Sample records for a-i gene expression

  1. Expression and characterization of duck enteritis virus gI gene

    PubMed Central

    2011-01-01

    Background At present, alphaherpesviruses gI gene and its encoding protein have been extensively studied. It is likely that gI protein and its homolog play similar roles in virions direct cell-to-cell spread of alphaherpesviruses. But, little is known about the characteristics of DEV gI gene. In this study, we expressed and presented the basic properties of the DEV gI protein. Results The special 1221-bp fragment containing complete open reading frame(ORF) of duck enteritis virus(DEV) gI gene was extracted from plasmid pMD18-T-gI, and then cloned into prokaryotic expression vector pET-32a(+), resulting in pET-32a(+)-gI. After being confirmed by PCR, restriction endonuclease digestion and sequencing, pET-32a(+)-gI was transformed into E.coli BL21(DE3) competent cells for overexpression. DEV gI gene was successfully expressed by the addition of isopropyl-β-D-thiogalactopyranoside(IPTG). SDS-PAGE showed that the recombinant protein His6-tagged gI molecular weight was about 61 kDa. Subsequently, the expressed product was applied to generate specific antibody against gI protein. The specificity of the rabbit immuneserum was confirmed by its ability to react with the recombinant protein His6-tagged gI. In addition, real time-PCR was used to determine the the levels of the mRNA transcripts of gI gene, the results showed that the DEV gI gene was transcribed most abundantly during the late phase of infection. Furthermore, indirect immunofluorescence(IIF) was established to study the gI protein expression and localization in DEV-infected duck embryo fibroblasts (DEFs), the results confirmed that the protein was expressed and located in the cytoplasm of the infected cells, intensively. Conclusions The recombinant prokaryotic expression vector of DEV gI gene was constructed successfully. The gI protein was successfully expressed by E.coli BL21(DE3) and maintained its antigenicity very well. The basic information of the transcription and intracellular localization of gI gene

  2. An internal regulatory element controls troponin I gene expression.

    PubMed Central

    Yutzey, K E; Kline, R L; Konieczny, S F

    1989-01-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene. Images PMID:2725509

  3. An internal regulatory element controls troponin I gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yutzey, K.E.; Kline, R.L.; Konieczmy, S.F.

    1989-04-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein genemore » has not been identified. In contrast to the results of these earlier studies, the authors have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.« less

  4. iSyTE 2.0: a database for expression-based gene discovery in the eye

    PubMed Central

    Kakrana, Atul; Yang, Andrian; Anand, Deepti; Djordjevic, Djordje; Ramachandruni, Deepti; Singh, Abhyudai; Huang, Hongzhan

    2018-01-01

    Abstract Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches. PMID:29036527

  5. iGC-an integrated analysis package of gene expression and copy number alteration.

    PubMed

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  6. Type 1 Deiodinase Regulates ApoA-I Gene Expression and ApoA-I Synthesis Independent of Thyroid Hormone Signaling

    PubMed Central

    Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J.; Galton, Valerie Anne; Ginsberg, Henry N.

    2016-01-01

    Objective Plasma levels of high density lipoprotein cholesterol (HDLC) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice (LIRKO) identified reduced expression of Type 1 Deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Approach and Results Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDLC and expression of both ApoA-I and Dio1. Overexpression of Dio1 in LIRKO restored HDLC and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout (D1KO) mice had very low expression of ApoA-I and reduced serum levels of HDLC and ApoA-I. Treatment of C57BL/6J mice with anti-sense to Dio1 reduced ApoA-I mRNA, HDLC, and serum ApoA-I. Hepatic 3,5,3′-triiodothyronine (T3) content was normal or elevated in LIRKO or D1KO mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased expression of ApoA-I as well as ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (TREs) (Region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to Region B. Conclusions Reductions in Dio1 expression reduce expression of ApoA-I in a T3/TRE independent manner. PMID:27150392

  7. Type 1 Deiodinase Regulates ApoA-I Gene Expression and ApoA-I Synthesis Independent of Thyroid Hormone Signaling.

    PubMed

    Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J; Galton, Valerie Anne; Ginsberg, Henry N

    2016-07-01

    Plasma levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice identified reduced expression of type 1 deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDL-C and expression of both ApoA-I and Dio1. Overexpression of Dio1 in InsR knockout mice restored HDL-C and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout mice had low expression of ApoA-I and reduced serum levels of HDL-C and ApoA-I. Treatment of C57BL/6J mice with antisense to Dio1 reduced ApoA-I mRNA, HDL-C, and serum ApoA-I. Hepatic 3,5,3'-triiodothyronine content was normal or elevated in InsR knockout mice or Dio1 knockout mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased the expression of ApoA-I and ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to region B. Reductions in Dio1 expression reduce the expression of ApoA-I in a 3,5,3'-triiodothyronine-/thyroid hormone response element-independent manner. © 2016 American Heart Association, Inc.

  8. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients

    PubMed Central

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G.; Hoffman, Eric P.

    2016-01-01

    Abstract Objective. To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. Methods. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Results. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19 + B cells and CD68 + macrophages in responders. Conclusion. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. PMID:27215813

  9. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression.

    PubMed

    Bolen, Christopher R; Ding, Siyuan; Robek, Michael D; Kleinstein, Steven H

    2014-04-01

    Despite activating similar signaling cascades, the type I and type III interferons (IFNs) differ in their ability to antagonize virus replication. However, it is not clear whether these cytokines induce unique antiviral states, particularly in the liver, where the clinically important hepatitis B and C viruses cause persistent infection. Here, clustering and promoter analyses of microarray-based gene expression profiling were combined with mechanistic studies of signaling pathways to dynamically characterize the transcriptional responses induced by these cytokines in Huh7 hepatoma cells and primary human hepatocytes. Type I and III IFNs differed greatly in their level of interferon-stimulated gene (ISG) induction with a clearly detectable hierarchy (IFN-β > IFN-α > IFN-λ3 > IFN-λ1 > IFN-λ2). Notably, although the hierarchy identified varying numbers of differentially expressed genes when quantified using common statistical thresholds, further analysis of gene expression over multiple timepoints indicated that the individual IFNs do not in fact regulate unique sets of genes. The kinetic profiles of IFN-induced gene expression were also qualitatively similar with the important exception of IFN-α. While stimulation with either IFN-β or IFN-λs resulted in a similar long-lasting ISG induction, IFN-α signaling peaked early after stimulation then declined due to a negative feedback mechanism. The quantitative expression hierarchy and unique kinetics of IFN-α reveal potential specific roles for individual IFNs in the immune response, and elucidate the mechanism behind previously observed differences in IFN antiviral activity. While current clinical trials are focused on IFN-λ1 as a potential antiviral therapy, the finding that IFN-λ3 invariably possesses the highest activity among type III IFNs suggests that this cytokine may have superior clinical activity. © 2014 by the American Association for the Study of Liver Diseases.

  10. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients.

    PubMed

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G; Hoffman, Eric P; Miller, Frederick W

    2016-09-01

    To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19(+) B cells and CD68(+) macrophages in responders. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. Published by Oxford University Press on behalf British Society for Rheumatology 2016. This work is written by US Government employees and is in the public domain in the US.

  11. Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.).

    PubMed

    Takakura, Y; Ito, T; Saito, H; Inoue, T; Komari, T; Kuwata, S

    2000-04-01

    A flower-predominant cDNA for a gene, termed OsChia 1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia 1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia 1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia 1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia 1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia 1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia 1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia 1;175 was isolated. The transcription start sites of the OsChia 1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia 1;175 gene was fused to the GUS (beta-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia 1;175 are discussed.

  12. Human T-lymphotropic virus type I tax regulates the expression of the human lymphotoxin gene.

    PubMed

    Tschachler, E; Böhnlein, E; Felzmann, S; Reitz, M S

    1993-01-01

    Human T-lymphotropic virus type-I (HTLV-I)-infected T-cell lines constitutively produce high levels of lymphotoxin (LT). To analyze the mechanisms that lead to the expression of LT in HTLV-I-infected cell lines, we studied regulatory regions of the human LT promoter involved in the activation of the human LT gene. As determined by deletional analysis, sequences between +137 and -116 (relative to the transcription initiation site) are sufficient to direct expression of a reporter gene in the HTLV-I-infected cell line MT-2. Site-directed mutation of a of the single kappa B-like motif present in the LT promoter region (positions -99 to -89) completely abrogated LT promoter activity in MT-2 cells, suggesting that this site plays a critical role in the activation of the human LT gene. Transfection of LT constructs into HTLV-I-uninfected and -unstimulated Jurkat and U937 cell lines showed little to no activity of the LT promoter. Cotransfection of the same constructs with a tax expression plasmid into Jurkat cells led to detectable promoter activity, which could be significantly increased by stimulation of the cells with phorbol myristate acetate (PMA). Similarly, cotransfection of the LT promoter constructs and the tax expression plasmid into U937 cells led to significant promoter activity upon stimulation with PMA. These data suggest that HTLV-I tax is involved in the upregulation of LT gene expression in HTLV-I-infected cells.

  13. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET.

    PubMed

    Watanabe, Yukiko; Horie, Sachiko; Funaki, Yoshihito; Kikuchi, Youhei; Yamazaki, Hiromichi; Ishii, Keizo; Mori, Shiro; Vassaux, Georges; Kodama, Tetsuya

    2010-06-01

    The development of nonviral gene delivery systems is essential in gene therapy, and the use of a minimally invasive imaging methodology can provide important clinical endpoints. In the current study, we present a new methodology for gene therapy-a delivery system using nanobubbles and ultrasound as a nonviral gene delivery method. We assessed whether the gene transfer allowed by this methodology was detectable by PET and bioluminescence imaging. Two kinds of reported vectors (luciferase and human Na/I symporter [hNIS]) were transfected or cotransfected into the skeletal muscles of normal mice (BALB/c) using the ultrasound-nanobubbles method. The kinetics of luciferase gene expression were analyzed in vivo using bioluminescence imaging. At the peak of gene transfer, PET of hNIS expression was performed using our recently developed PET scanner, after (124)I injection. The imaging data were confirmed using reverse-transcriptase polymerase chain reaction amplification, biodistribution, and a blocking study. The imaging potential of the 2 methodologies was evaluated in 2 mouse models of human pathology (McH/lpr-RA1 mice showing vascular disease and C57BL/10-mdx Jic mice showing muscular dystrophy). Peak luciferase gene activity was observed in the skeletal muscle 4 d after transfection. On day 2 after hNIS and luciferase cotransfection, the expression of these genes was confirmed by reverse-transcriptase polymerase chain reaction on a muscle biopsy. PET of the hNIS gene, biodistribution, the blocking study, and autoradiography were performed on day 4 after transfection, and it was indicated that hNIS expression was restricted to the site of plasmid administration (skeletal muscle). Similar localized PET and (124)I accumulation were successfully obtained in the disease-model mice. The hNIS gene was delivered into the skeletal muscle of healthy and disease-model mice by the ultrasound-nanobubbles method, and gene expression was successfully visualized with PET. The

  14. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy.

    PubMed

    Baril, Patrick; Martin-Duque, Pilar; Vassaux, Georges

    2010-02-01

    Biotherapies involve the utilization of antibodies, genetically modified viruses, bacteria or cells for therapeutic purposes. Molecular imaging has the potential to provide unique information that will guarantee their biosafety in humans and provide a rationale for the future development of new generations of reagents. In this context, non-invasive imaging of gene expression is an attractive prospect, allowing precise, spacio-temporal measurements of gene expression in longitudinal studies involving gene transfer vectors. With the emergence of cell therapies in regenerative medicine, it is also possible to track cells injected into subjects. In this context, the Na/I symporter (NIS) has been used in preclinical studies. Associated with a relevant radiotracer ((123)I(-), (124)I(-), (99m)TcO4(-)), NIS can be used to monitor gene transfer and the spread of selectively replicative viruses in tumours as well as in cells with a therapeutic potential. In addition to its imaging potential, NIS can be used as a therapeutic transgene through its ability to concentrate therapeutic doses of radionuclides in target cells. This dual property has applications in cancer treatment and could also be used to eradicate cells with therapeutic potential in the case of adverse events. Through experience acquired in preclinical studies, we can expect that non-invasive molecular imaging using NIS as a transgene will be pivotal for monitoring in vivo the exact distribution and pharmacodynamics of gene expression in a precise and quantitative way. This review highlights the applications of NIS in biotherapy, with a particular emphasis on image-guided radiotherapy, monitoring of gene and vector biodistribution and trafficking of stem cells.

  15. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy

    PubMed Central

    Baril, Patrick; Martin-Duque, Pilar; Vassaux, Georges

    2010-01-01

    Biotherapies involve the utilization of antibodies, genetically modified viruses, bacteria or cells for therapeutic purposes. Molecular imaging has the potential to provide unique information that will guarantee their biosafety in humans and provide a rationale for the future development of new generations of reagents. In this context, non-invasive imaging of gene expression is an attractive prospect, allowing precise, spacio-temporal measurements of gene expression in longitudinal studies involving gene transfer vectors. With the emergence of cell therapies in regenerative medicine, it is also possible to track cells injected into subjects. In this context, the Na/I symporter (NIS) has been used in preclinical studies. Associated with a relevant radiotracer (123I-, 124I-, 99mTcO4-), NIS can be used to monitor gene transfer and the spread of selectively replicative viruses in tumours as well as in cells with a therapeutic potential. In addition to its imaging potential, NIS can be used as a therapeutic transgene through its ability to concentrate therapeutic doses of radionuclides in target cells. This dual property has applications in cancer treatment and could also be used to eradicate cells with therapeutic potential in the case of adverse events. Through experience acquired in preclinical studies, we can expect that non-invasive molecular imaging using NIS as a transgene will be pivotal for monitoring in vivo the exact distribution and pharmacodynamics of gene expression in a precise and quantitative way. This review highlights the applications of NIS in biotherapy, with a particular emphasis on image-guided radiotherapy, monitoring of gene and vector biodistribution and trafficking of stem cells. This article is part of a themed section on Imaging in Pharmacology. To view the editorial for this themed section visit http://dx.doi.org/10.1111/j.1476-5381.2010.00685.x PMID:19814733

  16. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis.

    PubMed

    Ludovini, Vienna; Bianconi, Fortunato; Siggillino, Annamaria; Piobbico, Danilo; Vannucci, Jacopo; Metro, Giulio; Chiari, Rita; Bellezza, Guido; Puma, Francesco; Della Fazia, Maria Agnese; Servillo, Giuseppe; Crinò, Lucio

    2016-05-24

    Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.

  17. Transcriptional expression of type-I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis.

    PubMed

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben; Rosbach, Hanne; Martensen, Pia M

    2011-04-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.

  18. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer).

    PubMed

    Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena

    2017-06-26

    The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non

  19. Expression of glutathione peroxidase I gene in selenium-deficient rats.

    PubMed Central

    Reddy, A P; Hsu, B L; Reddy, P S; Li, N Q; Thyagaraju, K; Reddy, C C; Tam, M F; Tu, C P

    1988-01-01

    We have characterized a cDNA pGPX1211 encoding rat glutathione peroxidase I. The selenocysteine in the protein corresponded to a TGA codon in the coding region of the cDNA, similar to earlier findings in mouse and human genes, and a gene encoding the formate dehydrogenase from E. coli, another selenoenzyme. The rat GSH peroxidase I has a calculated subunit molecular weight of 22,155 daltons and shares 95% and 86% sequence homology with the mouse and human subunits, respectively. The 3'-noncoding sequence (greater than 930 bp) in pGPX1211 is much longer than that of the human sequences. We found that glutathione peroxidase I mRNA, but not the polypeptide, was expressed under nutritional stress of selenium deficiency where no glutathione peroxidase I activity can be detected. The failure of detecting any apoprotein for the glutathione peroxidase I under selenium deficiency and results published from other laboratories supports the proposal that selenium may be incorporated into the glutathione peroxidase I co-translationally. Images PMID:2838821

  20. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    PubMed

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  1. Gene Expression Profiles in Stage I Uterine Serous Carcinoma in Comparison to Grade 3 and Grade 1 Stage I Endometrioid Adenocarcinoma

    PubMed Central

    Mhawech-Fauceglia, Paulette; Wang, Dan; Kesterson, Joshua; Syriac, Susanna; Clark, Kimberly; Frederick, Peter J.; Lele, Shashikant; Liu, Song

    2011-01-01

    Background Endometrial cancer is the most common gynecologic malignancy in the developed countries. Clinical studies have shown that early stage uterine serous carcinoma (USC) has outcomes similar to early stage high grade endometrioid adenocarcinoma (EAC-G3) than to early stage low grade endometrioid adenocarcinoma (EAC-G1). However, little is known about the origin of these different clinical outcomes. This study applied the whole genome expression profiling to explore the expression difference of stage I USC (n = 11) relative to stage I EAC-G3 (n = 11) and stage I EAC-G1 (n = 11), respectively. Methodology/Principal Finding We found that the expression difference between USC and EAC-G3, as measured by the number of differentially expressed genes (DEGs), is consistently less than that found between USC and EAC-G1. Pathway enrichment analyses suggested that DEGs specific to USC vs. EAC-G3 are enriched for genes involved in signaling transduction, while DEGs specific to USC vs. EAC-G1 are enriched for genes involved in cell cycle. Gene expression differences for selected DEGs are confirmed by quantitative RT-PCR with a high validation rate. Conclusion This data, although preliminary, indicates that stage I USC is genetically similar to stage I EAC-G3 compared to stage I EAC-G1. DEGs identified from this study might provide an insight in to the potential mechanisms that influence the clinical outcome differences between endometrial cancer subtypes. They might also have potential prognostic and therapeutic impacts on patients diagnosed with uterine cancer. PMID:21448288

  2. Gene expression profiles in stage I uterine serous carcinoma in comparison to grade 3 and grade 1 stage I endometrioid adenocarcinoma.

    PubMed

    Mhawech-Fauceglia, Paulette; Wang, Dan; Kesterson, Joshua; Syriac, Susanna; Clark, Kimberly; Frederick, Peter J; Lele, Shashikant; Liu, Song

    2011-03-23

    Endometrial cancer is the most common gynecologic malignancy in the developed countries. Clinical studies have shown that early stage uterine serous carcinoma (USC) has outcomes similar to early stage high grade endometrioid adenocarcinoma (EAC-G3) than to early stage low grade endometrioid adenocarcinoma (EAC-G1). However, little is known about the origin of these different clinical outcomes. This study applied the whole genome expression profiling to explore the expression difference of stage I USC (n = 11) relative to stage I EAC-G3 (n = 11) and stage I EAC-G1 (n = 11), respectively. We found that the expression difference between USC and EAC-G3, as measured by the number of differentially expressed genes (DEGs), is consistently less than that found between USC and EAC-G1. Pathway enrichment analyses suggested that DEGs specific to USC vs. EAC-G3 are enriched for genes involved in signaling transduction, while DEGs specific to USC vs. EAC-G1 are enriched for genes involved in cell cycle. Gene expression differences for selected DEGs are confirmed by quantitative RT-PCR with a high validation rate. This data, although preliminary, indicates that stage I USC is genetically similar to stage I EAC-G3 compared to stage I EAC-G1. DEGs identified from this study might provide an insight in to the potential mechanisms that influence the clinical outcome differences between endometrial cancer subtypes. They might also have potential prognostic and therapeutic impacts on patients diagnosed with uterine cancer.

  3. Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.

    PubMed

    Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M

    1992-01-01

    The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.

  4. Gene expression profile after activation of RIG-I in 5'ppp-dsRNA challenged DF1.

    PubMed

    Chen, Yang; Xu, Qi; Li, Yang; Liu, Ran; Huang, Zhengyang; Wang, Bin; Chen, Guohong

    2016-12-01

    Retinoic acid inducible gene I (RIG-I) can recognize influenza viruses and evoke the innate immune response. RIG-I is absent in the chicken genome, but is conserved in the genome of ducks. Lack of RIG-I renders chickens more susceptible to avian influenza infection, and the clinical symptoms are more prominent than in other poultry. It is unknown whether introduction of duck RIG-I into chicken cells can establish the immunity as is seen in ducks and the role of RIG-I in established immunity is unknown. In this study, a chicken cell strain with stable expression of duRIG-I was established by lentiviral infection, giving DF1/LV5-RIG-I, and a control strain DF1/LV5 was established in parallel. To verify stable, high level expression of duRIG-I in DF1 cells, the levels of duRIG-I mRNA and protein were determined by real-time RT-PCR and Western blot, respectively. Further, 5'triphosphate double stranded RNA (5'ppp-dsRNA) was used to mimic an RNA virus infection and the infected DF1/LV5-RIG-I and DF1/LV5 cells were subjected to high-throughput RNA-sequencing, which yielded 193.46 M reads and 39.07 G bases. A total of 278 differentially expressed genes (DEGs), i.e., duRIG-I-mediated responsive genes, were identified by RNA-seq. Among the 278 genes, 120 DEGs are annotated in the KEGG database, and the most reliable KEGG pathways are likely to be the signaling pathways of RIG-I like receptors. Functional analysis by Gene ontology (GO) indicates that the functions of these DEGs are primarily related to Type I interferon (IFN) signaling, IFN-β-mediated cellular responses and up-regulation of the RIG-I signaling pathway. Based on the shared genes among different pathways, a network representing crosstalk between RIG-I and other signaling pathways was constructed using Cytoscape software. The network suggests that RIG-mediated pathway may crosstalk with the Jak-STAT signaling pathway, Toll-like receptor signaling pathway, Wnt signaling pathway, ubiquitin-mediated proteolysis

  5. Gene-Expression Signature Predicts Postoperative Recurrence in Stage I Non-Small Cell Lung Cancer Patients

    PubMed Central

    Lu, Yan; Wang, Liang; Liu, Pengyuan; Yang, Ping; You, Ming

    2012-01-01

    About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a gene signature of recurrence in the training dataset −142 stage I lung adenocarcinomas without adjunctive therapy from the Director's Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = −0.83, P<1e-16) and this signature was validated in four independent datasets with AUC >85%. Multiple pathways including leukocyte transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for the future management of these patients. PMID:22292069

  6. iCOSSY: An Online Tool for Context-Specific Subnetwork Discovery from Gene Expression Data

    PubMed Central

    Saha, Ashis; Jeon, Minji; Tan, Aik Choon; Kang, Jaewoo

    2015-01-01

    Pathway analyses help reveal underlying molecular mechanisms of complex biological phenotypes. Biologists tend to perform multiple pathway analyses on the same dataset, as there is no single answer. It is often inefficient for them to implement and/or install all the algorithms by themselves. Online tools can help the community in this regard. Here we present an online gene expression analytical tool called iCOSSY which implements a novel pathway-based COntext-specific Subnetwork discoverY (COSSY) algorithm. iCOSSY also includes a few modifications of COSSY to increase its reliability and interpretability. Users can upload their gene expression datasets, and discover important subnetworks of closely interacting molecules to differentiate between two phenotypes (context). They can also interactively visualize the resulting subnetworks. iCOSSY is a web server that finds subnetworks that are differentially expressed in two phenotypes. Users can visualize the subnetworks to understand the biology of the difference. PMID:26147457

  7. Human T-lymphotropic virus type I-associated myelopathy and tax gene expression in CD4+ T lymphocytes.

    PubMed

    Moritoyo, T; Reinhart, T A; Moritoyo, H; Sato, E; Izumo, S; Osame, M; Haase, A T

    1996-07-01

    Infection by human T-lymphotropic virus type I (HTLV-I) is associated with adult T-cell leukemia and a slowly progressive disease of the central nervous system (CNS), HTLV-I-associated myelopathy/tropical spastic paraparesis, characterized pathologically by inflammation and white matter degeneration in the spinal cord. One of the explanations for the tissue destruction is that HTLV-I infects cells in the CNS, or HTLV-I-infected CD4+ T lymphocytes enter the CNS, and this drives local expansion of virus-specific CD8+ cytotoxic T lymphocytes, which along with cytokines cause the pathological changes. Because both in the circulation and in the cerebrospinal fluid, CD8+ cytotoxic T lymphocytes are primarily reactive to the product of the HTLV-I tax gene, we sought evidence of expression of this gene within cells in the inflammatory lesions. After using double-label in situ hybridization techniques, we now report definitive localization of HTLV-I tax gene expression in CD4+ T lymphocytes in areas of inflammation and white matter destruction. These findings lend support to a hypothetical scheme of neuropathogenesis in which HTLV-I tax gene expression provokes and sustains an immunopathological process that progressively destroys myelin and axons in the spinal cord.

  8. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  9. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    PubMed

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  10. Striking Similarity in the Gene Expression Levels of Individual Myc Module Members among ESCs, EpiSCs, and Partial iPSCs

    PubMed Central

    Hirasaki, Masataka; Hiraki-Kamon, Keiko; Kamon, Masayoshi; Suzuki, Ayumu; Katano, Miyuki; Nishimoto, Masazumi; Okuda, Akihiko

    2013-01-01

    Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties. PMID:24386274

  11. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  12. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    PubMed

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  13. Activation of dynamin I gene expression by Sp1 and Sp3 is required for neuronal differentiation of N1E-115 cells.

    PubMed

    Yoo, Jiyun; Jeong, Moon-Jin; Kwon, Byoung-Mog; Hur, Man-Wook; Park, Young-Mee; Han, Mi Young

    2002-04-05

    Dynamin I is a key molecule required for the recycling of synaptic vesicles in neurons, and it has been known that dynamin I gene expression is induced during neuronal differentiation. Our previous studies established that neuronal restriction of dynamin I gene expression is controlled by Sp1 and nuclear factor-kappaB-like element-1. Here, using a series of deletion constructs and site-directed mutation, we found that transcription of dynamin I gene during neuronal differentiation of N1E-115 cells is controlled primarily by the Sp1 element located between -13 to -4 bp of the dynamin I promoter. Gel shift analysis demonstrated that in addition to Sp1, Sp3 could interact with this Sp1 element. The requirement for Sp family transcription factors in dynamin I gene expression was confirmed by using mithramycin, an inhibitor of Sp1/Sp3 binding. Mithramycin repressed dynamin I gene expression and resulted in blocking of neuronal differentiation of N1E-115 cells. The localization of the dynamin I protein was also restricted in the peripheral region of the nucleus by the mithramycin treatment. Thus, all of our results suggest that induction of dynamin I gene expression during N1E-115 cell differentiation is modulated by Sp1/Sp3 interactions with the dynamin I promoter, and its expression is important for neuronal differentiation of the N1E-115 cells.

  14. A deep auto-encoder model for gene expression prediction.

    PubMed

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  15. I-SceI-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells

    PubMed Central

    Cohen-Tannoudji, Michel; Robine, Sylvie; Choulika, André; Pinto, Daniel; El Marjou, Fatima; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric

    1998-01-01

    Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest. PMID:9488460

  16. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  17. A-to-I RNA editing promotes developmental stage–specific gene and lncRNA expression

    PubMed Central

    Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T.

    2017-01-01

    A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3′ UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. PMID:28031250

  18. A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.

    PubMed

    Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T

    2017-03-01

    A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. © 2017 Goldstein et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Expression levels of the innate response gene RIG-I and its regulators RNF125 and TRIM25 in HIV-1-infected adult and pediatric individuals.

    PubMed

    Britto, Alan M A; Amoedo, Nívea D; Pezzuto, Paula; Afonso, Adriana O; Martínez, Ana M B; Silveira, Jussara; Sion, Fernando S; Machado, Elizabeth S; Soares, Marcelo A; Giannini, Ana L M

    2013-07-31

    TLRs (Toll-like receptors) and RLRs (RIG-I-like receptors) mediate innate immune responses by detecting microorganism invasion. RIG-I activation results in the production of interferon (IFN) type 1 and IFN responsive genes (ISGs). As the ubiquitin ligases RNF125 and TRIM25 are involved in regulating RIG-I function, our aim was to assess whether the levels of these three genes vary between healthy and HIV-infected individuals and whether these levels are related to disease progression. Gene expression analyses for RIG-I, RNF125, and TRIM25 were performed for HIV-infected adults and the children's peripheral blood mononuclear cells (PBMCs). Reverse transcription-quantitative PCRs (RT-qPCRs) were performed in order to quantify the expression levels of RIG-I, RNF125 and TRIM25 from PBMCs purified from control or HIV-infected individuals. Controls express higher levels of the three genes when compared to HIV-infected patients. These expressions are clearly distinct between healthy and progressors, and are reproduced in adults and children. In controls, RNF125 is the highest expressed gene, whereas in progressors, RIG-I is either the highest expressed gene or is expressed similarly to RNF125 and TRIM25. A pattern of expression of RIG-I, RNF125, and TRIM25 genes in HIV patients is evident. The high expression of RNF125 in healthy individuals reflects the importance of keeping RIG-I function off, inhibiting unnecessary IFN production. Consistent with this assumption, RNF125 levels are lower in HIV patients and importantly, the RNF125/RIG-I ratio is lower in patients who progress to AIDS. Our results might help to predict disease progression and unveil the role of poorly characterized host genes during HIV infection.

  20. Models of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2005-06-01

    Gene expression is an inherently stochastic process: Genes are activated and inactivated by random association and dissociation events, transcription is typically rare, and many proteins are present in low numbers per cell. The last few years have seen an explosion in the stochastic modeling of these processes, predicting protein fluctuations in terms of the frequencies of the probabilistic events. Here I discuss commonalities between theoretical descriptions, focusing on a gene-mRNA-protein model that includes most published studies as special cases. I also show how expression bursts can be explained as simplistic time-averaging, and how generic approximations can allow for concrete interpretations without requiring concrete assumptions. Measures and nomenclature are discussed to some extent and the modeling literature is briefly reviewed.

  1. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  2. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    PubMed

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  3. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants.

    PubMed

    García, María J; Romera, Francisco J; Stacey, Minviluz G; Stacey, Gary; Villar, Eduardo; Alcántara, Esteban; Pérez-Vicente, Rafael

    2013-01-01

    Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.

  4. Variation of Metallothionein I and II Gene Expression in the Bank Vole (Clethrionomys glareolus) Under Environmental Zinc and Cadmium Exposure.

    PubMed

    Mikowska, Magdalena; Dziublińska, Barbara; Świergosz-Kowalewska, Renata

    2018-07-01

    The main idea of the study was to assess how environmental metal pollution activates defence responses at transcription levels in the tissues of bank voles (Clethrionomys glareolus). For this purpose, the metallothioneine (MT) genes expression (a well known biomarker of exposure and response to various metals) was measured. The real-time PCR method was used for relative quantification of metallothionein I and metallothionein II expressions in the livers, kidneys and testes of bank voles from six populations exposed to different contaminants, mainly zinc, cadmium and iron. The assessment of Zn, Cu and Fe concentrations in the tissues allowed to study the MTs gene expression responses to these metals. ANOVA analysis showed differences between populations in terms of metal concentration in tissues, livers and kidneys. Student T test showed significant differences in metal concentration between unpolluted and polluted sites only for the liver tissue: significantly lower Zn levels and significantly higher Fe levels in the unpolluted sites. Kruskal-Wallis test performed on C T data shows differences in the gene expressions between populations for both MT genes for liver and testes. In the liver metallothionein I gene expression was upregulated in populations considered as more polluted (up to 7.5 higher expression in Miasteczko Śląskie comparing to Mikołajki). Expression of metallothionein II revealed a similar pattern. In kidneys, differences in expression of both MT genes were not that evident. In testes, MT upregulation in polluted sites was noted for metallothionein II. For metallothionein however, we found downregulation in populations from more contaminated sites. The expressions of both MTs were positively influenced by cadmium in kidney (concentration data from the previous study) and zinc and copper in liver, while cadmium had effects only on the liver MT II gene expression. Positive relationship was obtained for lead and metallothionein II expression in the

  5. Emergence of the self-similar property in gene expression dynamics

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.; Akutsu, T.

    2007-08-01

    Many theoretical models have recently been proposed to understand the structure of cellular systems composed of various types of elements (e.g., proteins, metabolites and genes) and their interactions. However, the cell is a highly dynamic system with thousands of functional elements fluctuating across temporal states. Therefore, structural analysis alone is not sufficient to reproduce the cell's observed behavior. In this article, we analyze the gene expression dynamics (i.e., how the amount of mRNA molecules in cell fluctuate in time) by using a new constructive approach, which reveals a symmetry embedded in gene expression fluctuations and characterizes the dynamical equation of gene expression (i.e., a specific stochastic differential equation). First, by using experimental data of human and yeast gene expression time series, we found a symmetry in short-time transition probability from time t to time t+1. We call it self-similarity symmetry (i.e., the gene expression short-time fluctuations contain a repeating pattern of smaller and smaller parts that are like the whole, but different in size). Secondly, we reconstruct the global behavior of the observed distribution of gene expression (i.e., scaling-law) and the local behavior of the power-law tail of this distribution. This approach may represent a step forward toward an integrated image of the basic elements of the whole cell.

  6. Transcriptional regulation of IGF-I expression in skeletal muscle

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.

    2003-01-01

    The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

  7. An incoherent feedforward loop facilitates adaptive tuning of gene expression.

    PubMed

    Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David

    2018-04-05

    We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.

  8. Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages.

