Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. In order to evaluate its function, CFTR was expressed in HeLa, Chinese hamster ovary (CHO), and NIH 3T3 fibroblast cells, and anion permeability was assessed with a fluorescence microscopic assay and the whole-cell patch-clamp technique. Adenosine ...
NASA Astrophysics Data System (ADS)
CFTR functions as a chloride channel at the apical membrane of airway, gastrointestinal, and other epithelial cells. Immunofluorescence microscopy is commonly used to assess the subcellular localization and relative abundance of CFTR. Visualization of heterologously overexpressed CFTR is typically unproblematic and ...
PubMed
Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (?F508) in the CF transmembrane conductance regulator (CFTR) protein. The ?F508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether ...
PubMed Central
The cystic fibrosis transmembrane conductance regulator (CFTR) is chloride ion channel regulated by protein kinase A and adenosine triphosphate (ATP). Loss of CFTR-mediated chloride ion conductance from the apical plasma membrane of epithelial cells is a primary physiological lesion in cystic fibrosis. ...
The expression and localization of the cystic fibrosis transmembrane conductance regulator (CFTR) were determined in four osmoregulatory tissues during the ontogeny of the sea-bass Dicentrarchus labrax acclimated to fresh water and sea water. At hatch in sea water, immunolocalization showed an apical CFTR in the digestive tract and integumental ionocytes. ...
Antisera against two peptides, corresponding to different domains of the cystic fibrosis gene product CFTR, have been raised and extensively characterized. Both antisera recognize CFTR as a 165-kDa polypeptide in Western analysis of cells transfected with CFTR cDNA as well as in epithelial cell lines. The cell and tissue distribution ...
This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or ...
This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin- Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or ...
Cardiac myocytes express protein kinase A-dependent Cl(-) (Cl(PKA)) channels that are thought to represent cardiac expression of CFTR. In the present study, the 'Smart' patch clamp technique was used to investigate the distribution of Cl(PKA) channels at the cell surface of isolated guinea-pig ventricular myocytes. Imaging the cell surface using scanning ...
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel meager attention in the hearing literature. The cystic fibrosis transmembrane conductance regulator (CFTR species, and certain mutations of the gene are responsible for cystic fibrosis (CF) [25]. Because CFTR
E-print Network
The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane glycoprotein which functions as an anion channel and influences diverse cellular processes. We studied its role in the development of epithelial tightness by expressing wild-type (WT-CFTR) or mutant (Delta F508-CFTR) CFTR in ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane glycoprotein which functions as an anion channel and influences diverse cellular processes. We studied its role in the development of epithelial tightness by expressing wild-type (WT-CFTR) or mutant (?F508-CFTR) CFTR in human ...
CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl-) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, ...
Several studies have demonstrated that bone marrow (BM)-derived cells give rise to rare epithelial cells in the gastrointestinal (GI) and respiratory tracts after BM transplantation into myeloablated recipients. We investigate whether, after transplantation of cystic fibrosis transmembrane conductance regulator (CFTR)-positive BM-derived cells, BM-derived GI and airway ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR ...
The mechanisms underlying regulatory interactions of the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) in Xenopus oocytes are controversial. CFTR's first nucleotide binding domain (NBD-1) may be important in these interactions, because mutations within NBD-1 impair these functional interactions. We ...
SUMMARYCystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, is functionally and physically associates ...
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca2+-activated chloride channel (CaCC) is activated by Ca2+ agonists like UTP. We found that most ...
by the cystic fibrosis trans- membrane regulator (CFTR), which is mutated in patients with cystic fibrosis NO. OF AMINO ACIDS COMMON MUTATIONS Cystic fibrosis AR CFTR (epithelial chloride channel) 7q 1480 F ASSOCIATED WITH ION-CHANNEL MUTATIONS Cystic Fibrosis One in 27 white persons carries a mutant CFTR gene
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cAMP-activated chloride channel expressed in epithelia in the lung, intestine, pancreas, testis and other tissues, where it facilitates transepithelial fluid transport. In the intestine CFTR provides the major route for chloride secretion in ...
The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal ...
The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (?F508), corrected the Cl- ...
Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We ...
In cystic fibrosis (CF), the DeltaF508-CFTR anterograde trafficking from the endoplasmic reticulum to the plasma membrane is inefficient. New strategies for increasing the delivery of DeltaF508-CFTR to the apical membranes are thus pathophysiologically relevant targets to study for CF treatment. Recent studies have demonstrated that PDZ-containing proteins ...
Cystic fibrosis (CF) is caused by defects in the CF transmembrane conductance regulator (CFTR) that functions as a chloride channel in epithelial cells. The most common cause of CF is the abnormal trafficking of CFTR mutants. Therefore, understanding the cellular machineries that transit CFTR from the endoplasmic ...
