed

    Bailey, Dalan; Urena, Luis; Thorne, Lucy; Goodfellow, Ian

    2012-01-01

    proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function. PMID:22395237

  13. Single-cell proteins

    SciTech Connect

    Litchfield, J.H.

    1983-02-11

    Both photosynthetic and nonphotosynthetic microorganisms, grown on various carbon and energy sources, are used in fermentation processes for the production of single-cell proteins. Commercial-scale production has been limited to two algal processes, one bacterial process, and several yeast and fungal processes. High capital and operating costs and the need for extensive nutritional and toxicological assessments have limited the development and commercialization of new processes. Any increase in commercial-scale production appears to be limited to those regions of the world where low-cost carbon and energy sources are available and conventional animal feedstuff proteins, such as soybean meal or fish meal, are in short supply. (Refs. 59).

  14. Protein-based ferrogels.

    PubMed

    Mody, Puja; Hart, Cassidy; Romano, Siena; El-Magbri, Mariam; Esson, Moira M; Ibeh, Trisha; Knowlton, Elizabeth D; Zhang, Ming; Wagner, Michael J; Hartings, Matthew R

    2016-06-01

    We present a novel synthesis in which hemoglobin and Fe(2+) react, in the presence of KNO3 and KOH, to produce protein microgels that contain magnetic iron oxide nanoparticles. The synthesis results in microgels with polymer properties (denaturing and glass transition temperatures) that are consistent with the dried protein. The iron oxide nanoparticles that exhibit an average diameter of 22nm, are ferrimagnetic, and display properties consistent with Fe3O4. The multiple functional capabilities displayed by these materials: biocompatibility, magnetism, dye uptake and controlled release, and other properties archetypal of hydrogels, will make the magnetic hydrogels attractive for a number of biomedical applications. PMID:26901627

  15. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  16. Congenital protein hypoglycosylation diseases

    PubMed Central

    Sparks, Susan E

    2012-01-01

    Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation. PMID:23776380

  17. Lipid-transfer proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan

    2012-01-01

    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  18. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  19. Conformation Distributions in Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.

    2007-03-01

    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  20. Use of the U1A Protein to Facilitate Crystallization and Structure Determination of Large RNAs.

    PubMed

    Ferré-D'Amaré, Adrian R

    2016-01-01

    The preparation of well-ordered crystals of RNAs with complex three-dimensional architecture can be facilitated by engineering a binding site for the spliceosomal protein U1A into a functionally and structurally dispensable stem-loop of the RNA of interest. Once suitable crystals are obtained, the U1A protein, of known structure, can be employed to facilitate preparation of heavy atom or anomalously scattering atom derivatives, or as a source of partial model phases for the molecular replacement method. Here, we describe the methods for making U1A preparations suitable for cocrystallization with RNA. As an example, the cocrystallization of the tetracycline aptamer with U1A is also described. PMID:26227038