    PubMed

    Huang, Guan-Cheng; Chow, Jyh-Ming; Shen, Shing-Chuan; Yang, Liang-Yo; Lin, Cheng-Wei; Chen, Yen-Chou

    2007-08-01

    Wogonin (Wog; 5,7-dihydroxy-8-methoxy flavone) has been shown to effectively inhibit lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) gene expression and nitric oxide production in our previous study. In the present study, we found that Nor-wogonin (N-Wog; 5,7,8-trihydroxyl flavone), a structural analogue of Wog with an OH substitution at C8, performed different effect on LPS- or lipoteichoic acid (LTA)-induced iNOS gene expression and nitric oxide (NO) production in macrophages. Wog, but not N-Wog, significantly inhibits LPS- or LTA-induced NO production through suppressing iNOS gene expression at both protein and mRNA without affecting NO donor sodium nitroprusside-induced NO production, NOS enzyme activity, and cells viability. Activation of JNKs (not ERKs) via phosphorylation induction, and an increase in c-Jun (not c-Fos) protein expression were involved in LPS- and LTA-treated RAW264.7 cells, and those events were blocked by Wog, but not N-Wog, addition. Furthermore, 5,7-diOH flavone, but not 5-OH flavone, 7-OH flavone, 5-OH-7-OCH(3) flavone, significantly inhibits LPS-induced iNOS protein expression and NO production, and 7,8-diOCH(3) flavone performs more effective inhibitory activity on LPS-induced NO production and iNOS protein expression than 7-OCH(3)-8-OH flavone. These data suggest that OHs at both C5 and C7 are essential for NO inhibition of flavonoids, and OCH(3) at C8 may contribute to this activity, and suppression of JNKs-c-Jun activation is involved.

  9. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    PubMed

    Cuperus, Josh T; Lo, Russell S; Shumaker, Lucia; Proctor, Julia; Fields, Stanley

    2015-07-17

    Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR-VP16 activator with differential affinity and therefore result in different TetR-VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 10(5); a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR-VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes.

  10. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses.

    PubMed

    Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun; Li, Xing-Hui

    2017-01-01

    Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants.

  11. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses

    PubMed Central

    Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun

    2017-01-01

    Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants. PMID:28453515

  12. Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans.

    PubMed Central

    Boyd, D A; Cvitkovitch, D G; Hamilton, I R

    1994-01-01

    We report the sequencing of a 2,242-bp region of the Streptococcus mutants NG5 genome containing the genes for ptsH and ptsI, which encode HPr and enzyme I (EI), respectively, of the phosphoenolpyruvate-dependent phosphotransferase transport system. The sequence was obtained from two cloned overlapping genomic fragments; one expresses HPr and a truncated EI, while the other expresses a full-length EI in Escherichia coli, as determined by Western immunoblotting. The ptsI gene appeared to be expressed from a region located in the ptsH gene. The S. mutans NG5 pts operon does not appear to be linked to other phosphotransferase transport system proteins as has been found in other bacteria. A positive fermentation pattern on MacConkey-glucose plates by an E. coli ptsI mutant harboring the S. mutans NG5 ptsI gene on a plasmid indicated that the S. mutans NG5 EI can complement a defect in the E. coli gene. This was confirmed by protein phosphorylation experiments with 32P-labeled phosphoenolpyruvate indicating phosphotransfer from the S. mutans NG5 EI to the E. coli HPr. Two forms of the cloned EI, both truncated to varying degrees in the C-terminal region, were inefficiently phosphorylated and unable to complement fully the ptsI defect in the E. coli mutant. The deduced amino acid sequence of HPr shows a high degree of homology, particularly around the active site, to the same protein from other gram-positive bacteria, notably, S. salivarius, and to a lesser extent with those of gram-negative bacteria. The deduced amino acid sequence of S. mutans NG5 EI also shares several regions of homology with other sequenced EIs, notably, with the region around the active site, a region that contains the only conserved cystidyl residue among the various proteins and which may be involved in substrate binding. Images PMID:8132321

  13. The effects of WW2/WW3 domains of Smurf2 molecule on TGF-β signaling and arginase I gene expression.

    PubMed

    Ganji, Ali; Roshan, Hani Mosayebzadeh; Varasteh, Abdolreza; Moghadam, Malihe; Sankian, Mojtaba

    2015-06-01

    Smad ubiquitination regulatory factor 2 (Smurf2) consists of multiple WW domains which can interact with Smad7 molecule and inhibit signaling of transforming growth factor-beta (TGF-β) cytokine. Arginase I (ArgI) is one of the main products of TGF-β signaling that plays important roles in tumor escape and airway tissue fibrosis and remodeling in asthma. In this study, the effects of TAT fused to WW2/WW3 (TAT-WW2/WW3) recombinant protein on TGF-β signaling and ArgI gene expression were evaluated on J774A.1 cell culture. For this purpose, interaction of TAT-WW2/WW3 with Smad7, mRNA expression of ArgI, and phosphorylated Smad3 (P-Smad3) were analyzed in TAT-WW2/WW3-treated J774A.1 cell. The results showed interaction of TAT-WW2/WW3 with Smad7, downregulation of ArgI gene expression (P < 0.05), and higher amount of P-Smad3 in the TAT-WW2/WW3-treated cells. In conclusion, we suggest that TAT-WW2/WW3 could interfere with TGF-β signaling and reduce ArgI gene expression. Since, ArgI has important effects on tissue remodeling in asthma and cancer progression, so these findings could be used to develop a new approach in the treatment of asthma and cancers. © 2015 International Federation for Cell Biology.

  14. Digital gene expression for non-model organisms

    PubMed Central

    Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.

    2011-01-01

    Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123

  15. Modeling gene expression measurement error: a quasi-likelihood approach

    PubMed Central

    Strimmer, Korbinian

    2003-01-01

    Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution) or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale). Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood). Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic) variance structure of the data. As the quasi-likelihood behaves (almost) like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye) effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also improved the power of

  16. Expression Patterns of Glutathione Transferase Gene (GstI) in Maize Seedlings Under Juglone-Induced Oxidative Stress

    PubMed Central

    Sytykiewicz, Hubert

    2011-01-01

    Juglone (5-hydroxy-1,4-naphthoquinone) has been identified in organs of many plant species within Juglandaceae family. This secondary metabolite is considered as a highly bioactive substance that functions as direct oxidant stimulating the production of reactive oxygen species (ROS) in acceptor plants. Glutathione transferases (GSTs, E.C.2.5.1.18) represent an important group of cytoprotective enzymes participating in detoxification of xenobiotics and limiting oxidative damages of cellular macromolecules. The purpose of this study was to investigate the impact of tested allelochemical on growth and development of maize (Zea mays L.) seedlings. Furthermore, the effect of juglone-induced oxidative stress on glutathione transferase (GstI) gene expression patterns in maize seedlings was recorded. It was revealed that 4-day juglone treatment significantly stimulated the transcriptional activity of GstI in maize seedlings compared to control plants. By contrast, at the 6th and 8th day of experiments the expression gene responses were slightly lower as compared with non-stressed seedlings. Additionally, the specific gene expression profiles, as well as the inhibition of primary roots and coleoptile elongation were proportional to juglone concentrations. In conclusion, the results provide strong molecular evidence that allelopathic influence of juglone on growth and development of maize seedlings may be relevant with an induction of oxidative stress in acceptor plants. PMID:22174645

  17. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    PubMed

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  18. σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-dependent Transcription that Requires New Types of Promoters with Extended -35 and -10 Elements.

    PubMed

    Ramaniuk, Olga; Převorovský, Martin; Pospíšil, Jiří; Vítovská, Dragana; Kofroňová, Olga; Benada, Oldřich; Schwarz, Marek; Šanderová, Hana; Hnilicová, Jarmila; Krásný, Libor

    2018-06-18

    σ I from Bacillus subtilis is a σ factor associating with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here we provide a comprehensive characterization of this transcriptional regulator. By RNA-seq of wt and σ I -null strains at 37°C and 52°C we identified ∼130 genes affected by the absence of σ I Further analysis revealed that the majority of these genes were affected by σ I indirectly. The σ I regulon, i.e., the genes directly regulated by σ I , consists of 16 genes of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σ I in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σ I -dependent promoters are relatively information-rich in comparison with most other promoters. In summary, this study supplies information about the least explored σ factor from the industrially important model organism B. subtilis Importance In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons ( i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σ I regulon from the industrially important model Gram-positive bacterium - Bacillus subtilis We reveal that σ I affects expression of ∼ 130 genes, of which 16 are directly regulated by σ I , including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σ I -dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription

  19. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  20. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  1. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  2. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  3. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates

  5. New TFII-I family target genes involved in embryonic development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2009-09-04

    Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.

  6. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  7. Multiscale Embedded Gene Co-expression Network Analysis.

    PubMed

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  8. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro

    NASA Technical Reports Server (NTRS)

    Uzawa, K.; Grzesik, W. J.; Nishiura, T.; Kuznetsov, S. A.; Robey, P. G.; Brenner, D. A.; Yamauchi, M.

    1999-01-01

    The pattern of lysyl hydroxylation in the nontriple helical domains of collagen is critical in determining the cross-linking pathways that are tissue specific. We hypothesized that the tissue specificity of type I collagen cross-linking is, in part, due to the differential expression of lysyl hydroxylase genes (Procollagen-lysine,2-oxyglutarate,5-dioxygenase 1, 2, and 3 [PLOD1, PLOD2, and PLOD3]). In this study, we have examined the expression patterns of these three genes during the course of in vitro differentiation of human osteoprogenitor cells (bone marrow stromal cells [BMSCs]) and normal skin fibroblasts (NSFs). In addition, using the medium and cell layer/matrix fractions in these cultures, lysine hydroxylation of type I collagen alpha chains and collagen cross-linking chemistries have been characterized. High levels of PLOD1 and PLOD3 genes were expressed in both BMSCs and NSFs, and the expression levels did not change in the course of differentiation. In contrast to the PLOD1 and PLOD3 genes, both cell types showed low PLOD2 gene expression in undifferentiated and early differentiated conditions. However, fully differentiated BMSCs, but not NSFs, exhibited a significantly elevated level (6-fold increase) of PLOD2 mRNA. This increase coincided with the onset of matrix mineralization and with the increase in lysyl hydroxylation in the nontriple helical domains of alpha chains of type I collagen molecule. Furthermore, the collagen cross-links that are derived from the nontriple helical hydroxylysine-aldehyde were found only in fully differentiated BMSC cultures. The data suggests that PLOD2 expression is associated with lysine hydroxylation in the nontriple helical domains of collagen and, thus, could be partially responsible for the tissue-specific collagen cross-linking pattern.

  9. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  10. Thiazolidinediones inhibit REG I{alpha} gene transcription in gastrointestinal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Akiyo; Laboratory of Molecular Genetics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578; Department of Biochemistry, Nara Medical University, Kashihara 634-8521

    2009-02-13

    REG (Regenerating gene) I{alpha} protein functions as a growth factor for gastrointestinal cancer cells, and its mRNA expression is strongly associated with a poor prognosis in gastrointestinal cancer patients. We here demonstrated that PPAR{gamma}-agonist thiazolidinediones (TZDs) inhibited cell proliferation and REG I{alpha} protein/mRNA expression in gastrointestinal cancer cells. TZDs inhibited the REG I{alpha} gene promoter activity, via its cis-acting element which lacked PPAR response element and could not bind to PPAR{gamma}, in PPAR{gamma}-expressing gastrointestinal cancer cells. The inhibition was reversed by co-treatment with a specific PPAR{gamma}-antagonist GW9662. Although TZDs did not inhibit the REG I{alpha} gene promoter activity in PPAR{gamma}-non-expressingmore » cells, PPAR{gamma} overexpression in the cells recovered their inhibitory effect. Taken together, TZDs inhibit REG I{alpha} gene transcription through a PPAR{gamma}-dependent pathway. The TZD-induced REG I{alpha} mRNA reduction was abolished by cycloheximide, indicating the necessity of novel protein(s) synthesis. TZDs may therefore be a candidate for novel anti-cancer drugs for patients with gastrointestinal cancer expressing both REG I{alpha} and PPAR{gamma}.« less

  11. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  12. Sperm 1: a POU-domain gene transiently expressed immediately before meiosis I in the male germ cell.

    PubMed Central

    Andersen, B; Pearse, R V; Schlegel, P N; Cichon, Z; Schonemann, M D; Bardin, C W; Rosenfeld, M G

    1993-01-01

    Members of the POU-domain gene family encode for transcriptional regulatory molecules that are important for terminal differentiation of several organ systems, including anterior pituitary, sensory neurons, and B lymphocytes. We have identified a POU-domain factor, referred to as sperm 1 (Sprm-1). This factor is most related to the transactivator Oct-3/4, which is expressed in the early embryo, primordial germ cells, and the egg. However, in contrast with Oct-3/4, rat Sprm-1 is selectively expressed during a 36- to 48-hr period immediately preceding meiosis I in male germ cells. Although the POU-domain of Sprm-1 is divergent from the POU-domains of Oct-1 and Oct-2, random-site-selection assay reveals that Sprm-1 preferentially binds to a specific variant of the classic octamer DNA-response element in which the optimal sequence differs from that preferred by Oct-1 and Pit-1. These data suggest that the Sprm-1 gene encodes a DNA-binding protein that may exert a regulatory function in meiotic events that are required for terminal differentiation of the male germ cell. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7902581

  13. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    PubMed

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  14. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    PubMed

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  15. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502

    PubMed Central

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism. PMID:28464023

  16. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  17. In vivo monitoring of transfected DNA, gene expression kinetics, and cellular immune responses in mice immunized with a human NIS gene-expressing plasmid.

    PubMed

    Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo

    2016-12-01

    In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors. © The Author(s) 2016.

  18. Codon usage and amino acid usage influence genes expression level.

    PubMed

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  19. Nuclear factor I-A represses expression of the cell adhesion molecule L1

    PubMed Central

    2009-01-01

    Background The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. Results We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. Conclusion Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF). PMID:20003413

  20. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  1. Bovine mammary gene expression profiling during the onset of lactation.

    PubMed

    Gao, Yuanyuan; Lin, Xueyan; Shi, Kerong; Yan, Zhengui; Wang, Zhonghua

    2013-01-01

    Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d), day 7 before parturition (-7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR) of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  2. In ovo trace element supplementation enhances expression of growth genes in embryo and immune genes in post-hatch broiler chickens.

    PubMed

    Goel, Akshat; Bhanja, Subrat K; Mehra, Manish; Mandal, Asitbaran; Pande, Veena

    2016-06-01

    Differential expression of growth- and immunity-related genes and post-hatch performances were evaluated in in ovo zinc (Zn), iodine (I) or selenium (Se) supplemented chicken embryos. There was about 9-18% reduction in hatchability of Zn, I or Se supplemented eggs. In ovo trace element supplementation did not improve post-hatch growth. Two-way analysis of data revealed significant effect (P > 0.01) of period, trace elements and their interactions. Expression of hepatic somatotropin, insulin-like growth factor-II and mucin gene was highest at 20(th) embryonic day but decreased during post-hatch periods. In ovo Zn or I supplemented embryos had higher expression of growth-related genes compared to the Se or un-injected control group. Expression of interleukin-6 was higher (P < 0.01) in in ovo I supplemented chicks (2.5-fold) but lower in the Zn and Se groups than in the un-injected control group. However, Zn and Se supplemented chicks had higher cellular immune gene expression. In vivo response to mitogen phytohaemaglutinin was also higher (P < 0.01) in Zn or Se supplemented chicks In ovo supplementation of Zn, I and Se did not improve the post-hatch growth, but increased growth-related gene expression. Iodine improved humoral immune gene expression whereas Zn and Se enhanced cell-mediated immune gene expression in broiler chickens. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit

    PubMed Central

    2017-01-01

    Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range. PMID:29084263

  4. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  5. Prediction of gene expression with cis-SNPs using mixed models and regularization methods.

    PubMed

    Zeng, Ping; Zhou, Xiang; Huang, Shuiping

    2017-05-11

    It has been shown that gene expression in human tissues is heritable, thus predicting gene expression using only SNPs becomes possible. The prediction of gene expression can offer important implications on the genetic architecture of individual functional associated SNPs and further interpretations of the molecular basis underlying human diseases. We compared three types of methods for predicting gene expression using only cis-SNPs, including the polygenic model, i.e. linear mixed model (LMM), two sparse models, i.e. Lasso and elastic net (ENET), and the hybrid of LMM and sparse model, i.e. Bayesian sparse linear mixed model (BSLMM). The three kinds of prediction methods have very different assumptions of underlying genetic architectures. These methods were evaluated using simulations under various scenarios, and were applied to the Geuvadis gene expression data. The simulations showed that these four prediction methods (i.e. Lasso, ENET, LMM and BSLMM) behaved best when their respective modeling assumptions were satisfied, but BSLMM had a robust performance across a range of scenarios. According to R 2 of these models in the Geuvadis data, the four methods performed quite similarly. We did not observe any clustering or enrichment of predictive genes (defined as genes with R 2  ≥ 0.05) across the chromosomes, and also did not see there was any clear relationship between the proportion of the predictive genes and the proportion of genes in each chromosome. However, an interesting finding in the Geuvadis data was that highly predictive genes (e.g. R 2  ≥ 0.30) may have sparse genetic architectures since Lasso, ENET and BSLMM outperformed LMM for these genes; and this observation was validated in another gene expression data. We further showed that the predictive genes were enriched in approximately independent LD blocks. Gene expression can be predicted with only cis-SNPs using well-developed prediction models and these predictive genes were enriched in

  6. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato.

    PubMed

    Zhang, Zhenzhu; Chen, Xiuling; Guan, Xin; Liu, Yang; Chen, Hongyu; Wang, Tingting; Mouekouba, Liana Dalcantara Ongouya; Li, Jingfu; Wang, Aoxue

    2014-01-01

    Homeodomain-leucine zipper (HD-Zip) proteins are a kind of transcriptional factors that play a vital role in plant growth and development. However, no detailed information of HD-Zip family in tomato has been reported till now. In this study, 51 HD-Zip genes (SlHZ01-51) in this family were identified and categorized into 4 classes by exon-intron and protein structure in tomato (Solanum lycopersicum) genome. The synthetical phylogenetic tree of tomato, Arabidopsis and rice HD-Zip genes were established for an insight into their evolutionary relationships and putative functions. The results showed that the contribution of segmental duplication was larger than that of tandem duplication for expansion and evolution of genes in this family of tomato. The expression profile results under abiotic stress suggested that all SlHZ I genes were responsive to cold stress. This study will provide a clue for the further investigation of functional identification and the role of tomato HD-Zip I subfamily in plant cold stress responses and developmental events.

  7. Gene Architectures that Minimize Cost of Gene Expression.

    PubMed

    Frumkin, Idan; Schirman, Dvir; Rotman, Aviv; Li, Fangfei; Zahavi, Liron; Mordret, Ernest; Asraf, Omer; Wu, Song; Levy, Sasha F; Pilpel, Yitzhak

    2017-01-05

    Gene expression burdens cells by consuming resources and energy. While numerous studies have investigated regulation of expression level, little is known about gene design elements that govern expression costs. Here, we ask how cells minimize production costs while maintaining a given protein expression level and whether there are gene architectures that optimize this process. We measured fitness of ∼14,000 E. coli strains, each expressing a reporter gene with a unique 5' architecture. By comparing cost-effective and ineffective architectures, we found that cost per protein molecule could be minimized by lowering transcription levels, regulating translation speeds, and utilizing amino acids that are cheap to synthesize and that are less hydrophobic. We then examined natural E. coli genes and found that highly expressed genes have evolved more forcefully to minimize costs associated with their expression. Our study thus elucidates gene design elements that improve the economy of protein expression in natural and heterologous systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain.

    PubMed

    Rulten, Stuart L; Ripley, Tamzin L; Manerakis, Ektor; Stephens, David N; Mayne, Lynne V

    2006-08-02

    Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons.

  9. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression

    PubMed Central

    Brkic, Zana; Maria, Naomi I; van Helden-Meeuwsen, Cornelia G; van de Merwe, Joop P; van Daele, Paul L; Dalm, Virgil A; Wildenberg, Manon E; Beumer, Wouter; Drexhage, Hemmo A; Versnel, Marjan A

    2013-01-01

    Objective To determine the prevalence of upregulation of interferon (IFN) type I inducible genes, the so called ‘IFN type I signature’, in CD14 monocytes in 69 patients with primary Sjögren's syndrome (pSS) and 44 healthy controls (HC) and correlate it with disease manifestations and expression of B cell activating factor (BAFF). Methods Expression of IFI44L, IFI44, IFIT3, LY6E and MX1 was measured using real time quantitative PCR in monocytes. Expression values were used to calculate IFN type I scores for each subject. pSS patients positive for the IFN type I signature (IFN score≥10) and patients negative for the signature (IFN score<10) were then compared for clinical disease manifestations and BAFF expression. A bioassay using a monocytic cell line was performed to study whether BAFF mRNA expression was inducible by IFN type I activity in serum of patients with pSS. Results An IFN type I signature was present in 55% of patients with pSS compared with 4.5% of HC. Patients with the IFN type I signature showed: (a) higher EULAR Sjögren's Syndrome Disease Activity Index scores; higher anti-Ro52, anti-Ro60 and anti-La autoantibodies; higher rheumatoid factor; higher serum IgG; lower C3, lower absolute lymphocyte and neutrophil counts; (b)higher BAFF gene expression in monocytes. In addition, serum of signature-positive patients induced BAFF gene expression in monocytes. Conclusions The monocyte IFN type I signature identifies a subgroup of patients with pSS with a higher clinical disease activity together with higher BAFF mRNA expression. Such patients might benefit from treatment blocking IFN type I production or activity. PMID:22736090

  10. High hydrostatic pressure extract of garlic increases the HDL cholesterol level via up-regulation of apolipoprotein A-I gene expression in rats fed a high-fat diet

    PubMed Central

    2012-01-01

    Background Cardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression. Methods Male Sprague–Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters. Results In the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG. Conclusions These results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet. PMID:22713542

  11. High hydrostatic pressure extract of garlic increases the HDL cholesterol level via up-regulation of apolipoprotein A-I gene expression in rats fed a high-fat diet.

    PubMed

    Lee, Seohyun; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2012-06-19

    Cardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression. Male Sprague-Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters. In the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG. These results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet.

  12. aGEM: an integrative system for analyzing spatial-temporal gene-expression information

    PubMed Central

    Jiménez-Lozano, Natalia; Segura, Joan; Macías, José Ramón; Vega, Juanjo; Carazo, José María

    2009-01-01

    Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers. Results: The aGEM Platform provides information to answer three main questions. (i) Which genes are expressed in a given mouse anatomical component? (ii) In which mouse anatomical structures are a given gene or set of genes expressed? And (iii) is there any correlation among these findings? Currently, this Platform includes several well-known mouse resources (EMAGE, GXD and GENSAT), hosting gene-expression data mostly obtained from in situ techniques together with a broad set of image-derived annotations. Availability: The Platform is optimized for Firefox 3.0 and it is accessed through a friendly and intuitive display: http://agem.cnb.csic.es Contact: natalia@cnb.csic.es Supplementary information: Supplementary data are available at http://bioweb.cnb.csic.es/VisualOmics/aGEM/home.html and http://bioweb.cnb.csic.es/VisualOmics/index_VO.html and Bioinformatics online. PMID:19592395

  13. Differential Expression of Three α-Galactosidase Genes and a Single β-Galactosidase Gene from Aspergillus niger

    PubMed Central

    de Vries, Ronald P.; van den Broeck, Hetty C.; Dekkers, Ester; Manzanares, Paloma; de Graaff, Leo H.; Visser, Jaap

    1999-01-01

    A gene encoding a third α-galactosidase (AglB) from Aspergillus niger has been cloned and sequenced. The gene consists of an open reading frame of 1,750 bp containing six introns. The gene encodes a protein of 443 amino acids which contains a eukaryotic signal sequence of 16 amino acids and seven putative N-glycosylation sites. The mature protein has a calculated molecular mass of 48,835 Da and a predicted pI of 4.6. An alignment of the AglB amino acid sequence with those of other α-galactosidases revealed that it belongs to a subfamily of α-galactosidases that also includes A. niger AglA. A. niger AglC belongs to a different subfamily that consists mainly of prokaryotic α-galactosidases. The expression of aglA, aglB, aglC, and lacA, the latter of which encodes an A. niger β-galactosidase, has been studied by using a number of monomeric, oligomeric, and polymeric compounds as growth substrates. Expression of aglA is only detected on galactose and galactose-containing oligomers and polymers. The aglB gene is expressed on all of the carbon sources tested, including glucose. Elevated expression was observed on xylan, which could be assigned to regulation via XlnR, the xylanolytic transcriptional activator. Expression of aglC was only observed on glucose, fructose, and combinations of glucose with xylose and galactose. High expression of lacA was detected on arabinose, xylose, xylan, and pectin. Similar to aglB, the expression on xylose and xylan can be assigned to regulation via XlnR. All four genes have distinct expression patterns which seem to mirror the natural substrates of the encoded proteins. PMID:10347026

  14. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  15. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    PubMed

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  16. Evaluation effect of low level Helium-Neon laser and Iranian propolis extract on Collagen Type I gene expression by human gingival fibroblasts: an in vitro study.

    PubMed

    Eslami, Hosein; Motahari, Paria; Safari, Ebrahim; Seyyedi, Maryam

    2017-06-30

    production of collagen by fibroblast cells is a key component in wound healing. Several studies have shown that low level laser therapy (LLLT) and propolis extract stimulate collagen Type I production. The aim of this study is to evaluation the combined effect of LLL helium neon (632.8 nm) and Iranian propolis extract on collagen Type I gene expression by human gingival fibroblasts (HGF3-PI 53). Human gingival fibroblasts after culturing divided into six experimental groups: G1-control group, which received no irradiation and propolis extract, G2-irradiated at1.5 J/cm 2 , G3-irradiated at 0.15 J/cm 2 , G4-recived extract of propolis, G5- combined extract of propolis and 1.5 J/cm 2 laser irradiation and G6- combined extract of propolis and 0.15 J/cm 2 laser irradiation. The experiments were conducted in triplicate. After 24 hour, the total RNA was extracted and cDNA synthesis was performed. Type I collagen mRNA expression was determined with real time PCR. The obtained results illustrated a statistically significant difference between G3 (0.15 J/cm 2 ) and G1 (control group) in levels of collagen Type I messenger RNA (mRNA) expression (p<0.05). The irradiated cells showed a 1.4 times increase in mRNA expression of the collagen Type I gene. Expression of this gene decreases in other groups that this difference was statistically significant. LLLT in different dosage and propolis extract may result in decreased or increased collagen type I gene expression. However this effect should be investigated in clinical studies.

  17. Evaluation effect of low level Helium-Neon laser and Iranian propolis extract on Collagen Type I gene expression by human gingival fibroblasts: an in vitro study

    PubMed Central

    Eslami, Hosein; Motahari, Paria; Safari, Ebrahim; Seyyedi, Maryam

    2017-01-01

    Back ground and aim production of collagen by fibroblast cells is a key component in wound healing. Several studies have shown that low level laser therapy (LLLT) and propolis extract stimulate collagen Type I production. The aim of this study is to evaluation the combined effect of LLL helium neon (632.8 nm) and Iranian propolis extract on collagen Type I gene expression by human gingival fibroblasts (HGF3-PI 53). Methods and materials Human gingival fibroblasts after culturing divided into six experimental groups: G1-control group, which received no irradiation and propolis extract, G2-irradiated at1.5 J/cm2, G3-irradiated at 0.15 J/cm2, G4-recived extract of propolis, G5- combined extract of propolis and 1.5 J/cm2 laser irradiation and G6- combined extract of propolis and 0.15 J/cm2 laser irradiation. The experiments were conducted in triplicate. After 24 hour, the total RNA was extracted and cDNA synthesis was performed. Type I collagen mRNA expression was determined with real time PCR. Results The obtained results illustrated a statistically significant difference between G3 (0.15 J/cm2) and G1 (control group) in levels of collagen Type I messenger RNA (mRNA) expression (p<0.05). The irradiated cells showed a 1.4 times increase in mRNA expression of the collagen Type I gene. Expression of this gene decreases in other groups that this difference was statistically significant. Conclusion LLLT in different dosage and propolis extract may result in decreased or increased collagen type I gene expression. However this effect should be investigated in clinical studies. PMID:28785130

  18. Divergent Gene Expression Responses to Complicated Grief and Non-complicated Grief

    PubMed Central

    Irwin, Michael R.; Arevalo, Jesusa M. G.; Cole, Steven W.

    2014-01-01

    The “widowhood effect” (i.e., morbidity/mortality in recently bereaved spouses) may be related to changes in immune function, but little is known about the impact of bereavement on gene transcription in immune cells. This study examined how Complicated Grief and Non-complicated Grief responses to bereavement differentially affect leukocyte gene expression. Genome-wide transcriptional profiling and bioinformatic analyses were completed on 63 older adults. Thirty-six of them had lost their spouse/partner on average 2 years ago, and 27 were nonbereaved, married controls. Twelve of the bereaved participants met criteria for Complicated Grief. Compared to nonbereaved controls, bereavement (both Complicated Grief and Non-complicated Grief) was associated with upregulated expression of genes involved in general immunologic activation and a selective downregulation of genes involved in B lymphocyte responses. However, Complicated Grief and Non-complicated Grief differed markedly in their expression of Type I interferon-related transcripts, with Non-complicated Grief subjects showing substantial upregulation relative to nonbereaved controls and Complicated Grief subjects showing substantial downregulation. Bereavement significantly modulates immune function gene expression. The magnitude of bereavement-related distress (i.e., Complicated Grief vs. Non-complicated Grief) is linked to differential patterns of transcription factor activation and gene expression involved in innate antiviral responses. These findings provide a molecular framework for understanding the health effects of bereavement, as well as new insights into the particular gene modules that are most sensitive to the individual's psychological response to loss. PMID:24380850

  19. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    PubMed

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during

  1. Alternative splicing and promoter use in TFII-I genes

    PubMed Central

    Makeyev, Aleksandr V.; Bayarsaihan, Dashzeveg

    2008-01-01

    TFII-I proteins are ubiquitously expressed transcriptional factors involved in both basal transcription and signal transduction activation or repression. TFII-I proteins are detected as early as at two-cell stage and exhibit distinct and dynamic expression patterns in developing embryos as well as mark regional variation in the adult mouse brain. Analysis of atypical small and rare chromosomal deletions at 7q11.23 points to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for craniofacial and cognitive abnormalities in the Williams-Beuren syndrome. TFII-I genes are often subjected to alternative splicing, which generates isoforms that that show different activities and play distinct biological roles. The coding regions of TFII-I genes are composed of more than 30 exons and are well conserved among vertebrates. However, their 5′ untranslated regions are not as well conserved and all poorly characterized. In the present work, we analyzed promoter regions of TFII-I genes and described their additional exons, as well as tested tissue specificity of both previously reported and novel alternatively spliced isoforms. Our comprehensive analysis leads to further elucidation of the functional heterogeneity of TFII-I proteins, provides hints on search for regulatory pathways governing their expression, and opens up possibilities for examining the effect of different haplotypes on their promoter functions. PMID:19111598

  2. Alternative splicing and promoter use in TFII-I genes.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2009-03-15

    TFII-I proteins are ubiquitously expressed transcriptional factors involved in both basal transcription and signal transduction activation or repression. TFII-I proteins are detected as early as at two-cell stage and exhibit distinct and dynamic expression patterns in developing embryos as well as mark regional variation in the adult mouse brain. Analysis of atypical small and rare chromosomal deletions at 7q11.23 points to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for craniofacial and cognitive abnormalities in the Williams-Beuren syndrome. TFII-I genes are often subjected to alternative splicing, which generates isoforms that show different activities and play distinct biological roles. The coding regions of TFII-I genes are composed of more than 30 exons and are well conserved among vertebrates. However, their 5' untranslated regions are not as well conserved and all poorly characterized. In the present work, we analyzed promoter regions of TFII-I genes and described their additional exons, as well as tested tissue specificity of both previously reported and novel alternatively spliced isoforms. Our comprehensive analysis leads to further elucidation of the functional heterogeneity of TFII-I proteins, provides hints on search for regulatory pathways governing their expression, and opens up possibilities for examining the effect of different haplotypes on their promoter functions.

  3. IL-1beta, but not BMP-7 leads to a dramatic change in the gene expression pattern of human adult articular chondrocytes--portraying the gene expression pattern in two donors.

    PubMed

    Saas, J; Haag, J; Rueger, D; Chubinskaya, S; Sohler, F; Zimmer, R; Bartnik, E; Aigner, T

    2006-10-01

    Anabolic and catabolic cytokines and growth factors such as BMP-7 and IL-1beta play a central role in controlling the balance between degradation and repair of normal and (osteo)arthritic articular cartilage matrix. In this report, we investigated the response of articular chondrocytes to these factors IL-1beta and BMP-7 in terms of changes in gene expression levels. Large scale analysis was performed on primary human adult articular chondrocytes isolated from two human, independent donors cultured in alginate beads (non-stimulated and stimulated with IL-1beta and BMP-7 for 48 h) using Affymetrix gene chips (oligo-arrays). Biostatistical and bioinformatic evaluation of gene expression pattern was performed using the Resolver software (Rosetta). Part of the results were confirmed using real-time PCR. IL-1beta modulated significantly 909 out of 3459 genes detectable, whereas BMP-7 influenced only 36 out of 3440. BMP-7 induced mainly anabolic activation of chondrocytes including classical target genes such as collagen type II and aggrecan, while IL-1beta, both, significantly modulated the gene expression levels of numerous genes; namely, IL-1beta down-regulated the expression of anabolic genes and induced catabolic genes and mediators. Our data indicate that BMP-7 has only a limited effect on differentiated cells, whereas IL-1beta causes a dramatic change in gene expression pattern, i.e. induced or repressed much more genes. This presumably reflects the fact that BMP-7 signaling is effected via one pathway only (i.e. Smad-pathway) whereas IL-1beta is able to signal via a broad variety of intracellular signaling cascades involving the JNK, p38, NFkB and Erk pathways and even influencing BMP signaling.

  4. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    PubMed

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  5. p53 Regulates insulin-like growth factor-I receptor gene expression in uterine serous carcinoma and predicts responsiveness to an insulin-like growth factor-I receptor-directed targeted therapy.