One of the major therapeutic strategy in cystic fibrosis aims at developing modulators of cystic fibrosis transmembrane conductance regulator (CFTR) channels. We recently discovered methylglyoxal alpha-aminoazaheterocycle adducts, as a new family of CFTR inhibitors. In a structure-activity relationship study, we have now identified GPact-11a, a compound ...
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR chloride channel. Wild type and mutant CFTR channels can be activated by curcumin, a well tolerated dietary compound with some appeal as a prospective CF therapeutic. However, we show here that curcumin has the unexpected effect of cross-linking ...
Mutations in the chloride channel cystic fibrosis transmembrane regulator (CFTR) cause cystic fibrosis, a genetic disorder characterized by defects in CFTR biosynthesis, localization to the cell surface, or activation by regulatory factors. It was discovered recently that surface localization of CFTR is stabilized ...
The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes ...
cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated ...
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow ...
The effect of the number of cystic fibrosis (CF) alleles on cholera toxin (CT)-induced intestinal secretion was examined in the CF mouse model. CF mice that expressed no CF transmembrane conductance regulator (CFTR) protein did not secrete fluid in response to CT. Heterozygotes expressed 50 percent of the normal amount of CFTR protein in the intestinal ...
Previously we identified two mutations in introns of the CFTR gene associated with partially active splice sites and unusual clinical phenotypes. One mutation in intron 19 (3849+10 kb C to T) is common in CF patients with normal sweat chloride values; an 84 bp sequence from intron 19, which contains a stop codon, is inserted between exon 19 and exon 20 in ...
Energy Citations Database
Mast cell activation requires Cl(-) flux, which maintains the driving force for entry of extracellular calcium and initiates release of mediators such as histamine. However, chloride channel expression in mast cells has been poorly understood. For the first time, reverse transcriptase-polymerase chain reaction shows that rat-cultured mast cells (RCMC) and peritoneal mast cells ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-dependent chloride channel that mediates electrolyte transport across the luminal surface of epithelial cells. In this paper, we describe the CFTR regulation by syntaxin 8, a t-SNARE protein (target soluble N-ethylmaleimide-sensitive factor attachment ...
CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of ...
the proteome in health and disease. Proteostasis is chal- lenged by the most common mutant in cystic fibrosis, DF508, a chloride channel [the cystic fibrosis transmem- brane conductance regulator (CFTR508, celastrol, CFTR, chemical biology, chloride conductance, cystic fibrosis, endoplasmic retic- ulum
Deletion of Phe508 from the first nucleotide-binding domain of the CFTR chloride channel causes cystic fibrosis because it inhibits protein folding. Indirect approaches such as incubation at low temperatures can partially rescue ?F508 CFTR, but the protein is unstable at the cell surface. Here, we show that direct binding of ...
Cystic fibrosis (CF), which is among the most common life-shortening recessive illnesses, is caused by mutations of the CF transmembrane conductance regulator (CFTR) and typically involves chronic infection and progressive obstruction of the respiratory tract as well as pancreatic exocrine insufficiency. Disease severity, to some extent, correlates with organ sensitivity to ...
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by chronic lung and sinus disease, impaired mucociliary clearance (leading to recurrent pulmonary infection), pancreatic insufficiency, elevated sweat chloride levels and male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated ...
The liquid layer lining the pulmonary alveolar wall critically determines the lung's immune defense against inhaled pathogens, because it provides a liquid milieu in the air-filled alveolus for dispersal of immune cells and defensive surfactant proteins. However, mechanisms underlying formation of the liquid are unknown. We achieved visualization of the alveolar wall liquid (AWL) in situ in mouse ...
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. ...
Background and purpose:Calu-3 cells are derived from serous cells of human lung submucosal glands, a prime target for therapy in cystic fibrosis (CF). Calu-3 cells can be cultured to form epithelia capable of transepithelial transport of chloride. A CF Calu-3 cell is not available.Experimental approach:A retroviral vector was used to cause persistent down regulation of ...
Comparison of diverse orthologs is a powerful tool to study the structure and function of channel proteins. We investigated the response of human, killifish, pig, and shark cystic fibrosis transmembrane conductance regulator (CFTR) to specific inhibitors of the channel: CFTR(inh)-172, glibenclamide, and GlyH-101. In three systems, including organ perfusion ...
Transepithelial fluctuation analysis (noise analysis) provides valuable information about the density and single-channel properties of ion channels in intact epithelia. Here we investigate cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride (Cl-) secretion in T84 human colonic epithelia by inducing noise using the ...
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also ...
Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize ...
Cystic fibrosis (CF) is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of cystic fibrosis transmembrane conductance regulator (CFTR) protein. We recently identified a family of CFTR activators, which contains the hit: RP107 ...
CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled ...
The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl-) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl- secretion by stimulating CFTR Cl- channel trafficking ...
BackgroundThe airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator ...
Human bronchial epithelial (HBE) cells exhibit constitutive anion secretion that is absent in cells from cystic fibrosis (CF) patients. The identity of this conductance is unknown, but SLC26A9, a member of the SLC26 family of CF transmembrane conductance regulator (CFTR)-interacting transporters, is found in the human airway and exhibits chloride channel ...
Biosynthesis of hypochlorous acid, a potent antimicrobial oxidant, in phagosomes is one of the chief mechanisms employed by polymorphonuclear neutrophils to combat infections. This reaction, catalyzed by myeloperoxidase, requires chloride anion (Cl(-)) as a substrate. Thus, Cl(-) availability is a rate-limiting factor that affects neutrophil microbicidal function. Our previous ...
The pharmacology of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel has attracted significant interest in recent years with the aim to search for rational new therapies for diseases caused by CFTR malfunction. Mutations that abolish the function of CFTR cause the life-threatening genetic disease cystic ...
Chloride anion is essential for myeloperoxidase to produce hypochlorous acid (HOCl) in neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. ...
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to cystic fibrosis, an autosomal recessive genetic disorder affecting a number of organs including the lung airways, pancreas and sweat glands. In order to investigate the post-translational ligation of CFTR with reconstructed functional chloride ion ...
1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and ...
We have generated several clones of Chinese hamster ovary, mouse epitheloid C127, and pig kidney epithelial LLCPK1 cells producing high levels of functional recombinant human cystic fibrosis transmembrane conductance regulator (CFTR). Processing of CFTR to the mature and fully glycosylated form in these cells is inefficient with only approximately 40% of ...
Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are ...
The most common cause of CF (cystic fibrosis) is the deletion of Phe508 (?F508) in the CFTR [CF TM (transmembrane) conductance regulator] chloride channel. One major problem with ?F508 CFTR is that the protein is defective in folding so that little mature protein is delivered to the cell surface. Expression of ...
The actin motor myosin VI regulates endocytosis of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestine, but the endocytic adaptor linking CFTR to myosin VI is unknown. Dab2 (Disabled 2) is the binding partner for myosin VI, clathrin, and ?-AP-2 and directs endocytosis of low density lipoprotein receptor family members by recognizing ...
The potential for gene therapy to be an effective treatment for cystic fibrosis has been hampered by the limited gene transfer efficiency of current vectors. We have shown that recombinant Sendai virus (SeV) is highly efficient in mediating gene transfer to differentiated airway epithelial cells, because of its capacity to overcome the intra- and extracellular barriers known to limit gene ...
Cystic fibrosis (CF) is a frequent autosomal recessive disease caused by mutations that impair the CF transmembrane conductance regulator (CFTR) protein function. CFTR is a chloride channel activated by cyclic AMP (cAMP) via protein kinase A (PKA) and ATP hydrolysis. We describe here a method to measure CFTR ...
Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane ...
The CFTR gene encodes a protein that transports sodium and chloride (salt) ions in the body. Mutations to this gene can cause cystic fibrosis, the most common fatal genetic disorder in the United States. A defective CFTR gene cannot transport the ions, resulting in the production of thick mucus that builds up and clogs the lungs and ...
NSDL National Science Digital Library
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express ...
SUMMARYAlmost two decades after identification of the CFTR gene, we lack answers to many questions about the pathogenesis of cystic fibrosis (CF), and it remains a lethal disease. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but they fail to develop the characteristic pancreatic, lung, intestinal, liver, and other CF manifestations. ...
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted ...
The most common cause of cystic fibrosis (CF) is deletion of phenylalanine 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) chloride channel. The DeltaF508 mutation produces defects in folding, stability, and channel gating. To identify small-molecule correctors of defective cellular processing, we assayed iodide flux in ...
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (DeltaF508) in CFTR is the most common mutation that results in a ...
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (?F508) in CFTR is the most common mutation that results in a ...
Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data was compared with existing structures of other ...
The cystic fibrosis transmembrane conductance regulator (CFTR) protein forms a Cl(-) channel found in the plasma membranes of many epithelial cells, including those of the kidney, gut and conducting airways. Mutation of the gene encoding CFTR is the primary defect in cystic fibrosis, a disease that affects approximately 30 000 individuals in the United ...
The most common cystic fibrosis (CF)-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of Phe508 (?F508) in the first of two nucleotide-binding domains (NBDs). Nucleotide binding and hydrolysis at the NBDs and phosphorylation of the regulatory (R) region are required for gating of CFTR ...
The secretion of the oxalate anion by intestinal epithelia is a functionally significant component of oxalate homeostasis and hence a relevant factor in the etiology and management of calcium oxalate urolithiasis. To test the hypothesis that human cystic fibrosis transmembrane conductance regulator (hCFTR) can directly mediate the efflux of the oxalate anion, we compared ...