    PubMed

    Attias-Geva, Zohar; Bentov, Itay; Kidron, Dvora; Amichay, Keren; Sarfstein, Rive; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2012-07-01

    The role of the insulin-like growth factors (IGF) in endometrial cancer has been well established. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I, is usually overexpressed in endometrial tumours. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Mutation of the p53 gene appears early in the course of the disease and is considered a key event in the initiation of USC. The aim of the present study was to evaluate the potential interactions between p53 and the IGF-IR in USC. In addition, we investigated the role of p53 as a biomarker in IGF-IR targeted therapies. Immunohistochemical analysis in a collection of 35 USC specimens revealed that IGF-IR is highly expressed in primary and metastatic USC. Likewise, p53 was expressed in 85.7% of primary tumours and 100% of metastases. A significant negative correlation between p53 expression and survival was noticed. In addition, using USC-derived cell lines we provide evidence that p53 regulates IGF-IR gene expression via a mechanism that involves repression of the IGF-IR promoter. We show that the mechanism of action of p53 involves interaction with zinc finger protein Sp1, a potent transactivator of the IGF-IR gene. Finally, we demonstrate that USC tumours overexpressing p53 are more likely to benefit from anti-IGF-IR therapies. In summary, we provide evidence that p53 regulates IGF-IR gene expression in USC cells via a mechanism that involves repression of the IGF-IR promoter. The interplay between the p53 and IGF-I signalling pathways is of major basic and translational relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Requirement for STAT1 in LPS-induced gene expression in macrophages.

    PubMed

    Ohmori, Y; Hamilton, T A

    2001-04-01

    This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.

  7. Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei.

    PubMed

    Abrahão-Neto, J; Rossini, C H; el-Gogary, S; Henrique-Silva, F; Crivellaro, O; el-Dorry, H

    1995-08-22

    We examined the effects of inhibition of mitochondrial functions on the expression of two nuclear genes encoding the extracellular cellobiohydrolase I (cbh1) and endoglucanase I (egl1) of the cellulase system of the filamentous fungus Trichoderma reesei. The cbh1 and egl1 transcripts are repressed at a low oxygen tension, and by glucose at a concentration known to repress mitochondrial respiration. The transcripts are also down-regulated by chemical agents known to dissipate the proton electrochemical gradient of the inner mitochondrial membrane and blocking of the electron-transport chain, such as DNP and KCN, respectively. These results suggest that expression of those transcripts is influenced by the physiological state of the mitochondria. In addition, heterologous gene fusion shows that the sensitivity of the expression of those transcripts to the functional state of the mitochondria is transcriptionally controlled through the 5'-flanking DNA sequence of those genes.

  8. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  9. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  10. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana.

    PubMed

    Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo

    2006-01-01

    Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.

  11. Co-evolution with chicken class I genes.

    PubMed

    Kaufman, Jim

    2015-09-01

    The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  13. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  14. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

  15. GeneSigDB—a curated database of gene expression signatures

    PubMed Central

    Culhane, Aedín C.; Schwarzl, Thomas; Sultana, Razvan; Picard, Kermshlise C.; Picard, Shaita C.; Lu, Tim H.; Franklin, Katherine R.; French, Simon J.; Papenhausen, Gerald; Correll, Mick; Quackenbush, John

    2010-01-01

    The primary objective of most gene expression studies is the identification of one or more gene signatures; lists of genes whose transcriptional levels are uniquely associated with a specific biological phenotype. Whilst thousands of experimentally derived gene signatures are published, their potential value to the community is limited by their computational inaccessibility. Gene signatures are embedded in published article figures, tables or in supplementary materials, and are frequently presented using non-standard gene or probeset nomenclature. We present GeneSigDB (http://compbio.dfci.harvard.edu/genesigdb) a manually curated database of gene expression signatures. GeneSigDB release 1.0 focuses on cancer and stem cells gene signatures and was constructed from more than 850 publications from which we manually transcribed 575 gene signatures. Most gene signatures (n = 560) were successfully mapped to the genome to extract standardized lists of EnsEMBL gene identifiers. GeneSigDB provides the original gene signature, the standardized gene list and a fully traceable gene mapping history for each gene from the original transcribed data table through to the standardized list of genes. The GeneSigDB web portal is easy to search, allows users to compare their own gene list to those in the database, and download gene signatures in most common gene identifier formats. PMID:19934259

  16. Analysis of Ly49 gene transcripts in mature NK cells supports a role for the Pro1 element in gene activation, not gene expression.

    PubMed

    McCullen, M V; Li, H; Cam, M; Sen, S K; McVicar, D W; Anderson, S K

    2016-09-01

    The variegated expression of murine Ly49 loci has been associated with the probabilistic behavior of an upstream promoter active in immature cells, the Pro1 element. However, recent data suggest that Pro1 may be active in mature natural killer (NK) cells and function as an enhancer element. To assess directly if Pro1 transcripts are present in mature Ly49-expressing NK cells, RNA-sequencing of the total transcript pool was performed on freshly isolated splenic NK cells sorted for expression of either Ly49G or Ly49I. No Pro1 transcripts were detected from the Ly49a, Ly49c or Ly49i genes in mature Ly49(+) NK cells that contained high levels of Pro2 transcripts. Low levels of Ly49g Pro1 transcripts were found in both Ly49G(+) and Ly49G(-) populations, consistent with the presence of a small population of mature NK cells undergoing Ly49g gene activation, as previously demonstrated by culture of splenic NK cells in interleukin-2. Ly49 gene reporter constructs containing Pro1 failed to show any enhancer activity of Pro1 on Pro2 in a mature Ly49-expressing cell line. Taken together, the results are consistent with Pro1 transcription having a role in gene activation in developing NK, and argue against a role for Pro1 in Ly49 gene transcription by mature NK cells.

  17. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62.

    PubMed

    González, Tania; Terrón, María Carmen; Yagüe, Susana; Junca, Howard; Carbajo, José María; Zapico, Ernesto Javier; Silva, Ricardo; Arana-Cuenca, Ainhoa; Téllez, Alejandro; González, Aldo Enrique

    2008-03-01

    Wastewaters generated from the production of ethanol from sugar cane molasses may have detrimental effects on the environment due to their high chemical oxygen demand and dark brown color. The color is mainly associated with the presence of melanoidins, which are highly recalcitrant to biodegradation. We report here the induction of laccases by molasses wastewaters and molasses melanoidins in the basidiomycetous fungus Trametes sp. I-62. The time course of effluent decolorization and laccase activity in the culture supernatant of the fungus were correlated. The expression of laccase genes lcc1 and lcc2 increased as a result of the addition of complete molasses wastewater and its high molecular weight fraction to fungal cultures. This is the first time differential laccase gene expression has been reported to occur upon exposure of fungal cultures to molasses wastewaters and their melanoidins.

  18. The Transcriptional Complex Between the BCL2 i-Motif and hnRNP LL Is a Molecular Switch for Control of Gene Expression That Can Be Modulated by Small Molecules

    PubMed Central

    2015-01-01

    In a companion paper (DOI: 10.021/ja410934b) we demonstrate that the C-rich strand of the cis-regulatory element in the BCL2 promoter element is highly dynamic in nature and can form either an i-motif or a flexible hairpin. Under physiological conditions these two secondary DNA structures are found in an equilibrium mixture, which can be shifted by the addition of small molecules that trap out either the i-motif (IMC-48) or the flexible hairpin (IMC-76). In cellular experiments we demonstrate that the addition of these molecules has opposite effects on BCL2 gene expression and furthermore that these effects are antagonistic. In this contribution we have identified a transcriptional factor that recognizes and binds to the BCL2 i-motif to activate transcription. The molecular basis for the recognition of the i-motif by hnRNP LL is determined, and we demonstrate that the protein unfolds the i-motif structure to form a stable single-stranded complex. In subsequent experiments we show that IMC-48 and IMC-76 have opposite, antagonistic effects on the formation of the hnRNP LL–i-motif complex as well as on the transcription factor occupancy at the BCL2 promoter. For the first time we propose that the i-motif acts as a molecular switch that controls gene expression and that small molecules that target the dynamic equilibrium of the i-motif and the flexible hairpin can differentially modulate gene expression. PMID:24559432

  19. Expression profiles of sugarcane under drought conditions: Variation in gene regulation.

    PubMed

    Andrade, Júlio César Farias de; Terto, Jackeline; Silva, José Vieira; Almeida, Cícero

    2015-12-01

    Drought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910) of sugarcane and compared the results with those of other studies. The genotype was subjected to 80-100% water availability (control condition) and 0-20% water availability (simulated drought). To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A), stomatal conductance (gs) and stomatal transpiration (E) were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR). Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  20. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    PubMed

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  1. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  2. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression. PMID:10861232

  3. Ebola virus infection induces irregular dendritic cell gene expression.

    PubMed

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  4. IGF-I and GH: potential use in gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2009-08-01

    Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.

  5. The acute phase response of cod (Gadus morhua L.): expression of immune response genes.

    PubMed

    Audunsdottir, Sigridur S; Magnadottir, Bergljot; Gisladottir, Berglind; Jonsson, Zophonias O; Bragason, Birkir Th

    2012-02-01

    An acute phase response (APR) was experimentally induced in Atlantic cod (Gadus morhua L.) by intramuscular injection of turpentine oil. The change in the expression of immune related genes was monitored in the anterior kidney and the spleen over a period of 7 days. The genes examined were two types of pentraxins, apolipoprotein A1 (ApoA-I), the complement component C3, interleukin-1β (IL-1β), transferrin, cathelicidin, and hepcidin. All genes were constitutively expressed in both organs and their expression amplified by the turpentine injection. A pattern of response was observed both with respect to the organ preference and to the timing of a maximum response. The increased gene expression of the pentraxins, ApoA-I and C3 was restricted to the anterior kidney, the gene expression of IL-1β, cathelicidin, and transferrin increased in both organs, while hepcidin gene expression was only significantly increased in the spleen. The pentraxins and ApoA-I appear to be early mediators of APR in cod, possibly stimulating C3 and IL-1β response, while the antimicrobial peptides may play a minor role. The increase in transferrin gene expression in both organs, and apparent indifference to cortisol release associated with the turpentine injection, suggests that this could be a typical acute phase protein in cod. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Differential gene expression in queen–worker caste determination in bumble-bees

    PubMed Central

    Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G

    2005-01-01

    Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376

  7. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia.

    PubMed

    Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B

    2002-06-01

    Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.

  8. The HTLV-I tax protein transcriptionally modulates OX40 antigen expression.

    PubMed

    Pankow, R; Dürkop, H; Latza, U; Krause, H; Kunzendorf, U; Pohl, T; Bulfone-Paus, S

    2000-07-01

    OX40 is a member of the TNF receptor family, expressed on activated T cells. It is the only costimulatory T cell molecule known to be specifically up-regulated in human T cell leukemia virus type-I (HTLV-I)-producing cells. In a T cell line, OX40 surface expression was shown to be induced by HTLV-I Tax alone. To understand molecular mechanisms of OX40 gene regulation and modulation by HTLV-I Tax, we have cloned the human OX40 gene and analyzed its 5'-flanking region. By reporter gene analysis with progressive 5' deletions from nucleotides -1259 to -64, we have defined a 157-bp DNA fragment as a minimal promoter for constitutive expression. In addition, we show that in the OX40+ cell line, Co, Tax is able to further increase OX40 surface expression. Up-regulation of OX40 promoter activity by Tax requires two upstream NF-kappaB sites, which are not active in the constitutive OX40 expression. Their deletion abrogates Tax responsiveness in reporter gene analysis. The site-directed mutagenesis of each NF-kappaB site demonstrates that cooperative NF-kappaB binding is a prerequisite for Tax-directed activity as neither site alone is sufficient for a full Tax responsiveness of the OX40 promoter. Upon Tax expression, both sites bind p65 and c-Rel. These data provide new insight into the direct regulation of OX40 by Tax and add to our understanding of the possible role of the OX40/OX40 ligand system in the proliferation of HTLV-I+ T cells.

  9. A gene expression analysis of cell wall biosynthetic genes in Malus × domestica infected by ‘Candidatus Phytoplasma mali’

    PubMed Central

    Guerriero, Gea; Giorno, Filomena; Ciccotti, Anna Maria; Schmidt, Silvia; Baric, Sanja

    2016-01-01

    Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several ‘knot’-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion. PMID:23086810

  10. Discovery and validation of a glioblastoma co-expressed gene module

    PubMed Central

    Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander

    2018-01-01

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392

  11. Discovery and validation of a glioblastoma co-expressed gene module.

    PubMed

    Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander

    2018-02-16

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.

  12. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  13. Gene expression profile in cardiovascular disease and preeclampsia: a meta-analysis of the transcriptome based on raw data from human studies deposited in Gene Expression Omnibus.

    PubMed

    Sitras, V; Fenton, C; Acharya, G

    2015-02-01

    Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CVD and PE

  14. A gene expression signature associated with survival in metastatic melanoma

    PubMed Central

    Mandruzzato, Susanna; Callegaro, Andrea; Turcatel, Gianluca; Francescato, Samuela; Montesco, Maria C; Chiarion-Sileni, Vanna; Mocellin, Simone; Rossi, Carlo R; Bicciato, Silvio; Wang, Ena; Marincola, Francesco M; Zanovello, Paola

    2006-01-01

    Background Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. Methods Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. Results SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. Conclusion The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells. PMID:17129373

  15. paraGSEA: a scalable approach for large-scale gene expression profiling

    PubMed Central

    Peng, Shaoliang; Yang, Shunyun

    2017-01-01

    Abstract More studies have been conducted using gene expression similarity to identify functional connections among genes, diseases and drugs. Gene Set Enrichment Analysis (GSEA) is a powerful analytical method for interpreting gene expression data. However, due to its enormous computational overhead in the estimation of significance level step and multiple hypothesis testing step, the computation scalability and efficiency are poor on large-scale datasets. We proposed paraGSEA for efficient large-scale transcriptome data analysis. By optimization, the overall time complexity of paraGSEA is reduced from O(mn) to O(m+n), where m is the length of the gene sets and n is the length of the gene expression profiles, which contributes more than 100-fold increase in performance compared with other popular GSEA implementations such as GSEA-P, SAM-GS and GSEA2. By further parallelization, a near-linear speed-up is gained on both workstations and clusters in an efficient manner with high scalability and performance on large-scale datasets. The analysis time of whole LINCS phase I dataset (GSE92742) was reduced to nearly half hour on a 1000 node cluster on Tianhe-2, or within 120 hours on a 96-core workstation. The source code of paraGSEA is licensed under the GPLv3 and available at http://github.com/ysycloud/paraGSEA. PMID:28973463

  16. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism.

    PubMed

    Grabowska, Anna D; Wandel, Michał P; Łasica, Anna M; Nesteruk, Monika; Roszczenko, Paula; Wyszyńska, Agnieszka; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta K

    2011-07-25

    Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows

  17. William's syndrome: gene expression is related to parental origin and regional coordinate control

    PubMed Central

    Collette, Jeremy C; Chen, Xiao-Ning; Mills, Debra L; Galaburda, Albert M; Reiss, Allan L; Bellugi, Ursula; Korenberg, Julie R

    2013-01-01

    William's syndrome (WS) features a spectrum of neurocognitive and behavioral abnormalities due to a rare 1.5MB deletion that includes about 24–28 genes on chromosome band 7q11.23. Study of the expression of these genes from the single normal copy provides an opportunity to elucidate the genetic and epigenetic controls on these genes as well as their roles in both WS and normal brain development and function. We used quantitative RT-PCR to determine the transcriptional level of 14 WS gene markers in a cohort of 77 persons with WS and 48 normal controls. Results reported here: (1) show that the expression of the genes deleted in WS is decreased in some but not all cases, (2) demonstrate that the parental origin of the deletion contributes to the level of expression of GTF2I independently of age and gender and (3) indicate that the correlation of expression between GTF2I and some other genes in the WS region differs in WS subjects and normal controls, which in turn points toward a regulatory role for this gene. Interspecies comparisons suggest GTF2I may play a key role in normal brain development. PMID:19282872

  18. Regulatory states in the developmental control of gene expression.

    PubMed

    Peter, Isabelle S

    2017-09-01

    A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. [Preliminary analysis of retinal gene expression profile of diabetic rat].

    PubMed

    Mei, Yan; Zhou, Hong-ying; Xiang, Tao; Lu, You-guang; Li, Ai-dong; Tang, En-jie; Yang, Hui-jun

    2005-10-01

    Establishing the retinal gene expression profiles of non-diabetic rat and diabetic rat and comparing the profiles in order to analyze the possible genes related with diabetic retinopathy. The whole retinal transcriptional fragments of non-diabetic rat and 8-week diabetic rat were obtained by restriction fragments differential display-PCR (RFDD-PCR). Bioinformatic analysis of retinal gene expression was performed using soft wares, including Fragment Analysis. After comparison of the expression profiles, the related gene fragments of diabetic retinopathy were initially selected as the target gene of further approach. A total of 3639 significant fragments were obtained. By means of more than 3-fold contrast of fluorescent intensity as the differential expression standard, the authors got 840 differential fragments, accounting for 23.08% of the expressed numbers and including 5 visual related genes, 13 excitatory neruotransmitter genes and 3 inhibitory neurotransmitter genes. At the 8th week, the expression of Rhodopsin kinase, beta-arrestin, Phosducinìrod photoreceptor cGMP-gated channel and Rpe65 as well as iGlu R1-4 were down-regulated. mGluRs and GABA-Rs were all up-regulated, whereas the expression of GlyR was unchanged. These results prompt again that the changes in retinal nervous layer of rat have occurred at an early stage of diabetes. The genes expression pattern of visual related genes and excitatory and inhibitory neurotransmitters in rat diabetic retina have been involved in neuro-dysfunctions of diabetic retina.

  20. Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq.

    PubMed

    Maeda, Shingo; Tomiyasu, Hirotaka; Tsuboi, Masaya; Inoue, Akiko; Ishihara, Genki; Uchikai, Takao; Chambers, James K; Uchida, Kazuyuki; Yonezawa, Tomohiro; Matsuki, Naoaki

    2018-04-27

    Invasive urothelial carcinoma (iUC) is a major cause of death in humans, and approximately 165,000 individuals succumb to this cancer annually worldwide. Comparative oncology using relevant animal models is necessary to improve our understanding of progression, diagnosis, and treatment of iUC. Companion canines are a preferred animal model of iUC due to spontaneous tumor development and similarity to human disease in terms of histopathology, metastatic behavior, and treatment response. However, the comprehensive molecular characterization of canine iUC is not well documented. In this study, we performed transcriptome analysis of tissue samples from canine iUC and normal bladders using an RNA sequencing (RNA-Seq) approach to identify key molecular pathways in canine iUC. Total RNA was extracted from bladder tissues of 11 dogs with iUC and five healthy dogs, and RNA-Seq was conducted. Ingenuity Pathway Analysis (IPA) was used to assign differentially expressed genes to known upstream regulators and functional networks. Differential gene expression analysis of the RNA-Seq data revealed 2531 differentially expressed genes, comprising 1007 upregulated and 1524 downregulated genes, in canine iUC. IPA revealed that the most activated upstream regulator was PTGER2 (encoding the prostaglandin E 2 receptor EP2), which is consistent with the therapeutic efficiency of cyclooxygenase inhibitors in canine iUC. Similar to human iUC, canine iUC exhibited upregulated ERBB2 and downregulated TP53 pathways. Biological functions associated with cancer, cell proliferation, and leukocyte migration were predicted to be activated, while muscle functions were predicted to be inhibited, indicating muscle-invasive tumor property. Our data confirmed similarities in gene expression patterns between canine and human iUC and identified potential therapeutic targets (PTGER2, ERBB2, CCND1, Vegf, and EGFR), suggesting the value of naturally occurring canine iUC as a relevant animal model for human

  1. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    PubMed

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  2. Characterization and Expression of the Lucina pectinata Oxygen and Sulfide Binding Hemoglobin Genes

    PubMed Central

    López-Garriga, Juan; Cadilla, Carmen L.

    2016-01-01

    The clam Lucina pectinata lives in sulfide-rich muds and houses intracellular symbiotic bacteria that need to be supplied with hydrogen sulfide and oxygen. This clam possesses three hemoglobins: hemoglobin I (HbI), a sulfide-reactive protein, and hemoglobin II (HbII) and III (HbIII), which are oxygen-reactive. We characterized the complete gene sequence and promoter regions for the oxygen reactive hemoglobins and the partial structure and promoters of the HbI gene from Lucina pectinata. We show that HbI has two mRNA variants, where the 5’end had either a sequence of 96 bp (long variant) or 37 bp (short variant). The gene structure of the oxygen reactive Hbs is defined by having 4-exons/3-introns with conservation of intron location at B12.2 and G7.0 and the presence of pre-coding introns, while the partial gene structure of HbI has the same intron conservation but appears to have a 5-exon/ 4-intron structure. A search for putative transcription factor binding sites (TFBSs) was done with the promoters for HbII, HbIII, HbI short and HbI long. The HbII, HbIII and HbI long promoters showed similar predicted TFBSs. We also characterized MITE-like elements in the HbI and HbII gene promoters and intronic regions that are similar to sequences found in other mollusk genomes. The gene expression levels of the clam Hbs, from sulfide-rich and sulfide-poor environments showed a significant decrease of expression in the symbiont-containing tissue for those clams in a sulfide-poor environment, suggesting that the sulfide concentration may be involved in the regulation of these proteins. Gene expression evaluation of the two HbI mRNA variants indicated that the longer variant is expressed at higher levels than the shorter variant in both environments. PMID:26824233

  3. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.).

    PubMed

    Schlosser, J; Olsson, N; Weis, M; Reid, K; Peng, F; Lund, S; Bowen, P

    2008-01-01

    Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1-->3)-beta-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.

  5. Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging

    PubMed Central

    Swindell, William R

    2007-01-01

    Background Long-lived strains of dwarf mice carry mutations that suppress growth hormone (GH) and insulin-like growth factor I (IGF-I) signaling. The downstream effects of these endocrine abnormalities, however, are not well understood and it is unclear how these processes interact with aging mechanisms. This study presents a comparative analysis of microarray experiments that have measured hepatic gene expression levels in long-lived strains carrying one of four mutations (Prop1df/df, Pit1dw/dw, Ghrhrlit/lit, GHR-KO) and describes how the effects of these mutations relate to one another at the transcriptional level. Points of overlap with the effects of calorie restriction (CR), CR mimetic compounds, low fat diets, gender dimorphism and aging were also examined. Results All dwarf mutations had larger and more consistent effects on IGF-I expression than dietary treatments. In comparison to dwarf mutations, however, the transcriptional effects of CR (and some CR mimetics) overlapped more strongly with those of aging. Surprisingly, the Ghrhrlit/lit mutation had much larger effects on gene expression than the GHR-KO mutation, even though both mutations affect the same endocrine pathway. Several genes potentially regulated or co-regulated with the IGF-I transcript in liver tissue were identified, including a DNA repair gene (Snm1) that is upregulated in proportion to IGF-I inhibition. A total of 13 genes exhibiting parallel differential expression patterns among all four strains of long-lived dwarf mice were identified, in addition to 30 genes with matching differential expression patterns in multiple long-lived dwarf strains and under CR. Conclusion Comparative analysis of microarray datasets can identify patterns and consistencies not discernable from any one dataset individually. This study implements new analytical approaches to provide a detailed comparison among the effects of life-extending mutations, dietary treatments, gender and aging. This comparison

  6. Hepatic expression of spermatogenic genes and their transiently remarkable downregulations in Wistar-Kyoto rats in response to lead-nitrate administration: strain-difference in the gene expression patterns.

    PubMed

    Nemoto, Kiyomitsu; Ito, Sei; Yoshida, Chiaki; Miyata, Misaki; Kojima, Misaki; Degawa, Masakuni

    2011-06-01

    Administration of lead ion (Pb) to rats and mice affects hepatic functions such as the induction of hepatic cell proliferation and upregulation of cholesterol biosynthesis. To identify the genes for which expression changes in response to Pb-administration, we analyzed hepatic gene expression patterns in stroke-prone spontaneously hypertensive rat (SHRSP), its normotensive control, Wistar-Kyoto rat (WKY), and Spraque-Dawley (SD) rat strains, 3, 6, and 12 hr later after single i.v. injection of lead nitrate (LN) at a dose of 100 µmol using a DNA microarray technique. The data analysis demonstrated that the expression of a great number of genes was transiently and remarkably downregulated 3 hr after LN-injection, and then recovered to control levels only in LN-injected WKY. These normal hepatic expression levels in WKY and SHRSP were much higher than those in SD rats. Furthermore, most of these genes were ones thought to be expressed specifically in the spermatids and/or testes; i.e. genes encoding protamin 1, transition protein 1, and transition protein 2. These findings suggest that the regulation system common to expression of all of these genes could be a target site of Pb-toxic action, at least, in the liver of WKY, and that this system might be similar to the system essential for spermatogenesis, especially spermiogenesis, in the testis. In addition, it appears that clarifying the cause of the difference between the systems of WKY and SHRSP might aid in identifying the pathologic genes in SHRSP. Finally, it will be an important to clarify how the products of the genes related to spermatogenesis, including spermiogenesis, are functional in the livers of WKY and SHRSP.

  7. Polycistronic gene expression in Aspergillus niger.

    PubMed

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  8. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products.

    PubMed

    Matsui, H; Nakamura, G; Ishiga, Y; Toshima, H; Inagaki, Y; Toyoda, K; Shiraishi, T; Ichinose, Y

    2004-02-01

    Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.

  9. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    PubMed Central

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  10. Identification and resolution of artifacts in the interpretation of imprinted gene expression

    PubMed Central

    Proudhon, Charlotte

    2010-01-01

    Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression. PMID:20829207

  11. Identification and resolution of artifacts in the interpretation of imprinted gene expression.

    PubMed

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-12-01

    Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.

  12. Differential co-expression analysis of a microarray gene expression profiles of pulmonary adenocarcinoma.

    PubMed

    Fu, Shijie; Pan, Xufeng; Fang, Wentao

    2014-08-01

    Lung cancer severely reduces the quality of life worldwide and causes high socioeconomic burdens. However, key genes leading to the generation of pulmonary adenocarcinoma remain elusive despite intensive research efforts. The present study aimed to identify the potential associations between transcription factors (TFs) and differentially co‑expressed genes (DCGs) in the regulation of transcription in pulmonary adenocarcinoma. Gene expression profiles of pulmonary adenocarcinoma were downloaded from the Gene Expression Omnibus, and gene expression was analyzed using a computational method. A total of 37,094 differentially co‑expressed links (DCLs) and 251 DCGs were identified, which were significantly enriched in 10 pathways. The construction of the regulatory network and the analysis of the regulatory impact factors revealed eight crucial TFs in the regulatory network. These TFs regulated the expression of DCGs by promoting or inhibiting their expression. In addition, certain TFs and target genes associated with DCGs did not appear in the DCLs, which indicated that those TFs could be synergistic with other factors. This is likely to provide novel insights for research into pulmonary adenocarcinoma. In conclusion, the present study may enhance the understanding of disease mechanisms and lead to an improved diagnosis of lung cancer. However, further studies are required to confirm these observations.

  13. Diversity of viral photosystem-I psaA genes

    PubMed Central

    Hevroni, Gur; Enav, Hagay; Rohwer, Forest; Béjà, Oded

    2015-01-01

    Marine photosynthesis is one of the major contributors to the global carbon cycle and the world's oxygen supply. This process is largely driven by cyanobacteria, namely Synechococcus and Prochlorococcus. Genes encoding photosystem-II (PSII) reaction center proteins are found in many cyanophage genomes, and are expressed during the infection of their hosts. On the basis of metagenomics, cyanophage photosystem-I (PSI) gene cassettes were recently discovered with two gene arrangements psaJF→C→A→B→K→E→D and psaD→C→A→B. It was suggested that the horizontal transfer of PSII and PSI genes is increasing phage fitness. To better understand their diversity, we designed degenerate primers to cover a wide diversity of organisms, and using PCR we targeted the psaC→A arrangement, which is unique to cyanophages cassettes. We examined viral concentrates from four islands in the Pacific Ocean and found samples containing the psaC→A arrangement. Analyses of the amplified viral psaA gene revealed six subgroups varying in their level of similarity and %G+C content, suggesting that the diversity of cyanophage PSI genes is greater than originally thought. PMID:25535938

  14. Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters.

    PubMed

    Jové, Thomas; Da Re, Sandra; Tabesse, Aurore; Gassama-Sow, Amy; Ploy, Marie-Cécile

    2017-01-01

    Integrons are powerful bacterial genetic elements that permit the expression and dissemination of antibiotic-resistance gene cassettes. They contain a promoter Pc that allows the expression of gene cassettes captured through site-specific recombination catalyzed by IntI, the integron-encoded integrase. Class 1 and 2 integrons are found in both clinical and environmental settings. The regulation of intI and of Pc promoters has been extensively studied in class 1 integrons and the regulatory role of the SOS response on intI expression has been shown. Here we investigated class 2 integrons. We characterized the P intI2 promoter and showed that intI2 expression is not regulated via the SOS response. We also showed that, unlike class 1 integrons, class 2 integrons possess not one but two active Pc promoters that are located within the attI2 region that seem to contribute equally to gene cassette expression. Class 2 integrons mostly encode an inactive truncated integrase, but the rare class 2 integrons that encode an active integrase are associated with less efficient Pc2 promoter variants. We propose an evolutionary model for class 2 integrons in which the absence of repression of the integrase gene expression led to mutations resulting in either inactive integrase or Pc variants of weaker activity, thereby reducing the potential fitness cost of these integrons.

  15. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  16. Interplay of bistable kinetics of gene expression during cellular growth

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2009-02-01

    In cells, the bistable kinetics of gene expression can be observed on the level of (i) one gene with positive feedback between protein and mRNA production, (ii) two genes with negative mutual feedback between protein and mRNA production, or (iii) in more complex cases. We analyse the interplay of two genes of type (ii) governed by a gene of type (i) during cellular growth. In particular, using kinetic Monte Carlo simulations, we show that in the case where gene 1, operating in the bistable regime, regulates mutually inhibiting genes 2 and 3, also operating in the bistable regime, the latter genes may eventually be trapped either to the state with high transcriptional activity of gene 2 and low activity of gene 3 or to the state with high transcriptional activity of gene 3 and low activity of gene 2. The probability to get to one of these states depends on the values of the model parameters. If genes 2 and 3 are kinetically equivalent, the probability is equal to 0.5. Thus, our model illustrates how different intracellular states can be chosen at random with predetermined probabilities. This type of kinetics of gene expression may be behind complex processes occurring in cells, e.g., behind the choice of the fate by stem cells.

  17. A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors

    DTIC Science & Technology

    2015-10-01

    1 Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors 5a. CONTRACT NUMBER W81XWH...BRCAlike, i.e. not HR deficient and are resistant to PARPis but are sensitive to platinum . These tumors exhibit alterations in another DNA repair

  18. Modulation of ColE1-like Plasmid Replication for Recombinant Gene Expression

    PubMed Central

    Camps, Manel

    2010-01-01

    ColE1-like plasmids constitute the most popular vectors for recombinant protein expression. ColE1 plasmid replication is tightly controlled by an antisense RNA mechanism that is highly dynamic, tuning plasmid metabolic burden to the physiological state of the host. Plasmid homeostasis is upset upon induction of recombinant protein expression because of non-physiological levels of expression and because of the frequently biased amino acid composition of recombinant proteins. Disregulation of plasmid replication is the main cause of collapse of plasmid-based expression systems because of a simultaneous increase in the metabolic burden (due to increased average copy number) and in the probability of generation of plasmid-free cells (due to increased copy number variation). Interference between regulatory elements of co-resident plasmids causes comparable effects on plasmid stability (plasmid incompatibility). Modulating plasmid copy number for recombinant gene expression aims at achieving a high gene dosage while preserving the stability of the expression system. Here I present strategies targeting plasmid replication for optimizing recombinant gene expression. Specifically, I review approaches aimed at modulating the antisense regulatory system (as well as their implications for plasmid incompatibility) and innovative strategies involving modulation of host factors, of R-loop formation, and of the timing of recombinant gene expression. PMID:20218961

  19. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress

  20. Changes in growth conditions alter the male strobilus gene expression pattern in Cryptomeria japonica.

    PubMed

    Fukui, Mitsue

    2003-11-01

    Two-year old saplings grown from cuttings of Cryptomeria japonica D. Don initiate strobilus development following treatment with gibberellic acid under long-day photoperiods. At 25 degrees C with a 14-h photoperiod in a phytotron, male strobili initiated normally; however, they remained green and fell from the saplings prematurely. To examine the change in male strobilus development at the molecular level, three genes expressed specifically in male strobili were analyzed. Two were MADS box genes homologous to the B-function genes in angiosperms, CjMADS1 and CjMADS2, and the third was Cry j I, which encodes an allergen protein, and this gene is expressed mainly in microspores. Under phytotron growing conditions, the homeotic genes were expressed constantly, which reflected the extended early developmental stage of male strobili. On the other hand, Cry j I expression was detected after a long delay just before strobilus development ceased. These results indicate that the expression of the genes related to male reproductive development in C. japonica is regulated by a factor(s) that is sensitive to environmental signals.

  1. BRCA1 is expressed in uterine serous carcinoma (USC) and controls insulin-like growth factor I receptor (IGF-IR) gene expression in USC cell lines.

    PubMed

    Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan

    2012-06-01

    The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.

  2. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be

  3. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The

  4. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism

    PubMed Central

    2011-01-01

    Background Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. Results In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. Conclusions The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of

  5. A Robust Unified Approach to Analyzing Methylation and Gene Expression Data

    PubMed Central

    Khalili, Abbas; Huang, Tim; Lin, Shili

    2009-01-01

    Microarray technology has made it possible to investigate expression levels, and more recently methylation signatures, of thousands of genes simultaneously, in a biological sample. Since more and more data from different biological systems or technological platforms are being generated at an incredible rate, there is an increasing need to develop statistical methods that are applicable to multiple data types and platforms. Motivated by such a need, a flexible finite mixture model that is applicable to methylation, gene expression, and potentially data from other biological systems, is proposed. Two major thrusts of this approach are to allow for a variable number of components in the mixture to capture non-biological variation and small biases, and to use a robust procedure for parameter estimation and probe classification. The method was applied to the analysis of methylation signatures of three breast cancer cell lines. It was also tested on three sets of expression microarray data to study its power and type I error rates. Comparison with a number of existing methods in the literature yielded very encouraging results; lower type I error rates and comparable/better power were achieved based on the limited study. Furthermore, the method also leads to more biologically interpretable results for the three breast cancer cell lines. PMID:20161265

  6. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron.