Cystic fibrosis (CF) is the most common lethal recessive genetic disease in the Caucasian population. It is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that is normally expressed in ciliated airway epithelial cells and the submucosal glands of the lung. Since the CFTR gene was first characterized in 1989, a major goal has ...
Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel ...
Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a ...
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated Cl(-) channel functional in neonatal rat spinal motoneurons. The present study investigated the developmental (P1-P8) expression of CFTR, its impact on motoneuron excitability and Cl(-) homeostasis in relation to canonical Cl(-) transporters. The Cl(-) outward transporter KCC2 ...
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cAMP-regulated Cl(-) channel functional in neonatal rat spinal motoneurons. The present study investigated the developmental (P1-P8) expression of CFTR, its impact on motoneuron excitability and Cl(-) homeostasis in relation to canonical Cl(-) transporters. The Cl(-) outward transporter KCC2 ...
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel represents the rate-limiting step for chloride and fluid secretion in most epithelial tissues in the body. More recently, CFTR activity has also been shown to regulate muscle contraction, neuroendocrine function, and cartilage formation, implicating the ...
This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I ...
Objective: To develop a simple, physiologically based mathematical model of pancreatic duct cell secretion using experimentally derived parameters that generates pancreatic fluid bicarbonate concentrations of>140 mM after CFTR activation. Methods: A new mathematical model was developed simulating a duct cell within a proximal pancreatic duct and included a ...
fibrosis transmembrane conductance regulator (CFTR) that transports chloride ions [2]. In Escherischia coli at an interface [21]. The functional unit of ABC transporters is two transmembrane domains (TMD) complexed, et al., Repacking of the transmembrane domains of P- glycoprotein during the transport ATPase cycle
with two patches of ventral skin from same animal mounted side by side in Ussing chambers. Electrical in the mucous cells of the subepidermal glands. The electrical properties of isolated sheets of skin effects of mucus secretion and expulsion on the electrical conductance of the skin that provides
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies ...
F508del is the most common cystic fibrosis-causing mutation that induces early degradation and poor trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. Our previous work in bronchial serous cells showed that vasoactive intestinal peptide (VIP) stimulation of the VPAC(1) ...
Virulence of the intracellular pathogen Listeria monocytogenes (Listeria) requires escape from the phagosome into the host cytosol, where the bacteria replicate. Phagosomal escape is a multistep process characterized by perforation, which is dependent on the pore-forming toxin listeriolysin O (LLO), followed by rupture. The contribution of host factors to Listeria phagosomal escape is incompletely ...
Cystic fibrosis (CF), the most prevalent, fatal genetic disorder in the Caucasian population, is caused by mutations of CF transmembrane conductance regulator (CFTR). The mutations of this chloride channel alter the transport of chloride and associated liquid and thereby impair lung defenses. Patients typically succumb to chronic ...
Cystic fibrosis (CF) is a fatal, autosomal and recessive genetic disease that is mainly due to inactivating mutations in the chloride channel CF transmembrane conductance regulator (CFTR). Sodium hyperabsorption by the airways, profound lung inflammation, and dysregulation of calcium homeostasis, are presumably causally related to loss of ...
Regulatory interactions of the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) are readily apparent in Xenopus oocytes. However, the mechanism underlying these interactions remains controversial. CFTR's first nucleotide binding fold (NBD-1) may be important in these interactions, as dysfunctional CFTRs ...
Chloride serves as a critical component of innate host defense against infection, providing the substrate for MPO-catalyzed production of HOCl in the phagosome of human neutrophils. Here, we used halide-specific fluorescent sensors covalently coupled to zymosan particles to investigate the kinetics of chloride and iodide transport in phagosomes of human ...
INTRODUCTION: Several types of mutations in the cystic fibrosis transmembrane regulator (CFTR) gene lead to abnormal CFTR protein and alterations of chloride and sodium transmembrane transportation in cystic fibrosis (CF). Some investigational compounds such as VX-770 can improve CFTR protein function. AREAS ...
Production of hypochlorous acid (HOCl) in neutrophils, a critical oxidant involved in bacterial killing, requires chloride anions. Because the primary defect of cystic fibrosis (CF) is the loss of chloride transport function of the CF transmembrane conductance regulator (CFTR), we hypothesized that CF neutrophils may be deficient in ...
... 2603 5022; patrickwong@cuhk.edu.hk Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) or the small conductance ... a cAMP-activated chloride channel encoded by the cystic fibrosis tr...
NBII National Biological Information Infrastructure
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to an ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. Here we expressed wild-type human ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the ...
The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex temporal and spatial pattern of expression that is controlled by multiple cis-acting elements interacting with the basal promoter. Although significant progress has been made towards understanding these genomic elements, there have been no reports of post-transcriptional regulation of ...
Enterotoxins elaborated by Vibrio cholerae and Escherichia coli cannot elicit fluid secretion in the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. After enterotoxin exposure, CFTR channels are rapidly recruited from endosomes and undergo exocytic insertion into the apical plasma ...
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel provides the glutathione and hypochlorous acid necessary for bactericidal/viricidal actions. CFTR mutations block these effects, diminishing pathogen defence and allowing extracellular pathogen accumulation, where antibody encounter is likely. KEGG pathway ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in many segments of the mammalian nephron, where it may interact with and modulate the activity of a variety of apical membrane proteins, including the renal outer medullary potassium (ROMK) K+ channel. However, the expression of CFTR in apical cell membranes ...
The most common mutation in cystic fibrosis, F508del, results in cystic fibrosis transmembrane conductance regulator protein (CFTR) that is retained in the endoplasmic reticulum (ER). Retention is dependent on chaperone proteins, many of which, like calnexin, require calcium for optimal activity. Here, we show that a limited and a maintained ER calcium level is sufficient to ...
Cystic fibrosis (CF), the most common fatal monogenic disease in the United States, results from mutations in CF transmembrane conductance regulator (CFTR), a chloride channel. The mechanisms by which CFTR mutations cause lung disease in CF are not fully defined but may include altered ion and water transport across the airway ...
Deletion of Phe-508 (Delta F508) is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) causing cystic fibrosis. Delta F508-CFTR has defects in both channel gating and endoplasmic reticulum-to-plasma membrane processing. We identified six novel classes of high affinity potentiators of defective Delta ...
The functional significance of the expression of cystic fibrosis transmembrane regulator (CFTR) on endothelial cells has not yet been elucidated. Since CFTR has been implicated in the regulation of intracellular sphingolipid levels, which are important regulators of endothelial cell apoptosis in response to various insults, we investigated the role of ...
We analyse a paper, which reports an entirely novel approach to the treatment of cystic fibrosis, consisting in "repairing" the defective mutant protein. Patients with cystic fibrosis have a mutation of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel involved in salt and fluid transport in ...
Chloride is critical in creating differential pH values inside various organelles (Golgi for example) by linking ATP hydrolysis to trans-bilayer proton movement. This proton-ATPase drives anions such as chloride through unrelated channels in the endosomal/organellar bilayer thus loading HCl into different lipid-encased cellular compartments. Critically, ...
BACKGROUND: The basic defect of the autosomal recessive disorder cystic fibrosis (CF) manifests in chloride hyposecretion and sodium hyperabsorption. CF-like disease has been reported in a heterozygous carrier of F508del CFTR and the hyperactive variant p.W493R-SCNN1A of the epithelial sodium channel (ENaC). METHODS: The hypothesis that heterozygosity for ...
We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. ...
Cystic fibrosis transmembrane conductance regulator-related disorders encompass a disease spectrum from focal male reproductive tract involvement in congenital absence of the vas deferens to multiorgan involvement in classic cystic fibrosis. The reproductive, gastrointestinal, and exocrine manifestations of cystic fibrosis transmembrane conductance regulator deficiency are correlated with ...
Background VX-809, a cystic fibrosis transmembrane conductance regulator (CFTR) modulator, has been shown to increase the cell surface density of functional F508del-CFTR in vitro. Methods A randomised, double-blind, placebo-controlled study evaluated the safety, tolerability and pharmacodynamics of VX-809 in adult patients with cystic fibrosis (n=89) who ...
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have ...
BACKGROUND: Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the ...
Lung disease is the major cause of morbidity and mortality of cystic fibrosis (CF), an autosomal recessive disease caused by mutations in CF transmembrane-conductance regulator (CFTR) gene. In CF, elevated levels of interleukin-8 (IL-8) signaling mediated by the nuclear factor kappa-light-chain-enhancer of activated B cells (NF?B) result in chronic infection, neutrophilic ...
The thiazolidinone 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (CFTRinh-172) inhibits cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel conductance with submicromolar affinity and blocks cholera toxin-induced intestinal fluid secretion. ...
Cyst expansion in polycystic kidney disease (PKD) involves progressive fluid accumulation, which is believed to require chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Herein is reported that small-molecule CFTR inhibitors of the thiazolidinone and glycine hydrazide classes slow cyst ...
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. The mutations G551D and G1349D, which affect the nucleotide-binding domains (NBDs) of CFTR protein, reduce channel activity. This defect can be corrected pharmacologically by small molecules called potentiators. CF mutations residing ...
We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective ...
Previous studies have suggested a role for cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of intracellular vesicular trafficking. A quantitative fluorescence method was used to test the hypothesis that CFTR expression and activation affects endosome-endosome fusion in intact cells. Endosomes from ...
Members of the WNK (with-no-lysine [K]) subfamily of protein kinases regulate various ion channels involved in sodium, potassium and chloride homeostasis by either inducing their phosphorylation or regulating the number of channel proteins expressed at the cell surface. Here, we describe that the cell surface expression of the cystic fibrosis transmembrane conductance ...