    PubMed

    Horn, Nikki; Carvalho, Ana L; Overweg, Karin; Wegmann, Udo; Carding, Simon R; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter-region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products.

  7. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron

    PubMed Central

    Horn, Nikki; Carvalho, Ana L.; Overweg, Karin; Wegmann, Udo; Carding, Simon R.; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter–region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products. PMID:27468280

  8. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function.

    PubMed

    Irwin, D M

    1995-09-01

    Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.

  9. Caste- and development-associated gene expression in a lower termite

    PubMed Central

    Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W

    2003-01-01

    Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197

  10. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    USDA-ARS?s Scientific Manuscript database

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  11. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.

    PubMed

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio

    2013-05-01

    Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  12. Gene expression inference with deep learning

    PubMed Central

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-01-01

    Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929

  13. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes

    PubMed Central

    Angiolilli, Chiara; Kabala, Pawel A; Van Baarsen, Iris M; Ferguson, Bradley S; García, Samuel; Malvar Fernandez, Beatriz; McKinsey, Timothy A; Tak, Paul P; Fossati, Gianluca; Mascagni, Paolo; Baeten, Dominique L; Reedquist, Kris A

    2017-01-01

    Objectives Non-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS). Methods RA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/β receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1β-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays. Results HDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1β-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11. Conclusions Inhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases. PMID:27457515

  15. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    PubMed

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC

  17. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes.

    PubMed

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-08-29

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/.

  18. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    PubMed

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  19. Integration of biological networks and gene expression data using Cytoscape

    PubMed Central

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2013-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. PMID:17947979

  20. Gene expression in obstetric antiphospholipid syndrome: a systematic review.

    PubMed

    Muhammad Aliff, M; Muhammad Shazwan, S; Nur Fariha, M M; Hayati, A R; Nur Syahrina, A R; Maizatul Azma, M; Nazefah, A H; Jameela, S; Asral Wirda, A A

    2016-12-01

    Antiphospholipid syndrome (APS) is a multisystem disease that may present as venous or arterial thrombosis and/or pregnancy complications with the presence of antiphospholipid antibodies. Until today, heterogeneity of pathogenic mechanism fits well with various clinical manifestations. Moreover, previous studies have indicated that genes are differentially expressed between normal and in the disease state. Hence, this study systematically searched the literature on human gene expression that was differentially expressed in Obstetric APS. Electronic search was performed until 31st March 2015 through PubMed and Embase databases; where the following Medical Subject Heading (MeSH) terms were used and they had been specified as the primary focus of the articles; gene, antiphospholipid, obstetric, and pregnancy in the title or abstract. From 502 studies retrieved from the search, only original publications that had performed gene expression analyses of human placental tissue that reported on differentially expressed gene in pregnancies with Obstetric APS were included. Two reviewers independently scrutinized the titles and the abstracts before examining the eligibility of studies that met the inclusion criteria. For each study; diagnostic criteria for APS, method for analysis, and the gene signature were extracted independently by two reviewers. The genes listed were further analysed with the DAVID and the KEGG pathways. Three eligible gene expression studies involving obstetric APS, comprising the datasets on gene expression, were identified. All three studies showed a reduction in transcript expression on PRL, STAT5, TF, DAF, ABCA1, and HBEGF in Obstetric APS. The high enrichment score for functionality in DAVID had been positive regulation of cell proliferation. Meanwhile, pertaining to the KEGG pathway, two pathways were associated with some of the listed genes, which were ErBb signalling pathway and JAK-STAT signalling pathway. Ultimately, studies on a genetic level

  1. Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A

    PubMed Central

    2011-01-01

    Background Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor β-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen α1 chain (COL1A1) have been studied in gilthead sea bream. Results During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Conclusions Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene

  2. Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A.

    PubMed

    Fernández, Ignacio; Darias, Maria; Andree, Karl B; Mazurais, David; Zambonino-Infante, Jose Luís; Gisbert, Enric

    2011-02-09

    Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor β-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen α1 chain (COL1A1) have been studied in gilthead sea bream. During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene disruption induced by a nutritional

  3. A biomarker-based screen of a gene expression compendium ...

    EPA Pesticide Factsheets

    Computational approaches were developed to identify factors that regulate Nrf2 in a large gene expression compendium of microarray profiles including >2000 comparisons which queried the effects of chemicals, genes, diets, and infectious agents on gene expression in the mouse liver. A gene expression biomarker of 48 genes which accurately predicted Nrf2 activation was used to identify factors which resulted in a gene expression profile with significant correlation to the biomarker. A number of novel insights were made. Chemicals that activated the xenosensor constitutive activated receptor (CAR) consistently activated Nrf2 across hundreds of profiles, possibly downstream of Cyp-induced increases in oxidative stress. Nrf2 activation was also found to be negatively regulated by the growth hormone (GH)- and androgen-regulated transcription factor STAT5b, a transcription factor suppressed by CAR. Nrf2 was activated when STAT5b was suppressed in female mice vs. male mice, after exposure to estrogens, or in genetic mutants in which GH signaling was disrupted. A subset of the mutants that show STAT5b suppression and Nrf2 activation result in increased resistance to environmental stressors and increased longevity. This study describes a novel approach for understanding the network of factors that regulate the Nrf2 pathway and highlights novel interactions between Nrf2, CAR and STAT5b transcription factors. (This abstract does not represent EPA policy.) Computational appr

  4. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    PubMed Central

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  5. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  6. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like <i>Zymomonas mobilisi>, recombinant <i>Escherichia coli i>and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  7. Super-delta: a new differential gene expression analysis procedure with robust data normalization.

    PubMed

    Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing

    2017-12-21

    Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super

  8. Inorganic arsenic exposure increased expression of Fas and Bax gene in vivo and vitro.

    PubMed

    He, Yuefeng; Zhang, Ruobing; Xiaoxiao, Song; Li, Shang; Xinan, Wu; Huang, Dahai

    2018-06-01

    Accumulating evidences have shown that apoptosis plays an important role in mediating the therapeutic effects and toxicity of arsenic. Fas and Bax genes are critical regulatory genes for apoptosis. In this study, we investigated the association between levels of Fas and Bax expression and the three arsenic species (inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in vivo and vitro. Three arsenic species in urine were measured and levels of Fas and Bax expression were examined by the quantitative real-time PCR (qPCR) for all subjects. We found that Fas and Bax mRNA expression in the exposed group were significantly higher than that in the control group. The levels of gene expression were positively correlated with the concentrations of urinary iAs, MMA and DMA in all subjects. Sodium arsenite induced Fas and Bax mRNA expression, then MMA and DMA did not induce mRNA expression in MDA-MB-231 and XWLC-05 cells. The findings of the present study indicated that iAs, MMA, and DMA had different effects on expression of Bax and Fas gene. Copyright © 2017. Published by Elsevier B.V.

  9. Msn2 Coordinates a Stoichiometric Gene Expression Program

    PubMed Central

    Stewart-Ornstein, Jacob; Nelson, Christopher; DeRisi, Joe; Weissman, Jonathan S.; El-Samad, Hana

    2014-01-01

    Summary Background Many cellular processes operate in an “analog” regime in which the magnitude of the response is precisely tailored to the intensity of the stimulus. In order to maintain the coherence of such responses, the cell must provide for proportional expression of multiple target genes across a wide dynamic range of induction states. Our understanding of the strategies used to achieve graded gene regulation is limited. Results In this work, we document a relationship between stress responsive gene expression and the transcription factor Msn2 that is graded over a large range of Msn2 cocnentrations. We use computational modeling, in vivo, and in vitro analysis to dissect the roots of this relationship. Our studies reveal a simple and general strategy based on non-cooperative low-affinity interactions between Msn2 and its cognate binding sites, as well as competition over a large number of Msn2 binding sites in the genome relative to the number of Msn2 molecules. Conclusions In addition to enabling precise tuning of gene expression to the state of the environment, this strategy ensures co-linear activation of target genes, allowing for stoichiometric expression of large groups of genes without extensive promoter tuning. Furthermore, such a strategy enables precise modulation of the activity of any given promoter by addition of binding sites without altering the qualitative relationship between different genes in a regulon. This feature renders a given regulon highly ‘evolvable’. PMID:24210615

  10. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes

    PubMed Central

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-01-01

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/. PMID:28850115

  11. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression.

    PubMed

    Lintas, C; Sacco, R; Garbett, K; Mirnics, K; Militerni, R; Bravaccio, C; Curatolo, P; Manzi, B; Schneider, C; Melmed, R; Elia, M; Pascucci, T; Puglisi-Allegra, S; Reichelt, K-L; Persico, A M

    2009-07-01

    Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.

  12. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  13. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    PubMed Central

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, René S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network. PMID:22761806

  14. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus.

    PubMed

    Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng

    2018-06-01

    Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Cocoa polyphenols and fiber modify colonic gene expression in rats.

    PubMed

    Massot-Cladera, Malen; Franch, Àngels; Castell, Margarida; Pérez-Cano, Francisco J

    2017-08-01

    Cocoa intake has been associated with health benefits, improving cardiovascular function and metabolism, as well as modulating intestinal immune function. The aim of this study was to take an in-depth look into the mechanisms affected by the cocoa intake by evaluating the colonic gene expression after nutritional intervention, and to ascertain the role of the fiber of cocoa in these effects. To achieve this, Wistar rats were fed for 3 weeks with either a reference diet, a diet containing 10 % cocoa (C10), a diet based on cocoa fiber (CF) or a diet containing inulin (I). At the end of the study, colon was excised to obtain the RNA to evaluate the differential gene expression by microarray. Results were validated by RT-PCR. The C10 group was the group with most changes in colonic gene expression, most of them down-regulated but a few in common with the CF diet. The C10 diet significantly up-regulated the expression of Scgb1a1 and Scnn1 g and down-regulated Tac4, Mcpt2, Fcer1a and Fabp1 by twofold, most of them related to lipid metabolism and immune function. The CF and I diets down-regulated the expression of Serpina10 and Apoa4 by twofold. Similar patterns of expression were found by PCR. Most of the effects attributed to cocoa consumption on genes related to the immune system (B cell and mast cell functionality) and lipid metabolism in the colon tissue were due not only to its fiber content, but also to the possible contribution of polyphenols and other compounds.

  16. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    PubMed

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  17. Structural organization of the porcine and human genes coding for a leydig cell-specific insulin-like peptide (LEY I-L) and chromosomal localization of the human gene (INSL3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhardt E.; Adham, I.M.; Brosig, B.

    1994-03-01

    Leydig insulin-like protein (LEY I-L) is a member of the insulin-like hormone superfamily. The LEY I-L gene (designated INSL3) is expressed exclusively in prenatal and postnatal Leydig cells. The authors report here the cloning and nucleotide sequence of porcine and human LEY I-L genes including the 5[prime] regions. Both genes consist of two exons and one intron. The organization of the LEY I-L gene is similar to that of insulin and relaxin. The transcription start site in the porcine and human LEY I-L gene is localized 13 and 14 bp upstream of the translation start site, respectively. Alignment of themore » 5[prime] flanking regions of both genes reveals that the first 107 nucleotides upstream of the transcription start site exhibit an overall sequence similarity of 80%. This conserved region contains a consensus TATAA box, a CAAT-like element (GAAT), and a consensus SP1 sequence (GGGCGG) at equivalent positions in both genes and therefore may play a role in regulation of expression of the LEY I-L gene. The porcine and human genome contains a single copy of the LEY I-L gene. By in situ hybridization, the human gene was assigned to bands p13.2-p12 of the short arm of chromosome 19. 25 refs., 6 figs.« less

  18. Identifying a gene expression signature of cluster headache in blood

    PubMed Central

    Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859

  19. GH/IGF-I Transgene Expression on Muscle Homeostasis

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  20. Highly repressible expression system for cloning genes that specify potentially toxic proteins.

    PubMed Central

    O'Connor, C D; Timmis, K N

    1987-01-01

    A highly repressible expression vector system that allows the cloning of potentially deleterious genes has been constructed. Undesired expression of a cloned gene was prevented (i) at the level of initiation of transcription, by the presence of the strong but highly repressible leftward promoter of bacteriophage lambda, lambda pL, and (ii) at the level of transcript elongation or translation, through synthesis of antisense RNA complementary to the mRNA of the cloned gene. The system was tested by measuring the inhibition of expression of traT, the gene for the TraT major outer membrane lipoprotein. Direct detection and functional assays indicated that an essentially complete inhibition of traT expression was obtained. As a further test of the system, the gene encoding the EcoRI restriction endonuclease was cloned in the absence of the gene of the corresponding protective EcoRI modification methylase. Transformants harboring this construct were only viable when both repression controls were operational. Images PMID:2443481

  1. Regulation of ecmF gene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions in Dictyostelium.

    PubMed

    Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi

    2016-05-01

    STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.

  2. A novel role of the NRF2 transcription factor in the regulation of arsenite-mediated keratin 16 gene expression in human keratinocytes.

    PubMed

    Endo, Hitoshi; Sugioka, Yoshihiko; Nakagi, Yoshihiko; Saijo, Yasuaki; Yoshida, Takahiko

    2008-07-01

    Inorganic sodium arsenite (iAs) is a ubiquitous environmental contaminant and is associated with an increased risk of skin hyperkeratosis and cancer. We investigated the molecular mechanisms underlying the regulation of the keratin 16 (K16) gene by iAs in the human keratinocyte cell line HaCaT. We performed reverse transcriptase polymerase chain reaction, luciferase assays, Western blots, and electrophoretic mobility shift assays to determine the transcriptional regulation of the K16 gene by iAs. We used gene overexpression approaches to elucidate the nuclear factor erythroid-derived 2 related factor 2 (NRF2) involved in the K16 induction. iAs induced the mRNA and protein expression of K16. We also found that the expression of K16 was transcriptionally induced by iAs through activator protein-1-like sites and an antioxidant response element (ARE) in its gene promoter region. Treatment with iAs also enhanced the production and translocation of the NRF2 transcription factor, an ARE-binding protein, into the nucleus without modification of its mRNA expression. In addition, iAs elongated the half-life of the NRF2 protein. When overexpressed in HaCaT cells, NRF2 was also directly involved in not only the up-regulation of the detoxification gene thioredoxin but also K16 gene expression. Our data clearly indicate that the K16 gene is a novel target of NRF2. Furthermore, our findings also suggest that NRF2 has opposing roles in the cell--in the activation of detoxification pathways and in promoting the development of skin disorders.

  3. Expression of HtKNOT1, a class I KNOX gene, overlaps cell layers and development compartments of differentiating cells in stems and flowers of Helianthus tuberosus.

    PubMed

    Michelotti, V; Giorgetti, L; Geri, C; Cionini, G; Pugliesi, C; Fambrini, M

    2007-10-01

    In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.

  4. Reconstructing directed gene regulatory network by only gene expression data.

    PubMed

    Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng

    2016-08-18

    Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are

  5. Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information

    PubMed Central

    Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling

    2013-01-01

    The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995

  6. Transcriptome-Wide Survey and Expression Profile Analysis of Putative Chrysanthemum HD-Zip I and II Genes

    PubMed Central

    Song, Aiping; Li, Peiling; Xin, Jingjing; Chen, Sumei; Zhao, Kunkun; Wu, Dan; Fan, Qingqing; Gao, Tianwei; Chen, Fadi; Guan, Zhiyong

    2016-01-01

    The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses. PMID:27196930

  7. Differential gene expression analysis in glioblastoma cells and normal human brain cells based on GEO database.

    PubMed

    Wang, Anping; Zhang, Guibin

    2017-11-01

    The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in

  8. Recombinant AAV-directed gene therapy for type I glycogen storage diseases

    PubMed Central

    Chou, JY; Mansfield, BC

    2011-01-01

    Introduction Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. Areas covered A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. Expert opinion rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-prong approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney, and hematopoietic stem cells is required for treating GSD-I. PMID:21504389

  9. Establishment of a novel collagenase perfusion method to isolate rat pancreatic stellate cells and investigation of their gene expression of TGF-beta1, type I collagen, and CTGF in primary culture or freshly isolated cells.

    PubMed

    Shinji, Toshiyuki; Ujike, Kozo; Ochi, Koji; Kusano, Nobuchika; Kikui, Tetsuya; Matsumura, Naoki; Emori, Yasuyuki; Seno, Toshinobu; Koide, Norio

    2002-08-01

    In studies of the pathogenesis of pancreatic fibrosis, pancreatic stellate cells (PSCs) have recently gained attention. In the present study, we established a new collagenase perfusion method through thoracic aorta cannulation to isolate PSCs, and we studied gene expression of TGF-beta1, type I collagen, and connective tissue growth factor using primary cultured PSCs. Our method facilitated PSC isolation, and by our new method, 4.3 +/- 1.2 x 10(6) PSCs were obtained from a rat. In comparing the expression of these genes with that of hepatic stellate cells (HSCs), we observed a similar pattern, although PSCs expressed type I collagen gene earlier than did HSCs. These results suggest that PSCs may play an important role in fibrosis of the pancreas, as HSCs do in liver fibrosis; in addition, PSCs may exist in a preactivated state or may be more easily activated than are HSCs. We also isolated the PSCs from a WBN/Kob rat, the spontaneous pancreatitis rat, and compared the gene expression with that from a normal rat.

  10. Genome-Wide Survey of Flavonoid Biosynthesis Genes and Gene Expression Analysis between Black- and Yellow-Seeded Brassica napus

    PubMed Central

    Qu, Cunmin; Zhao, Huiyan; Fu, Fuyou; Wang, Zhen; Zhang, Kai; Zhou, Yan; Wang, Xin; Wang, Rui; Xu, Xinfu; Tang, Zhanglin; Lu, Kun; Li, Jia-Na

    2016-01-01

    Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT) genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in Arabidopsis thaliana, 53 were identified in Brassica rapa, 50 in Brassica oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of 18 flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, 14 of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1) had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18, and BnBAN), regulatory genes (BnTTG2 and BnTT16) and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10) might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species. PMID:27999578

  11. Involvement of nitrergic system in anticonvulsant effect of zolpidem in lithium-pilocarpine induced status epilepticus: Evaluation of iNOS and COX-2 genes expression.

    PubMed

    Eslami, Seyyed Majid; Ghasemi, Maryam; Bahremand, Taraneh; Momeny, Majid; Gholami, Mahdi; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2017-11-15

    This study aims to investigate the role of zolpidem in lithium-pilocarpine induced status epilepticus (SE) and probable mechanisms involved in seizure threshold alteration. In the present study, lithium chloride (127mg/kg) was administered 20h prior to pilocarpine (60mg/kg) to induce SE in adult male Wistar rats. Different doses of zolpidem (0.1, 1, 2, 5, 10mg/kg) were injected 30min before pilocarpine administration. Furthermore, to find out whether nitric oxide (NO) plays a role in the observed effect, L-arginine and L-NAME were injected 15min before zolpidem. Afterward, we identified the particular NO isoform mediating the effect of zolpidem by injecting aminoguanidine (AG) and 7-Nitroindazole (7-NI) 15min prior to zolpidem. Moreover, in both 6 and 24h after pilocarpine injection, experimental groups underwent hippocampectomy to evaluate cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes expression by quantitative reverse transcription-PCR (qRT-PCR). Pre-treatment with zolpidem significantly prevented the onset of SE in a dose-dependent manner. AG and L-NAME significantly potentiated the anticonvulsant effect of zolpidem while L-arginine inverted this effect. Our qRT-PCR exerted that there was a continuous elevation of iNOS and COX-2 genes expression over 6 and 24h after pilocarpine administration in SE and L-arginine+Zolpidem groups while in AG/L-NAME+Zolpidem and zolpidem groups this upregulation was prevented. Our study indicates that zolpidem prevents the onset of SE through inhibition of iNOS/COX-2 genes upregulation following lithium-pilocarpine administration. Consistent with our results, we suggest that iNOS activation could be probably upstream of COX-2 gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Osmoregulated TAQ polymerase gene expression in Escherichia coli.

    PubMed

    Cabrera Artiles, Yeosvany; Martínez García, Duniesky; Pérez Cruz, Enrique R; Márquez Perera, Gabriel J; Feble, Manuel Luis

    2002-01-01

    The Thermus aquaticus DNA Polymerase I (Taq Pol I) gene was cloned into the pOSEX4 plasmid under the osmo-inducible promoter proU and subsequently expressed into the Escherichia coli MKH13 strain. The suitability of the enzyme in polymerase assays was determined in standard 35S dATP incorporation tests and by PCR. The Taq Pol I expression in this system, which is under the control of the osmotic pressure in the growth medium, was analyzed in different media and in different sodium chloride concentrations. A study of the osmolarity effects in the growth of the strain and in Taq Pol I expression shows that an increase in sodium chloride concentration limits the growth. At 0.25 M of NaCl maximum activity was observed; at higher values of osmolarity, we found an unexpected decline of activity. This is the first report of using the pOSEX vector for the expression of an heterologous protein and it is very advantageous to make a regulated, non toxic, simple and cost-effective manner of induction in a biotechnology process using just NaCl or other non-permeable osmolyte.

  13. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  14. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  15. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  16. Gene expression characterizes different nutritional strategies among three mixotrophic protists.

    PubMed

    Liu, Zhenfeng; Campbell, Victoria; Heidelberg, Karla B; Caron, David A

    2016-07-01

    Mixotrophic protists, i.e. protists that can carry out both phototrophy and heterotrophy, are a group of organisms with a wide range of nutritional strategies. The ecological and biogeochemical importance of these species has recently been recognized. In this study, we investigated and compared the gene expression of three mixotrophic protists, Prymnesium parvum, Dinobyron sp. and Ochromonas sp. under light and dark conditions in the presence of prey using RNA-Seq. Gene expression of the obligately phototrophic P. parvum and Dinobryon sp. changed significantly between light and dark treatments, while that of primarily heterotrophic Ochromonas sp. was largely unchanged. Gene expression of P. parvum and Dinobryon sp. shared many similarities, especially in the expression patterns of genes related to reproduction. However, key genes involved in central carbon metabolism and phagotrophy had different expression patterns between these two species, suggesting differences in prey consumption and heterotrophic nutrition in the dark. Transcriptomic data also offered clues to other physiological traits of these organisms such as preference of nitrogen sources and photo-oxidative stress. These results provide potential target genes for further exploration of the mechanisms of mixotrophic physiology and demonstrate the potential usefulness of molecular approaches in characterizing the nutritional modes of mixotrophic protists. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Quantifying the Effect of DNA Packaging on Gene Expression Level

    NASA Astrophysics Data System (ADS)

    Kim, Harold

    2010-10-01

    Gene expression, the process by which the genetic code comes alive in the form of proteins, is one of the most important biological processes in living cells, and begins when transcription factors bind to specific DNA sequences in the promoter region upstream of a gene. The relationship between gene expression output and transcription factor input which is termed the gene regulation function is specific to each promoter, and predicting this gene regulation function from the locations of transcription factor binding sites is one of the challenges in biology. In eukaryotic organisms (for example, animals, plants, fungi etc), DNA is highly compacted into nucleosomes, 147-bp segments of DNA tightly wrapped around histone protein core, and therefore, the accessibility of transcription factor binding sites depends on their locations with respect to nucleosomes - sites inside nucleosomes are less accessible than those outside nucleosomes. To understand how transcription factor binding sites contribute to gene expression in a quantitative manner, we obtain gene regulation functions of promoters with various configurations of transcription factor binding sites by using fluorescent protein reporters to measure transcription factor input and gene expression output in single yeast cells. In this talk, I will show that the affinity of a transcription factor binding site inside and outside the nucleosome controls different aspects of the gene regulation function, and explain this finding based on a mass-action kinetic model that includes competition between nucleosomes and transcription factors.

  18. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    PubMed

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  19. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.

    PubMed

    Pasquier, Jeremy; Cabau, Cédric; Nguyen, Thaovi; Jouanno, Elodie; Severac, Dany; Braasch, Ingo; Journot, Laurent; Pontarotti, Pierre; Klopp, Christophe; Postlethwait, John H; Guiguen, Yann; Bobe, Julien

    2016-05-18

    With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.

  20. Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon.

    PubMed

    Lukacs, Morten F; Harstad, Håvard; Bakke, Hege G; Beetz-Sargent, Marianne; McKinnel, Linda; Lubieniecki, Krzysztof P; Koop, Ben F; Grimholt, Unni

    2010-03-05

    We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene Sasa-UBA in addition to a soluble MHC class I molecule, Sasa-ULA. A pseudolocus for Sasa-UCA was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region. The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, ZAA. The IB region was extended with 350 kb including three new Z-lineage loci, ZBA, ZCA and ZDA in addition to a UGA locus. An allelic version of the IB region contained a functional UDA locus in addition to the UCA pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus SAA (previously known as UAA) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of UBA being dominantly expressed in gut, spleen and gills, and ZAA with high expression in blood. Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (UBA), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.

  1. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Klein, Kerstin; Kabala, Pawel A; Grabiec, Aleksander M; Gay, Renate E; Kolling, Christoph; Lin, Lih-Ling; Gay, Steffen; Tak, Paul P; Prinjha, Rab K; Ospelt, Caroline; Reedquist, Kris A

    2016-02-01

    To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF). The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1β and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4. RASF expression of inflammatory mediators, including MMP1, MMP3, IL-6 and IL-8, was measured by q-PCR, q-PCR array and ELISA. Cellular viability, apoptosis, proliferation and chemoattractive properties of RASF were investigated using MTT, cell apoptosis ELISA, BrdU-based proliferation and transwell migration assays. BRD2, BRD3 and BRD4 proteins were detected in rheumatoid arthritis (RA) synovial tissue, expressed in both RASF and macrophages. I-BET151 suppressed cytokine and TLR ligand-induced secretion of MMP1, MMP3, IL-6 and IL-8, and mRNA expression of more than 70% of genes induced by TNF-α and IL-1β. Combined silencing of BRD2, BRD3 and BRD4 significantly reduced cytokine and TLR ligand-induced expression of a subset of gene products targeted by I-BET151, including MMP1, CXCL10 and CXCL11. I-BET151 treatment of RASF reduced RASF proliferation, and the chemotactic potential for peripheral blood leucocytes of RASF conditioned medium. Inhibition of BET family proteins suppresses the inflammatory, matrix-degrading, proliferative and chemoattractive properties of RASF and suggests a therapeutic potential in the targeting of epigenetic reader proteins in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Effect of TNF{alpha} on activities of different promoters of human apolipoprotein A-I gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, Sergey V., E-mail: serge@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Mogilenko, Denis A.

    2010-07-23

    Research highlights: {yields} TNF{alpha} stimulates the distal alternative promoter of human apoA-I gene. {yields} TNF{alpha} acts by weakening of promoter competition within apoA-I gene (promoter switching). {yields} MEK1/2 and nuclear receptors PPAR{alpha} and LXRs take part in apoA-I promoter switching. -- Abstract: Human apolipoprotein A-I (ApoA-I) is a major structural and functional protein component of high-density lipoproteins. The expression of the apolipoprotein A-I gene (apoA-I) in hepatocytes is repressed by pro-inflammatory cytokines such as IL-1{beta} and TNF{alpha}. Recently, two novel additional (alternative) promoters for human apoA-I gene have been identified. Nothing is known about the role of alternative promoters inmore » TNF{alpha}-mediated downregulation of apoA-I gene. In this article we report for the first time about the different effects of TNF{alpha} on two alternative promoters of human apoA-I gene. Stimulation of HepG2 cells by TNF{alpha} leads to activation of the distal alternative apoA-I promoter and downregulation of the proximal alternative and the canonical apoA-I promoters. This effect is mediated by weakening of the promoter competition within human apoA-I 5'-regulatory region (apoA-I promoter switching) in the cells treated by TNF{alpha}. The MEK1/2-ERK1/2 cascade and nuclear receptors PPAR{alpha} and LXRs are important for TNF{alpha}-mediated apoA-I promoter switching.« less

  3. In silico gene expression profiling in Cannabis sativa.

    PubMed

    Massimino, Luca

    2017-01-01

    The cannabis plant and its active ingredients (i.e., cannabinoids and terpenoids) have been socially stigmatized for half a century. Luckily, with more than 430,000 published scientific papers and about 600 ongoing and completed clinical trials, nowadays cannabis is employed for the treatment of many different medical conditions. Nevertheless, even if a large amount of high-throughput functional genomic data exists, most researchers feature a strong background in molecular biology but lack advanced bioinformatics skills. In this work, publicly available gene expression datasets have been analyzed giving rise to a total of 40,224 gene expression profiles taken from cannabis plant tissue at different developmental stages. The resource presented here will provide researchers with a starting point for future investigations with Cannabis sativa .

  4. Gene-expression signatures can distinguish gastric cancer grades and stages.

    PubMed

    Cui, Juan; Li, Fan; Wang, Guoqing; Fang, Xuedong; Puett, J David; Xu, Ying

    2011-03-18

    Microarray gene-expression data of 54 paired gastric cancer and adjacent noncancerous gastric tissues were analyzed, with the aim to establish gene signatures for cancer grades (well-, moderately-, poorly- or un-differentiated) and stages (I, II, III and IV), which have been determined by pathologists. Our statistical analysis led to the identification of a number of gene combinations whose expression patterns serve well as signatures of different grades and different stages of gastric cancer. A 19-gene signature was found to have discerning power between high- and low-grade gastric cancers in general, with overall classification accuracy at 79.6%. An expanded 198-gene panel allows the stratification of cancers into four grades and control, giving rise to an overall classification agreement of 74.2% between each grade designated by the pathologists and our prediction. Two signatures for cancer staging, consisting of 10 genes and 9 genes, respectively, provide high classification accuracies at 90.0% and 84.0%, among early-, advanced-stage cancer and control. Functional and pathway analyses on these signature genes reveal the significant relevance of the derived signatures to cancer grades and progression. To the best of our knowledge, this represents the first study on identification of genes whose expression patterns can serve as markers for cancer grades and stages.

  5. Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii.

    PubMed

    Liu, Qi; Hassan, Karl A; Ashwood, Heather E; Gamage, Hasinika K A H; Li, Liping; Mabbutt, Bridget C; Paulsen, Ian T

    2018-06-01

    To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.

  6. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.)

    PubMed Central

    Lv, Geng-Yin; Guo, Xiao-Guang; Xie, Li-Ping; Xie, Chang-Gen; Zhang, Xiao-Hong; Yang, Yuan; Xiao, Lei; Tang, Yu-Ying; Pan, Xing-Lai; Guo, Ai-Guang; Xu, Hong

    2017-01-01

    Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4–9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had

  7. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to expressmore » diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.« less

  8. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  9. Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in Macrophages via TLRs-mediated signaling.

    PubMed

    Jang, Ah-Ra; Choi, Joo-Hee; Shin, Sung Jae; Park, Jong-Hwan

    2018-04-01

    Mycobacterium tuberculosis is a highly virulent bacterium that causes tuberculosis. It infects about one third of the world's population. Type I interferons (IFNs) play a detrimental role in host defense against M. tuberculosis infection. Proteins secreted by M. tuberculosis through ESX-1 secretion system contribute to type I IFNs production. However, the precise mechanism by which 6-kDa early secretory antigen target (ESAT6), one of ESX-1-mediated secretory proteins, induces type I IFNs production in host cells is currently unclear. Therefore, the objective of the present study was to determine the underlying molecular mechanism regulating ESAT6-mediated gene expression of IFN-β in macrophages. Recombinant ESAT6 produced from E. coli expression system induced IFN-β gene expression in various types of macrophages such as mouse bone marrow-derived macrophages (BMDMs), peritoneal macrophages, and MH-S cells (murine alveolar macrophage cell line). Deficiency of TLR4 and TRIF absolutely abrogated ESAT6-induced IFN-β gene expression. TLR2 and MyD88 were partially involved in IFN-β gene expression in response to low dose of ESAT6. Another recombinant ESAT6 produced from baculovirus system also upregulated IFN-β gene expression via TLR4-dependent pathway. Polymyxin B (PMB) treatment impaired LPS-induced IFN-β expression. However, IFN-β expression induced by ESAT6 was not influenced by PMB. This suggests that ESAT6-mediated IFN-β expression is not due to LPS contamination. Treatment with ESAT6 resulted in activation of TBK1 and IRF3 in macrophages. Such activation was abolished in TLR4- and TRIF-deficient cells. Moreover, inhibition of IRF3 and TBK1 suppressed IFN-β gene expression in response to ESAT6. Our results suggest that ESAT6 might contribute to virulence of M. tuberculosis by regulating type I IFNs production through TLR4-TRIF signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  11. [Identification of candidate genes and expression profiles, as doping biomarkers].

    PubMed

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  12. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells1

    PubMed Central

    Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki

    2013-01-01

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435

  13. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms.