There is reasonable evidence that the fluid layer of the airway epithelium is exposed to changes in tonicity. The inspiration of cool, dry air causes an increased tonicity, whereas this tonicity may be decreased by glandular secretions. We hypothesized that the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the responses to changes in tonicity and ...
The gating of the CFTR chloride channel is altered by a group of mutations that cause cystic fibrosis. This gating defect may be corrected by small molecules called potentiators. Some 1,4-dihydropyridine (DHP) derivatives, bearing a thiophen-2-yl and a furanyl ring at the 4-position of the nucleus, were prepared and tested as CFTR ...
In many cells, increase in intracellular calcium ([Ca(2+)](i)) activates a Ca(2+)-dependent chloride (Cl(-)) conductance (CaCC). CaCC is enhanced in cystic fibrosis (CF) epithelial cells lacking Cl(-) transport by the CF transmembrane conductance regulator (CFTR). Here, we show that in freshly isolated nasal epithelial cells of F508del-homozygous CF ...
The clinical use of aminoglycoside (AG) antibiotics is limited by their renal toxicity, which is caused by drug accumulation in proximal tubule (PT) cells. Clinical studies reported that renal clearance of AG is enhanced in cystic fibrosis (CF) patients, which might reflect the role of CFTR in PT cell endocytosis. In order to assess the role of chloride ...
In the study of previously reported modulators of CFTR chloride channels that are cyclic methylglyoxal (MG) diadducts (CMGD) to aromatic ?-aminoazaheterocycles, we optimized a new expeditious one pot route for preparing in water novel aromatic polycyclic azaheterocycles and described 5-pyrimidinols antioxidants through the formation of 2-oxoaldehyde ...
We have demonstrated that Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride secretion. Here, we observe that CFBE41o- ...
We have demonstrated that Na+/H+ exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride ...
Mammalian sperm acquire fertilizing ability in the female tract during a process known as capacitation. In mouse sperm, this process is associated with increases in protein tyrosine phosphorylation, membrane potential hyperpolarization, increase in intracellular pH and Ca2+, and hyperactivated motility. The molecular mechanisms involved in these changes are not fully known. Present evidence ...
BackgroundF508del-CFTR, the most frequent disease-causing mutation among Caucasian cystic fibrosis (CF) patients, has been characterised as a mutant defective in protein folding, processing and trafficking. We have investigated the two neighbouring cytokeratin genes KRT8 and KRT18 in a candidate gene approach to ask whether variants in KRT8 and/or KRT18 modify the impaired ion ...
In the present work we study the contribution of the chloride channel of the Cystic Fibrosis Transmembrane Regulator (CFTR) in the postsynaptic inhibition of somatic motoneurons during rapid-eye-movement (REM) sleep atonia. Postsynaptic inhibition of motoneurons is partially responsible for the atonia that occurs during REM sleep. Disfacilitation is an ...
The role in the heart of the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR), which underlies a protein kinase A-dependent Cl(-) current (I(Cl.PKA)) in cardiomyocytes, remains unclear. The identification of a CFTR-selective inhibitor would provide an important tool for the investigation of the ...
The cellular mechanisms by which loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel produce cystic fibrosis (CF) lung disease remain uncertain. Defective organellar function has been proposed as an important determinant in the pathogenesis of CF lung disease. According to one hypothesis, reduced ...
The F508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein impairs its folding, stability and chloride channel gating. Though small molecules that separately correct defective F508-CFTR folding/cellular processing ('correctors') or chloride channel gating ('potentiators') have been ...
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause loss of function of the CFTR channel on the apical surface of epithelial cells. The major CF-causing mutation, F508del-CFTR, is misfolded, retained in the endoplasmic reticulum, and degraded. Small molecule ...
Cystic fibrosis, an autosomal recessive disease frequently diagnosed in the Caucasian population, is characterized by deficient Cl- transport due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. A second major hall-mark of the disease is Na+ hyperabsorption by the airways, mediated by the epithelial Na+ channel (ENaC). In this study, we ...
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl? channel is blocked by a broad range of organic anionic compounds. Here we investigate the effects of the indazole compound lonidamine on CFTR channels expressed in mammalian cell lines using patch clamp recording.Application of lonidamine to the intracellular face of ...
Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV ...
The pharmacology of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl� channel has attracted significant interest in recent years with the aim to search for rational new therapies for diseases caused by CFTR malfunction. Mutations that abolish the function of CFTR cause the life-threatening ...
According to previous reports, flavonoids and nutraceuticals correct defective electrolyte transport in cystic fibrosis (CF) airways. Traditional medicinal plants from China and Thailand contain phytoflavonoids and other bioactive compounds. We examined herbal extracts of the common Thai medicinal euphorbiaceous plant Phyllanthus acidus for their potential effects on epithelial transport. ...
Our previous studies demonstrated that the ichthyotoxic Chattonella marina stimulated proliferation of branchial chloride cell (CC) and induced osmotic distress akin to hyperactive elimination of ions in fish (Rhabdosargus sarba). To ascertain the in vivo effects of C. marina on key CC ion transporters, the localization and expression of Na{sup +}, K{sup +}-ATPase (NKA) and ...
SummaryThe epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, ?F508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin ...
Cystic fibrosis (CF) is a lethal, recessive, genetic disease affecting approximately 1 in 2500 live births among Caucasians. The CF gene codes for a cAMP/PKA-dependent, ATP-requiring, membrane chloride ion channel, generally found in the apical membranes of many secreting epithelia and known as CFTR (cystic fibrosis transmembrane conductance regulator). ...
PURPOSE: The present study examined the effects and mechanisms of actions of penta-m-digalloyl-glucose (PDG), a hydrolysable tannin extracted from Chinese gallnut, on cystic fibrosis transmembrane conductance regulator protein (CFTR). MATERIALS AND METHODS: Fisher rat thyroid cells stably expressing human CFTR (FRT cells) and human intestinal T84 cells ...
In the disease cystic fibrosis (CF), the most common mutation delF508 results in endoplasmic reticulum retention of misfolded CF gene proteins (CFTR). We show that the alpha-1,2-glucosidase inhibitor miglustat (N-butyldeoxynojirimycin, NB-DNJ) prevents delF508-CFTR/calnexin interaction and restores cAMP-activated chloride current in ...
Mutation of the CFTR chloride channel was identified as the genetic basis of cystic fibrosis over 20 years ago; however, correlation of the pathophysiological changes occurring in CF lung disease with the mutation of a chloride channel is ongoing. The failure of innate lung defense in CF, and the subsequent cyclical microbial ...
Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride ...
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel cause cystic fibrosis. The delta F508 mutation produces defects in channel gating and cellular processing, whereas the G551D mutation produces primarily a gating defect. To identify correctors of gating, 50,000 diverse small molecules were screened at 2.5 microM ...
Using cell culture models, we have investigated the relative importance of cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCC) in Cl secretion by mucous and serous cells of human airway glands. In transepithelial recordings in Ussing chambers, the CFTR inhibitor ...
The development of effective therapies for cystic fibrosis (CF) requires animal models that can appropriately reproduce the human disease phenotype. CF mouse models have demonstrated cAMP-inducible, non�CF transmembrane conductance regulator (non-CFTR) chloride transport in conducting airway epithelia, and this property is thought to be responsible for ...
The most common cystic fibrosis causing mutation F508del induces early degradation and reduced trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. In the human nasal epithelial cells JME/CF15, we previously reported that vasoactive intestinal peptide (VIP) exposure corrects ...
BackgroundIt has been suggested that low ?M concentrations of S-nitrosoglutathione (GSNO), an endogenous bronchodilator, may promote maturation of the defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Because nitric oxide (NO) and GSNO levels appear to be low in the CF airway, there is an interest in the possibility that GSNO replacement could be of ...
The soy phytoestrogen genistein is a potent vasorelaxant, but its mechanism of action is poorly understood. Here, we used endothelium-denuded rat aorta to investigate the role of the cyclic AMP(cAMP)-activated, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, and its associated Na-K-Cl cotransporter NKCC1. Isolated, ...
We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl?]i) measurements in epithelial cells. The Cl-QD is synthesized by ...
We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl(-)](i)) measurements in epithelial cells. The Cl-QD is synthesized by ...
BackgroundThe cystic fibrosis (CF) basic defect, caused by dysfunction of the apical chloride channel CFTR in the gastrointestinal and respiratory tract epithelia, has not been employed so far to support the role of CF modifier genes.MethodsPatients were selected from 101 families with a total of 171 F508del-CFTR homozygous CF patients ...
The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) ?-helices, arranged into two pseudo-symmetrical groups of six. While TM6 in the N-terminal TMs is known to line the pore and to make an important contribution to channel properties, much less is known about its C-terminal counterpart, TM12. ...
Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF) patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator ...
Cystic fibrosis transmembrane conductance regulator (CFTR) is an adenosine triphosphate (ATP)-gated chloride channel. ATP-induced dimerization of CFTR's two nucleotide-binding domains (NBDs) has been shown to reflect the channel open state, whereas hydrolysis of ATP is associated with channel closure. Pyrophosphate (PPi), like ...
12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a ...
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport ...