    PubMed

    Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott

    2010-04-01

    An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG

  14. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  15. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    PubMed Central

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue. PMID:24346830

  16. Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia

    PubMed Central

    Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-01-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714

  17. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer

    PubMed Central

    2010-01-01

    Background Gene expression profiling may improve prognostic accuracy in patients with early breast cancer. Our objective was to demonstrate that it is possible to develop a simple molecular signature to predict distant relapse. Methods We included 153 patients with stage I-II hormonal receptor-positive breast cancer. RNA was isolated from formalin-fixed paraffin-embedded samples and qRT-PCR amplification of 83 genes was performed with gene expression assays. The genes we analyzed were those included in the 70-Gene Signature, the Recurrence Score and the Two-Gene Index. The association among gene expression, clinical variables and distant metastasis-free survival was analyzed using Cox regression models. Results An 8-gene prognostic score was defined. Distant metastasis-free survival at 5 years was 97% for patients defined as low-risk by the prognostic score versus 60% for patients defined as high-risk. The 8-gene score remained a significant factor in multivariate analysis and its performance was similar to that of two validated gene profiles: the 70-Gene Signature and the Recurrence Score. The validity of the signature was verified in independent cohorts obtained from the GEO database. Conclusions This study identifies a simple gene expression score that complements histopathological prognostic factors in breast cancer, and can be determined in paraffin-embedded samples. PMID:20584321

  18. Antisense imaging of gene expression in the brain in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Ningya; Boado, Ruben J.; Pardridge, William M.

    2000-12-01

    Antisense radiopharmaceuticals could be used to image gene expression in the brain in vivo, should these polar molecules be made transportable through the blood-brain barrier. The present studies describe an antisense imaging agent comprised of an iodinated peptide nucleic acid (PNA) conjugated to a monoclonal antibody to the rat transferrin receptor by using avidin-biotin technology. The PNA was a 16-mer antisense to the sequence around the methionine initiation codon of the luciferase mRNA. C6 rat glioma cells were permanently transfected with a luciferase expression plasmid, and C6 experimental brain tumors were developed in adult rats. The expression of the luciferase transgene in the tumors in vivo was confirmed by measurement of luciferase enzyme activity in the tumor extract. The [125I]PNA conjugate was injected intravenously in anesthetized animals with brain tumors and killed 2 h later for frozen sectioning of brain and film autoradiography. No image of the luciferase gene expression was obtained after the administration of either the unconjugated antiluciferase PNA or a PNA conjugate that was antisense to the mRNA of a viral transcript. In contrast, tumors were imaged in all rats administered the [125I]PNA that was antisense to the luciferase sequence and was conjugated to the targeting antibody. In conclusion, these studies demonstrate gene expression in the brain in vivo can be imaged with antisense radiopharmaceuticals that are conjugated to a brain drug-targeting system.

  19. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface.

    PubMed

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-08-25

    Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms.

  20. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    PubMed Central

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  1. Integrative sparse principal component analysis of gene expression data.

    PubMed

    Liu, Mengque; Fan, Xinyan; Fang, Kuangnan; Zhang, Qingzhao; Ma, Shuangge

    2017-12-01

    In the analysis of gene expression data, dimension reduction techniques have been extensively adopted. The most popular one is perhaps the PCA (principal component analysis). To generate more reliable and more interpretable results, the SPCA (sparse PCA) technique has been developed. With the "small sample size, high dimensionality" characteristic of gene expression data, the analysis results generated from a single dataset are often unsatisfactory. Under contexts other than dimension reduction, integrative analysis techniques, which jointly analyze the raw data of multiple independent datasets, have been developed and shown to outperform "classic" meta-analysis and other multidatasets techniques and single-dataset analysis. In this study, we conduct integrative analysis by developing the iSPCA (integrative SPCA) method. iSPCA achieves the selection and estimation of sparse loadings using a group penalty. To take advantage of the similarity across datasets and generate more accurate results, we further impose contrasted penalties. Different penalties are proposed to accommodate different data conditions. Extensive simulations show that iSPCA outperforms the alternatives under a wide spectrum of settings. The analysis of breast cancer and pancreatic cancer data further shows iSPCA's satisfactory performance. © 2017 WILEY PERIODICALS, INC.

  2. Expressing genes do not forget their LINEs: transposable elements and gene expression

    PubMed Central

    Kines, Kristine J.; Belancio, Victoria P.

    2012-01-01

    1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807

  3. Using rabies virus vaccine strain SRV9 as viral vector to express exogenous gene.

    PubMed

    Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Li, Ling; Qi, Yinglin; Liang, Meng; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Jin, Ningyi; Yang, Songtao; Xia, Xianzhu

    2015-04-01

    Rabies virus (RABV) can cause a fatal neurological disease in human and animals, and vaccines were generally applied for the immunoprophylaxis of rabies. Here, a recombinant viral vector carrying the exogenous gene expression component between phosphoprotein (P) and matrix protein (M) genes of RABV was constructed based on the vaccine strain SRV9 used in China. To develop a reverse genetic system, the full-length cDNA plasmids of SRV9 were constructed using the eukaryotic expression vector pCI or pcDNA3.1(+). However, recovery efficiency based on the pcDNA3.1 vector was significantly higher than that of the pCI vector. The exogenous gene expression component PE-PS-BsiWI-PmeI or PS-BsiWI-PmeI-PE was introduced in different locations between the P and M genes of SRV9. When the enhanced green fluorescent protein (eGFP) was used as a reporter gene, both locations could rescue recombinant RABV (rRABV) expressing eGFP with high efficiency. Characterization of rRABV expressing eGFP in vitro revealed that its growth was similar to that of the parental virus. Animal experiments showed that rRABV expressing eGFP could replicate and express eGFP in the brains of suckling mice. Furthermore, rRABV of SRV9 was nonpathogenic for 3-week-old mice and could be cleared from the central nervous system at 5 days post-inoculation. Our results showed that the recombinant SRV9 virus could be used as a useful viral vector for exogenous gene expression.

  4. RepSox improves viability and regulates gene expression in rhesus monkey-pig interspecies cloned embryos.

    PubMed

    Zhu, Hai-Ying; Jin, Long; Guo, Qing; Luo, Zhao-Bo; Li, Xiao-Chen; Zhang, Yu-Chen; Xing, Xiao-Xu; Xuan, Mei-Fu; Zhang, Guang-Lei; Luo, Qi-Rong; Wang, Jun-Xia; Cui, Cheng-Du; Li, Wen-Xue; Cui, Zheng-Yun; Yin, Xi-Jun; Kang, Jin-Dan

    2017-05-01

    To investigate the effect of the small molecule, RepSox, on the expression of developmentally important genes and the pre-implantation development of rhesus monkey-pig interspecies somatic cell nuclear transfer (iSCNT) embryos. Rhesus monkey cells expressing the monomeric red fluorescent protein 1 which have a normal (42) chromosome complement, were used as donor cells to generate iSCNT embryos. RepSox increased the expression levels of the pluripotency-related genes, Oct4 and Nanog (p < 0.05), but not of Sox2 compared with untreated embryos at the 2-4-cell stage. Expression of the anti-apoptotic gene, Bcl2, and the pro-apoptotic gene Bax was also affected at the 2-4-cell stage. RepSox treatment also increased the immunostaining intensity of Oct4 at the blastocyst stage (p < 0.05). Although the blastocyst developmental rate was higher in the group treated with 25 µM RepSox for 24 h than in the untreated control group (2.4 vs. 1.2%, p > 0.05), this was not significant. RepSox can improve the developmental potential of rhesus monkey-pig iSCNT embryos by regulating the expression of pluripotency-related genes.

  5. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma.

    PubMed

    Zhang, Yan; Fang, Lin; Zhang, Quan'an; Zheng, Qin; Tong, Jinlong; Fu, Xiaohui; Jiang, Xiaoqing; Su, Changqing; Zheng, Junnian

    2013-06-01

    Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Gene Expression Profiling of Benign and Malignant Pheochromocytoma

    PubMed Central

    BROUWERS, FREDERIEKE M.; ELKAHLOUN, ABDEL G.; MUNSON, PETER J.; EISENHOFER, GRAEME; BARB, JENNIFER; LINEHAN, W. MARSTON; LENDERS, JACQUES W.M.; DE KRIJGER, RONALD; MANNELLI, MASSIMO; UDELSMAN, ROBERT; OCAL, IDRIS T.; SHULKIN, BARRY L.; BORNSTEIN, STEFAN R.; BREZA, JAN; KSINANTOVA, LUCIA; PACAK, KAREL

    2016-01-01

    There are currently no reliable diagnostic and prognostic markers or effective treatments for malignant pheochromocytoma. This study used oligonucleotide microarrays to examine gene expression profiles in pheochromocytomas from 90 patients, including 20 with malignant tumors, the latter including metastases and primary tumors from which metastases developed. Other subgroups of tumors included those defined by tissue norepinephrine compared to epinephrine contents (i.e., noradrenergic versus adrenergic phenotypes), adrenal versus extra-adrenal locations, and presence of germline mutations of genes pre-disposing to the tumor. Correcting for the confounding influence of nora-drenergic versus adrenergic catecholamine phenotype by the analysis of variance revealed a larger and more accurate number of genes that discriminated benign from malignant pheochromocytomas than when the confounding influence of catecholamine phenotype was not considered. Seventy percent of these genes were underexpressed in malignant compared to benign tumors. Similarly, 89% of genes were underexpressed in malignant primary tumors compared to benign tumors, suggesting that malignant potential is largely characterized by a less-differentiated pattern of gene expression. The present database of differentially expressed genes provides a unique resource for mapping the pathways leading to malignancy and for establishing new targets for treatment and diagnostic and prognostic markers of malignant disease. The database may also be useful for examining mechanisms of tumorigenesis and genotype–phenotype relationships. Further progress on the basis of this database can be made from follow-up confirmatory studies, application of bioinformatics approaches for data mining and pathway analyses, testing in pheochromocytoma cell culture and animal model systems, and retrospective and prospective studies of diagnostic markers. PMID:17102123

  7. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  8. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes

    PubMed Central

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006

  9. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.

    PubMed

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.

  10. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    PubMed Central

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  11. Gene expression profile of collagen types, osteopontin in the tympanic membrane of patients with tympanosclerosis.

    PubMed

    Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Przybyła, Tomasz; Grdeń, Marzena; Starzyńska, Anna; Pawełczyk, Tadeusz

    2017-09-01

    Tympanosclerosis is a pathological process involving the middle ear. The hallmark of this disease is the formation of calcium deposits. In the submucosal layer, as well as in the right layer of the tympanic membrane, the calcium deposits result in a significant increase in the activity of fibroblasts and deposition of collagen fibers. The aim of our study was to examine the expression level of genes encoding collagen type I, II, III and IV (COL1A1, COL2A1, COL3A1, COL4A1) and osteopontin (SPP1) in the tympanic membrane of patients with tympanosclerosis. The total RNA was isolated from middle ear tissues with tympanosclerosis, received from 25 patients and from 19 normal tympanic membranes. The gene expression level was determined by real-time RT-PCR. The gene expression levels were correlated with clinical Tos classification of tympanosclerosis. We observed that in the tympanic membrane of patients with tympanosclerosis, the expression of type I collagen is decreased, while the expression of type II and IV collagen and osteopontin is increased. Moreover, mRNA levels of the investigated genes strongly correlated with the clinical stages of tympanosclerosis. The strong correlations between the expression of type I, II, IV collagen and osteopontin and the clinical stage of tympanosclerosis indicate the involvement of these proteins in excessive fibrosis and pathological remodeling of the tympanic membrane. In the future, a treatment aiming to modulate these gene expressions and/or regulation of the degradation of their protein products could be used as a new medical approach for patients with tympanosclerosis.

  12. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing

    PubMed Central

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2017-01-01

    Abstract Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only. PMID:27899656

  13. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    PubMed Central

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  14. Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas.

    PubMed

    Cai, Li; Zhang, Lu; Fu, Qiantang; Xu, Zeng-Fu

    2018-01-01

    The seed oil of Jatropha curcas is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of Jatropha is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of Jatropha . Cytokinin levels are directly regulated by isopentenyl transferase (IPT), cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A), and cytokinin oxidase/dehydrogenase (CKX). In this study, we cloned six IPT genes, one JcCYP735A gene, and seven JcCKX genes. The expression patterns of these 14 genes in various organs were determined using real-time quantitative PCR. JcIPT1 was primarily expressed in roots and seeds, JcIPT2 was expressed in roots, apical meristems, and mature leaves, JcIPT3 was expressed in stems and mature leaves, JcIPT5 was expressed in roots and mature leaves, JcIPT6 was expressed in seeds at 10 days after pollination, and JcIPT9 was expressed in mature leaves. JcCYP735A was mainly expressed in roots, flower buds, and seeds. The seven JcCKX genes also showed different expression patterns in different organs of Jatropha . In addition, CK levels were detected in flower buds and seeds at different stages of development. The concentration of N 6 -(Δ 2 -isopentenyl)-adenine (iP), iP-riboside, and trans -zeatin (tZ) increased with flower development, and the concentration of iP decreased with seed development, while that of tZ increased. We further analyzed the function of JcCYP735A using the CRISPR-Cas9 system, and found that the concentrations of tZ and tZ-riboside decreased significantly in the Jccyp735a mutants, which showed severely retarded growth. These findings will be helpful for further studies of the functions of cytokinin metabolic genes and understanding the roles of cytokinins in Jatropha growth and development.

  15. Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas

    PubMed Central

    Cai, Li; Zhang, Lu

    2018-01-01

    The seed oil of Jatropha curcas is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of Jatropha is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of Jatropha. Cytokinin levels are directly regulated by isopentenyl transferase (IPT), cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A), and cytokinin oxidase/dehydrogenase (CKX). In this study, we cloned six IPT genes, one JcCYP735A gene, and seven JcCKX genes. The expression patterns of these 14 genes in various organs were determined using real-time quantitative PCR. JcIPT1 was primarily expressed in roots and seeds, JcIPT2 was expressed in roots, apical meristems, and mature leaves, JcIPT3 was expressed in stems and mature leaves, JcIPT5 was expressed in roots and mature leaves, JcIPT6 was expressed in seeds at 10 days after pollination, and JcIPT9 was expressed in mature leaves. JcCYP735A was mainly expressed in roots, flower buds, and seeds. The seven JcCKX genes also showed different expression patterns in different organs of Jatropha. In addition, CK levels were detected in flower buds and seeds at different stages of development. The concentration of N6-(Δ2-isopentenyl)-adenine (iP), iP-riboside, and trans-zeatin (tZ) increased with flower development, and the concentration of iP decreased with seed development, while that of tZ increased. We further analyzed the function of JcCYP735A using the CRISPR-Cas9 system, and found that the concentrations of tZ and tZ-riboside decreased significantly in the Jccyp735a mutants, which showed severely retarded growth. These findings will be helpful for further studies of the functions of cytokinin metabolic genes and understanding the roles of cytokinins in Jatropha growth and development. PMID:29785355

  16. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  17. SpeCond: a method to detect condition-specific gene expression

    PubMed Central

    2011-01-01

    Transcriptomic studies routinely measure expression levels across numerous conditions. These datasets allow identification of genes that are specifically expressed in a small number of conditions. However, there are currently no statistically robust methods for identifying such genes. Here we present SpeCond, a method to detect condition-specific genes that outperforms alternative approaches. We apply the method to a dataset of 32 human tissues to determine 2,673 specifically expressed genes. An implementation of SpeCond is freely available as a Bioconductor package at http://www.bioconductor.org/packages/release/bioc/html/SpeCond.html. PMID:22008066

  18. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data

    PubMed Central

    Hejblum, Boris P.; Skinner, Jason; Thiébaut, Rodolphe

    2015-01-01

    Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package. PMID:26111374

  19. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  20. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Development of a gene expression database and related analysis programs for evaluation of anticancer compounds.

    PubMed

    Ushijima, Masaru; Mashima, Tetsuo; Tomida, Akihiro; Dan, Shingo; Saito, Sakae; Furuno, Aki; Tsukahara, Satomi; Seimiya, Hiroyuki; Yamori, Takao; Matsuura, Masaaki

    2013-03-01

    Genome-wide transcriptional expression analysis is a powerful strategy for characterizing the biological activity of anticancer compounds. It is often instructive to identify gene sets involved in the activity of a given drug compound for comparison with different compounds. Currently, however, there is no comprehensive gene expression database and related application system that is; (i) specialized in anticancer agents; (ii) easy to use; and (iii) open to the public. To develop a public gene expression database of antitumor agents, we first examined gene expression profiles in human cancer cells after exposure to 35 compounds including 25 clinically used anticancer agents. Gene signatures were extracted that were classified as upregulated or downregulated after exposure to the drug. Hierarchical clustering showed that drugs with similar mechanisms of action, such as genotoxic drugs, were clustered. Connectivity map analysis further revealed that our gene signature data reflected modes of action of the respective agents. Together with the database, we developed analysis programs that calculate scores for ranking changes in gene expression and for searching statistically significant pathways from the Kyoto Encyclopedia of Genes and Genomes database in order to analyze the datasets more easily. Our database and the analysis programs are available online at our website (http://scads.jfcr.or.jp/db/cs/). Using these systems, we successfully showed that proteasome inhibitors are selectively classified as endoplasmic reticulum stress inducers and induce atypical endoplasmic reticulum stress. Thus, our public access database and related analysis programs constitute a set of efficient tools to evaluate the mode of action of novel compounds and identify promising anticancer lead compounds. © 2012 Japanese Cancer Association.

  2. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  3. Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes.

    PubMed

    Mehlin, Christopher; Boni, Erica; Buckner, Frederick S; Engel, Linnea; Feist, Tiffany; Gelb, Michael H; Haji, Lutfiyah; Kim, David; Liu, Colleen; Mueller, Natascha; Myler, Peter J; Reddy, J T; Sampson, Joshua N; Subramanian, E; Van Voorhis, Wesley C; Worthey, Elizabeth; Zucker, Frank; Hol, Wim G J

    2006-08-01

    As part of a structural genomics initiative, 1000 open reading frames from Plasmodium falciparum, the causative agent of the most deadly form of malaria, were tested in an E. coli protein expression system. Three hundred and thirty-seven of these targets were observed to express, although typically the protein was insoluble. Sixty-three of the targets provided soluble protein in yields ranging from 0.9 to 406.6 mg from one liter of rich media. Higher molecular weight, greater protein disorder (segmental analysis, SEG), more basic isoelectric point (pI), and a lack of homology to E. coli proteins were all highly and independently correlated with difficulties in expression. Surprisingly, codon usage and the percentage of adenosines and thymidines (%AT) did not appear to play a significant role. Of those proteins which expressed, high pI and a hypothetical annotation were both strongly and independently correlated with insolubility. The overwhelmingly important role of pI in both expression and solubility appears to be a surprising and fundamental issue in the heterologous expression of P. falciparum proteins in E. coli. Twelve targets which did not express in E. coli from the native gene sequence were codon-optimized through whole gene synthesis, resulting in the (insoluble) expression of three of these proteins. Seventeen targets which were expressed insolubly in E. coli were moved into a baculovirus/Sf-21 system, resulting in the soluble expression of one protein at a high level and six others at a low level. A variety of factors conspire to make the heterologous expression of P. falciparum proteins challenging, and these observations lay the groundwork for a rational approach to prioritizing and, ultimately, eliminating these impediments.

  4. Amphiphysin I but not dynamin I nor synaptojanin mRNA expression increased after repeated methamphetamine administration in the rat cerebrum and cerebellum.

    PubMed

    Hamamura, Mitsuko; Okouchi, Jiro; Ozawa, Hidetoshi; Kimuro, Yoshihiko; Iwaki, Akiko; Fukumaki, Yasuyuki

    2013-07-01

    Dopamine increases/decreases synaptic vesicle recycling and in schizophrenia the proteins/mRNA is decreased. We isolated cDNA clone, similar to amphiphysin 1 (vesicle protein) mRNA from the neocortex of rats injected repeatedly with methamphetamine using polymerase chain reaction (PCR) differential display. This clone is highly homologous to the 3' region of the human amphiphysin gene. PCR extension study using a primer specific for the rat amphiphysin 1 gene and a primer located within the clone revealed that it is the 3' UTR region of the rat amphiphysin 1 gene. Furthermore, in situ hybridization revealed that amphiphysin 1 mRNA is expressed in the cerebrum, medial thalamus, hippocampus and cerebellum. In the cerebellum, amphiphysin mRNA expression was confined to upper granule cell layer. Repeated methamphetamine administration increased amphiphysin I mRNA expression in both anterior part of the cerebrum, and the cerebellum. However, the repeated administration did not alter mRNA expression of the other vesicle proteins, synaptotagmin I, synapsin I, synaptojanin and dynamin I, we conclude that the repeated administration selectively increased amphiphysin 1 mRNA expression. Thus, amphiphysin 1 does not work as synaptic recycling, but it is suggested, as a part of pathogenesis of brain tissue injury (under Ca²⁺ and Mg²⁺ devoid environment) in repeated methamphetamine-injected states, the gene regulate actin-asssembly, learning, cell stress signaling and cell polarity.

  5. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    PubMed

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  6. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

    PubMed Central

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-01-01

    Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations

  7. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery.

    PubMed

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-09-03

    DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically

  8. Pre-gastrula expression of zebrafish extraembryonic genes

    PubMed Central

    2010-01-01

    Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we

  9. Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis.

    PubMed

    Fock-Bastide, Isabelle; Palama, Tony Lionel; Bory, Séverine; Lécolier, Aurélie; Noirot, Michel; Joët, Thierry

    2014-01-01

    In Vanilla planifolia pods, development of flavor precursors is dependent on the phenylpropanoid pathway. The distinctive vanilla aroma is produced by numerous phenolic compounds of which vanillin is the most important. Because of the economic importance of vanilla, vanillin biosynthetic pathways have been extensively studied but agreement has not yet been reached on the processes leading to its accumulation. In order to explore the transcriptional control exerted on these pathways, five key phenylpropanoid genes expressed during pod development were identified and their mRNA accumulation profiles were evaluated during pod development and maturation using quantitative real-time PCR. As a prerequisite for expression analysis using qRT-PCR, five potential reference genes were tested, and two genes encoding Actin and EF1 were shown to be the most stable reference genes for accurate normalization during pod development. For the first time, genes encoding a phenylalanine ammonia-lyase (VpPAL1) and a cinnamate 4-hydroxylase (VpC4H1) were identified in vanilla pods and studied during maturation. Among phenylpropanoid genes, differential regulation was observed from 3 to 8 months after pollination. VpPAL1 was gradually up-regulated, reaching the maximum expression level at maturity. In contrast, genes encoding 4HBS, C4H, OMT2 and OMT3 did not show significant increase in expression levels after the fourth month post-pollination. Expression profiling of these key phenylpropanoid genes is also discussed in light of accumulation patterns for key phenolic compounds. Interestingly, VpPAL1 gene expression was shown to be positively correlated to maturation and vanillin accumulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori*

    PubMed Central

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-01-01

    Hox genes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hox genes can also function in terminally differentiated tissue of the lepidopteran Bombyx mori. In this species, Antennapedia (Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antp can regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antp in the posterior silk gland induced ectopic expression of major silk protein genes such as sericin-3, fhxh4, and fhxh5. These genes are normally expressed specifically in the middle silk gland as is Antp. Therefore, the evidence strongly suggests that Antp activates these silk protein genes in the middle silk gland. The putative sericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antp directly activates their expression. We also found that the pattern of gene expression was well conserved between B. mori and the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori. We suggest that Hox genes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  11. PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis.

    PubMed

    Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu

    2003-11-07

    To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s).

  12. PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis

    PubMed Central

    Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu

    2003-01-01

    Background To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. Results We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. Conclusion PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s). PMID:14604444

  13. MEPD: a Medaka gene expression pattern database

    PubMed Central

    Henrich, Thorsten; Ramialison, Mirana; Quiring, Rebecca; Wittbrodt, Beate; Furutani-Seiki, Makoto; Wittbrodt, Joachim; Kondoh, Hisato

    2003-01-01

    The Medaka Expression Pattern Database (MEPD) stores and integrates information of gene expression during embryonic development of the small freshwater fish Medaka (Oryzias latipes). Expression patterns of genes identified by ESTs are documented by images and by descriptions through parameters such as staining intensity, category and comments and through a comprehensive, hierarchically organized dictionary of anatomical terms. Sequences of the ESTs are available and searchable through BLAST. ESTs in the database are clustered upon entry and have been blasted against public data-bases. The BLAST results are updated regularly, stored within the database and searchable. The MEPD is a project within the Medaka Genome Initiative (MGI) and entries will be interconnected to integrated genomic map databases. MEPD is accessible through the WWW at http://medaka.dsp.jst.go.jp/MEPD. PMID:12519950

  14. Studies of plant gene expression and function stimulated by space microgravity

    NASA Astrophysics Data System (ADS)

    Lu, Jinying; Liu, Min; Li, Huasheng; Zhao, Hui

    2016-07-01

    One of the important questions in space biology is how plants respond to an outer space environment i.e., how genetic expression is altered in space microgravity. In this study, the transcriptome of Arabidopsis thaliana seedlings was analyzed as part of the Germany SIMBOX (Science in Microgravity Box) spaceflight experiment on Shenzhou 8. A gene chip was used to screen gene expression differences in Arabidopsis thaliana seedlings between microgravity and 1g centrifugal force in space. Microarray analysis revealed that 368 genes were differentially expressed. Gene Ontology (GO) analysis indicated that these genes were involved in the plant's response to stress, secondary metabolism, hormone metabolism, transcription, protein phosphorylation, lipid metabolism, transport and cell wall metabolism processes. Real time PCR was used to analyzed the miRNA expression including Arabidopsis miR160,miR161, miR394, miR402, miR403, and miR408. MiR408 was significantly upregulated. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicated that miR408 could play a role in root gravitropic response.

  15. Regulation of gene expression in plasmid ColE1: delayed expression of the kil gene.

    PubMed Central

    Zhang, S P; Yan, L F; Zubay, G

    1988-01-01

    cea, imm, and kil are a cluster of three functionally related genes of the plasmid ColE1. The cea and kil genes are in the same inducible operon, with transcription being initiated from a promoter adjacent to the cea gene. The imm gene is located between the cea and kil genes, but it is transcribed in the opposite direction. Complementary interaction between the imm mRNA and the anti-imm sequences in the middle of the cea-kil transcript causes a pronounced delay in expression of the kil gene when the cea-kil operon is induced. A segment in the overlapping region between the cea and imm genes causes delayed expression of the kil gene in the absence of imm gene transcription. This delay effect increases the yields of colicin synthesized in induced cells. Images PMID:3142845

  16. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    PubMed

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  17. Differential gene expression analysis in European eels (Anguilla anguilla, L. 1758) naturally infected by macroparasites.

    PubMed

    Fazio, G; Moné, H; Lecomte-Finiger, R; Sasal, P

    2008-06-01

    We analyzed the relationships between the macroparasite community of the European eel and the expression of genes involved in the host physiology during its continental life. The genes studied are implicated in (1) host response to environmental stress, i.e., heat shock protein 70 (HSP70) and metallothionein (MT); (2) osmoregulation, i.e., beta thyroid hormone receptor (betaTHR) and Na+/K+ATPase; and (3) silvering, i.e., betaTHR, freshwater rod opsin (FWO), and deep-sea rod opsin (DSO). All were enumerated by quantitative reverse-transcription polymerase chain reaction. The epizootiological results for 93 yellow eels caught in the Salses-Leucate Lagoon (France) included 11 species: 1 nematode, 2 acanthocephalans, 1 monogenean, and 7 digeneans. The molecular results revealed (1) a significant negative relationship between digenean abundance and the expression level of all the tested genes, except FWO; (2) a significant negative relationship between the abundance of the nematode Anguillicola crassus and the expression level of the Na+/K+ATPase gene; and (3) a significant positive relationship between the A. crassus abundance and the expression level of the MT gene. Eels infected with digeneans had, on average, a lower level of expressed genes. We hypothesize that the parasites may disturb the eel's ability to withstand environmental stress and delay their migration to the Sargasso Sea because of degeneration of the gut. We further propose that the effect of the invasive species, A. crassus, on the gene expression was mainly linked to an increased trophic activity of infected eels. Moreover, it is possible that the parasite may have an effect on the fish's migratory behavior, which is tied to reproductive purposes. Additional work, including an experimental approach, is required to confirm our hypotheses.

  18. Faster-X evolution of gene expression is driven by recessive adaptive cis-regulatory variation in Drosophila.

    PubMed

    Llopart, Ana

    2018-05-01

    The hemizygosity of the X (Z) chromosome fully exposes the fitness effects of mutations on that chromosome and has evolutionary consequences on the relative rates of evolution of X and autosomes. Specifically, several population genetics models predict increased rates of evolution in X-linked loci relative to autosomal loci. This prediction of faster-X evolution has been evaluated and confirmed for both protein coding sequences and gene expression. In the case of faster-X evolution for gene expression divergence, it is often assumed that variation in 5' noncoding sequences is associated with variation in transcript abundance between species but a formal, genomewide test of this hypothesis is still missing. Here, I use whole genome sequence data in Drosophila yakuba and D. santomea to evaluate this hypothesis and report positive correlations between sequence divergence at 5' noncoding sequences and gene expression divergence. I also examine polymorphism and divergence in 9,279 noncoding sequences located at the 5' end of annotated genes and detected multiple signals of positive selection. Notably, I used the traditional synonymous sites as neutral reference to test for adaptive evolution, but I also used bases 8-30 of introns <65 bp, which have been proposed to be a better neutral choice. X-linked genes with high degree of male-biased expression show the most extreme adaptive pattern at 5' noncoding regions, in agreement with faster-X evolution for gene expression divergence and a higher incidence of positively selected recessive mutations. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  19. Sequence and expression analyses of porcine ISG15 and ISG43 genes.

    PubMed

    Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei

    2009-08-01

    The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.

  20. Analysis of blood-based gene expression in idiopathic Parkinson disease.

    PubMed

    Shamir, Ron; Klein, Christine; Amar, David; Vollstedt, Eva-Juliane; Bonin, Michael; Usenovic, Marija; Wong, Yvette C; Maver, Ales; Poths, Sven; Safer, Hershel; Corvol, Jean-Christophe; Lesage, Suzanne; Lavi, Ofer; Deuschl, Günther; Kuhlenbaeumer, Gregor; Pawlack, Heike; Ulitsky, Igor; Kasten, Meike; Riess, Olaf; Brice, Alexis; Peterlin, Borut; Krainc, Dimitri

    2017-10-17

    To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples). Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature. Batch-effect reduction and cross-validation were performed to ensure signature reliability. Finally, functional and pathway enrichment analyses were applied to the signature to identify PD-associated gene networks. A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregulated and 23 downregulated genes differentiating between patients with idiopathic PD and controls, was identified with the training cohort and successfully replicated in both an independent validation cohort (area under the curve [AUC] = 0.79, p = 7.13E-6) and a subsequent independent test cohort (AUC = 0.74, p = 4.2E-4). Network analysis of the signature revealed gene enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity, and misregulation of mitochondria-localized genes, including downregulation of COX4I1 , ATP5A1 , and VDAC3 . We present a large-scale study of PD gene expression profiling. This work identifies a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts in developing potential PD biomarkers. © 2017 American Academy of Neurology.

  1. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  2. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods

    PubMed Central

    2012-01-01

    High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods. Reviewers This article was reviewed by Arcady Mushegian, Byung-Soo Kim and Joel Bader. PMID:23227854

  3. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer.

  4. Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana.

    PubMed

    Abraham-Juárez, María Jazmín; Martínez-Hernández, Aída; Leyva-González, Marco Antonio; Herrera-Estrella, Luis; Simpson, June

    2010-09-01

    Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.

  5. Candidate genes for panhypopituitarism identified by gene expression profiling

    PubMed Central

    Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis

    2011-01-01

    Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248

  6. Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?

    PubMed

    Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2015-02-01

    The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?

    PubMed Central

    Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steven W.

    2014-01-01

    Background The temporal and situational stability of personality has led generations of researchers to hypothesise that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by ‘behavioural immune response’ theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. Methods An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5 ml sample of peripheral blood for gene expression analysis. Results Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. Conclusions The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. PMID:25459894

  8. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    NASA Technical Reports Server (NTRS)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  9. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  10. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  11. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    PubMed

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  13. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish.

    PubMed

    Busby, Ellen R; Mommsen, Thomas P

    2016-09-01

    In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    PubMed Central

    Li, Xia; Rao, Shaoqi; Jiang, Wei; Li, Chuanxing; Xiao, Yun; Guo, Zheng; Zhang, Qingpu; Wang, Lihong; Du, Lei; Li, Jing; Li, Li; Zhang, Tianwen; Wang, Qing K

    2006-01-01

    Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to

  15. Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage.

    PubMed

    Papenfuss, Anthony T; Feng, Zhi-Ping; Krasnec, Katina; Deakin, Janine E; Baker, Michelle L; Miller, Robert D

    2015-07-22

    Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and

  16. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    PubMed

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.

  17. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    PubMed

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  18. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  19. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR.

    PubMed

    Oliveira, Sara R; Vieira, Helena L A; Duarte, Carlos B

    2015-09-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box binding protein), Actg1 (actin gamma 1) and Rn18s (18S rRNA) genes presented less stable expression profiles in cultured cortical astrocytes exposed to CORM-A1 for up to 60 min. For validation, we analyzed the effect of CO on the expression of Bdnf and bcl-2. Different results were obtained, depending on the reference genes used. A significant increase in the expression of both genes was found when the results were normalized with Gapdh and Ppia, in contrast with the results obtained when the other genes were used as reference. These findings highlight the need for a proper and accurate selection of the reference genes used in the quantification of qRT-PCR results

  20. Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary Responders

    PubMed Central

    Mutch, David M.; Temanni, M. Ramzi; Henegar, Corneliu; Combes, Florence; Pelloux, Véronique; Holst, Claus; Sørensen, Thorkild I. A.; Astrup, Arne; Martinez, J. Alfredo; Saris, Wim H. M.; Viguerie, Nathalie; Langin, Dominique; Zucker, Jean-Daniel; Clément, Karine

    2007-01-01

    Background The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. Methodology/Principal Findings The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB) trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8–12 kgs weight loss) could always be differentiated from non-responders (<4 kgs weight loss). We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box) approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%±8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier) improved prediction accuracy to 80.9%±2.2%. Conclusion Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition. PMID:18094752

  1. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    PubMed Central

    2012-01-01

    Background Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter. Conclusions The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available

  2. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  3. DGEM--a microarray gene expression database for primary human disease tissues.

    PubMed

    Xia, Yuni; Campen, Andrew; Rigsby, Dan; Guo, Ying; Feng, Xingdong; Su, Eric W; Palakal, Mathew; Li, Shuyu

    2007-01-01

    Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.

  4. Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns.

    PubMed

    Xiong, Xian-rong; Lan, Dao-liang; Li, Jian; Wang, Yong; Zhong, Jin-cheng

    2015-02-01

    Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear-cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine-yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and 'corrected' the gene expression patterns of yak iSCNT embryos.

  5. Patterns of gene expression in a scleractinian coral undergoing natural bleaching.

    PubMed

    Seneca, Francois O; Forêt, Sylvain; Ball, Eldon E; Smith-Keune, Carolyn; Miller, David J; van Oppen, Madeleine J H

    2010-10-01

    Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P < 0.05), respectively. We present these genes as potential coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.

  6. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  7. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis

    PubMed Central

    Subramanian, M; Francis, P; Bilke, S; Li, XL; Hara, T; Lu, X; Jones, MF; Walker, RL; Zhu, Y; Pineda, M; Lee, C; Varanasi, L; Yang, Y; Martinez, LA; Luo, J; Ambs, S; Sharma, S; Wakefield, LM; Meltzer, PS; Lal, A

    2015-01-01

    Most p53 mutations in human cancers are missense mutations resulting in a full-length mutant p53 protein. Besides losing tumor suppressor activity, some hotspot p53 mutants gain oncogenic functions. This effect is mediated in part, through gene expression changes due to inhibition of p63 and p73 by mutant p53 at their target gene promoters. Here, we report that the tumor suppressor microRNA let-7i is downregulated by mutant p53 in multiple cell lines expressing endogenous mutant p53. In breast cancer patients, significantly decreased let-7i levels were associated with missense mutations in p53. Chromatin immunoprecipitation and promoter luciferase assays established let-7i as a transcriptional target of mutant p53 through p63. Introduction of let-7i to mutant p53 cells significantly inhibited migration, invasion and metastasis by repressing a network of oncogenes including E2F5, LIN28B, MYC and NRAS. Our findings demonstrate that repression of let-7i expression by mutant p53 has a key role in enhancing migration, invasion and metastasis. PMID:24662829

  8. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  9. Gene expression systems in corynebacteria.

    PubMed

    Srivastava, Preeti; Deb, J K

    2005-04-01

    Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.

  10. Gene Expression: Sizing it all up

    USDA-ARS?s Scientific Manuscript database

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  11. Ancient origin of placental expression in the growth hormone genes of anthropoid primates

    PubMed Central

    Papper, Zack; Jameson, Natalie M.; Romero, Roberto; Weckle, Amy L.; Mittal, Pooja; Benirschke, Kurt; Santolaya-Forgas, Joaquin; Uddin, Monica; Haig, David; Goodman, Morris; Wildman, Derek E.

    2009-01-01

    In anthropoid primates, growth hormone (GH) genes have undergone at least 2 independent locus expansions, one in platyrrhines (New World monkeys) and another in catarrhines (Old World monkeys and apes). In catarrhines, the GH cluster has a pituitary-expressed gene called GH1; the remaining GH genes include placental GHs and placental lactogens. Here, we provide cDNA sequence evidence that the platyrrhine GH cluster also includes at least 3 placenta expressed genes and phylogenetic evidence that placenta expressed anthropoid GH genes have undergone strong adaptive evolution, whereas pituitary-expressed GH genes have faced strict functional constraint. Our phylogenetic evidence also points to lineage-specific gene gain and loss in early placental mammalian evolution, with at least three copies of the GH gene present at the time of the last common ancestor (LCA) of primates, rodents, and laurasiatherians. Anthropoid primates and laurasiatherians share gene descendants of one of these three copies, whereas rodents and strepsirrhine primates each maintain a separate copy. Eight of the amino-acid replacements that occurred on the lineage leading to the LCA of extant anthropoids have been implicated in GH signaling at the maternal-fetal interface. Thus, placental expression of GH may have preceded the separate series of GH gene duplications that occurred in catarrhines and platyrrhines (i.e., the roles played by placenta-expressed GHs in human pregnancy may have a longer evolutionary history than previously appreciated). PMID:19805162

  12. Ancient origin of placental expression in the growth hormone genes of anthropoid primates.

    PubMed

    Papper, Zack; Jameson, Natalie M; Romero, Roberto; Weckle, Amy L; Mittal, Pooja; Benirschke, Kurt; Santolaya-Forgas, Joaquin; Uddin, Monica; Haig, David; Goodman, Morris; Wildman, Derek E

    2009-10-06

    In anthropoid primates, growth hormone (GH) genes have undergone at least 2 independent locus expansions, one in platyrrhines (New World monkeys) and another in catarrhines (Old World monkeys and apes). In catarrhines, the GH cluster has a pituitary-expressed gene called GH1; the remaining GH genes include placental GHs and placental lactogens. Here, we provide cDNA sequence evidence that the platyrrhine GH cluster also includes at least 3 placenta expressed genes and phylogenetic evidence that placenta expressed anthropoid GH genes have undergone strong adaptive evolution, whereas pituitary-expressed GH genes have faced strict functional constraint. Our phylogenetic evidence also points to lineage-specific gene gain and loss in early placental mammalian evolution, with at least three copies of the GH gene present at the time of the last common ancestor (LCA) of primates, rodents, and laurasiatherians. Anthropoid primates and laurasiatherians share gene descendants of one of these three copies, whereas rodents and strepsirrhine primates each maintain a separate copy. Eight of the amino-acid replacements that occurred on the lineage leading to the LCA of extant anthropoids have been implicated in GH signaling at the maternal-fetal interface. Thus, placental expression of GH may have preceded the separate series of GH gene duplications that occurred in catarrhines and platyrrhines (i.e., the roles played by placenta-expressed GHs in human pregnancy may have a longer evolutionary history than previously appreciated).

  13. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    PubMed Central

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  14. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia

    PubMed Central

    Smith, Stephanie MC; Mitchell, Gordon S; Friedle, Scott A; Sibigtroth, Christine M; Vinit, Stéphane; Watters, Jyoti J

    2013-01-01

    Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours) in the presence and absence of the nonselective P2X receptor agonist 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate (BzATP) to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X4 correlated only with iNOS. In addition, correlations between P2X7 and P2X4 were lost following hypoxia, suggesting that P2X4 and P2X7 receptor signaling differs in normoxia and hypoxia. Together, these data suggest that hypoxia suppresses P2X receptor-induced inflammatory gene expression, indicating a potentially

  15. Characterization of mouse and human GTP cyclohydrolase I genes. Mutations in patients with GTP cyclohydrolase I deficiency.

    PubMed

    Ichinose, H; Ohye, T; Matsuda, Y; Hori, T; Blau, N; Burlina, A; Rouse, B; Matalon, R; Fujita, K; Nagatsu, T

    1995-04-28

    GTP cyclohydrolase I is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in mammals. Previously, we reported three species of human GTP cyclohydrolase I cDNA in a human liver cDNA library (Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T. (1992) Biochem. Biophys. Res. Commun. 187, 359-365). Furthermore, very recently, we found that the GTP cyclohydrolase I gene is causative for hereditary progressive dystonia with marked diurnal fluctuation, also known as DOPA-responsive dystonia (Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., Fujita, K., and Nagatsu, T. (1994) Nature Genetics 8, 236-242). To clarify the mechanisms that regulate transcription of the GTP cyclohydrolase I gene and to generate multiple species of mRNA, we isolated genomic DNA clones for the human and mouse GTP cyclohydrolase I genes. Structural analysis of the isolated clones revealed that the GTP cyclohydrolase I gene is encoded by a single copy gene and is composed of six exons spanning approximately 30 kilobases. We sequenced all exon/intron boundaries of the human and mouse genes. Structural analysis also demonstrated that the heterogeneity of GTP cyclohydrolase I mRNA is caused by an alternative usage of the splicing acceptor site at the sixth exon. The transcription start site of the mouse GTP cyclohydrolase I gene and the 5'-flanking sequences of the mouse and human genes were determined. We performed regional mapping of the mouse gene by fluorescence in situ hybridization, and the mouse GTP cyclohydrolase I gene was assigned to region C2-3 of mouse chromosome 14. We identified missense mutations in patients with GTP cyclohydrolase I deficiency and expressed mutated enzymes in Escherichia coli to confirm alterations in the enzyme activity.

  16. The Renilla luciferase gene as a reference gene for normalization of gene expression in transiently transfected cells.

    PubMed

    Jiwaji, Meesbah; Daly, Rónán; Pansare, Kshama; McLean, Pauline; Yang, Jingli; Kolch, Walter; Pitt, Andrew R

    2010-12-31

    The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid. The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes. Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data.

  17. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    PubMed

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRTaa in gills of

  18. Insulin-like growth factor-I regulates GPER expression and function in cancer cells.

    PubMed

    De Marco, P; Bartella, V; Vivacqua, A; Lappano, R; Santolla, M F; Morcavallo, A; Pezzi, V; Belfiore, A; Maggiolini, M

    2013-02-07

    Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.

  19. Gene expression profiles analysis identifies key genes for acute lung injury in patients with sepsis.

    PubMed

    Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng

    2014-09-26

    To identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI + sepsis compared with patients with sepsis alone were performed with bioinformatic tools. GSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI + sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape. A total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2). PTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5865162912987143.

  20. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  1. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  2. Identification and expression analysis of leptin-regulated immediate early response and late target genes.

    PubMed

    Waelput, W; Verhee, A; Broekaert, D; Eyckerman, S; Vandekerckhove, J; Beattie, J H; Tavernier, J

    2000-05-15

    Using PC12 cells as an in vitro model system, we have identified a series of transcripts induced through activation of the leptin receptor. On the basis of kinetic studies, two distinct gene sets could be discerned: signal transducer and activator of transciption-3 (STAT-3), suppressor of cytokine signalling-3 (SOCS-3), MT-II (metallothionein-II), the serine/threonine kinase fibroblast-growth-factor-inducible kinase (Fnk) and modulator recognition factor (MRF-1), which are immediate early response genes, and pancreatitis-associated protein I (PAP I), squalene epoxidase, uridine diphosphate glucuronosyltransferase and annexin VIII, which are late induced target genes. At late time points a strong co-stimulation with beta-nerve growth factor or with the adenylate cyclase activator forskolin was observed. To assess the validity of the PC12-cell model system, we examined the effect of leptin administration on the gene transcription of STAT-3, MT-II, Fnk and PAP I in vivo. Leptin treatment of leptin-deficient ob/ob mice increased the STAT-3, SOCS-3, MT-II and Fnk mRNA, and MT-I protein levels in liver, whereas, in jejunum, expression of PAP I mRNA was down-regulated. Furthermore, administration of leptin to starved wild-type mice enhanced the expression of MT-II and Fnk mRNA in liver, but decreased MT-II and PAP I mRNA expression in jejunum. These findings may help to explain the obese phenotype observed in some colonies of MT-I- and MT-II-null mice and/or the observation that leptin protects against tumour-necrosis-factor toxicity in vivo.

  3. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    PubMed

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Gene Expression Profiling in Fish Toxicology: A Review.

    PubMed

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  5. Faster-X Evolution of Gene Expression in Drosophila

    PubMed Central

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  6. Temperature-Dependent Expression of phzM and Its Regulatory Genes lasI and ptsP in Rhizosphere Isolate Pseudomonas sp. Strain M18▿

    PubMed Central

    Huang, Jiaofang; Xu, Yuquan; Zhang, Hongyan; Li, Yaqian; Huang, Xianqing; Ren, Bin; Zhang, Xuehong

    2009-01-01

    Pseudomonas sp. strain M18, an effective biological control agent isolated from the melon rhizosphere, has a genetic background similar to that of the opportunistic human pathogen Pseudomonas aeruginosa PAO1. However, the predominant phenazine produced by strain M18 is phenazine-1-carboxylic acid (PCA) rather than pyocyanin (PYO); the quantitative ratio of PCA to PYO is 105 to 1 at 28°C in strain M18, while the ratio is 1 to 2 at 37°C in strain PAO1. We first provided evidence that the differential production of the two phenazines in strains M18 and PAO1 is related to the temperature-dependent and strain-specific expression patterns of phzM, a gene involved in the conversion of PCA to PYO. Transcriptional levels of phzM were measured by quantitative real-time PCR, and the activities of both transcriptional and translational phzM′-′lacZ fusions were determined in strains M18 and PAO1, respectively. Using lasI::Gm and ptsP::Gm inactivation M18 mutants, we further show that expression of the phzM gene is positively regulated by the quorum-sensing protein LasI and negatively regulated by the phosphoenolpyruvate phosphotransferase protein PtsP. Surprisingly, the lasI and ptsP regulatory genes were also expressed in a temperature-dependent and strain-specific manner. The differential production of the phenazines PCA and PYO by strains M18 and PAO1 may be a consequence of selective pressure imposed on P. aeruginosa PAO1 and its relative M18 in the two different niches over a long evolutionary process. PMID:19717631

  7. A comparison of brain gene expression levels in domesticated and wild animals.

    PubMed

    Albert, Frank W; Somel, Mehmet; Carneiro, Miguel; Aximu-Petri, Ayinuer; Halbwax, Michel; Thalmann, Olaf; Blanco-Aguiar, Jose A; Plyusnina, Irina Z; Trut, Lyudmila; Villafuerte, Rafael; Ferrand, Nuno; Kaiser, Sylvia; Jensen, Per; Pääbo, Svante

    2012-09-01

    Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.

  8. A Comparison of Brain Gene Expression Levels in Domesticated and Wild Animals

    PubMed Central

    Albert, Frank W.; Somel, Mehmet; Carneiro, Miguel; Aximu-Petri, Ayinuer; Halbwax, Michel; Thalmann, Olaf; Blanco-Aguiar, Jose A.; Trut, Lyudmila; Villafuerte, Rafael; Ferrand, Nuno; Kaiser, Sylvia; Jensen, Per; Pääbo, Svante

    2012-01-01

    Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30–75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different. PMID:23028369

  9. Transient, Inducible, Placenta-Specific Gene Expression in Mice

    PubMed Central

    Fan, Xiujun; Petitt, Matthew; Gamboa, Matthew; Huang, Mei; Dhal, Sabita; Druzin, Maurice L.; Wu, Joseph C.

    2012-01-01

    Molecular understanding of placental functions and pregnancy disorders is limited by the absence of methods for placenta-specific gene manipulation. Although persistent placenta-specific gene expression has been achieved by lentivirus-based gene delivery methods, developmentally and physiologically important placental genes have highly stage-specific functions, requiring controllable, transient expression systems for functional analysis. Here, we describe an inducible, placenta-specific gene expression system that enables high-level, transient transgene expression and monitoring of gene expression by live bioluminescence imaging in mouse placenta at different stages of pregnancy. We used the third generation tetracycline-responsive tranactivator protein Tet-On 3G, with 10- to 100-fold increased sensitivity to doxycycline (Dox) compared with previous versions, enabling unusually sensitive on-off control of gene expression in vivo. Transgenic mice expressing Tet-On 3G were created using a new integrase-based, site-specific approach, yielding high-level transgene expression driven by a ubiquitous promoter. Blastocysts from these mice were transduced with the Tet-On 3G-response element promoter-driving firefly luciferase using lentivirus-mediated placenta-specific gene delivery and transferred into wild-type pseudopregnant recipients for placenta-specific, Dox-inducible gene expression. Systemic Dox administration at various time points during pregnancy led to transient, placenta-specific firefly luciferase expression as early as d 5 of pregnancy in a Dox dose-dependent manner. This system enables, for the first time, reliable pregnancy stage-specific induction of gene expression in the placenta and live monitoring of gene expression during pregnancy. It will be widely applicable to studies of both placental development and pregnancy, and the site-specific Tet-On G3 mouse will be valuable for studies in a broad range of tissues. PMID:23011919

  10. Osteoblast gene expression is differentially regulated by TGF-beta isoforms.

    PubMed

    Fagenholz, P J; Warren, S M; Greenwald, J A; Bouletreau, P J; Spector, J A; Crisera, F E; Longaker, M T

    2001-03-01

    The transforming growth factor beta (TGF-beta) superfamily encompasses a number of important growth factors including several TGF-beta isoforms, the bone morphogenetic proteins, activins, inhibins, and growth and differentiation factors. TGF-beta 1, -beta 2, and -beta 3 are three closely related isoforms that are widely expressed during skeletal morphogenesis and bone repair. Numerous studies suggest that each isoform has unique in vivo functions; however, the effects of these TGF-beta isoforms on osteoblast gene expression and maturation have never been directly compared. In the current study, we treated undifferentiated neonatal rat calvaria osteoblast-enriched cell cultures with 2.5 ng/ml of each TGF-beta isoform and analyzed gene expression at 0, 3, 6, and 24 hours. We demonstrated unique isoform-specific regulation of endogenous TGF-beta 1 and type I collagen mRNA transcription. To assess the effects of extended TGF-beta treatment on osteoblast maturation, we differentiated osteoblast cultures in the presence of 2.5 ng/ml of each TGF-beta isoform. Analysis of collagen I, alkaline phosphatase, and osteocalcin demonstrated that each TGF-beta isoform uniquely suppressed the transcription of these osteoblast differentiation markers. Interestingly, TGF-beta isoform treatment increased osteopontin expression in primary osteoblasts after 4 and 10 days of differentiation. To our knowledge, these data provide the first direct comparison of the effects of the TGF-beta isoforms on osteoblast gene expression in vitro. Furthermore, these data suggest that TGF-beta isoforms may exert their unique in vivo effects by differentially regulating osteoblast cytokine secretion, extracellular matrix production, and the rate of cellular maturation.

  11. Expression Atlas: gene and protein expression across multiple studies and organisms

    PubMed Central

    Tang, Y Amy; Bazant, Wojciech; Burke, Melissa; Fuentes, Alfonso Muñoz-Pomer; George, Nancy; Koskinen, Satu; Mohammed, Suhaib; Geniza, Matthew; Preece, Justin; Jarnuczak, Andrew F; Huber, Wolfgang; Stegle, Oliver; Brazma, Alvis; Petryszak, Robert

    2018-01-01

    Abstract Expression Atlas (http://www.ebi.ac.uk/gxa) is an added value database that provides information about gene and protein expression in different species and contexts, such as tissue, developmental stage, disease or cell type. The available public and controlled access data sets from different sources are curated and re-analysed using standardized, open source pipelines and made available for queries, download and visualization. As of August 2017, Expression Atlas holds data from 3,126 studies across 33 different species, including 731 from plants. Data from large-scale RNA sequencing studies including Blueprint, PCAWG, ENCODE, GTEx and HipSci can be visualized next to each other. In Expression Atlas, users can query genes or gene-sets of interest and explore their expression across or within species, tissues, developmental stages in a constitutive or differential context, representing the effects of diseases, conditions or experimental interventions. All processed data matrices are available for direct download in tab-delimited format or as R-data. In addition to the web interface, data sets can now be searched and downloaded through the Expression Atlas R package. Novel features and visualizations include the on-the-fly analysis of gene set overlaps and the option to view gene co-expression in experiments investigating constitutive gene expression across tissues or other conditions. PMID:29165655

  12. Clausa, a Tomato Mutant with a Wide Range of Phenotypic Perturbations, Displays a Cell Type-Dependent Expression of the Homeobox Gene LeT6/TKn21

    PubMed Central

    Avivi, Yigal; Lev-Yadun, Simcha; Morozova, Nadya; Libs, Laurence; Williams, Leor; Zhao, Jing; Varghese, George; Grafi, Gideon

    2000-01-01

    Class I knox genes play an important role in shoot meristem function and are thus involved in the ordered development of stems, leaves, and reproductive organs. To elucidate the mechanism underlying the expression pattern of these homeobox genes, we studied a spontaneous tomato (Lycopersicon esculentum) mutant that phenotypically resembles, though is more extreme than, transgenic plants misexpressing class I knox genes. This mutant was found to carry a recessive allele, denoted clausa:shootyleaf (clau:shl)—a newly identified allele of clausa. Mutant plants exhibited abnormal leaf and flower morphology, epiphyllus inflorescences, fusion of organs, calyx asymmetry, and navel-like fruits. Analysis by scanning electron microscopy revealed that such fruits carried ectopic ovules, various vegetative primordia, as well as “forests” of stalked glandular trichomes. In situ RNA hybridization showed a peculiar expression pattern of the class I knox gene LeT6/TKn2; expression was restricted to the vascular system and palisade layer of mature leaves and to the inner part of ovules integuments. We conclude that CLAUSA regulates various aspects of tomato plant development, at least partly, by rendering the LeT6/TKn2 gene silent in specific tissues during development. Considering the expression pattern of LeT6/TKn2 in the clausa mutant, we suggest that the control over a given homeobox gene is maintained by several different regulatory mechanisms, in a cell type-dependent manner. PMID:11027705

  13. A Review of Feature Extraction Software for Microarray Gene Expression Data

    PubMed Central

    Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini

    2014-01-01

    When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315

  14. Effects of Methionine Supplementation on the Expression of Protein Deposition-Related Genes in Acute Heat Stress-Exposed Broilers

    PubMed Central

    Grieser, Daiane Oliveira; Zancanela, Vittor; Voltolini, Débora Marques; Khatlab, Angélica Souza; Guimarães, Simone Eliza Facioni; Soares, Maria Amélia Menck; Neto, Adhemar Rodrigues Oliveira

    2015-01-01

    The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1) in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2) genes in the breast muscle of broilers. Broilers from 1–21 and 22–42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD), recommended level of methionine (DL1), and excess supplementation of methionine (DL2). The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS) (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively). The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001) and the highest CTSL2 gene expression (P<0.0001). The methionine supplementation increased the IGF-I (P = 0.0144) and GHR (P = 0.0011) gene expression and decreased the CTSL2 (P = 0.0004) and atrogin 1 (P = 0.0012) gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252) and CTSL2 (P = 0.0011) gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001), with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that

  15. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  16. An atlas of gene expression and gene co-regulation in the human retina.

    PubMed

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-08

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  18. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    PubMed

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.

  19. Global gene expression and morphological alterations in the mammary gland after gestational exposure to bisphenol A, genistein and indole-3-carbinol in female Sprague-Dawley offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassi, Tony F.

    This study aimed to evaluate the modifying effects of dietary genistein (GEN) and indole-3-carbinol (I3C) on early mammary gland development in female Sprague-Dawley offspring born to mothers exposed to BPA during gestation. Pregnant rats were treated with BPA25 or 250 μg/kg bw/day from gestational days 10 to 21 with or without dietary intake of GEN (250 mg/kg chow) or I3C (2000 mg/kg chow). At post-natal day (PND) 21, female offspring from different litters were euthanized for mammary gland development and gene expression analyses. Our results indicated that prenatal exposure to BPA25 and 250 did not modify the ductal elongation ofmore » the mammary gland tree or the estrogen receptor alpha (ER-α) expression in terminal end buds (TEBs). However, BPA25-exposed offspring had a higher number of terminal structures (TEBs + TDs) and an increased mammary branching and cell proliferation index in TEBs. Besides that, BPA25 and 250 modulated the expression of several genes in the immature mammary gland that were not changed in a dose dependent manner and involved different clusters of up- and down-regulated genes. Furthermore, BPA25 and BPA250 + I3C-treated groups also had a higher number of enriched functional gene categories. In addition, maternal dietary GEN and I3C in association with BPA exposure produced specific gene expression alterations in the mammary gland and overcome the adverse effect of BPA25, decreasing the branching of the mammary gland. In conclusion, prenatal BPA exposure induced both morphological and gene expression modifications on the mammary gland that dietary intake of GEN and I3C reverted on BPA25-exposed animals. - Highlights: • Gestational BPA and its association with GEN and I3C modify gene expression on the early mammary gland development. • GEN and I3C induced a different gene expression signature than lower BPA dose. • Dietary GEN and I3C countered the adverse effect of lower BPA dose on the cell proliferation and mammary gland

  20. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    PubMed

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  1. Induction of Virulence Gene Expression in Staphylococcus aureus by Pulmonary Surfactant

    PubMed Central

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi

    2014-01-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal. PMID:24452679

  2. Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.

    PubMed

    Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio

    2002-08-01

    The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.

  3. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    PubMed

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  4. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  5. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus

    PubMed Central

    Kobayashi, Kazuya; Matsuura, Kenji

    2017-01-01

    Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial

  6. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Matsuura, Kenji

    2017-01-01

    Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial

  7. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher ( P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  8. Stochastic gene expression in Arabidopsis thaliana.

    PubMed

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  9. The construction of a synthetic Escherichia coli trp promoter and its use in the expression of a synthetic interferon gene.

    PubMed Central

    Windass, J D; Newton, C R; De Maeyer-Guignard, J; Moore, V E; Markham, A F; Edge, M D

    1982-01-01

    An 82 base pair DNA fragment has been synthesised which contains the E. coli trp promoter and operator sequences and also encodes the first Shine Dalgarno sequence of the trp operon. This DNA fragment is flanked by EcoRI and ClaI/TaqI cohesive ends and is thus easy to clone, transfer between vector systems and couple to genes to drive their expression. It has been cloned into plasmid pAT153, producing a convenient trp promoter vector. We have also joined the fragment to a synthetic IFN-alpha 1 gene, using synthetic oligonucleotides to generate a completely natural, highly efficient bacterial translation initiation signal on the promoter proximal side of the IFN gene. Plasmids carrying this construction enable E. coli cells to express IFN-alpha 1 almost constitutively and with significantly higher efficiency than from a lacUV5 promoter based system. Images PMID:6184675

  10. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    PubMed

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  11. Identification of Conflicting Selective Effects on Highly Expressed Genes

    PubMed Central

    Higgs, Paul G.; Hao, Weilong; Golding, G. Brian

    2007-01-01

    Many different selective effects on DNA and proteins influence the frequency of codons and amino acids in coding sequences. Selection is often stronger on highly expressed genes. Hence, by comparing high- and low-expression genes it is possible to distinguish the factors that are selected by evolution. It has been proposed that highly expressed genes should (i) preferentially use codons matching abundant tRNAs (translational efficiency), (ii) preferentially use amino acids with low cost of synthesis, (iii) be under stronger selection to maintain the required amino acid content, and (iv) be selected for translational robustness. These effects act simultaneously and can be contradictory. We develop a model that combines these factors, and use Akaike’s Information Criterion for model selection. We consider pairs of paralogues that arose by whole-genome duplication in Saccharmyces cerevisiae. A codon-based model is used that includes asymmetric effects due to selection on highly expressed genes. The largest effect is translational efficiency, which is found to strongly influence synonymous, but not non-synonymous rates. Minimization of the cost of amino acid synthesis is implicated. However, when a more general measure of selection for amino acid usage is used, the cost minimization effect becomes redundant. Small effects that we attribute to selection for translational robustness can be identified as an improvement in the model fit on top of the effects of translational efficiency and amino acid usage. PMID:19430600

  12. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  13. Aberrant Gene Expression Profiles in Pluripotent Stem Cells Induced from Fibroblasts of a Klinefelter Syndrome Patient*

    PubMed Central

    Ma, Yu; Li, Chunliang; Gu, Junjie; Tang, Fan; Li, Chun; Li, Peng; Ping, Ping; Yang, Shi; Li, Zheng; Jin, Ying

    2012-01-01

    Klinefelter syndrome (KS) is the most common male chromosome aneuploidy. Its pathophysiology is largely unexplained due to the lack of adequate models. Here, we report the derivation of induced pluripotent stem cell (iPSCs) lines from a KS patient with a karyotype of 47, XXY. Derived KS-iPSCs meet all criteria of normal iPSCs with the potential for germ cell differentiation. Although X chromosome inactivation occurs in all KS-iPSCs, genome-wide transcriptome analysis identifies aberrantly expressed genes associated with the clinical features of KS. Our KS-iPSCs can serve as a cellular model for KS research. Identified genes may become biomarkers for early diagnosis or potential therapeutic targets for KS and significantly accelerate the understanding, diagnosis, and treatment of Klinefelter syndrome. PMID:23019320

  14. Classification of ductal carcinoma in situ by gene expression profiling.

    PubMed

    Hannemann, Juliane; Velds, Arno; Halfwerk, Johannes B G; Kreike, Bas; Peterse, Johannes L; van de Vijver, Marc J

    2006-01-01

    Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas. Gene expression profiling using microarray analysis has been performed on 40 in situ and 40 invasive breast cancer cases. DCIS cases were classified as well- (n = 6), intermediately (n = 18), and poorly (n = 14) differentiated type. Of the 40 invasive breast cancer samples, five samples were grade I, 11 samples were grade II, and 24 samples were grade III. Using two-dimensional hierarchical clustering, the basal-like type, ERB-B2 type, and the luminal-type tumours originally described for invasive breast cancer could also be identified in DCIS. Using supervised classification, we identified a gene expression classifier of 35 genes, which differed between DCIS and invasive breast cancer; a classifier of 43 genes could be identified separating between well- and poorly differentiated DCIS samples.

  15. Classification of ductal carcinoma in situ by gene expression profiling

    PubMed Central

    Hannemann, Juliane; Velds, Arno; Halfwerk, Johannes BG; Kreike, Bas; Peterse, Johannes L; van de Vijver, Marc J

    2006-01-01

    Introduction Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas. Methods Gene expression profiling using microarray analysis has been performed on 40 in situ and 40 invasive breast cancer cases. Results DCIS cases were classified as well- (n = 6), intermediately (n = 18), and poorly (n = 14) differentiated type. Of the 40 invasive breast cancer samples, five samples were grade I, 11 samples were grade II, and 24 samples were grade III. Using two-dimensional hierarchical clustering, the basal-like type, ERB-B2 type, and the luminal-type tumours originally described for invasive breast cancer could also be identified in DCIS. Conclusion Using supervised classification, we identified a gene expression classifier of 35 genes, which differed between DCIS and invasive breast cancer; a classifier of 43 genes could be identified separating between well- and poorly differentiated DCIS samples. PMID:17069663

  16. Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains

    PubMed Central

    Brinkmeyer-Langford, Candice L.; Guan, Jinting; Ji, Guoli; Cai, James J.

    2016-01-01

    Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases. PMID:27536236

  17. Validating internal controls for quantitative plant gene expression studies

    PubMed Central

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-01-01

    Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments. PMID:15317655

  18. Validating internal controls for quantitative plant gene expression studies.

    PubMed

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-08-18

    Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

  19. Antimicrobial peptide gene expression in periodontitis patients: A pilot study.

    PubMed

    Jourdain, Marie-Laure; Pierrard, Loïc; Kanagaratnam, Lukshe; Velard, Frédéric; Sergheraert, Johan; Lefèvre, Benoît; Gangloff, Sophie C; Braux, Julien

    2018-05-01

    Antimicrobial peptides (AMPs) are one of the most active components of innate immunity and have characteristics that could place them at the heart of the pathogenesis of periodontal disease. This study investigated differences in the expression of AMP coding genes obtained using a simple harvesting technique, gingival smear, between two groups of patients: chronic periodontitis subjects versus healthy ones. Twenty-three patients were enrolled in two groups: 12 were diagnosed with moderate or severe generalized chronic periodontitis, and 11 were diagnosed as clinically healthy. Gingival smears were retrieved and studied using reverse transcription-quantitative PCR (RT-qPCR) after mRNA purification. Fifteen gene expressions were obtained using real-time RT-qPCR. Three AMP genes, histatin 3 (HTN3), α-defensin 4 (DEFA4) and lysozyme C (LYZ), presented different expression levels in periodontitis patients compared with healthy subjects. The relative expression level of DEFA4 appeared to be a protective factor against periodontitis. Gingival smears studied by RT-qPCR may be used to assess the expression of AMPs coding genes. A lack of expression of DEFA4 could be a potential indicator of periodontitis status. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analysis of multiplex gene expression maps obtained by voxelation.

    PubMed

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  1. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  2. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  3. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  4. Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion

    DOE PAGES

    Golkaram, Mahdi; Hellander, Stefan; Drawert, Brian; ...

    2016-11-28

    We seek to elucidate the role of macromolecular crowding in transcription and translation. It is well known that stochasticity in gene expression can lead to differential gene expression and heterogeneity in a cell population. Recent experimental observations by Tan et al. have improved our understanding of the functional role of macromolecular crowding. It can be inferred from their observations that macromolecular crowding can lead to robustness in gene expression, resulting in a more homogeneous cell population. We introduce a spatial stochastic model to provide insight into this process. Our results show that macromolecular crowding reduces noise (as measured by themore » kurtosis of the mRNA distribution) in a cell population by limiting the diffusion of transcription factors (i.e. removing the unstable intermediate states), and that crowding by large molecules reduces noise more efficiently than crowding by small molecules. Finally, our simulation results provide evidence that the local variation in chromatin density as well as the total volume exclusion of the chromatin in the nucleus can induce a homogenous cell population« less

  5. Upregulated expression of La ribonucleoprotein domain family member 6 and collagen type I gene following water-filtered broad-spectrum near-infrared irradiation in a 3-dimensional human epidermal tissue culture model as revealed by microarray analysis.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2018-05-01

    Water-filtered broad-spectrum near-infrared irradiation can induce various biological effects, as our previous clinical, histological, and biochemical investigations have shown. However, few studies that examined the changes thus induced in gene expression. The aim was to investigate the changes in gene expression in a 3-dimensional reconstructed epidermal tissue culture exposed to water-filtered broad-spectrum near-infrared irradiation. DNA microarray and quantitative real-time polymerase chain reaction (PCR) analysis was used to assess gene expression levels in a 3-dimensional reconstructed epidermal model composed of normal human epidermal cells exposed to water-filtered broad-spectrum near-infrared irradiation. The water filter allowed 1000-1800 nm wavelengths and excluded 1400-1500 nm wavelengths, and cells were exposed to 5 or 10 rounds of near-infrared irradiation at 10 J/cm 2 . A DNA microarray with over 50 000 different probes showed 18 genes that were upregulated or downregulated by at least twofold after irradiation. Quantitative real-time PCR revealed that, relative to control cells, the gene encoding La ribonucleoprotein domain family member 6 (LARP6), which regulates collagen expression, was significantly and dose-dependently upregulated (P < 0.05) by water-filtered broad-spectrum near-infrared exposure. Gene encoding transcripts of collagen type I were significantly upregulated compared with controls (P < 0.05). This study demonstrates the ability of water-filtered broad-spectrum near-infrared irradiation to stimulate the production of type I collagen. © 2017 The Australasian College of Dermatologists.