Physiol. 38): G1221�G1226, 1998.-- Cystic fibrosis (CF) affects a number of epithelial tissues, including as well as of intra- and extracellu- lar pH. cystic fibrosis; cystic fibrosis transmembrane conductance regulator; pharmacology; epithelial transport; chloride secre- tion CYSTIC FIBROSIS (CF) is the most common
. They perform a vital role in physiological processes such as cell volume regulation, epithelial transport, transepithelial transport, cell volume regulation, signal transduction and acidification of intracellular, the cystic fibrosis transmembrane conductance regulator (CFTR) and the g-aminobutyric acid (GABA
manufacturing, organic synthesis, ... #12;Cystic fibrosis Cystic fibrosis is a hereditary disease that affects in cystic fibrosis transmembrane conductance regulator (CFTR), which is a transporter of chloride ions to treat patients with cancer, heart attacks, strokes, cystic fibrosis, diabetes, anaemia, haemophilia
BACKGROUNDA new approach in the treatment of cystic fibrosis involves improving the function of mutant cystic fibrosis transmembrane conductance regulator (CFTR). VX-770, a CFTR potentiator, has been shown to increase the activity of wild-type and defective cell-surface CFTR in vitro.METHODSWe randomly assigned 39 adults with cystic ...
Transport of water and electrolytes is critical for corneal clarity. Recent studies indicate another important function of transport of ions and electrolytes - establishing wound electric fields that guide cell migration. We found chloride (Cl(-)) flux is a major component of the corneal wound electric current. In order to elucidate the mechanisms of Cl(-) transport, we ...
Transport of water and electrolytes is critical for corneal clarity. Recent studies indicate another important function of transport of ions and electrolytes - establishing wound electric fields that guide cell migration. We found chloride (Cl-) flux is a major component of the corneal wound electric current. In order to elucidate the mechanisms of ...
Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator ...
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator ({delta}F508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective {delta}F508-CFTR ...
Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel ...
Chloride ions play a key role in smooth muscle contraction, but little is known concerning their role in smooth muscle relaxation. Here we investigated the effect of chloride transport inhibitors on the vasorelaxant responses to nitroprusside in isolated and endothelium-denuded rat aorta, precontracted with phenylephrine 1 muM. Incubation of aortic rings ...
The F508del mutation, the most frequent in cystic fibrosis (CF), impairs the maturation of the CFTR chloride channel. The F508del defect can be partially overcome at low temperature (27�C) or with pharmacological correctors. However, the efficacy of correctors on the mutant protein appears to be dependent on the cell expression system. We have used a ...
Cystic fibrosis is a common autosomal recessive disorder usually found in population of white Caucasian descent. Now it is well documented the presence of CF disease in India with the advancement of laboratory testing. As once it was thought non existence of this disease in our population. Most of the phenotype of CF disease was in accordance of western population. Genetic analysis of ...
The survival of patients with cystic fibrosis (CF) continues to improve. The discovery and cloning of the CFTR gene more than 21 years ago led to the identification of the structure and function of the CFTR chloride channel. New therapies based on the understanding of the function of CFTR are currently under ...
Advances in our understanding of cystic fibrosis pathogenesis have led to strategies directed toward treatment of underlying causes of the disease rather than treatments of disease-related symptoms. To expedite evaluation of these emerging therapies, early-phase clinical trials require extension of in vivo cystic fibrosis transmembrane conductance regulator (CFTR)�detecting ...
Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP binding cassette (ABC) superfamily. The deletion of the phenylalanine 508 (?F508-CFTR) is the most common mutation among cystic fibrosis (CF) patients. The mutant channels present a severe trafficking defect, and the few ...
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations ...
Nearly all male cystic fibrosis (CF) patients exhibit tissue abnormalities in the reproductive tract, a condition that renders them azoospermic and infertile. Two swine CF models have been reported recently that include respiratory and digestive manifestations that are comparable to human CF. The goal of this study was to determine the phenotypic changes that may be present in the vas deferens of ...
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR ...
Though the cause of cystic fibrosis (CF) pathology is understood to be the mutation of the CFTR protein, it has been difficult to trace the exact mechanisms by which the pathology arises and progresses from the mutation. Recent research findings have noted that the CFTR channel is not only permeant to chloride anions, but other, larger ...
Cystic fibrosis (CF) is a common life threatening genetic disease (incidence: ~1 in 2500 live births). CF is caused by mutations in CFTR, a chloride channel involved in epithelial secretion of fluid and electrolytes. The most common mutation entails the deletion of a phenylalanine in position 508 that causes protein misfolding and abnormal ...
The sixth transmembrane segment (TM6) of the CFTR chloride channel has been intensively investigated. The effects of amino acid substitutions and chemical modification of engineered cysteines (cysteine scanning) on channel properties strongly suggest that TM6 is a key component of the anion-conducting pore, but previous cysteine-scanning studies of TM6 ...
Impaired biosynthetic processing of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, constitutes the most common cause of CF. Recently, we have identified a distinct category of mutation, caused by premature stop codons and frameshift mutations, which manifests in diminished expression of ...