  6. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    PubMed Central

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  7. Altered gene expression in early postnatal monoamine oxidase A knockout mice.

    PubMed

    Chen, Kevin; Kardys, Abbey; Chen, Yibu; Flink, Stephen; Tabakoff, Boris; Shih, Jean C

    2017-08-15

    We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis.

    PubMed

    Elsnerova, Katerina; Bartakova, Alena; Tihlarik, Josef; Bouda, Jiri; Rob, Lukas; Skapa, Petr; Hruda, Martin; Gut, Ivan; Mohelnikova-Duchonova, Beatrice; Soucek, Pavel; Vaclavikova, Radka

    2017-01-01

    Epithelial ovarian cancer (EOC) has the highest mortality among gynecological carcinomas. The lack of specific markers for prognostic determination of EOC progression hinders the search for novel effective therapies. The aim of the present study was (i) to explore differences in expressions of ATP-binding cassette (ABC) and solute carrier (SLC) transporter genes, genes associated with drug metabolism and cell cycle regulation between control ovarian tissues (n = 14), primary EOCs (n = 44) and intraperitoneal metastases (n = 29); (ii) to investigate associations of gene expression levels with prognosis of patients with intraperitoneal metastases. In all tissue samples, transcript levels of the above target genes were assessed using quantitative real-time PCR. Gene expression levels were compared between particular tissue types and evaluated with regard to progression-free survival (PFS) and drug-resistance status of patients with metastases. Gene expression of ABCA7 significantly increased and that of ESR2 decreased in the order control ovarian tissues - primary EOCs - metastases. High expressions of ABCA2 / 8 / 9 / 10 , ABCB1 , ABCC9 , ABCG2 , ATP7A , SLC16A14 , and SOD3 genes were significantly associated with longer progression-free survival of patients. In intraperitoneal metastases, expression of all of these genes highly correlated and indicated prognostic profile. Transporters from the ABCA family, ABCG2, and ESR2 are involved mainly in lipid metabolism, membrane transport, and cell proliferation. These processes are thus probably the most important for EOC progression. Based on these results, we have proposed novel markers of ovarian carcinoma progression and metastatic spread which might be potentially useful as therapeutic targets. Their significance should be further explored on a larger independent set of patients.

  9. Reference genes for measuring mRNA expression.

    PubMed

    Dundas, Jitesh; Ling, Maurice

    2012-12-01

    The aim of this review is to find answers to some of the questions surrounding reference genes and their reliability for quantitative experiments. Reference genes are assumed to be at a constant expression level, over a range of conditions such as temperature. These genes, such as GADPH and beta-actin, are used extensively for gene expression studies using techniques like quantitative PCR. There have been several studies carried out on identifying reference genes. However, a lot of evidence indicates issues to the general suitability of these genes. Recent studies had shown that different factors, including the environment and methods, play an important role in changing the expression levels of the reference genes. Thus, we conclude that there is no reference gene that can deemed suitable for all the experimental conditions. In addition, we believe that every experiment will require the scientific evaluation and selection of the best candidate gene for use as a reference gene to obtain reliable scientific results.

  10. Dynamic association rules for gene expression data analysis.

    PubMed

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  11. Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain

    PubMed Central

    2014-01-01

    Background The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets. Results We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCI model for differentially expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of minocycline (30 mg/kg, i.p.), but the levels of 39 transcripts were modulated following minocycline treatment. We then selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2 transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally, these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using qPCR. Conclusion In this work, we confirmed gene expression alterations previously identified by microarray analysis in the spinal cord and

  12. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    PubMed

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.

  13. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  14. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less

  15. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data

    PubMed Central

    Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.

    2016-01-01

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508

  16. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  17. Using a periclinal chimera to unravel layer-specific gene expression in plants

    PubMed Central

    Filippis, Ioannis; Lopez-Cobollo, Rosa; Abbott, James; Butcher, Sarah; Bishop, Gerard J

    2013-01-01

    Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes. PMID:23725542

  18. Expression of the KNOTTED HOMEOBOX Genes in the Cactaceae Cambial Zone Suggests Their Involvement in Wood Development.

    PubMed

    Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa

    2017-01-01

    The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous ( Pereskia lychnidiflora and Pilosocereus alensis ), non-fibrous ( Ariocarpus retusus ), and dimorphic ( Ferocactus pilosus ) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1 , as well as one or two class II paralogs of KNAT3 - KNAT4 - KNAT5 . While the KNOX gene SHOOTMERISTEMLESS ( STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus , we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora . Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species.

  19. Expression of the KNOTTED HOMEOBOX Genes in the Cactaceae Cambial Zone Suggests Their Involvement in Wood Development

    PubMed Central

    Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa

    2017-01-01

    The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous (Pereskia lychnidiflora and Pilosocereus alensis), non-fibrous (Ariocarpus retusus), and dimorphic (Ferocactus pilosus) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1, as well as one or two class II paralogs of KNAT3-KNAT4-KNAT5. While the KNOX gene SHOOTMERISTEMLESS (STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus, we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora. Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species. PMID:28316604

  20. SVAw - a web-based application tool for automated surrogate variable analysis of gene expression studies

    PubMed Central

    2013-01-01

    Background Surrogate variable analysis (SVA) is a powerful method to identify, estimate, and utilize the components of gene expression heterogeneity due to unknown and/or unmeasured technical, genetic, environmental, or demographic factors. These sources of heterogeneity are common in gene expression studies, and failing to incorporate them into the analysis can obscure results. Using SVA increases the biological accuracy and reproducibility of gene expression studies by identifying these sources of heterogeneity and correctly accounting for them in the analysis. Results Here we have developed a web application called SVAw (Surrogate variable analysis Web app) that provides a user friendly interface for SVA analyses of genome-wide expression studies. The software has been developed based on open source bioconductor SVA package. In our software, we have extended the SVA program functionality in three aspects: (i) the SVAw performs a fully automated and user friendly analysis workflow; (ii) It calculates probe/gene Statistics for both pre and post SVA analysis and provides a table of results for the regression of gene expression on the primary variable of interest before and after correcting for surrogate variables; and (iii) it generates a comprehensive report file, including graphical comparison of the outcome for the user. Conclusions SVAw is a web server freely accessible solution for the surrogate variant analysis of high-throughput datasets and facilitates removing all unwanted and unknown sources of variation. It is freely available for use at http://psychiatry.igm.jhmi.edu/sva. The executable packages for both web and standalone application and the instruction for installation can be downloaded from our web site. PMID:23497726

  1. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    PubMed

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  2. Rejuvenation of Gene Expression Pattern of Aged Human Skin by Broadband Light Treatment: A Pilot Study

    PubMed Central

    Chang, Anne Lynn S; Bitter, Patrick H; Qu, Kun; Lin, Meihong; Rapicavoli, Nicole A; Chang, Howard Y

    2013-01-01

    Studies in model organisms suggest that aged cells can be functionally rejuvenated, but whether this concept applies to human skin is unclear. Here we apply 3′-end sequencing for expression quantification (“3-seq”) to discover the gene expression program associated with human photoaging and intrinsic skin aging (collectively termed “skin aging”), and the impact of broadband light (BBL) treatment. We find that skin aging was associated with a significantly altered expression level of 2,265 coding and noncoding RNAs, of which 1,293 became “rejuvenated” after BBL treatment; i.e., they became more similar to their expression level in youthful skin. Rejuvenated genes (RGs) included several known key regulators of organismal longevity and their proximal long noncoding RNAs. Skin aging is not associated with systematic changes in 3′-end mRNA processing. Hence, BBL treatment can restore gene expression pattern of photoaged and intrinsically aged human skin to resemble young skin. In addition, our data reveal, to our knowledge, a previously unreported set of targets that may lead to new insights into the human skin aging process. PMID:22931923

  3. The Effect of Garlic Extract on Expression of INFγ And Inos Genes in Macrophages Infected with Leishmania major

    PubMed Central

    Gharavi, MJ; Nobakht, M; Khademvatan, SH; Bandani, E; Bakhshayesh, M; Roozbehani, M

    2011-01-01

    Background The study was aimed to show the effect of molecular mechanism of Aqueous Garlic Extract (AGE) on expression of IFNγ and iNOS genes in Leishmania major. Methods Leishmania major promastigotes (MRHO/IR/75/ER) were added to the in-vitro cultured J774 cell line, the cells were incubated for 72 hours. Various concentrations of garlic extract (9.25, 18.5, 37, 74, 148 mg/ml) were added to the infected cells. MTT assay was applied for cellular proliferation. After 72 hours of incubation, supernatants were collected and total RNA was extracted from the infected cells. The express of IFNγ and iNOS genes were studied by RT-PCR method. Results The colorimetric MTT assay after 3 days of incubation showed cytotoxic effect of garlic extract with an IC50 of 37 mg/ml. In addition, IFNγ and iNOS genes expression by RT-PCR indicated that garlic extract lead to over expression of these genes in J774 cell line infected with L. major. Conclusion Garlic extract exerts cytotoxic effect on infected J774 cell line. In addition, the hypothesis that garlic can improve cellular immunity with raising the expression of IFNγ and of iNOS genes confirmed. PMID:22347300

  4. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.

    PubMed

    Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R

    2007-09-01

    Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.

  5. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    PubMed Central

    Huan, Tianxiao; Joehanes, Roby; Schurmann, Claudia; Schramm, Katharina; Pilling, Luke C.; Peters, Marjolein J.; Mägi, Reedik; DeMeo, Dawn; O'Connor, George T.; Ferrucci, Luigi; Teumer, Alexander; Homuth, Georg; Biffar, Reiner; Völker, Uwe; Herder, Christian; Waldenberger, Melanie; Peters, Annette; Zeilinger, Sonja; Metspalu, Andres; Hofman, Albert; Uitterlinden, André G.; Hernandez, Dena G.; Singleton, Andrew B.; Bandinelli, Stefania; Munson, Peter J.; Lin, Honghuang; Benjamin, Emelia J.; Esko, Tõnu; Grabe, Hans J.; Prokisch, Holger; van Meurs, Joyce B.J.; Melzer, David; Levy, Daniel

    2016-01-01

    Abstract Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a meta-analysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) <0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-reactive protein levels). Our transcriptomic study provides potential insights into the effects of cigarette smoking on gene expression in whole blood and their relations to smoking-related diseases. The results of such analyses may highlight attractive targets for treating or preventing smoking-related health effects. PMID:28158590

  6. Genome-wide DNA methylation drives human embryonic stem cell erythropoiesis by remodeling gene expression dynamics.

    PubMed

    Liu, Zhijing; Feng, Qiang; Sun, Pengpeng; Lu, Yan; Yang, Minlan; Zhang, Xiaowei; Jin, Xiangshu; Li, Yulin; Lu, Shi-Jiang; Quan, Chengshi

    2017-12-01

    To investigate the role of DNA methylation during erythrocyte production by human embryonic stem cells (hESCs). We employed an erythroid differentiation model from hESCs, and then tracked the genome-wide DNA methylation maps and gene expression patterns through an Infinium HumanMethylation450K BeadChip and an Ilumina Human HT-12 v4 Expression Beadchip, respectively. A negative correlation between DNA methylation and gene expression was substantially enriched during the later differentiation stage and was present in both the promoter and the gene body. Moreover, erythropoietic genes with differentially methylated CpG sites that were primarily enriched in nonisland regions were upregulated, and demethylation of their gene bodies was associated with the presence of enhancers and DNase I hypersensitive sites. Finally, the components of JAK-STAT-NF-κB signaling were DNA hypomethylated and upregulated, which targets the key genes for erythropoiesis. Erythroid lineage commitment by hESCs requires genome-wide DNA methylation modifications to remodel gene expression dynamics.

  7. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    PubMed Central

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  8. Gene expression profiling reveals two separate mechanisms regulating apoptosis in rectal carcinomas in vivo

    PubMed Central

    de Bruin, Elza C.; van de Pas, Simone; van de Velde, Cornelis J. H.; van Krieken, J. Han J. M.; Peltenburg, Lucy T. C.; Marijnen, Corrie A. M.

    2007-01-01

    The level of apoptosis in rectal carcinomas of patients treated by surgery only predicts local failure; patients with intrinsically high-apoptotic tumors develop less local recurrences than patients with low levels of apoptosis. To identify genes involved in this intrinsic apoptotic process in vivo, 47 rectal tumors with known apoptotic phenotype (24 low- and 23 high-apoptotic) were analyzed by oligonucleotide microarray technology. We identified several genes differentially expressed between low- and high-apoptotic tumors. Unsupervised clustering of the tumors based on expression levels of these genes separated the low-apoptotic from the high-apoptotic tumors, indicating a gene expression-dependent regulation. In addition, this clustering revealed two subgroups of high-apoptotic tumors. One high-apoptotic subgroup showed subtle differences in mRNA and protein expression of the known apoptotic regulators BAX, cIAP2 and ARC compared to the low-apoptotic tumors. The other subgroup of high-apoptotic tumors showed high expression of immune-related genes; predominantly HLA class II and chemokines, but also HLA class I and interferon-inducible genes were highly expressed. Immunohistochemistry revealed HLA-DR expression in epithelial tumor cells in 70% of these high-apoptotic tumors. The expression data suggest that high levels of apoptosis in rectal carcinoma patients can be the result of either slightly altered expression of known pro- and anti-apoptotic genes or high expression of immune-related genes. Electronic supplementary material The online version of this article (doi: 10.1007/s10495-007-0088-2) contains supplementary material, which is available to authorized users. PMID:17610066

  9. RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes.

    PubMed

    Mattison, Christopher P; Rai, Ruhi; Settlage, Robert E; Hinchliffe, Doug J; Madison, Crista; Bland, John M; Brashear, Suzanne; Graham, Charles J; Tarver, Matthew R; Florane, Christopher; Bechtel, Peter J

    2017-02-22

    The pecan nut is a nutrient-rich part of a healthy diet full of beneficial fatty acids and antioxidants, but can also cause allergic reactions in people suffering from food allergy to the nuts. The transcriptome of a developing pecan nut was characterized to identify the gene expression occurring during the process of nut development and to highlight those genes involved in fatty acid metabolism and those that commonly act as food allergens. Pecan samples were collected at several time points during the embryo development process including the water, gel, dough, and mature nut stages. Library preparation and sequencing were performed using Illumina-based mRNA HiSeq with RNA from four time points during the growing season during August and September 2012. Sequence analysis with Trinotate software following the Trinity protocol identified 133,000 unigenes with 52,267 named transcripts and 45,882 annotated genes. A total of 27,312 genes were defined by GO annotation. Gene expression clustering analysis identified 12 different gene expression profiles, each containing a number of genes. Three pecan seed storage proteins that commonly act as allergens, Car i 1, Car i 2, and Car i 4, were significantly up-regulated during the time course. Up-regulated fatty acid metabolism genes that were identified included acyl-[ACP] desaturase and omega-6 desaturase genes involved in oleic and linoleic acid metabolism. Notably, a few of the up-regulated acyl-[ACP] desaturase and omega-6 desaturase genes that were identified have expression patterns similar to the allergen genes based upon gene expression clustering and qPCR analysis. These findings suggest the possibility of coordinated accumulation of lipids and allergens during pecan nut embryogenesis.

  10. Validation of reference genes for quantitative gene expression analysis in experimental epilepsy.

    PubMed

    Sadangi, Chinmaya; Rosenow, Felix; Norwood, Braxton A

    2017-12-01

    To grasp the molecular mechanisms and pathophysiology underlying epilepsy development (epileptogenesis) and epilepsy itself, it is important to understand the gene expression changes that occur during these phases. Quantitative real-time polymerase chain reaction (qPCR) is a technique that rapidly and accurately determines gene expression changes. It is crucial, however, that stable reference genes are selected for each experimental condition to ensure that accurate values are obtained for genes of interest. If reference genes are unstably expressed, this can lead to inaccurate data and erroneous conclusions. To date, epilepsy studies have used mostly single, nonvalidated reference genes. This is the first study to systematically evaluate reference genes in male Sprague-Dawley rat models of epilepsy. We assessed 15 potential reference genes in hippocampal tissue obtained from 2 different models during epileptogenesis, 1 model during chronic epilepsy, and a model of noninjurious seizures. Reference gene ranking varied between models and also differed between epileptogenesis and chronic epilepsy time points. There was also some variance between the four mathematical models used to rank reference genes. Notably, we found novel reference genes to be more stably expressed than those most often used in experimental epilepsy studies. The consequence of these findings is that reference genes suitable for one epilepsy model may not be appropriate for others and that reference genes can change over time. It is, therefore, critically important to validate potential reference genes before using them as normalizing factors in expression analysis in order to ensure accurate, valid results. © 2017 Wiley Periodicals, Inc.

  11. Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker’s Guide to RT-qPCR Normalization

    PubMed Central

    Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois

    2014-01-01

    Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115

  12. Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs

    PubMed Central

    Deyle, David R; Khan, Iram F; Ren, Gaoying; Wang, Pei-Rong; Kho, Jordan; Schwarze, Ulrike; Russell, David W

    2012-01-01

    Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease. PMID:22031238

  13. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  14. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    PubMed

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  15. Characterization of Ontogenetic Changes in Gene Expression in the Fathead Minnow Pimephales promelas

    EPA Science Inventory

    The fathead minnow <i>Pimephales promelasi> is often used for ecotoxicological studies in the US and elsewhere. Recently, researchers have begun looking at changes in gene expression in this species after contaminant exposure, mostly as a way to unravel novel mechanisms of act...

  16. GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge.

    PubMed

    Wagner, Florian

    2015-01-01

    Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets.

  17. Insights into the role of differential gene expression on the ecological adaptation of the snail Littorina saxatilis

    PubMed Central

    2010-01-01

    Background In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In this study, a genome-wide expression profiling approach (cDNA-AFLP), validated by quantitative real-time polymerase chain reaction (qPCR) were used to get insights into the role of differential gene expression on the ecological adaptation of the marine snail Littorina saxatilis. This gastropod displays two sympatric ecotypes (RB and SU) which are becoming one of the best studied systems for ecological speciation. Results Among the 99 transcripts shared between ecotypes, 12.12% showed significant differential expression. At least 4% of these transcripts still displayed significant differences after correction for multiple tests, highlighting that gene expression can differ considerably between subpopulations adapted to alternative habitats in the face of gene flow. One of the transcripts identified was Cytochrome c Oxidase subunit I (COI). In addition, 6 possible reference genes were validated to normalize and confirm this result using qPCR. α-Tubulin and histone H3.3 showed the more stable expression levels, being therefore chosen as the best option for normalization. The qPCR analysis confirmed a higher COI expression in SU individuals. Conclusions At least 4% of the transcriptome studied is being differentially expressed between ecotypes living in alternative habitats, even when gene flow is still substantial between ecotypes. We could identify a candidate transcript of such ecotype differentiation: Cytochrome c Oxidase Subunit I (COI), a mitochondrial gene involved in energy metabolism. Quantitative PCR was used to confirm the differences found in COI and its over-expression in the SU ecotype. Interestingly, COI is involved in the oxidative

  18. The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I.

    PubMed Central

    Margolin, P; Zumstein, L; Sternglanz, R; Wang, J C

    1985-01-01

    Mutations in the supX locus, which result in the absence of DNA topoisomerase I enzyme activity in both Salmonella typhimurium and Escherichia coli, are all selected as suppressors of the leu-500 promoter mutation in S. typhimurium. To determine whether the supX locus is the structural gene topA for the DNA topoisomerase I enzyme or is a positive-acting regulator/activator gene for a nearby topA structural gene, nonsense mutations were selected in the E. coli supX gene carried on an F' episome in S. typhimurium cells. The cysB-topA region of the episomes with nonsense-mutant supX alleles were then cloned onto plasmid pBR322 and transformed into E. coli cells lacking a chromosomal supX gene. Three such E. coli strains, each carrying cloned DNA from episomes with different nonsense-mutant supX alleles, all lacked DNA topoisomerase I activity but expressed antigenic determinants specific to the enzyme; control cells lacked both enzyme activity and antigenic determinants. Maxicell studies of plasmid-coded proteins demonstrated the absence of the DNA topoisomerase I protein (100 kDa) in the three strains but the appearance of a new smaller peptide in each (36, 47, and 64 kDa). These new peptides must represent fragments of the enzyme resulting from translation termination at the supX nonsense codons and confirm the interpretation that the supX gene is topA, the structural gene for DNA topoisomerase I. Images PMID:2991925

  19. Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein.

    PubMed Central

    Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M

    1991-01-01

    The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142

  20. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    PubMed Central

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current

  1. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.

    PubMed

    Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P

    Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  3. A high resolution atlas of gene expression in the domestic sheep (Ovis aries).

    PubMed

    Clark, Emily L; Bush, Stephen J; McCulloch, Mary E B; Farquhar, Iseabail L; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G; Wu, Chunlei; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C Bruce; Freeman, Tom C; Summers, Kim M; Archibald, Alan L; Hume, David A

    2017-09-01

    Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.

  4. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.

    PubMed

    Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo

    2014-01-01

    A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    PubMed Central

    2013-01-01

    Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration

  6. A gene expression biomarker identifies in vitro and in vivo ERα modulators in a human gene expression compendium

    EPA Science Inventory

    We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...

  7. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    PubMed

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region. Copyright © 2010 SETAC.

  8. Using a periclinal chimera to unravel layer-specific gene expression in plants.

    PubMed

    Filippis, Ioannis; Lopez-Cobollo, Rosa; Abbott, James; Butcher, Sarah; Bishop, Gerard J

    2013-09-01

    Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes. © 2013 East Malling Research The Plant Journal © 2013 John Wiley & Sons Ltd.

  9. Gene expression in developing watermelon fruit

    PubMed Central

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-01-01

    Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar

  10. Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function

    PubMed Central

    Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.

    2014-01-01

    Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508

  11. Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis.

    PubMed

    Fujita, André; Sato, João Ricardo; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide; Ferreira, Carlos Eduardo; Miyano, Satoru

    2009-08-01

    DNA microarrays have become a powerful tool to describe gene expression profiles associated with different cellular states, various phenotypes and responses to drugs and other extra- or intra-cellular perturbations. In order to cluster co-expressed genes and/or to construct regulatory networks, definition of distance or similarity between measured gene expression data is usually required, the most common choices being Pearson's and Spearman's correlations. Here, we evaluate these two methods and also compare them with a third one, namely Hoeffding's D measure, which is used to infer nonlinear and non-monotonic associations, i.e. independence in a general sense. By comparing three different variable association approaches, namely Pearson's correlation, Spearman's correlation and Hoeffding's D measure, we aimed at assessing the most appropriate one for each purpose. Using simulations, we demonstrate that the Hoeffding's D measure outperforms Pearson's and Spearman's approaches in identifying nonlinear associations. Our results demonstrate that Hoeffding's D measure is less sensitive to outliers and is a more powerful tool to identify nonlinear and non-monotonic associations. We have also applied Hoeffding's D measure in order to identify new putative genes associated with tp53. Therefore, we propose the Hoeffding's D measure to identify nonlinear associations between gene expression profiles.

  12. Pharmacokinetics and Pharmacodynamics of Curcumin in regulating anti-inflammatory and epigenetic gene expression.

    PubMed

    Boyanapalli, Sarandeep S S; Huang, Ying; Su, Zhengyuan; Cheng, David; Zhang, Chengyue; Guo, Yue; Rao, Rohit; Androulakis, Ioannis P; Kong, Ah-Ng

    2018-06-05

    Chronic inflammation is a key driver of cancer development. Nitrite levels, which are regulated by inducible nitric oxide synthase (iNOS), play a critical role in inflammation. While the anti-oxidant and anti-inflammatory effects of curcumin, a natural product present in the roots of Curcuma longa have been widely studied, the acute pharmacokinetics (PK) and pharmacodynamics (PD) of curcumin in suppressing pro-inflammatory markers and epigenetic modulators remain unclear. In this study, we evaluated the PK and PD of curcumin-induced suppression of lipopolysaccharide (LPS)-mediated inflammation in rat lymphocytes. LPS was administered intravenously either alone or with curcumin to female Sprague-Dawley rats. Plasma samples were analyzed for curcumin concentration and mRNA expression was quantified in lymphocytes. Relative gene expression of several inflammatory and epigenetic modulators was analyzed. To investigate the relationship between curcumin concentration and iNOS, TNF-α, and IL-6 gene expression, PK/PD modeling using Jusko's indirect response model (IDR) integrating transit compartments (TC) describing the delayed response was conducted. The concentration-time profile of curcumin exhibited a bi-exponential decline, which was well described by a two-compartmental pharmacokinetic model. Importantly our results demonstrate that LPS induced gene expression of pro-inflammatory markers in lymphocytes, with peak expression at approximately 3 h and curcumin suppressed the gene expression in animals administered with LPS. These effects were well captured using the IDR model and an IDR model with the transit compartments. In summary, the PK/PD modeling approach could potentially provide a robust quantitative framework for evaluating the acute anti-inflammatory and epigenetic effects of curcumin in future clinical trials. This article is protected by copyright. All rights reserved.

  13. Frequency and expression of mutacin biosynthesis genes in isolates of Streptococcus mutans with different mutacin-producing phenotypes.

    PubMed

    Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno

    2008-05-01

    The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.

  14. STAT5A and STAT5B have opposite correlations with drug response gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamba, V., E-mail: vlamba@ufl.edu; Jia, B.; Liang, F.

    Introduction: STAT5A and STAT5B are important transcription factors that play a key role in regulation of several important physiological processes including proliferation, survival, mediation of responses to cytokines and in regulating gender differences in drug response genes such as the hepatic cytochrome P450s (CYPs) that are responsible for a large majority of drug metabolism reactions in the human body. STAT5A and STAT5b have a high degree of sequence homology and have been reported to have largely similar functions. Recent studies have, however, indicated that they can also often have distinct and unique roles in regulating gene expression. Objective: In thismore » study, we evaluated the association of STAT5A and STAT5B mRNA expression levels with those of several key hepatic cytochrome P450s (CYPs) and hepatic transcription factors (TFs) and evaluated the potential roles of STAT5A and 5b in mediating gender differences in these CYPs and TFs. Methods: Expression profiling for major hepatic CYP isoforms and transcription factors was performed using RNA sequencing (RNA-seq) in 102 human liver samples (57 female, 45 male). Real time PCR gene expression data for selected CYPs and TFs was available on a subset of 50 human liver samples (25 female, 25 male) and was used to validate the RNA-seq findings. Results: While STAT5A demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4A) and DMEs such as CYP3A4 and CYP2C19, STAT5B expression was observed to demonstrate positive associations with several CYPs and TFs analyzed. As STAT5A and STAT5B have been shown to be important in regulation of gender differences in CYPs, we also analyzed STAT5A and 5b associations with CYPs and TFs separately in males and females and observed gender dependent differential associations of STATs with several CYPs and TFs. Results from the real time PCR validation largely supported our RNA-seq findings

  15. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    PubMed

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  16. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer.

    PubMed

    Alldinger, Ingo; Dittert, Dag; Peiper, Matthias; Fusco, Alberto; Chiappetta, Gennaro; Staub, Eike; Lohr, Matthias; Jesnowski, Ralf; Baretton, Gustavo; Ockert, Detlef; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2005-01-01

    Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development. Copyright 2005 S. Karger AG, Basel.

  17. Normal gene expression in male F344 rat nasal transitional and respiratory epithelium.

    PubMed

    Hester, Susan D; Benavides, Gina B; Sartor, Maureen; Yoon, Lawrence; Wolf, Douglas C; Morgan, Kevin T

    2002-02-20

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Cells lining the rat nasal passages were collected and gene expression analysis was performed using Clontech cDNA Rat Atlas 1.2 arrays (1185 genes). The percentages of genes within specific average expression ranges were 4.2% at 45,000-1000, 14.8% at 1000-200, 25.0% at 200-68, and 56.0% below 68. Nine out of a subset of ten genes were confirmed for relative signal intensity using quantitative real-time RT-PCR. The most highly expressed genes included those involved in phase I (e.g. cytochrome P450s) and phase II (e.g. glutathione S-transferases) xenobiotic metabolism, bioenergetics (e.g. cytochrome oxidase), osmotic balance (e.g. Na(+)/K(+) ATPase) and epithelial ionic homeostasis (e.g. ion channels). Such baseline data will contribute to further understanding the normal physiology of these cells and facilitate the interpretation of responses by the nasal epithelial cells to xenobiotic treatment or disease.

  18. A whole blood gene expression-based signature for smoking status

    PubMed Central

    2012-01-01

    Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427

  19. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel.

    PubMed

    Pujolar, Jose Martin; Marino, Ilaria A M; Milan, Massimo; Coppe, Alessandro; Maes, Gregory E; Capoccioni, Fabrizio; Ciccotti, Eleonora; Bervoets, Lieven; Covaci, Adrian; Belpaire, Claude; Cramb, Gordon; Patarnello, Tomaso; Bargelloni, Luca; Bortoluzzi, Stefania; Zane, Lorenzo

    2012-09-25

    Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.

  20. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel

    PubMed Central

    2012-01-01

    Background Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. Results To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Conclusions Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production. PMID:23009661

  1. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    PubMed

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  2. HOX gene expression in phenotypic and genotypic subgroups and low HOXA gene expression as an adverse prognostic factor in pediatric ALL.

    PubMed

    Starkova, Julia; Zamostna, Blanka; Mejstrikova, Ester; Krejci, Roman; Drabkin, Harry A; Trka, Jan

    2010-12-01

    HOX genes play an important role in both normal lymphopoiesis and leukemogenesis. However, HOX expression patterns in leukemia cells compared to normal lymphoid progenitors have not been systematically studied in acute lymphoblastic leukemia (ALL) subtypes. The RNA expression levels of HOXA, HOXB, and CDX1/2 genes were analyzed by qRT-PCR in a cohort of 61 diagnostic pediatric ALL samples and FACS-sorted subpopulations of normal lymphoid progenitors. The RNA expression of HOXA7-10, HOXA13, and HOXB2-4 genes was exclusively detected in leukemic cells and immature progenitors. The RNA expression of HOXB6 and CDX2 genes was exclusively detected in leukemic cells but not in B-lineage cells at any of the studied developmental stages. HOXA3-4, HOXA7, and HOXB3-4 genes were differentially expressed between BCP-ALL and T-ALL subgroups, and among genotypically defined MLL/AF4, TEL/AML1, BCR/ABL, hyperdiploid and normal karyotype subgroups. However, this differential expression did not define specific clusters in hierarchical cluster analysis. HOXA7 gene was low expressed at the RNA level in patients with hyperdiploid leukemia, whereas HOXB7 and CDX2 genes were low expressed in TEL/AML1-positive and BCR/ABL-positive cases, respectively. In contrast to previous findings in acute myeloid leukemia, high HOXA RNA expression was associated with an excellent prognosis in Cox's regression model (P = 0.03). In MLL/AF4-positive ALL, lower HOXA RNA expression correlated with the methylation status of their promoters. HOX gene RNA expression cannot discriminate leukemia subgroups or relative maturity of leukemic cells. However, HOXA RNA expression correlates with prognosis, and particular HOX genes are expressed in specific genotypically characterized subgroups.

  3. Identification of a reference gene for the quantification of mRNA and miRNA expression during skin wound healing.

    PubMed

    Etich, Julia; Bergmeier, Vera; Pitzler, Lena; Brachvogel, Bent

    2017-03-01

    Wound healing is a coordinated process to restore tissue homeostasis and reestablish the protective barrier of the skin. miRNAs may modulate the expression of target genes to contribute to repair processes, but due to the complexity of the tissue it is challenging to quantify gene expression during the distinct phases of wound repair. Here, we aimed to identify a common reference gene to quantify changes in miRNA and mRNA expression during skin wound healing. Quantitative real-time PCR and bioinformatic analysis tools were used to identify suitable reference genes during skin repair and their reliability was tested by studying the expression of mRNAs and miRNAs. Morphological assessment of wounds showed that the injury model recapitulates the distinct phases of skin repair. Non-degraded RNA could be isolated from skin and wounds and used to study the expression of non-coding small nuclear RNAs during wound healing. Among those, RNU6B was most constantly expressed during skin repair. Using this reference gene we could confirm the transient upregulation of IL-1β and PTPRC/CD45 during the early phase as well as the increased expression of collagen type I at later stages of repair and validate the differential expression of miR-204, miR-205, and miR-31 in skin wounds. In contrast to Gapdh the normalization to multiple reference genes gave a similar outcome. RNU6B is an accurate alternative normalizer to quantify mRNA and miRNA expression during the distinct phases of skin wound healing when analysis of multiple reference genes is not feasible.

  4. Discovering causal signaling pathways through gene-expression patterns

    PubMed Central

    Parikh, Jignesh R.; Klinger, Bertram; Xia, Yu; Marto, Jarrod A.; Blüthgen, Nils

    2010-01-01

    High-throughput gene-expression studies result in lists of differentially expressed genes. Most current meta-analyses of these gene lists include searching for significant membership of the translated proteins in various signaling pathways. However, such membership enrichment algorithms do not provide insight into which pathways caused the genes to be differentially expressed in the first place. Here, we present an intuitive approach for discovering upstream signaling pathways responsible for regulating these differentially expressed genes. We identify consistently regulated signature genes specific for signal transduction pathways from a panel of single-pathway perturbation experiments. An algorithm that detects overrepresentation of these signature genes in a gene group of interest is used to infer the signaling pathway responsible for regulation. We expose our novel resource and algorithm through a web server called SPEED: Signaling Pathway Enrichment using Experimental Data sets. SPEED can be freely accessed at http://speed.sys-bio.net/. PMID:20494976

  5. The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development

    PubMed Central

    2012-01-01

    Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental

  6. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  7. Transcriptome-wide selection of a reliable set of reference genes for gene expression studies in potato cyst nematodes (Globodera spp.).

    PubMed

    Sabeh, Michael; Duceppe, Marc-Olivier; St-Arnaud, Marc; Mimee, Benjamin

    2018-01-01

    Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.

  8. Orphan nuclear receptor ERRγ is a key regulator of human fibrinogen gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lu, Yan; Jung, Yoon Seok; Lee, Ji-min; Kim, Young-Hoon; Lee, Yong Soo; Kim, Jina; Dewidar, Bedair; Jeong, Won-IL; Lee, In-Kyu; Cho, Sung Jin; Dooley, Steven; Lee, Chul-Ho; Li, Xiaoying

    2017-01-01

    Fibrinogen, 1 of 13 coagulation factors responsible for normal blood clotting, is synthesized by hepatocytes. Detailed roles of the orphan nuclear receptors regulating fibrinogen gene expression have not yet been fully elucidated. Here, we identified estrogen-related receptor gamma (ERRγ) as a novel transcriptional regulator of human fibrinogen gene expression. Overexpression of ERRγ specially increased fibrinogen expression in human hepatoma cell line. Cannabinoid receptor types 1(CB1R) agonist arachidonyl-2'-chloroethylamide (ACEA) up-regulated transcription of fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated fibrinogen expression. Deletion analyses of the fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites of ERRγ on human fibrinogen γ gene promoter. Moreover, overexpression of ERRγ was sufficient to increase fibrinogen gene expression, whereas treatment with GSK5182, a selective inverse agonist of ERRγ led to its attenuation in cell culture. Finally, fibrinogen and ERRγ gene expression were elevated in liver tissue of obese patients suggesting a conservation of this mechanism. Overall, this study elucidates a molecular mechanism linking CB1R signaling, ERRγ expression and fibrinogen gene transcription. GSK5182 may have therapeutic potential to treat hyperfibrinogenemia. PMID:28750085

  9. [Sequences and expression pattern of mce gene in Leptospira interrogans of different serogroups].

    PubMed

    Zhang, Lei; Xue, Feng; Yan, Jie; Mao, Ya-fei; Li, Li-wei

    2008-11-01

    To determine the frequency of mce gene in Leptospira interrogans, and to investigate the gene transcription levels of L. interrogans before and after infecting cells. The segments of entire mce genes from 13 L.interrogans strains and 1 L.biflexa strain were amplified by PCR and then sequenced after T-A cloning. A prokaryotic expression system of mce gene was constructed; the expression and output of the target recombinant protein rMce were examined by SDS-PAGE and Western Blot assay. Rabbits were intradermally immunized with rMce to prepare the antiserum, the titer of antiserum was measured by immunodiffusion test. The transcription levels of mce gene in L.interrogans serogroup Icterohaemorrhagiae serovar lai strain 56601 before and after infecting J774A.1 cells were monitored by real-time fluorescence quantitative RT-PCR. mce gene was carried in all tested L.interrogans strains, but not in L.biflexa serogroup Semaranga serovar patoc strain Patoc I. The similarities of nucleotide and putative amino acid sequences of the cloned mce genes to the reported sequences (GenBank accession No: NP712236) were 99.02%-100% and 97.91%-100%, respectively. The constructed prokaryotic expression system of mce gene expressed rMce and the output of rMce was about 5% of the total bacterial proteins. The antiserum against whole cell of L.interrogans strain 56601 efficiently recognized rMce. After infecting J774A.1 cells, transcription levels of the mce gene in L.interrogans strain 56601 were remarkably up-regulated. The constructed prokaryotic expression system of mce gene and the prepared antiserum against rMce provide useful tools for further study of the gene function.

  10. Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa

    PubMed Central

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A “two-step theory" was proposed to explain the meso-triplication of the Brassica “A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that “two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa. PMID:22567157

  11. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.

    PubMed

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that "two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.

  12. Characterization and gene expression analysis of pacu (Piaractus mesopotamicus) inducible nitric oxide synthase (iNOS) following Aeromonas dhakensis infection.

    PubMed

    Carriero, Mateus M; Henrique-Silva, Flávio; Caetano, Alexandre Rodrigues; Lobo, Francisco Pereira; Alves, Anderson Luis; Varela, Eduardo Sousa; Del Collado, Maite; Moreira, Gabriel S A; Maia, Antonio A M

    2018-03-01

    Nitric oxide (NO) is an important effector molecule which is involved in a myriad of biological processes, including immune responses against pathogens such as parasites, virus and bacteria. During the inflammatory processes in vertebrates, NO is produced by the inducible nitric oxide synthase (iNOS) enzyme in practically all nucleated cells to suppress or kill intracellular pathogens. The aim of the present study was to characterize the full coding region of the iNOS gene of pacu (Piaractus mesopotamicus), an economically and ecologically important South American fish species, and to analyze mRNA expression levels following intraperitoneal infection with the pathogenic bacterium Aeromonas dhakensis by means of quantitative real time PCR (qPCR). The results showed that the pacu iNOS transcript is 3237 bp in length, encoding a putative protein composed of 1078 amino acid residues. The amino acid sequence showed similarities ranging from 69.03% to 94.34% with other teleost fish and 57.70% with the human iNOS, with all characteristic domains and cofactor binding sites of the enzyme detected. Phylogenetic analysis showed that the iNOS from the red-bellied piranha, another South American characiform, was the closest related sequence to the pacu iNOS. iNOS transcripts were constitutively detected in the liver, spleen and head kidney, and there was a significant upregulation in the liver and spleen at 12, 24 and 48 h after infection with A. dhakensis. No significant variations were observed in the head kidney during the periods analyzed. These results show that iNOS expression was induced by A. dhakensis infection and suggest that this enzyme may be involved in the response to this bacterium in pacu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Differential IFN-gamma stimulation of HLA-A gene expression through CRM-1-dependent nuclear RNA export.

    PubMed

    Browne, Sarah K; Roesser, James R; Zhu, Sheng Zu; Ginder, Gordon D

    2006-12-15

    IFNs regulate most MHC class I genes by stimulating transcription initiation. As shown previously, IFN-gamma controls HLA-A expression primarily at the posttranscriptional level. We have defined two 8-base sequences in a 39-nucleotide region in the 3'-transcribed region of the HLA-A gene that are required for the posttranscriptional response to IFN-gamma. Stimulation of HLA-A expression by IFN-gamma requires nuclear export of HLA-A mRNA by chromosome maintenance region 1 (CRM-1). Treatment of cells with leptomycin B, a specific inhibitor of CRM-1, completely inhibited IFN-gamma induction of HLA-A. Expression of a truncated, dominant-negative form of the nucleoporin NUP214/CAN, DeltaCAN, that specifically interacts with CRM-1, also prevented IFN-gamma stimulation of HLA-A, providing confirmation of the role of CRM-1. Increased expression of HLA-A induced by IFN-gamma also requires protein methylation, as shown by the fact that treatment of SK-N-MC cells or HeLa cells with the PRMT1 inhibitor 5'-methyl-5'-thioadenosine abolished the cellular response to IFN-gamma. In contrast with HLA-A, IFN-gamma-induced expression of the HLA class Ib gene, HLA-E, was not affected by either 5'-methyl-5'-thioadenosine or leptomycin B. These results provide proof of principle that it is possible to differentially modulate the IFN-gamma-induced expression of the HLA-E and HLA-A genes, whose products often mediate opposing effects on cellular immunity to tumor cells, pathogens, and autoantigens.

  14. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    PubMed

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  15. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    PubMed

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  16. Prediction of Bacillus weihenstephanensis acid resistance: the use of gene expression patterns to select potential biomarkers.

    PubMed

    Desriac, N; Postollec, F; Coroller, L; Sohier, D; Abee, T; den Besten, H M W

    2013-10-01

    Exposure to mild stress conditions can activate stress adaptation mechanisms and provide cross-resistance towards otherwise lethal stresses. In this study, an approach was followed to select molecular biomarkers (quantitative gene expressions) to predict induced acid resistance after exposure to various mild stresses, i.e. exposure to sublethal concentrations of salt, acid and hydrogen peroxide during 5 min to 60 min. Gene expression patterns of unstressed and mildly stressed cells of Bacillus weihenstephanensis were correlated to their acid resistance (3D value) which was estimated after exposure to lethal acid conditions. Among the twenty-nine candidate biomarkers, 12 genes showed expression patterns that were correlated either linearly or non-linearly to acid resistance, while for the 17 other genes the correlation remains to be determined. The selected genes represented two types of biomarkers, (i) four direct biomarker genes (lexA, spxA, narL, bkdR) for which expression patterns upon mild stress treatment were linearly correlated to induced acid resistance; and (ii) nine long-acting biomarker genes (spxA, BcerKBAB4_0325, katA, trxB, codY, lacI, BcerKBAB4_1716, BcerKBAB4_2108, relA) which were transiently up-regulated during mild stress exposure and correlated to increased acid resistance over time. Our results highlight that mild stress induced transcripts can be linearly or non-linearly correlated to induced acid resistance and both approaches can be used to find relevant biomarkers. This quantitative and systematic approach opens avenues to select cellular biomarkers that could be incremented in mathematical models to predict microbial behaviour. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A high resolution atlas of gene expression in the domestic sheep (Ovis aries)

    PubMed Central

    Farquhar, Iseabail L.; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G.; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C. Bruce; Freeman, Tom C.; Archibald, Alan L.; Hume, David A.

    2017-01-01

    Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of ‘guilt by association’ was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages. PMID:28915238

  18. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates

    PubMed Central

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-01-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732

  19. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates.

    PubMed

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-08-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.

  20. Anti-inflammatory genes associated with multiple sclerosis: a gene expression study.

    PubMed

    Perga, S; Montarolo, F; Martire, S; Berchialla, P; Malucchi, S; Bertolotto, A

    2015-02-15

    Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system caused by a complex interaction between multiple genes and environmental factors. HLA region is the strongest susceptibility locus, but recent huge genome-wide association studies identified new susceptibility genes. Among these, BACH2, PTGER4, RGS1 and ZFP36L1 were highlighted. Here, a gene expression analysis revealed that three of them, namely BACH2, PTGER4 and ZFP36L1, are down-regulated in MS patients' blood cells compared to healthy subjects. Interestingly, all these genes are involved in the immune system regulation with predominant anti-inflammatory role and their reduction could predispose to MS development. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Candidate innate immune system gene expression in the ecological model Daphnia

    PubMed Central

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E.; Little, Tom J.

    2011-01-01

    The last ten years have witnessed increasing interest in host–pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host–pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia–pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia–Pasteuria system will need to balance a candidate gene approach with more

  2. Candidate innate immune system gene expression in the ecological model Daphnia.

    PubMed

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive

  3. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum.

    PubMed

    Jacob, Tiago R; Peres, Nalu T A; Persinoti, Gabriela F; Silva, Larissa G; Mazucato, Mendelson; Rossi, Antonio; Martinez-Rossi, Nilce M

    2012-05-01

    The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.

  4. Analytical workflow profiling gene expression in murine macrophages

    PubMed Central

    Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2015-01-01

    Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305

  5. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.

    PubMed

    Yu, Fang; Chen, Ming-Hui; Kuo, Lynn; Talbott, Heather; Davis, John S

    2015-08-07

    Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783-802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real

  6. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation

    PubMed Central

    Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the

  7. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  8. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less

  9. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    PubMed

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  10. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    PubMed

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    PubMed Central

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  12. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  13. Random forests-based differential analysis of gene sets for gene expression data.

    PubMed

    Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An

    2013-04-10

    In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for

  14. A Glycine Riboswitch in Streptococcus pyogenes Controls Expression of a Sodium:Alanine Symporter Family Protein Gene.

    PubMed

    Khani, Afsaneh; Popp, Nicole; Kreikemeyer, Bernd; Patenge, Nadja

    2018-01-01

    Regulatory RNAs play important roles in the control of bacterial gene expression. In this study, we investigated gene expression regulation by a putative glycine riboswitch located in the 5'-untranslated region of a sodium:alanine symporter family (SAF) protein gene in the group A Streptococcus pyogenes serotype M49 strain 591. Glycine-dependent gene expression mediated by riboswitch activity was studied using a luciferase reporter gene system. Maximal reporter gene expression was observed in the absence of glycine and in the presence of low glycine concentrations. Differences in glycine-dependent gene expression were not based on differential promoter activity. Expression of the SAF protein gene and the downstream putative cation efflux protein gene was investigated in wild-type bacteria by RT-qPCR transcript analyses. During growth in the presence of glycine (≥1 mM), expression of the genes were downregulated. Northern blot analyses revealed premature transcription termination in the presence of high glycine concentrations. Growth in the presence of 0.1 mM glycine led to the production of a full-length transcript. Furthermore, stability of the SAF protein gene transcript was drastically reduced in the presence of glycine. We conclude that the putative glycine riboswitch in S. pyogenes serotype M49 strain 591 represses expression of the SAF protein gene and the downstream putative cation efflux protein gene in the presence of high glycine concentrations. Sequence and secondary structure comparisons indicated that the streptococcal riboswitch belongs to the class of tandem aptamer glycine riboswitches.

  15. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots.

    PubMed

    Zhou, Zhe; Cong, Peihua; Tian, Yi; Zhu, Yanmin

    2017-01-01

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization.

  16. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots

    PubMed Central

    Zhou, Zhe; Cong, Peihua; Tian, Yi

    2017-01-01

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization. PMID:28934340

  17. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  18. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  19. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses.

    PubMed Central

    Shemesh, J; Rotem-Yehudar, R; Ehrlich, R

    1991-01-01

    Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404

  20. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil.

    PubMed

    Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B; Choi, Seongho

    2017-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase ( SCD ) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased ( p <0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased ( p <0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids ( p <0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.

  1. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil

    PubMed Central

    Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B.; Choi, Seongho

    2017-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased (p<0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle. PMID:28515640

  2. Construction and phase I clinical evaluation of the safety and immunogenicity of a candidate enterotoxigenic Escherichia coli vaccine strain expressing colonization factor antigen CFA/I.

    PubMed

    Turner, Arthur K; Beavis, Juliet C; Stephens, Jonathan C; Greenwood, Judith; Gewert, Cornelia; Thomas, Nicola; Deary, Alison; Casula, Gabriella; Daley, Alexandra; Kelly, Paul; Randall, Roger; Darsley, Michael J

    2006-02-01

    Oral delivery of toxin-negative derivatives of enterotoxigenic Escherichia coli (ETEC) that express colonization factor antigens (CFA) with deletions of the aroC, ompC, ompF, and toxin genes may be an effective approach to vaccination against ETEC-associated diarrhea. We describe the creation and characterization of an attenuated CFA/I-expressing ETEC vaccine candidate, ACAM2010, from a virulent isolate in which the heat-stable enterotoxin (ST) and CFA/I genes were closely linked and on the same virulence plasmid as the enteroaggregative E. coli heat-stable toxin (EAST1) gene. A new suicide vector (pJCB12) was constructed and used to delete the ST and EAST1 genes and to introduce defined deletion mutations into the aroC, ompC, and ompF chromosomal genes. A phase I trial, consisting of an open-label dose escalation phase in 18 adult outpatient volunteers followed by a placebo-controlled double-blind phase in an additional 31 volunteers, was conducted. The vaccine was administered in two formulations, fresh culture and frozen suspension. These were both well tolerated, with no evidence of significant adverse events related to vaccination. Immunoglobulin A (IgA) and IgG antibody-secreting cells specific for CFA/I were assayed by ELISPOT. Positive responses (greater than twofold increase) were seen in 27 of 37 (73%) subjects who received the highest dose level of vaccine (nominally 5 x 10(9) CFU). Twenty-nine of these volunteers were secreting culturable vaccine organisms at day 3 following vaccination; five were still positive on day 7, with a single isolation on day 13. This live attenuated bacterial vaccine is safe and immunogenic in healthy adult volunteers.

  3. Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemia-reperfusion.

    PubMed

    Barrier, Alain; Olaya, Natalia; Chiappini, Franck; Roser, François; Scatton, Olivier; Artus, Cédric; Franc, Brigitte; Dudoit, Sandrine; Flahault, Antoine; Debuire, Brigitte; Azoulay, Daniel; Lemoine, Antoinette

    2005-10-01

    Ischemia triggers an inflammatory response that precipitates cell death during reperfusion. Several studies have shown that tissues are protected by ischemic preconditioning (IP) consisting of 10 min of ischemia followed by 10 min of reperfusion just before ischemia. The molecular basis of this protective effect is poorly understood. We used cDNA arrays (20K) to compare global gene expression in liver biopsies from living human liver donors who underwent IP (n=7) or not (n=7) just before liver devascularization. Microarray data were analyzed using pairedt test with a type I error rate fixed at alpha = 2.5 10(6) (Bonferroni correction). We found that 60 genes were differentially expressed (36 over- and 24 underexpressed in preconditioning group). After IP, the most significantly overexpressed gene was IL-1Ra. This was confirmed by immunoblotting. Differentially expressed were genes involved in apoptosis (NOD2, ephrin-A1, and calpain) and in the carbohydrate metabolism. A significant increase in the amount of the anti-apoptotic protein Bcl-2 in preconditioned livers but no change in the cleavage of procaspase-3, -8, and -9 was observed. We also observed an increase in the amount in the inducible nitric oxide synthase. Therefore, the benefits of IP may be associated with the overproduction of IL-1Ra, Bcl-2, and NO countering the proinflammatory and proapoptotic effects generated during ischemia-reperfusion.

  4. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data.

    PubMed

    Tintle, Nathan L; Sitarik, Alexandra; Boerema, Benjamin; Young, Kylie; Best, Aaron A; Dejongh, Matthew

    2012-08-08

    Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  5. Clustering Algorithms: Their Application to Gene Expression Data

    PubMed Central

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867

  6. Gene transfer as a strategy to achieve permanent cardioprotection I: rAAV-mediated gene therapy with inducible nitric oxide synthase limits infarct size 1 year later without adverse functional consequences.

    PubMed

    Li, Qianhong; Guo, Yiru; Wu, Wen-Jian; Ou, Qinghui; Zhu, Xiaoping; Tan, Wei; Yuan, Fangping; Chen, Ning; Dawn, Buddhadeb; Luo, Li; O'Brien, Erin; Bolli, Roberto

    2011-11-01

    The ultimate goal of prophylactic gene therapy is to confer permanent protection against ischemia. Although gene therapy with inducible nitric oxide synthase (iNOS) is known to protect against myocardial infarction at 3 days and up to 2 months, the long-term effects on myocardial ischemic injury and function are unknown. To address this issue, we created a recombinant adeno-associated viral vector carrying the iNOS gene (rAAV/iNOS), which enables long-lasting transgene expression. The ability of rAAV/iNOS to direct the expression of functional iNOS protein was confirmed in COS-7 cells before in vivo gene transfer. Mice received injections in the anterior LV wall of rAAV/LacZ or rAAV/iNOS; 1 year later, they underwent a 30-min coronary occlusion (O) and 4 h of reperfusion (R). iNOS gene transfer resulted in elevated iNOS protein expression (+3-fold vs. the LacZ group, n = 6; P < 0.05) and iNOS activity (+4.4-fold vs. the LacZ group, n = 6; P < 0.05) 1 year later. Infarct size (% of risk region) was dramatically reduced at 1 year after iNOS gene transfer (13.5 ± 2.2%, n = 12, vs. 41.7 ± 2.9%, n = 10, in the LacZ group; P < 0.05). The infarct-sparing effect of iNOS gene therapy at 1 year was as powerful as that observed 24 h after ischemic preconditioning (six 4-min O/4-min R cycles) (19.3 ± 2.3%, n = 11; P < 0.05). Importantly, compared with the LacZ group (n = 11), iNOS gene transfer (n = 10) had no effect on LV dimensions or function for up to 1 year (at 1 year: FS 34.5 ± 2.0 vs. 34.6 ± 2.6%, EF 57.0 ± 2.0 vs. 59.7 ± 2.9%, LVEDD 4.3 ± 0.1 vs. 4.2 ± 0.2 mm, LVESD 2.8 ± 0.1 vs. 2.9 ± 0.2 mm) (echocardiography). These data demonstrate, for the first time, that rAAV-mediated iNOS gene transfer affords long-term, probably permanent (1 year), cardioprotection without adverse functional consequences, providing a strong rationale for further preclinical testing of prophylactic gene therapy.

  7. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  8. Pasteurella haemolytica leukotoxin and endotoxin induced cytokine gene expression in bovine alveolar macrophages requires NF-kappaB activation and calcium elevation.

    PubMed

    Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Malazdrewich, C; Abrahamsen, M S; Sieck, G C; Maheswaran, S K

    1999-05-01

    In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity. Copyright 1999 Academic Press.

  9. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.

  10. Gene expression profiling in Ishikawa cells: A fingerprint for estrogen active compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehme, Kathleen; Simon, Stephanie; Mueller, Stefan O.

    2009-04-01

    Several anthropogenous and naturally occurring substances, referred to as estrogen active compounds (EACs), are able to interfere with hormone and in particular estrogen receptor signaling. EACs can either cause adverse health effects in humans and wildlife populations or have beneficial effects on estrogen-dependent diseases. The aim of this study was to examine global gene expression profiles in estrogen receptor (ER)-proficient Ishikawa plus and ER-deficient Ishikawa minus endometrial cancer cells treated with selected well-known EACs (Diethylstilbestrol, Genistein, Zearalenone, Resveratrol, Bisphenol A and o,p'-DDT). We also investigated the effect of the pure antiestrogen ICI 182,780 (ICI) on the expression patterns caused bymore » these compounds. Transcript levels were quantified 24 h after compound treatment using Illumina BeadChip Arrays. We identified 87 genes with similar expression changes in response to all EAC treatments in Ishikawa plus. ICI lowered the magnitude or reversed the expression of these genes, indicating ER dependent regulation. Apart from estrogenic gene regulation, Bisphenol A, o,p'-DDT, Zearalenone, Genistein and Resveratrol displayed similarities to ICI in their expression patterns, suggesting mixed estrogenic/antiestrogenic properties. In particular, the predominant antiestrogenic expression response of Resveratrol could be clearly distinguished from the other test compounds, indicating a distinct mechanism of action. Divergent gene expression patterns of the phytoestrogens, as well as weaker estrogenic gene expression regulation determined for the anthropogenous chemicals Bisphenol A and o,p'-DDT, warrants a careful assessment of potential detrimental and/or beneficial effects of EACs. The characteristic expression fingerprints and the identified subset of putative marker genes can be used for screening chemicals with an unknown mode of action and for predicting their potential to exert endocrine disrupting effects.« less

  11. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  12. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  13. Gene expression analysis of six GC-rich Gram-negative phytopathogens.

    PubMed

    Fu, Qing-Shan; Li, Feng; Chen, Ling-Ling

    2005-07-01

    Predicted highly expressed (PHX) genes are comparatively analyzed for six GC-rich Gram-negative phytopathogens, i.e., Ralstonia solanacearum, Agrobacterium tumefaciens, Xanthomonas campestris pv. campestris (Xcc), Xanthomonas axonopodis pv. citri (Xac), Pseudomonas syringae pv. tomato, and Xylella fastidiosa. Enzymes involved in energy metabolism, such as ATP synthase, and genes involved in TCA cycle, are PHX in most bacteria except X. fastidiosa, which prefers an anaerobic environment. Most pathogenicity-related factors, including flagellar proteins and some outer membrane proteins, are PHX, except that flagellar proteins are missing in X. fastidiosa which is spread by insects and does not need to move during invasion. Although type III secretion system apparatus are homologous to flagellar proteins, none of them is PHX, which support the viewpoint that the two types of genes have evolved independently. Furthermore, it is revealed that some biosynthesis-related enzymes are highly expressed in certain bacteria. The PHX genes may provide potential drug targets for the design of new bactericide.

  14. Intratumoral gene expression of 5-fluorouracil pharmacokinetics-related enzymes in stage I and II non-small cell lung cancer patients treated with uracil-tegafur after surgery: a prospective multi-institutional study in Japan.

    PubMed

    Eguchi, Keisuke; Oyama, Takahiko; Tajima, Atsushi; Abiko, Tomohiro; Sawafuji, Makoto; Horio, Hirotoshi; Hashizume, Toshinori; Matsutani, Noriyuki; Kato, Ryoichi; Nakayama, Mitsuo; Kawamura, Masafumi; Kobayashi, Koichi

    2015-01-01

    This investigation was conducted to assess the use of the intratumoral mRNA expression levels of nucleic acid-metabolizing enzymes as biomarkers of adjuvant chemotherapy for non-small cell lung cancer (NSCLC) using uracil-tegafur in a multi-institutional prospective study. 236 patients with a completely resected NSCLC (adenocarcinoma and squamous cell carcinoma) of pathological stage IA (maximum tumor diameter of 2 cm or greater), IB, and II tumors were given a dose of 250 mg of uracil-tegafur per square meter of body surface area per day orally for two years after surgery. Intratumoral mRNA levels of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase (OPRT), and thymidine phosphorylase (TP) genes relative to an internal standard, β-actin, were determined using laser-capture microdissection and fluorescence-based real time PCR detection systems. Among 5-FU target enzymes, TS was the only one that showed a significant difference in the level of gene expression between the high and low gene expression groups, for both disease-free survival (DFS) and overall survival (OS), when patients were divided according to median values; 5-year DFS rates in high/low TS gene expression were 60.4% and 72.6%, respectively (p=0.050), 5-year OS rates were 78.1% and 88.6%, respectively (p=0.011). Cox's proportional hazard model indicated that the pathological stage and TS gene expression level were independent values for predicting DFS. The TS gene expression level was shown to be an independent predictive factor for DFS in stage I and II NSCLC patients who were treated with uracil-tegafur following surgery. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. GeneChip Expression Profiling Reveals the Alterations of Energy Metabolism Related Genes in Osteocytes under Large Gradient High Magnetic Fields

    PubMed Central

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  16. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    PubMed

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  17. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APPmore » has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.« less

  18. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.

    PubMed

    Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John

    2016-02-24

    In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes

  19. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases

    PubMed Central

    Li, Wencheng; Laishram, Rakesh S.; Hoque, Mainul; Ji, Zhe

    2017-01-01

    Abstract Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3′ end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues. PMID:28911096

  20. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  1. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.

    PubMed

    Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B

    2005-01-25

    One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.

  2. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    PubMed

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  3. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    PubMed

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers.

    PubMed

    Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V

    2013-10-15

    A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.

  5. Cloning and heterologous expression of genes from the kinamycin biosynthetic pathway of Streptomyces murayamaensis.

    PubMed

    Gould, S J; Hong, S T; Carney, J R

    1998-01-01

    The genes for most of the biosynthesis of the kinamycin antibiotics have been cloned and heterologously expressed. Genomic DNA of Streptomyces murayamaensis was partially digested with MboI and a library of approximately 40 kb fragments in E. coli XL1-BlueMR was prepared using the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes. After transferal of these clusters to S. lividans ZX7, expression of one cluster was established by HPLC with photodiode array detection. Peaks were identified from the kin cluster for dehydrorabelomycin, kinobscurinone, and stealthin C, which are known intermediates in kinamycin biosynthesis. Two shunt metabolites, kinafluorenone and seongomycin were also identified. The structure of the latter was determined from a quantity obtained from large-scale fermentation of one of the clones.

  6. Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study

    DTIC Science & Technology

    2016-08-30

    Reconstructing cell lineages from single- cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell -state dynamics from single- cell gene expression data. Our...proposed method contains two steps. The first step is to reconstruct the temporal order of the cells from gene expression data, whereas the second

  7. [Expression analysis of a transformer gene in Daphnia pulex after RNAi].

    PubMed

    Guo, C Y; Chen, P; Zhang, M M; Ning, J J; Wang, С L; Wang, D L; Zhao, Y L

    2016-01-01

    In order to explore the importance of the transformer (tra) gene in reproductive mode switching in Daphnia pulex, we studied the effect of silencing of this gene using RNA interference (RNAi). We obtained Dptra dsRNA by constructing and using a dsRNA expression vector and transcription method in vitro. D. pulex individuals in different reproductive modes were treated by soaking in a solution of Dptra dsRNA. We then assayed the expression of the endogenous Dptra mRNA after RNAi treatment using RT-PCR and obtained the suppression ratio. Expression of the tra gene in the RNAi groups was down-regulated compared with the controls after 16 h (p < 0.05). We also analyzed the effect of RNAi on the expression of the TRA protein using Western blot, which showed that the expression level of the TRA protein was reduced after RNAi treatment. Our experimental results showed that soaking of D. pulex adults in tra-specific dsRNA transcribed in vitro can specifically reduce the level of tra mRNA and also reduce the expression of the TRA protein, demonstrating effective in vivo silencing of the tra gene.

  8. Gene Rearrangement Attenuates Expression and Lethality of a Nonsegmented Negative Strand RNA Virus

    NASA Astrophysics Data System (ADS)

    Williams Wertz, Gail; Perepelitsa, Victoria P.; Ball, L. Andrew

    1998-03-01

    The nonsegmented negative strand RNA viruses comprise hundreds of human, animal, insect, and plant pathogens. Gene expression of these viruses is controlled by the highly conserved order of genes relative to the single transcriptional promoter. We utilized this regulatory mechanism to alter gene expression levels of vesicular stomatitis virus by rearranging the gene order. This report documents that gene expression levels and the viral phenotype can be manipulated in a predictable manner. Translocation of the promoter-proximal nucleocapsid protein gene N, whose product is required stoichiometrically for genome replication, to successive positions down the genome reduced N mRNA and protein expression in a stepwise manner. The reduction in N gene expression resulted in a stepwise decrease in genomic RNA replication. Translocation of the N gene also attenuated the viruses to increasing extents for replication in cultured cells and for lethality in mice, without compromising their ability to elicit protective immunity. Because monopartite negative strand RNA viruses have not been reported to undergo homologous recombination, gene rearrangement should be irreversible and may provide a rational strategy for developing stably attenuated live vaccines against this type of virus.

  9. Cross-Study Homogeneity of Psoriasis Gene Expression in Skin across a Large Expression Range

    PubMed Central

    Kerkof, Keith; Timour, Martin; Russell, Christopher B.

    2013-01-01

    Background In psoriasis, only limited overlap between sets of genes identified as differentially expressed (psoriatic lesional vs. psoriatic non-lesional) was found using statistical and fold-change cut-offs. To provide a framework for utilizing prior psoriasis data sets we sought to understand the consistency of those sets. Methodology/Principal Findings Microarray expression profiling and qRT-PCR were used to characterize gene expression in PP and PN skin from psoriasis patients. cDNA (three new data sets) and cRNA hybridization (four existing data sets) data were compared using a common analysis pipeline. Agreement between data sets was assessed using varying qualitative and quantitative cut-offs to generate a DEG list in a source data set and then using other data sets to validate the list. Concordance increased from 67% across all probe sets to over 99% across more than 10,000 probe sets when statistical filters were employed. The fold-change behavior of individual genes tended to be consistent across the multiple data sets. We found that genes with <2-fold change values were quantitatively reproducible between pairs of data-sets. In a subset of transcripts with a role in inflammation changes detected by microarray were confirmed by qRT-PCR with high concordance. For transcripts with both PN and PP levels within the microarray dynamic range, microarray and qRT-PCR were quantitatively reproducible, including minimal fold-changes in IL13, TNFSF11, and TNFRSF11B and genes with >10-fold changes in either direction such as CHRM3, IL12B and IFNG. Conclusions/Significance Gene expression changes in psoriatic lesions were consistent across different studies, despite differences in patient selection, sample handling, and microarray platforms but between-study comparisons showed stronger agreement within than between platforms. We could use cut-offs as low as log10(ratio) = 0.1 (fold-change = 1.26), generating larger gene lists that validate on independent data

  10. Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium

    PubMed Central

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos

    2014-01-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs. PMID:24244007

  11. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    PubMed

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  12. GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge

    PubMed Central

    Wagner, Florian

    2015-01-01

    Method Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. Results I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets. PMID:26575370

  13. Partitioning of functional gene expression data using principal points.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2017-10-12

    DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex

  14. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat.

    PubMed

    Han, Wenjing; Li, Xiaoyan; Wang, Lele; Wang, Honghao; Yang, Kun; Wang, Zhixin; Wang, Ruijun; Su, Rui; Liu, Zhihong; Zhao, Yanhong; Zhang, Yanjun; Li, Jinquan

    2018-03-01

    This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. We found that FoxN1 , FoxE1 , and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1 , FoxE1 , and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

  15. Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I.

    PubMed

    Musarò, A; Rosenthal, N

    1999-04-01

    The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.

  16. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.

    PubMed

    Ghaffari, Abdi; Li, Yunyaun; Karami, Ali; Ghaffari, Mazyar; Tredget, Edward E; Ghahary, Aziz

    2006-05-15

    Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for

  17. Bioinformatics analysis of differentially expressed gene profiles associated with systemic lupus erythematosus

    PubMed Central

    Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang

    2018-01-01

    DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited

  18. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Mi-Sun; Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signalingmore » pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2

  19. Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication.

    PubMed

    Courtney, David G; Kennedy, Edward M; Dumm, Rebekah E; Bogerd, Hal P; Tsai, Kevin; Heaton, Nicholas S; Cullen, Bryan R

    2017-09-13

    Many viral RNAs are modified by methylation of the N 6 position of adenosine (m 6 A). m 6 A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m 6 A-modified RNAs, but the effects of m 6 A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m 6 A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m 6 A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m 6 A residues modulate IAV RNA function in cis, we mapped m 6 A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m 6 A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m 6 A residues in IAV transcripts enhance viral gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    PubMed

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1-3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent.