Sample records for a-induced hepatic injury

  1. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.

    PubMed

    Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M

    2016-03-01

    The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.

  2. Ciliary neurotrophic factor analogue aggravates CCl4-induced acute hepatic injury in rats.

    PubMed

    Cui, Ming-Xia; Jiang, Jun-Feng; Min, Guang-Ning; Han, Wei; Wu, Yong-Jie

    2017-05-01

    Ciliary neurotrophic factor (CNTF) and CNTF analogs were reported to have hepatoprotective effect and ameliorate hepatic steatosis in db/db or high-fat-diet-fed mice. Because hepatic steatosis and injury are also commonly induced by hepatotoxin, the aim of the present study is to clarify whether CNTF could alleviate hepatic steatosis and injury induced by carbon tetrachloride (CCl 4 ). Unexpectedly, when combined with CCl 4 , CNTF aggravated hepatic steatosis and liver injury. The mechanism is associated with effects of CNTF that inhibited lipoprotein secretion and drastically impaired the ability of lipoproteins to act as transport vehicles for lipids from the liver to the circulation. While injected after CCl 4 cessation, CNTF could improve liver function. These data suggest that CNTF could be a potential hepatoprotective agent against CCl 4 -induced hepatic injury after the cessation of CCl 4 exposure. However, it is forbidden to combine recombinant mutant of human CNTF treatment with CCl 4 .

  3. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.

    PubMed

    Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu

    2015-04-01

    Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    PubMed

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  5. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  6. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    PubMed

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Serum from CCl4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis.

    PubMed

    Baig, Maria Tayyab; Ali, Gibran; Awan, Sana Javaid; Shehzad, Umara; Mehmood, Azra; Mohsin, Sadia; Khan, Shaheen N; Riazuddin, Sheikh

    2017-10-01

    Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl 4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl 4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl 4 -induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.

  8. Potential mechanisms of hepatitis B virus induced liver injury

    PubMed Central

    Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq

    2014-01-01

    Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946

  9. Monocyte chemoattractant protein-induced protein 1 targets hypoxia-inducible factor 1α to protect against hepatic ischemia/reperfusion injury.

    PubMed

    Sun, Peng; Lu, Yue-Xin; Cheng, Daqing; Zhang, Kuo; Zheng, Jilin; Liu, Yupeng; Wang, Xiaozhan; Yuan, Yu-Feng; Tang, Yi-Da

    2018-05-09

    Sterile inflammation is an essential factor causing hepatic ischemia/reperfusion (I/R) injury. As a critical regulator of inflammation, the role of monocyte chemoattractant protein-induced protein 1 (MCPIP1) in hepatic I/R injury remains undetermined. In this study, we discovered that MCPIP1 downregulation was associated with hepatic I/R injury in liver transplant patients and a mouse model. Hepatocyte-specific Mcpip1 gene knockout (HKO) and transgenic (HTG) mice demonstrated that MCPIP1 functions to ameliorate liver damage, reduce inflammation, prevent cell death, and promote regeneration. A mechanistic study revealed that MCPIP1 interacted with and maintained hypoxia-inducible factor 1α (HIF-1α) expression by deubiquitinating HIF-1α. Notably, HIF-1α inhibitor reversed the protective effect of MCPIP1, while HIF-1α activator compensated for the detrimental effect of MCPIP1 deficiency. Thus, we identified the MCPIP1-HIF-1α axis as a critical pathway that may be a good target for intervention in hepatic I/R injury. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  10. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl 4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP + mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl 4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl 4 -induced liver fibrosis was achieved. © 2016 International Federation for Cell Biology.

  11. Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice

    PubMed Central

    Khalifa, Hesham A.; Al-Quraishy, Saleh A.

    2017-01-01

    The current study was designed to investigate the beneficial role of diosmin, a biologically active flavonoid, against methotrexate- (MTX-) induced hepatic, renal, and cardiac injuries in mice. Male Swiss albino mice received a single intraperitoneal injection of MTX (at 20 mg/kg, body weight) either alone or in combination with oral diosmin (at 50 or 100 mg/kg body weight, for 10 days). Serum was used to evaluate tissue injury markers, while hepatic, renal, and cardiac tissue samples were obtained for determination of antioxidant activity as well as histopathological examination. Diosmin treatment ameliorated the MTX-induced elevation of serum alkaline phosphatase, aminotransferases, urea, creatinine, lactate dehydrogenase, and creatine kinases as well as plasma proinflammatory cytokines (interleukin-1-beta, interleukin-6, and tumor necrosis factor-alpha). Additionally, both diosmin doses significantly reduced tissue levels of malondialdehyde and nitric oxide and increased those of glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase, compared to the MTX-intoxicated group. Histopathological examination showed that diosmin significantly minimized the MTX-induced histological alterations and nearly restored the normal architecture of hepatic, renal, and cardiac tissues. Based on these findings, diosmin may be a promising agent for protection against MTX-induced cytotoxicity in patients with cancer and autoimmune diseases. PMID:28819543

  12. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis.

    PubMed

    Werawatganon, Duangporn; Linlawan, Sittikorn; Thanapirom, Kessarin; Somanawat, Kanjana; Klaikeaw, Naruemon; Rerknimitr, Rungsun; Siriviriyakul, Prasong

    2014-07-08

    An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. APAP overdose can cause liver injury. Our result indicate that Aloe vera attenuate APAP-induced

  13. Hepatic Histological Findings in Suspected Drug-Induced Liver Injury: Systematic Evaluation and Clinical Associations

    PubMed Central

    Kleiner, David E; Chalasani, Naga P; Lee, William M; Fontana, Robert J; Bonkovsky, Herbert L; Watkins, Paul B; Hayashi, Paul H; Davern, Timothy J; Navarro, Victor; Reddy, Rajender; Talwalkar, Jayant A; Stolz, Andrew; Gu, Jiezhun; Barnhart, Huiman; Hoofnagle, Jay H

    2014-01-01

    Drug-induced liver injury (DILI) is considered to be a diagnosis of exclusion. Liver biopsy may contribute to diagnostic accuracy, but the histological features of DILI and their relationship to biochemical parameters and outcomes are not well defined. We have classified the pathological pattern of liver injury and systematically evaluated histological changes in liver biopsies obtained from 249 patients with suspected DILI enrolled in the prospective, observational study conducted by the Drug Induced Liver Injury Network. Histological features were analyzed for their frequency within different clinical phenotypes of liver injury and to identify associations between clinical and laboratory findings and histological features. The most common histological patterns were acute (21%) and chronic hepatitis (14%), acute (9%) and chronic cholestasis (10%), and cholestatic hepatitis (29%). Liver histology from 128 patients presenting with hepatocellular injury had more severe inflammation, necrosis, and apoptosis and more frequently demonstrated lobular disarray, rosette formation, and hemorrhage than those with cholestasis. Conversely, histology of the 73 patients with cholestatic injury more often demonstrated bile plugs and duct paucity. Severe or fatal hepatic injury in 46 patients was associated with higher degrees of necrosis, fibrosis stage, microvesicular steatosis, and ductular reaction among other findings, whereas eosinophils and granulomas were found more often in those with milder injury. Conclusion: We describe an approach for evaluating liver histology in DILI and demonstrate numerous associations between pathological findings and clinical presentations that may serve as a foundation for future studies correlating DILI pathology with its causality and outcome. (Hepatology 2014;59:661–670) PMID:24037963

  14. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis

    PubMed Central

    2014-01-01

    Background An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. Methods Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). Results In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. Conclusions APAP overdose can cause liver injury. Our result indicate

  15. Rifampicin-Induced Concomitant Renal Injury and Hepatitis

    PubMed Central

    Chogtu, Bharti; Surendra, Vyshak Uddur; Acharya, Preetam Rajgopal; Yerrapragada, Devesh Bhaskar

    2016-01-01

    Adverse drug reactions are not unusual during Anti-Tubercular Therapy (ATT). One of the common complications of anti-tubercular treatment is drug induced hepatitis and renal insufficiency has also been reported. Renal failure and/or hepatitis encountered during treatment of tuberculosis can have varied aetiologies: drug induced, concomitant viral infection, pre-existing co-morbidities or a combination of these. Since, hepatitis and/or renal insufficiency can be life threatening a prompt diagnosis is warranted, where drugs should be kept as one of the important cause. Identifying the drug helps in treating hepatitis and/or renal insufficiency along with helping the physician to change the combination of ATT regimen. Rifampicin is one of the most important first line drugs in the treatment of tuberculosis. Hepatitis, epigastric distress, anaemia, thrombocytopenia, and interstitial nephritis are reported adverse drug reactions to rifampicin. As per literature rifampicin induced renal toxicity is usually seen on rifampicin re-exposure, or rifampicin administration on alternate days, both being present in this case. Here we are reporting a case of ATT induced renal failure with concomitant hepatitis where rifampicin was suspected to be the cause. PMID:27790502

  16. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    PubMed

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  17. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice.

    PubMed

    Wang, Rui; Feng, Xia; Zhu, Kai; Zhao, Xin; Suo, Huayi

    2016-05-01

    The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl 4 . The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl 4 -induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl 4 -induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.

  18. Role of caspase-1 and interleukin-1{beta} in acetaminophen-induced hepatic inflammation and liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Farhood, Anwar; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.ed

    2010-09-15

    Acetaminophen (APAP) overdose can result in serious liver injury and potentially death. Toxicity is dependent on metabolism of APAP to a reactive metabolite initiating a cascade of intracellular events resulting in hepatocellular necrosis. This early injury triggers a sterile inflammatory response with formation of cytokines and innate immune cell infiltration in the liver. Recently, IL-1{beta} signaling has been implicated in the potentiation of APAP-induced liver injury. To test if IL-1{beta} formation through caspase-1 is critical for the pathophysiology, C57Bl/6 mice were treated with the pan-caspase inhibitor Z-VD-fmk to block the inflammasome-mediated maturation of IL-1{beta} during APAP overdose (300 mg/kg APAP).more » This intervention did not affect IL-1{beta} gene transcription but prevented the increase in IL-1{beta} plasma levels. However, APAP-induced liver injury and neutrophil infiltration were not affected. Similarly, liver injury and the hepatic neutrophilic inflammation were not attenuated in IL-1-receptor-1 deficient mice compared to wild-type animals. To evaluate the potential of IL-1{beta} to increase injury, mice were given pharmacological doses of IL-1{beta} after APAP overdose. Despite increased systemic activation of neutrophils and recruitment into the liver, there was no alteration in injury. We conclude that endogenous IL-1{beta} formation after APAP overdose is insufficient to activate and recruit neutrophils into the liver or cause liver injury. Even high pharmacological doses of IL-1{beta}, which induce hepatic neutrophil accumulation and activation, do not enhance APAP-induced liver injury. Thus, IL-1 signaling is irrelevant for APAP hepatotoxicity. The inflammatory cascade is a less important therapeutic target than intracellular signaling pathways to attenuate APAP-induced liver injury.« less

  19. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats

    PubMed Central

    Zhong, Wei; Li, Qiong; Xie, Guoxiang; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Jia, Wei

    2013-01-01

    Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent. PMID:24113767

  20. Drug-induced hepatitis

    MedlinePlus

    ... induced hepatitis. Painkillers and fever reducers that contain acetaminophen are a common cause of liver injury, particularly ... problem. However, if you took high doses of acetaminophen , treatment should be started as soon as possible ...

  1. Involvement of the TNF and FasL produced by CD11b Kupffer cells/macrophages in CCl4-induced acute hepatic injury.

    PubMed

    Sato, Atsushi; Nakashima, Hiroyuki; Nakashima, Masahiro; Ikarashi, Masami; Nishiyama, Kiyoshi; Kinoshita, Manabu; Seki, Shuhji

    2014-01-01

    We previously reported that F4/80(+) Kupffer cells are subclassified into CD68(+) Kupffer cells with phagocytic and ROS producing capacity, and CD11b(+) Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4)-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo) treatment greatly decreased the spindle-shaped F4/80(+) or CD68(+) cells, while the oval-shaped F4/80+ CD11b(+) cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b(+) Kupffer cells/macrophages dramatically increased 24 hour (h) after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b(+) Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL). Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b(+) Kupffer cells), anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d-/- mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b(+) Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68(+) Kupffer cells may recruit CD11b(+) macrophages from the periphery and bone marrow. The CD11b(+) Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury.

  2. Involvement of the TNF and FasL Produced by CD11b Kupffer Cells/Macrophages in CCl4-Induced Acute Hepatic Injury

    PubMed Central

    Sato, Atsushi; Nakashima, Hiroyuki; Nakashima, Masahiro; Ikarashi, Masami; Nishiyama, Kiyoshi; Kinoshita, Manabu; Seki, Shuhji

    2014-01-01

    We previously reported that F4/80+ Kupffer cells are subclassified into CD68+ Kupffer cells with phagocytic and ROS producing capacity, and CD11b+ Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4)-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo) treatment greatly decreased the spindle-shaped F4/80+ or CD68+ cells, while the oval-shaped F4/80+ CD11b+ cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b+ Kupffer cells/macrophages dramatically increased 24 hour (h) after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b+ Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL). Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b+ Kupffer cells), anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d−/− mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b+ Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68+ Kupffer cells may recruit CD11b+ macrophages from the periphery and bone marrow. The CD11b+ Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury. PMID:24667392

  3. The effects of tramadol on hepatic ischemia/reperfusion injury in rats.

    PubMed

    Mahmoud, Mona F; Gamal, Samar; Shaheen, Mohamed A; El-Fayoumi, Hassan M

    2016-01-01

    Tramadol is a centrally acting synthetic analgesic. It has a cardioprotective effect against myocardial ischemia-reperfusion (I/R) injury in isolated rat heart. We hypothesized that tramadol may exert a similar protective effect on hepatic I/R injury. Hence, the current investigation was designed to study the possible protective effects of tramadol on experimentally-induced hepatic I/R injury in rats. Tramadol was administered 30 min before ischemia following which the rats were subjected to 45 min of ischemia followed by 1 h of reperfusion. Tramadol attenuated hepatic injury induced by I/R as evidenced by the reduction of transaminases, structural changes, and apoptotic cell death. It decreased the level of inflammatory markers such as tumor necrosis factor-alpha (TNF-α), TNF-α/interleukin-10 (IL-10) ratio, and nuclear factor-κB gene expression. It also increased the anti-inflammatory cytokine, IL-10 levels in hepatic tissues. Furthermore, it reduced oxidative stress parameters except manganese superoxide dismutase activity. The results suggest that tramadol has hepatoprotective effects against hepatic I/R injury via anti-inflammatory, antiapoptotic, and antioxidant effects.

  4. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil.

    PubMed

    Pang, Min; He, Shujian; Wang, Lu; Cao, Xinmin; Cao, Lili; Jiang, Shaotong

    2014-08-01

    This study was designed to investigate physicochemical characterization of the oil extracted from foxtail millet bran (FMBO), and the antioxidant and hepatoprotective effects against acute ethanol-induced hepatic injury in mice. GC-MS analysis revealed that unsaturated fatty acids (UFAs) account for 83.76% of the total fatty acids; in particular, the linoleic acid (C18:2) is the predominant polyunsaturated fatty acid (PUFA), and the compounds of squalene and six phytosterols (or phytostanols) were identified in unsaponifiable matter of FMBO. The antioxidant activity examination of FMBO in vitro showed highly ferric-reducing antioxidant power and scavenging effects against DPPH· and HO· radicals. Furthermore, the protective effect of FMBO against acute hepatic injuries induced by ethanol was verified in mice. In this, intragastric administration with different dosages of FMBO in mice ahead of acute ethanol administration could observably antagonize the ethanol-induced increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and the hepatic malondialdehyde (MDA) levels, respectively, along with enhanced hepatic superoxide dismutase (SOD) levels relative to the control. Hepatic histological changes were also observed and confirmed that FMBO is capable of attenuating ethanol-induced hepatic injury.

  5. The ameliorative effect of thymol against hydrocortisone-induced hepatic oxidative stress injury in adult male rats.

    PubMed

    Aboelwafa, Hanaa R; Yousef, Hany N

    2015-08-01

    The aim of the present study was to investigate whether hydrocortisone induces oxidative stress in hepatocytes and to evaluate the possible ameliorative effect of thymol against such hepatic injury. Twenty-four adult male rats were divided into control, thymol, hydrocortisone, and hydrocortisone+thymol groups. The 4 groups were treated daily for 15 days. Hydrocortisone significantly induced oxidative stress in the liver tissues, marked by increased serum levels of alanine transaminase (ALT), aspartate transaminase (AST), total oxidative capacity (TOC), and tumor necrosis factor-alpha (TNF-α) accompanied by marked decline of serum levels of total protein, albumin, and total antioxidant capacity (TAC). Also, marked elevation in the levels of the thiobarbituric acid reactive substances (TBARS) and TNF-α, beside significant decrease in the level of glutathione (GSH) in hepatic tissues were recorded. These biochemical alterations were accompanied by histopathological changes marked by destruction of the normal hepatic architecture, in addition to ultrastructural alterations represented by degenerative features covering almost all the cytoplasmic organelles of the hepatocytes. Supplementation of hydrocortisone-treated rats with thymol reversed most of the biochemical, histological, and ultrastructural alterations. The results of our study confirm that thymol has strong ameliorative effect against hydrocortisone-induced oxidative stress injury in hepatic tissues.

  6. The effects of tramadol on hepatic ischemia/reperfusion injury in rats

    PubMed Central

    Mahmoud, Mona F.; Gamal, Samar; Shaheen, Mohamed A.; El-Fayoumi, Hassan M.

    2016-01-01

    Objectives: Tramadol is a centrally acting synthetic analgesic. It has a cardioprotective effect against myocardial ischemia-reperfusion (I/R) injury in isolated rat heart. We hypothesized that tramadol may exert a similar protective effect on hepatic I/R injury. Hence, the current investigation was designed to study the possible protective effects of tramadol on experimentally-induced hepatic I/R injury in rats. Materials and Methods: Tramadol was administered 30 min before ischemia following which the rats were subjected to 45 min of ischemia followed by 1 h of reperfusion. Results: Tramadol attenuated hepatic injury induced by I/R as evidenced by the reduction of transaminases, structural changes, and apoptotic cell death. It decreased the level of inflammatory markers such as tumor necrosis factor-alpha (TNF-α), TNF-α/interleukin-10 (IL-10) ratio, and nuclear factor-κB gene expression. It also increased the anti-inflammatory cytokine, IL-10 levels in hepatic tissues. Furthermore, it reduced oxidative stress parameters except manganese superoxide dismutase activity. Conclusion: The results suggest that tramadol has hepatoprotective effects against hepatic I/R injury via anti-inflammatory, antiapoptotic, and antioxidant effects. PMID:27298497

  7. Adenoviral Gene Transfer of Hepatic Stimulator Substance Confers Resistance Against Hepatic Ischemia–Reperfusion Injury by Improving Mitochondrial Function

    PubMed Central

    Jiang, Shu-Jun; Li, Wen

    2013-01-01

    Abstract Hepatic stimulator substance (HSS) has been suggested to protect liver cells from various toxins. However, the precise role of HSS in hepatic ischemia–reperfusion (I/R) injury remains unknown. This study aims to elucidate whether overexpression of HSS could attenuate hepatic ischemia–reperfusion injury and its possible mechanisms. Both in vivo hepatic I/R injury in mice and in vitro hypoxia–reoxygenation (H/R) in a cell model were used to evaluate the effect of HSS protection after adenoviral gene transfer. Moreover, a possible mitochondrial mechanism of HSS protection was investigated. Efficient transfer of the HSS gene into liver inhibited hepatic I/R injury in mice, as evidenced by improvement in liver function tests, the preservation of hepatic morphology, and a reduction in hepatocyte apoptosis. HSS overexpression also inhibited H/R-induced cell death, as detected by cell viability and cell apoptosis assays. The underlying mechanism of this hepatic protection might involve the attenuation of mitochondrial dysfunction and mitochondrial-dependent cell apoptosis, as shown by the good preservation of mitochondrial ultrastructure, mitochondrial membrane potential, and the inhibition of cytochrome c leakage and caspase activity. Moreover, the suppression of H/R-induced mitochondrial ROS production and the maintenance of mitochondrial respiratory chain complex activities may participate in this mechanism. This new function of HSS expands the possibility of its application for the prevention of I/R injury, such as hepatic resection and liver transplantation in clinical practice. PMID:23461564

  8. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Gang

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatmentmore » inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.« less

  9. Bee's honey attenuates non-alcoholic steatohepatitis-induced hepatic injury through the regulation of thioredoxin-interacting protein-NLRP3 inflammasome pathway.

    PubMed

    Xiao, Jia; Liu, Yingxia; Xing, Feiyue; Leung, Tung Ming; Liong, Emily C; Tipoe, George L

    2016-06-01

    We aim to examine whether honey ameliorates hepatic injury in non-alcoholic steatohepatitis (NASH) animal and cell line steatosis models. NASH was induced in female Sprague-Dawley rat by 8-week feeding with a high-fat diet. During the experiment, 5 g/kg honey was intragastrically fed daily. Rat normal hepatocyte BRL-3A cell was treated with sodium palmitate (SP) to induce steatosis in the absence or presence of honey pre-treatment or specific siRNA/overexpress plasmid of thioredoxin-interacting protein (TXNIP) or antagonist/agonist of Nod-like receptor protein 3 (NLRP3). Honey significantly improved the high-fat-diet-induced hepatic injury, steatosis, fibrosis, oxidative stress, and inflammation in rats. Honey also inhibited the overexpression of TXNIP and the activation of NLRP3 inflammasome. These effects were replicated in BRL-3A cell line which showed that the down-regulation of TXNIP or inhibition of NLRP3 contributed to the suppression of NLRP3 inflammasome activation, inflammation, and re-balanced lipid metabolism. In contrast, overexpression of TXNIP or agonism of NLRP3 exacerbated the cellular damage induced by SP. Suppression of the TXNIP-NLRP3 inflammasome pathway may partly contribute to the amelioration of hepatic injury during the progression of NASH by honey. Targeting hepatic TXNIP-NLRP3 inflammasome pathway is a potential therapeutic way for the prevention and treatment of NASH.

  10. Nonselective inhibition of prostaglandin-endoperoxide synthase by naproxen ameliorates hepatic injury in animals with acute or chronic liver injury

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev

    2014-01-01

    The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of

  11. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.

    PubMed

    Liu, Dongmei; Zhang, Xiaoli; Jiang, Li; Guo, Yun; Zheng, Changqing

    2014-05-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess anti-inflammatory and anti-oxidative properties. In this study, we investigated the protective effects of EGCG against concanavalin A (ConA)-induced liver injury and the underlying mechanisms. EGCG (5 mg/kg) was administered orally by gavage to mice twice daily for 10 days before an intravenous injection of ConA. We found that EGCG effectively rescued lethality, improved hepatic pathological damage, and decreased serum levels of alanine aminotransaminase (ALT) in ConA-challenged mice. Furthermore, EGCG also significantly prevented the release of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-6 in serum, reduced malondialdehyde (MDA) levels, and restored glutathione (GSH) content and superoxide dismutase (SOD) activity in liver tissues from ConA-challenged mice. Finally, nuclear factor (NF)-κB activation and expression levels of Toll-like receptor (TLR) 2, TLR4 and TLR9 protein in liver tissues were significantly inhibited by EGCG pretreatment. Taken together, our data suggest that EGCG possesses hepatoprotective properties against ConA-induced liver injury through its anti-inflammatory and anti-oxidant actions. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl₄-induced hepatic injury in mice.

    PubMed

    Huang, Jiafu; Ou, Yixin; Yew, Tai Wai David; Liu, Jingna; Leng, Bo; Lin, Zhichao; Su, Yi; Zhuang, Yuanhong; Lin, Jiaofen; Li, Xiumin; Xue, Yu; Pan, Yutian

    2016-01-01

    During the industrial production of canned mushroom (Agaricus bisporus), a large quantity of wastewater is produced. In this study, the wastewater generated during the canning of mushroom was analyzed. From this wastewater, four polysaccharide components (Abnp1001, Abnp1002, Abap1001, and Abap1002) with hepatic-protective activity were isolated by ultrafiltration, DEAE cellulose-52 chromatography and Sephadex G-200 size-exclusion chromatography. Results of ultraviolet spectra analysis and molecular weight determination showed that Abnp1001, Abnp1002, Abap1001 and Abap1002 were uniform with average molecular weights of 336, 12.8, 330 and 15.8kDa, respectively. The monosaccharide composition analysis using gas chromatography (GC) showed that the four fractions were heteropolysaccharides and mainly composed of glucose. Fourier transform-infrared (FT-IR) analysis showed that the isolated fractions were all composed of β-glycoside linkages. Additionally, the potential hepatoprotective activities of these polysaccharides against CCl4-induced hepatic injury in mice were studied. Notably, Abnp1002 and Abap1002 could lower the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations in serum in a dose dependent manner and reduce the hepatocellular degeneration and necrosis, as well as inflammatory infiltration. These results indicate that these two polysaccharides had protective effects on acute hepatic injury induced by CCl4 in mice and suggest that the polysaccharides extracted from A. bisporus industrial wastewater might have potential in therapeutics of acute hepatic injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Lactobacillus fermentum ZYL0401 Attenuates Lipopolysaccharide-Induced Hepatic TNF-α Expression and Liver Injury via an IL-10- and PGE2-EP4-Dependent Mechanism

    PubMed Central

    Lv, Longxian; Yang, Jianzhuan; Lu, Haifeng; Li, Lanjuan

    2015-01-01

    Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in

  14. Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis.

    PubMed

    Omar, Hany A; Mohamed, Wafaa R; Arab, Hany H; Arafa, El-Shaimaa A

    2016-01-01

    Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways.

  15. Hepatic enzymes have a role in the diagnosis of hepatic injury after blunt abdominal trauma.

    PubMed

    Tan, Ker-Kan; Bang, Shieh-Ling; Vijayan, Appasamy; Chiu, Ming-Terk

    2009-09-01

    Delayed diagnosis of patients with severe liver injuries is associated with an adverse outcome. As computed tomographic (CT) scan is not always available in the management of blunt abdominal trauma worldwide, the present study was undertaken to determine the accuracy of selected haematological markers in predicting the presence of hepatic injury and its severity after blunt abdominal trauma. A retrospective review of all patients with blunt abdominal trauma presented to our institution over a 3-year period was performed. Patients were excluded if they suffered penetrating injuries, died in the emergency department or if the required blood tests were not performed within 24h of the accident. The grading of the hepatic injury was verified using CT scans or surgical findings. Ninety-nine patients with blunt abdominal trauma had the required blood tests performed and were included in the study. The median injury severity score was 24 (range 4-75). Fifty-five patients had hepatic injuries, of which 47.3% were minor (Grades I and II) while 52.7% had major hepatic injuries (Grades III-V). There were no patients with Grade VI injuries. A raised ALT was strongly associated with presence of hepatic injuries (OR, 109.8; 95% CI, 25.81-466.9). This relation was also seen in patients with raised AST>2 times (OR, 21.33; 95% CI, 7.27-62.65). This difference was not seen in both bilirubin and ALP. ALT>2 times normal was associated with major hepatic injuries (OR, 7.15; 95% CI, 1.38-37.14; p=0.012) while patients with simultaneous raised AST>2 times and ALT>2 times had a stronger association for major hepatic injuries (OR, 8.44; 95% CI, 1.64-43.47). Abnormal transaminases levels are associated with hepatic injuries after blunt abdominal trauma. Patients with ALT and AST>2 times normal should be assumed to possess major hepatic trauma and managed accordingly. Patients with normal ALT, AST and LDH are unlikely to have major liver injuries.

  16. Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage.

    PubMed

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway.

  17. Osthole Attenuates Hepatic Injury in a Rodent Model of Trauma-Hemorrhage

    PubMed Central

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway. PMID:23755293

  18. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.

    PubMed

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15ml/kg). In CCl 4 +OCA group, mice were orally with OCA (5mg/kg) 48, 24 and 1h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [Protective effects of agmatine on lipopolysaccharide -induced acute hepatic injury in mice].

    PubMed

    Li, Xuan -fei; Fan, Xia; Zheng, Zhi-hua; Yang, Xue; Liu, Zheng; Gong, Jian-ping; Liang, Hua-ping

    2013-12-01

    To observe the effect of agmatine ( AGM) on lipopolysaccharide ( LPS )-induced acute hepatic injury in mice, and to explore its related mechanism. Sixty C57BU6 mice were randomly divided into control group ( n = 20, with intra-peritoneal injection of phosphate buffer saline 10 mg/kg), model group ( n = 20, with intra-peritoneal injection of LPS 10 mg/kg), and AGM group (n=20, with intra-peritoneal injection of LPS 10 mg/kg and AGM 200 mg/kg). Ten mice in each group were sacrificed at 6 hours and 24 hours, respectively, after modeling, blood samples were collected for the determination of tumor necrosis factor-a ( TNF -a) and interleukin ( IL-113 and IL-6) by enzyme linked immunosorbent assay (ELISA) at 6 hours after modeling , and for determination of alanine aminotransferase (ALT), aspartate transaminase (AST) and total bilirubin (TBil) by automatic biochemistry analyzer at 24 hours after modeling. Hepatic homogenate was also collected for determining the endo nuclear nuclear factor-KB ( NF -KB) p65 by Western blotting at 6 hours after modeling, and for observation of pathological changes at 24 hours after modeling. At 6 hours after modeling, .the mice in model group became lethargic and quiet, and their food and water assumption was reduced, but AGM was found to be able to greatly improve the general status of animals in AGM group. AGM was found to lower the contents of serum TNF-a ( IJ.g/L: 296.3 ± 42.5 vs. 627.2 ± 81.3, t=7.327, P=0.002), IL-113 ( f.Lg/L: 109.1 ± 12.3 vs. 264.2 ± 18.8, t= 11.958, P=0.001), IL-6 ( mg/L: 11.4 ± 1.9 vs. 23.6 ± 2.5, t=6.729, P=0.003), ALT (U!L: 107.9 ± 8.5 vs. 189.9 ± 13.6, t=8.856, P=0.001 ), AST (UIL: 347.4 ± 24.9 vs. 716.8 ± 60.4, t=9.793, P=0.001) and TBil ( f.Lmol!L: 8.3 ± 0.9 vs. 10.6 ± 0.5, t=3.869, P=0.018) in mice with acute hepatic injury induced by LPS. AGM also depressed TNF -a ( ng/g: 287.4 ± 32.5 vs. 461.5 ± 31.4, t=6.673, P= 0.003), IL-113 (pg/g: 146.7 ± 13.5 vs. 351.6 ± 28.7, t=11.190, P=0.001) and

  20. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  1. Fenofibrate Does Not Affect Burn-Induced Hepatic Endoplasmic Reticulum Stress

    PubMed Central

    Hiyama, Yaeko; Marshall, Alexandra H.; Kraft, Robert; Arno, Anna; Jeschke, Marc G.

    2013-01-01

    Background Burn injury causes major metabolic derangements such as hypermetabolism, hyperlipidemia, and insulin resistance and is associated with liver damage, hepatomegaly, and hepatic endoplasmic reticulum (ER) stress. Although the physiological consequences of such derangements have been delineated, the underlying molecular mechanisms remain unknown. Previously, it was shown that fenofibrate improves patient outcome by attenuating post-burn stress responses. Methods Fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-α agonist, regulates liver lipid metabolism and has been used to treat hypertriglyceridemia and hypercholesterolemia for many years. The aim of the present study is to determine the effects of fenofibrate on burn-induced hepatic morphologic and metabolic changes. We randomized rats to sham, burn injury, and burn injury plus fenofibrate. Animals were sacrificed and livers were assessed at 24 or 48 hours post-burn. Results Burn injury decreased albumin and increased alanine transaminase (p = 0.1 vs. sham), indicating liver injury. Fenofibrate administration did not restore albumin or decrease alanine transaminase. In addition, ER stress was significantly increased after burn injury both with and without fenofibrate (p < 0.05 vs. sham). Burn injury increased fatty acid metabolism gene expression (p < 0.05 vs. sham), downstream of PPARα. Fenofibrate treatment increased fatty acid metabolism further, which reduced post-burn hepatic steatosis (burn vs. sham p < 0.05, burn+fenofibrate vs. sham not significant). Conclusions Fenofibrate did not alleviate thermal injury induced hepatic ER stress and dysfunction but reduced hepatic steatosis by modulating hepatic genes related to fat metabolism. PMID:23866789

  2. Hepatic Expression of Serum Amyloid A1 Is Induced by Traumatic Brain Injury and Modulated by Telmisartan

    PubMed Central

    Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G.; Campbell, Ashley M.; Saavedra, Juan M.; Shewmaker, Frank P.; Symes, Aviva J.

    2016-01-01

    Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. PMID:26435412

  3. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swelm, Rachel P.L. van; Laarakkers, Coby M.M.; Pertijs, Jeanne C.L.M.

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.« less

  4. Mineral metabolism in dimethylnitrosamine-induced hepatic fibrosis.

    PubMed

    George, Joseph

    2006-10-01

    Complications such as ascites during the pathogenesis of hepatic fibrosis and cirrhosis may lead to several abnormalities in mineral metabolism. In the present investigation, we have monitored serum and liver concentrations of calcium, magnesium, sodium and potassium during experimentally induced hepatic fibrosis in rats. The liver injury was induced by intraperitoneal injections of dimethylnitrosamine (DMN; N-nitrosodimethylamine, NDMA) in doses 1 mg/100 g body weight on 3 consecutive days of each week over a period of 21 days. Calcium, magnesium, sodium and potassium were measured by atomic absorption spectrophotometry in the serum and liver on days 7, 14 and 21 after the start of DMN administration. Negative correlations were observed between liver function tests and serum mineral levels, except with albumin. Calcium, magnesium, potassium and sodium concentrations in the serum were decreased after the induction of liver injury. The liver calcium content was increased after DMN treatment. No change occurred in liver sodium content. However, magnesium and potassium content was significantly reduced in the hepatic tissue. The results suggest that DMN-induced hepatic fibrosis plays certain role in the alteration of essential elements. The low levels of albumin and the related ascites may be one of the major causes of the imbalance of mineral metabolism in hepatic fibrosis and further aggravation of the disease.

  5. Hepatic expression of serum amyloid A1 is induced by traumatic brain injury and modulated by telmisartan.

    PubMed

    Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G; Campbell, Ashley M; Saavedra, Juan M; Shewmaker, Frank P; Symes, Aviva J

    2015-10-01

    Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Wheatgrass-Derived Polysaccharide Has Antiinflammatory, Anti-Oxidative and Anti-Apoptotic Effects on LPS-Induced Hepatic Injury in Mice.

    PubMed

    Nepali, Sarmila; Ki, Hyeon-Hui; Lee, Ji-Hyun; Lee, Hoon-Yeon; Kim, Dae-Ki; Lee, Young-Mi

    2017-07-01

    Hepatic injury occurs frequently during sepsis, and polysaccharides isolated from plants have been reported to have antiinflammatory and antioxidant effects in various models. However, the effect of wheatgrass-derived polysaccharide (WGP) has not been previously studied. In the present study, we investigated the effect of WGP on lipopolysaccharide (LPS)-induced hepatic injury in mice. Mice were pre-treated with WGP (100 or 200 mg/kg daily for 2 days) and then challenged with LPS (1 mg/kg, intraperitoneal), and sacrificed after 12 h. Wheatgrass-derived polysaccharide decreased serum aminotransferase levels and histological changes as compared with LPS-challenged mice. Wheatgrass-derived polysaccharide also significantly inhibited LPS-induced pro-inflammatory cytokine up-regulation and improved the oxidative status of liver tissues. Furthermore, these effects were found to be mediated by the suppression of the transcriptional activity of nuclear factor-kappa B (NF-κB), due to inhibitions of transforming growth factor beta (TGF-β)-activated kinase (TAK)-1 phosphorylation and inhibition of kappa B (IκB)-α degradation. In addition, WGP inhibited the activations of mitogen-activated protein kinases (MAPKs). Wheatgrass-derived polysaccharide also attenuated hepatic cell death by modulating caspase-3 and apoptosis associated mitochondrial proteins, such as, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax). Taken together, WGP possesses antiinflammatory, anti-oxidant and anti-apoptotic activity and ameliorates LPS-induced liver injury in mice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis.

    PubMed

    Shaker, Mohamed E; Zalata, Khaled R; Mehal, Wajahat Z; Shiha, Gamal E; Ibrahim, Tarek M

    2011-04-15

    Effective and well-tolerated anti-fibrotic drugs are currently lacking. Therefore, this study was carried out to investigate the potential anti-fibrotic effects of imatinib, nilotinib and silymarin on established hepatic fibrosis in the carbon tetrachloride (CCl(4)) rat model. Male Wistar rats received intraperitoneal injections of CCl(4) twice weekly for 8weeks, as well as daily intraperitoneal treatments of imatinib (10 and 20mg/kg), nilotinib (10 and 20mg/kg) and silymarin (100mg/kg) during the last 4weeks of CCl(4)-intoxication. At the end of the study, hepatic damage was evaluated by analysis of liver function tests and hepatic oxidative stress parameters. Hepatic fibrosis was evaluated by histopathology and morphometry, as well as collagen and 4-hydroxyproline contents. Nilotinib (20mg/kg) was the most effective treatment to counteract CCl(4)-induced hepatic injury as indicated by liver function tests and histopathology. Nilotinib (10mg/kg), nilotinib (20mg/kg) and silymarin (100mg/kg) treatments reduced the mean score of hepatic fibrosis by 31%, 68% and 47%, respectively, and hepatic collagen content by 47%, 49% and 18%, respectively in CCl(4)-treated rats. Hepatic morphometric evaluation and 4-hydroxyproline content revealed that CCl(4)-induced fibrosis was ameliorated significantly by nilotinib (20mg/kg) and imatinib (20mg/kg). Unlike nilotinib, imatinib (20mg/kg) showed some sort of hepatic injury evidenced by elevation of serum aminotransferases and total bilirubin levels, and hepatic total nitrate/nitrite content, as well as characteristic anisonucleosis visualized with the hematoxylin-eosin staining. In conclusion, this study provides the evidence that nilotinib exerts anti-fibrotic activity and suggests that it may be valuable in the treatment of hepatic fibrosis in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Hepatoprotective effects of the polysaccharide isolated from Tarphochlamys affinis (Acanthaceae) against CCl4-induced hepatic injury.

    PubMed

    Lin, Xing; Liu, Xi; Huang, Quanfang; Zhang, Shijun; Zheng, Li; Wei, Ling; He, Min; Jiao, Yang; Huang, Jianchun; Fu, Shujie; Chen, Zhaoni; Li, Yongwen; Zhuo, Lang; Huang, Renbin

    2012-01-01

    This study was designed to investigate the protective effects of the polysaccharide isolated from Tarphochlamys affinis (PTA) against CCl4-induced hepatotoxicity in rats. Liver injury was induced in rats by the administration of CCl4 twice a week for 2 weeks. During the experiment, the model group received CCl4 only; the treatment groups received various drugs plus CCl4, whereas the normal control group received an equal volume of saline. Compared with the CCl4 group, PTA significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in the serum and increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) in the liver. Moreover, the content of hepatic malondialdehyde (MDA) was reduced. Histological findings also confirmed the anti-hepatotoxic characterisation. In addition, PTA significantly inhibited the proinflammatory mediators, such as prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and myeloperoxidase (MPO). Further investigation showed that the inhibitory effect of PTA on the pro-inflammatory cytokines was associated with the down-regulation of nuclear factor-kappa B (NF-κB). In brief, our results show that the protective effect of PTA against CCl4-induced hepatic injury may rely on its ability to reduce oxidative stress and suppress inflammatory responses.

  9. [Protective effect of Tanreqing injection on acute hepatic injury induced by CCl4 in rats].

    PubMed

    Lei, Yang; Zhou, Ai-Min; Guo, Tao; Tan, Ye; Tao, Yan-Yan; Liu, Cheng-Hai

    2013-04-01

    To observe the protective effect of Tanreqing injection(TRQ) on carbon tetrachloride-induced acute hepatic injury in rats. Rats were randomly divided into the normal group and the model group, and injected subcutaneously with 100% CCl4 5 mL x kg(-1) to establish the single CCl4 infection model, in order to observe the changes in rat liver injury after 3 h and 6 h. Subsequently, the multiple CCl4 infection liver injury model was reproduced by subcutaneously injecting 100% CCl4 (5 mL x kg(-1)), 50% CCl4 olive oil solution (2 mL x kg(-1)) and then 20% CCl4 olive oil solution (2 mL x kg(-1)). At 6 h after the first CCl4 injection, the rats were divided into six groups: the model group, the control group, the diammonium glycyrrhizinate-treated group, and TRQ high, middle and low dose groups. They were injected through caudal veins, while a normal control group was set up. Their weight and liver-body ratio were observed. Hepatic inflammation was observed with HE staining. Assay kits were adopted to detect ALT, AST, T. Bil, D. Bil, CHE, TBA, gamma-GT and Alb. According to the single injection model, serum AST and T. Bil of model rats were obviously increased at 6 h after single subcutaneous injection of CCl4, with disordered lobular structure in liver tissues, notable swollen liver cells and remarkable liver injury. According to the results of the multiple injection pharmacological experiment, compared with the normal group, the model group had higher serum ALT, AST, and gamma-GT activities (P < 0. 05), TBA and T. Bil contents (P < 0.05) and lower CHE activity (P < 0.05). HE staining showed disorganized lobular structure in liver tissues and notable ballooning degeneration in liver cells. Compared with the model group, TRQ high and middle dose groups and the diammonium glycyrrhizinate-treated group showed significant charges in serum liver function and inflammation in liver cells. Specifically, TRQ high and middle dose groups were superior to the diammonium

  10. Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaker, Mohamed E., E-mail: mshaker2222@yahoo.com; Zalata, Khaled R.; Mehal, Wajahat Z.

    2011-04-15

    Effective and well-tolerated anti-fibrotic drugs are currently lacking. Therefore, this study was carried out to investigate the potential anti-fibrotic effects of imatinib, nilotinib and silymarin on established hepatic fibrosis in the carbon tetrachloride (CCl{sub 4}) rat model. Male Wistar rats received intraperitoneal injections of CCl{sub 4} twice weekly for 8 weeks, as well as daily intraperitoneal treatments of imatinib (10 and 20 mg/kg), nilotinib (10 and 20 mg/kg) and silymarin (100 mg/kg) during the last 4 weeks of CCl{sub 4}-intoxication. At the end of the study, hepatic damage was evaluated by analysis of liver function tests and hepatic oxidative stressmore » parameters. Hepatic fibrosis was evaluated by histopathology and morphometry, as well as collagen and 4-hydroxyproline contents. Nilotinib (20 mg/kg) was the most effective treatment to counteract CCl{sub 4}-induced hepatic injury as indicated by liver function tests and histopathology. Nilotinib (10 mg/kg), nilotinib (20 mg/kg) and silymarin (100 mg/kg) treatments reduced the mean score of hepatic fibrosis by 31%, 68% and 47%, respectively, and hepatic collagen content by 47%, 49% and 18%, respectively in CCl{sub 4}-treated rats. Hepatic morphometric evaluation and 4-hydroxyproline content revealed that CCl{sub 4}-induced fibrosis was ameliorated significantly by nilotinib (20 mg/kg) and imatinib (20 mg/kg). Unlike nilotinib, imatinib (20 mg/kg) showed some sort of hepatic injury evidenced by elevation of serum aminotransferases and total bilirubin levels, and hepatic total nitrate/nitrite content, as well as characteristic anisonucleosis visualized with the hematoxylin-eosin staining. In conclusion, this study provides the evidence that nilotinib exerts anti-fibrotic activity and suggests that it may be valuable in the treatment of hepatic fibrosis in humans. - Graphical abstract: Display Omitted Research Highlights: > The anti-fibrotic effects of imatinib, nilotinib and silymarin were

  11. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    PubMed

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte. Copyright © 2016. Published by Elsevier

  12. Expression of TNF-alpha and immunohistochemical distribution of hepatic macrophage surface markers in carbon tetrachloride-induced chronic liver injury in rats.

    PubMed

    Orfila, C; Lepert, J C; Alric, L; Carrera, G; Beraud, M; Vinel, J P; Pipy, B

    1999-10-01

    In liver injury induced by carbon tetrachloride, secondary hepatic injury occurs from inflammatory processes originating from products released by activated Kupffer cells, which play a central role in hepatic inflammation. The purpose of our study was to demonstrate, in rats, the relationships between a function of the hepatic macrophages, TNF-alpha production and the state of activation of these cells, characterized by their phenotype, in the different phases of the process and development of fibrosis in a carbon tetrachloride-induced cirrhosis model. The immunohistochemical localization of proinflammatory cytokine TNF-alpha and surface surface makers (ED1 and ED2) was studied in hepatitis and cirrhosis in response to 3 and 9 weeks ingestion of carbon tetrachloride. After carbon tetrachloride ingestion, accompanying the increased necrosis, immunohistochemical analysis of liver tissue sections demonstrated the significantly increased number of cells expressing ED1, ED2 and TNF-alpha, compared to normal. The number of cells expressing the surface phenotypic markers of liver macrophages increased and this change was concomitantly associated with an increased cellular expression of TNF-alpha. Local macrophage proliferation and influx of newly recruited blood monocytes resulted in an increase of the macrophage population. The populational changes involved difference in functional activity and enhanced TNF-alpha expression. This cytokine expressed in the carbon tetrachloride-induced inflammatory process is associated with the development of fibrosis and may contribute to disease severity.

  13. Pretreatment of parecoxib attenuates hepatic ischemia/reperfusion injury in rats.

    PubMed

    Zhang, Tao; Ma, Yi; Xu, Kang-Qing; Huang, Wen-Qi

    2015-11-17

    Previous studies showed that cyclooxygenase(COX) was involved in ischemia/reperfusion (I/R) injuries. Parecoxib, a selective inhibitor for COX -2, has been shown to have protective properties in reducing I/R injury in the heart, kidney and brain. The aim of this study was to investigate the effects of parecoxib on hepatic I/R and to explore the underlying mechanisms. Fifty-two Sprague-Dawley rats were randomly divided into three groups: the sham-operation (Sham) group, the hepatic ischemia/reperfusion (I/R) group, and the parecoxib pretreated I/R (I/R + Pare) group. Partial warm ischemia was produced in the left and middle hepatic lobes of Sprague-Dawley rats for 60 min, followed by 6 h of reperfusion. Rats in the I/R + Pare group received parecoxib (10 mg/kg) intraperitoneally twice a day for three consecutive days prior to ischemia. Blood and tissue samples from the groups were collected 6 h after reperfusion, and a survival study was performed. Pretreatment with parecoxib prior to I/R insult significantly reduced I/R-induced elevations of aminotransferases, and significantly improved the histological status of the liver. Parecoxib significantly suppressed inflammatory cascades, as demonstrated by attenuations in TNF-α and IL-6. Parecoxib significantly inhibited iNOS and nitrotyrosine expression after I/R and significantly attenuated I/R-induced apoptosis. The 7-day survival rate was increased by pre-administration of parecoxib. Administration of parecoxib prior to hepatic I/R attenuates hepatic injury through inhibition of inflammatory response and nitrosative stress.

  14. Tenofovir-induced kidney injury.

    PubMed

    Gitman, Michael D; Hirschwerk, David; Baskin, Cindy H; Singhal, Pravin C

    2007-03-01

    Tenofovir disoproxil fumarate is a nucleotide reverse transcriptase inhibitor with activity against both HIV and the hepatitis B virus. It has had minimal nephrotoxic effects in early clinical trials, but as clinical use has widened, case reports describing tenofovir-induced renal tubular damage, Fanconi's syndrome and diabetes insipidus have been described. The authors review the pharmacokinetics, mechanism of action and clinical uses of tenofovir disoproxil fumarate. The large clinical trials, as well as the case reports of tenofovir-induced kidney injury, are also reviewed. The potential mechanism of renal damage is discussed and recommendations for evaluation and treatment of tenofovir-induced kidney injury are given.

  15. Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice.

    PubMed

    Zhou, Rui-Jun; Ye, Hua; Wang, Feng; Wang, Jun-Long; Xie, Mei-Lin

    2017-11-04

    Apigenin is a natural flavonoid compound widely distributed in a variety of vegetables, medicinal plants and health foods. This study aimed to examine the protective effect of apigenin against d-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury and to investigate the potential biochemical mechanisms. The results showed that after oral administration of apigenin 100-200 mg/kg for 7 days, the levels of serum alanine aminotransferase and aspartate aminotransferase were decreased, and the severity of liver injury was alleviated. Importantly, apigenin pretreatment increased the levels of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) protein expressions as well as superoxide dismutase, catalase, glutathione S-transferase and glutathione reductase activities, decreased the levels of hepatic nuclear factor-κB (NF-κB) protein expression and tumor necrosis factor-α. These findings demonstrated that apigenin could prevent the D-GalN/LPS-induced liver injury in mice, and its mechanisms might be associated with the increments of Nrf-2-mediated antioxidative enzymes and modulation of PPARγ/NF-κB-mediated inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production.

    PubMed

    Uchio, Ryusei; Higashi, Yohei; Kohama, Yusuke; Kawasaki, Kengo; Hirao, Takashi; Muroyama, Koutarou; Murosaki, Shinji

    2017-01-01

    Turmeric ( Curcuma longa ) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.

  17. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    PubMed

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  18. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    PubMed Central

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795

  19. Hemorrhage-induced hepatic injury and hypoperfusion can be prevented by direct peritoneal resuscitation.

    PubMed

    Hurt, Ryan T; Zakaria, El Rasheid; Matheson, Paul J; Cobb, Mahoney E; Parker, John R; Garrison, R Neal

    2009-04-01

    Crystalloid fluid resuscitation after hemorrhagic shock (HS) that restores/maintains central hemodynamics often culminates in multi-system organ failure and death due to persistent/progressive splanchnic hypoperfusion and end-organ damage. Adjunctive direct peritoneal resuscitation (DPR) using peritoneal dialysis solution reverses HS-induced splanchnic hypoperfusion and improves survival. We examined HS-mediated hepatic perfusion (galactose clearance), tissue injury (histopathology), and dysfunction (liver enzymes). Anesthetized rats were randomly assigned (n = 8/group): (1) sham (no HS); (2) HS (40% mean arterial pressure for 60 min) plus conventional i.v. fluid resuscitation (CR; shed blood + 2 volumes saline); (3) HS + CR + 30 mL intraperitoneal (IP) DPR; or (4) HS + CR + 30 mL IP saline. Hemodynamics and hepatic blood flow were measured for 2 h after CR completion. In duplicate animals, liver and splanchnic tissues were harvested for histopathology (blinded, graded), hepatocellular function (liver enzymes), and tissue edema (wet-dry ratio). Group 2 decreased liver blood flow, caused liver injuries (focal to submassive necrosis, zones 2 and 3) and tissue edema, and elevated liver enzymes (alanine aminotransferase (ALT), 149 +/- 28 microg/mL and aspartate aminotransferase (AST), 234 +/- 24 microg/mL; p < 0.05) compared to group 1 (73 +/- 9 and 119 +/- 10 microg/mL, respectively). Minimal/no injuries were observed in group 3; enzymes were normalized (ALT 89 +/- 9 microg/mL and AST 150 +/- 17 microg/mL), and tissue edema was similar to sham. CR from HS restored and maintained central hemodynamics but did not restore or maintain liver perfusion and was associated with significant hepatocellular injury and dysfunction. DPR added to conventional resuscitation (blood and crystalloid) restored and maintained liver perfusion, prevented hepatocellular injury and edema, and preserved liver function.

  20. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  1. A Case Report of Supplement-Induced Hepatitis in an Active Duty Service Member.

    PubMed

    Brazeau, Michael J; Castaneda, Joni L; Huitron, Sonny S; Wang, James

    2015-07-01

    The incidence of drug-induced hepatic injury has been increasing as a result of more widespread use of workout supplements containing anabolic steroids to increase muscle mass. Synthetic androgenic steroids are shown to cause cholestatic liver injury, but the exact mechanism of injury is not completely understood. We present a case of a healthy, young, active duty Army male soldier who developed pruritis and jaundice shortly after starting to take a body-building supplement containing anabolic steroids, and was subsequently found to have significant biopsy proven drug-induced liver injury. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  2. Ethanol extracts collected from the Styela clava tunic alleviate hepatic injury induced by carbon tetrachloride (CCl4) through inhibition of hepatic apoptosis, inflammation, and fibrosis.

    PubMed

    Koh, Eun Kyoung; Kim, Ji Eun; Song, Sung Hwa; Sung, Ji Eun; Lee, Hyun Ah; Kim, Kil Soo; Hong, Jin Tae; Hwang, Dae Youn

    2017-10-01

    The Styela clava tunic (SCT) is known as a good raw material for preparing anti-inflammatory compounds, wound healing films, guided bone regeneration, and food additives. To investigate whether ethanol extracts of the SCT (EtSCT) could protect against hepatic injury induced by carbon tetrachloride (CCl 4 ) in ICR mice, alterations in serum biochemical indicators, histopathology, hepatic apoptosis, inflammation, and fibrosis were observed in ICR mice pretreated with EtSCT for 5 days before CCl 4 injection. EtSCT contained 15.6 mg/g of flavonoid and 37.5 mg/g phenolic contents with high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (93.3%) and metal chelation activity (46.5%). The EtSCT+CCl 4 -treated groups showed decreased levels of ALT, LDH, and AST, indicating toxicity and a necrotic area in the liver, while the level of ALP remained constant. The formation of active caspase-3 and enhancement of Bax/Bcl-2 expression was effectively inhibited in the EtSCT+CCl 4 -treated groups. Furthermore, the levels of pro- and anti-inflammatory cytokines and the phosphorylation of p38 in the TNF-α downstream signaling pathway rapidly recovered in the EtSCT+CCl 4 -treated groups. The EtSCT+CCl 4 -treated groups showed a significant decrease in hepatic fibrosis markers including collagen accumulation, MMP-2 expression, TGF-β1 concentration, and phosphorylation of Smad2/3. Moreover, a significant decline in malondialdehyde (MDA) concentration and enhancement of superoxide dismutase (SOD) expression were observed in the EtSCT+CCl 4 -treated groups. Taken together, these results indicate that EtSCT can protect against hepatic injury induced by CCl 4 -derived reactive intermediates through the suppression of hepatic apoptosis, inflammation, and fibrosis.

  3. Ethanol extracts collected from the Styela clava tunic alleviate hepatic injury induced by carbon tetrachloride (CCl4) through inhibition of hepatic apoptosis, inflammation, and fibrosis

    PubMed Central

    Koh, Eun Kyoung; Kim, Ji Eun; Song, Sung Hwa; Sung, Ji Eun; Lee, Hyun Ah; Kim, Kil Soo; Hong, Jin Tae; Hwang, Dae Youn

    2017-01-01

    The Styela clava tunic (SCT) is known as a good raw material for preparing anti-inflammatory compounds, wound healing films, guided bone regeneration, and food additives. To investigate whether ethanol extracts of the SCT (EtSCT) could protect against hepatic injury induced by carbon tetrachloride (CCl4) in ICR mice, alterations in serum biochemical indicators, histopathology, hepatic apoptosis, inflammation, and fibrosis were observed in ICR mice pretreated with EtSCT for 5 days before CCl4 injection. EtSCT contained 15.6 mg/g of flavonoid and 37.5 mg/g phenolic contents with high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (93.3%) and metal chelation activity (46.5%). The EtSCT+CCl4-treated groups showed decreased levels of ALT, LDH, and AST, indicating toxicity and a necrotic area in the liver, while the level of ALP remained constant. The formation of active caspase-3 and enhancement of Bax/Bcl-2 expression was effectively inhibited in the EtSCT+CCl4-treated groups. Furthermore, the levels of pro- and anti-inflammatory cytokines and the phosphorylation of p38 in the TNF-α downstream signaling pathway rapidly recovered in the EtSCT+CCl4-treated groups. The EtSCT+CCl4-treated groups showed a significant decrease in hepatic fibrosis markers including collagen accumulation, MMP-2 expression, TGF-β1 concentration, and phosphorylation of Smad2/3. Moreover, a significant decline in malondialdehyde (MDA) concentration and enhancement of superoxide dismutase (SOD) expression were observed in the EtSCT+CCl4-treated groups. Taken together, these results indicate that EtSCT can protect against hepatic injury induced by CCl4-derived reactive intermediates through the suppression of hepatic apoptosis, inflammation, and fibrosis. PMID:29097839

  4. Submassive hepatic necrosis induced by dichloropropanol.

    PubMed

    Haratake, J; Furuta, A; Iwasa, T; Wakasugi, C; Imazu, K

    1993-06-01

    A hitherto undescribed industrial liver injury of fulminant form induced by dichloropropanol is reported. Two middle-aged men developed severe hepatic injury just after cleaning a dichloropropanol tank at a plant producing dichloropropanol. They died from hepatic failure 4 and 11 days respectively, after carrying out the work. Liver specimens taken at autopsy from one of the cases showed submassive hepatic necrosis. This accident prompted us to undertake an experimental study in rats of intraperitoneal one-shot injection of two isomeric substances of dichloropropanol, that is, 2,3-dichloro-1-propanol (DC1P) and 1,3-dichloro-2-propanol (DC2P). Saline was injected into the control rats. One, two, four, six, 24, 48, 72 h, and 1 week after the injection, rats in each group were sacrificed. Neither control nor DC1P-injected rats showed significant biochemical or histopathological abnormalities. DC2P-injected rats revealed elevations of transaminase from 6 h after the injections, and submassive necrosis of the liver was observed in many rats. It was concluded that the severe liver injuries in both the human cases and rats in our study were caused by DC2P.

  5. Concomitant hollow viscus injuries in patients with blunt hepatic and splenic injuries: an analysis of a National Trauma Registry database.

    PubMed

    Swaid, Forat; Peleg, Kobi; Alfici, Ricardo; Matter, Ibrahim; Olsha, Oded; Ashkenazi, Itamar; Givon, Adi; Kessel, Boris

    2014-09-01

    Non-operative management has become the standard approach for treating stable patients sustaining blunt hepatic or splenic injuries in the absence of other indications for laparotomy. The liberal use of computed tomography (CT) has reduced the rate of unnecessary immediate laparotomies; however, due to its limited sensitivity in the diagnosis of hollow viscus injuries (HVI), this may be at the expense of a rise in the incidence of missed HVI. The aim of this study was to assess the incidence of concomitant HVI in blunt trauma patients diagnosed with hepatic and/or splenic injuries, and to evaluate whether a correlation exists between this incidence and the severity of hepatic or splenic injuries. A retrospective cohort study involving blunt trauma patients with splenic and/or liver injuries, between the years 1998 and 2012 registered in the Israel National Trauma Registry. The association between the presence and severity of splenic and/or liver injuries and the incidence of HVI was examined. Of the 57,130 trauma victims identified as suffering from blunt torso injuries, 2335 (4%) sustained hepatic injuries without splenic injuries (H group), 3127 (5.4%) had splenic injuries without hepatic injuries (S group), and 564 (1%) suffered from both hepatic and splenic injuries (H+S group). Overall, 957 patients sustained 1063 HVI. The incidence of HVI among blunt torso trauma victims who sustained neither splenic nor hepatic injuries was 1.5% which is significantly lower than in the S (3.1%), H (3.1%), and H+S (6.7%) groups. In the S group, there was a clear correlation between the severity of the splenic injury and the incidence of HVI. This correlation was not found in the H group. The presence of blunt splenic and/or hepatic injuries predicts a higher incidence of HVI, especially if combined. While in blunt splenic injury patients there is a clear correlation between the incidence of HVI and the severity of splenic injury, such a correlation does not exist in patients

  6. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression.

    PubMed

    Wang, Feng; Liu, Jin-Cheng; Zhou, Rui-Jun; Zhao, Xi; Liu, Mei; Ye, Hua; Xie, Mei-Lin

    2017-09-25

    Alcohol is a major cause of liver injury, and there are currently no ideal pharmacological reagents that can prevent or reverse this disease. Apigenin is one of the most common flavonoids present in numerous plants and has many beneficial effects. But whether or not apigenin may protect against alcohol-induced liver injury remains unknown. Our aim was to examine the effect and potential mechanisms. The experimental mice were given 56% erguotou wine or simultaneously given apigenin 150-300 mg/kg by gavage for 30 days. The results showed that in the apigenin-treated mice, the expression of hepatic cytochrome P450 2E1 (CYP2E1) and nuclear factor kappa B proteins as well as contents of hepatic malondialdehyde and tumor necrosis factor-alpha were reduced, while the levels of hepatic reduced glutathione, glutathione reductase, glutathione peroxidase, and glutathione S-transferase were increased, especially in the 300 mg/kg group. A significant change in hepatic steatosis was also observed in the apigenin 300 mg/kg group. Apigenin pretreatment could increase the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase-1 proteins, and decrease the expression of hepatic sterol regulatory element binding protein-1c, fatty acid synthase, and diacylglycerol acyltransferase proteins. These findings demonstrated that apigenin might exert a protective effect on alcohol-induced liver injury, and its mechanisms might be related to the regulations of hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.

    2007-08-15

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomymore » also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.« less

  8. Protective Effect of Baccharis trimera Extract on Acute Hepatic Injury in a Model of Inflammation Induced by Acetaminophen

    PubMed Central

    Pádua, Bruno da Cruz; Rossoni Júnior, Joamyr Victor; de Brito Magalhães, Cíntia Lopes; Chaves, Míriam Martins; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia; de Souza, Gustavo Henrique Bianco; Brandão, Geraldo Célio; Rodrigues, Ivanildes Vasconcelos; Lima, Wanderson Geraldo; Costa, Daniela Caldeira

    2014-01-01

    Background. Acetaminophen (APAP) is a commonly used analgesic and antipyretic. When administered in high doses, APAP is a clinical problem in the US and Europe, often resulting in severe liver injury and potentially acute liver failure. Studies have demonstrated that antioxidants and anti-inflammatory agents effectively protect against the acute hepatotoxicity induced by APAP overdose. Methods. The present study attempted to investigate the protective effect of B. trimera against APAP-induced hepatic damage in rats. The liver-function markers ALT and AST, biomarkers of oxidative stress, antioxidant parameters, and histopathological changes were examined. Results. The pretreatment with B. trimera attenuated serum activities of ALT and AST that were enhanced by administration of APAP. Furthermore, pretreatment with the extract decreases the activity of the enzyme SOD and increases the activity of catalase and the concentration of total glutathione. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by APAP. Conclusions. The hepatoprotective action of B. trimera extract may rely on its effect on reducing the oxidative stress caused by APAP-induced hepatic damage in a rat model. General Significance. These results make the extract of B. trimera a potential candidate drug capable of protecting the liver against damage caused by APAP overdose. PMID:25435714

  9. Induced hypothermia reduces the hepatic inflammatory response in a swine multiple trauma model.

    PubMed

    Fröhlich, Matthias; Hildebrand, Frank; Weuster, Matthias; Mommsen, Philipp; Mohr, Juliane; Witte, Ingo; Raeven, Pierre; Ruchholtz, Steffen; Flohé, Sascha; van Griensven, Martijn; Pape, Hans-Christoph; Pfeifer, Roman

    2014-06-01

    Mild therapeutic hypothermia following trauma has been introduced in several studies to reduce the posttraumatic inflammation and organ injury. In this study, we analyzed the effects of induced mild hypothermia (34°C) on the inflammation of the shock organs liver and kidney. In a porcine model of multiple trauma including blunt chest trauma, liver laceration, and hemorrhagic shock followed by fluid resuscitation, the influence of induced hypothermia on hepatic and renal damage and organ-specific inflammation were evaluated. A total of 40 pigs were randomly assigned to four groups, which were sham (anesthesia only) or trauma groups receiving either hypothermia or normothermia. The parameters analyzed were laboratory parameters (aspartate transaminase [AST], lactate dehydrogenase, urea, creatinine) as well as hepatic and renal cytokine expression determined by real-time polymerase chain reaction (interleukin 6 [IL-6], IL-8). Blinded analysis of histologic changes in the liver and kidney was performed. Fifteen and a half hours following combined trauma, hepatic cytokine expression and liver damage were significantly increased in animals with normothermia compared with the respective sham group. Hypothermia, however, resulted in a fivefold reduced hepatic expression of IL-8 (mean ± SE, 2.4 ± 1.3; p = 0.01) when compared with the normothermic trauma group (IL-8, 12.8 ± 4.7). Accordingly, granulocyte infiltration and a histologic, semiquantitative score for liver injury were significantly higher in the normothermic trauma group. Serum AST levels raised significantly after trauma and normothermia compared with the respective sham group, while AST levels showed no difference from the sham groups in the hypothermic trauma group. In contrast, neither trauma nor hypothermia influenced the expression of IL-6 and IL-8 and tissue injury in the kidney. Therapeutic hypothermia seems to attenuate the hepatic inflammatory response and the associated liver injury after severe

  10. Long-term administration of Salvia miltiorrhiza ameliorates carbon tetrachloride-induced hepatic fibrosis in rats.

    PubMed

    Lee, Tzung-Yan; Wang, Guei-Jane; Chiu, Jen-Hwey; Lin, Han-Chieh

    2003-11-01

    Carbon tetrachloride (CCl4) is metabolized by cytochrome P450 to form a reactive trichloromethyl radical that triggers a chain of lipid peroxidation. These changes lead to cell injury, and chronic liver injury leads to excessive deposition of collagen in liver, resulting in liver fibrosis. The aim of this study was to evaluate the effects of long-term Salvia miltiorrhiza administration in CCl4-induced hepatic injury in rats. Salvia miltiorrhiza (10, 25 or 50 mg kg(-1) twice a day) was given for 9 weeks, beginning at the same time as the injections of CCl4. Rats receiving CCl4 alone showed a decreased hepatic glutathione level and an increased glutathione-S-transferase content. The hepatic thiobarbituratic acid-reactive substance levels were increased. CCl4 also caused a prominent collagen deposition in liver histology that was further supported by the increased hepatic mRNA expression of transforming growth factor-beta1, tissue inhibitor of metalloproteinase-1 and procollagen I. Salvia miltiorrhiza administration led to a dose-dependent increase in hepatic glutathione levels and a decrease in peroxidation products. Additionally, it reduced the mRNA expression of markers for hepatic fibrogenesis. In conclusion, long-term administration of Salvia miltiorrhiza in rats ameliorated the CCl4-induced hepatic injury that probably related to a reduced oxidant stress and degree of hepatic fibrosis.

  11. GGPPS deficiency aggravates CCl4-induced liver injury by inducing hepatocyte apoptosis.

    PubMed

    Chen, Wei-Bo; Lai, Shan-Shan; Yu, De-Cai; Liu, Jia; Jiang, Shan; Zhao, Dan-Dan; Ding, Yi-Tao; Li, Chao-Jun; Xue, Bin

    2015-04-28

    GGPPS catalyses the expression of GGPP, a key protein in the mevalonate metabolic pathway. HMG-CoA reductase inhibitor statins can induce liver injury by inhibiting GGPP. However, the function of GGPPS in liver injury has not yet been revealed. In this study, we found that GGPPS increased in liver injury and that GGPPS deletion augmented liver injury and fibrosis. GGPPS inhibition induced hepatocyte apoptosis, inflammation and TGF-β1 secretion, which activated hepatic stellate cells. Our findings imply that GGPPS deletion induces hepatocyte apoptosis, which makes the liver vulnerable to hepatotoxicity. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation.

    PubMed

    Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko

    2018-01-01

    Acetaminophen [paracetamol, N -acetyl- p -aminophenol (APAP)]-induced acute liver injury (ALI) not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL)-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc) to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N -acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.

  13. Hepatic radiation injury mimicking metastasis in distal esophageal cancer.

    PubMed

    Demey, Karel; Van Veer, Hans; Nafteux, Philippe; Deroose, Christophe M; Haustermans, Karin; Coolen, Johan; Vandecaveye, Vincent; Coosemans, Willy; Van Cutsem, Eric

    2017-08-01

    A new hypermetabolic lesion on 18 FDG-PET/CT after neo-adjuvant chemoradiotherapy for distal esophageal cancer can be a hepatic metastasis and should be examined carefully before esophagectomy. We present a case of acute and nodular radiation-induced injury of the left liver after neo-adjuvant chemoradiotherapy for distal esophageal cancer, which resembles a hepatic metastasis on 18 FDG-PET/CT. Acute and nodular radiation hepatitis (RH) can be a potential cause of false-positive findings of malignancy and therefore exclude patients who could benefit from esophagectomy. 18 FDG-PET/CT images should therefore carefully be interpreted and compared with the radiation beams, dose distribution and eventually clarified by DW-MR imaging.

  14. Aqueous Extract of Gynura Bicolor Attenuated Hepatic Steatosis, Glycative, Oxidative, and Inflammatory Injury Induced by Chronic Ethanol Consumption in Mice.

    PubMed

    Yin, Mei-Chin; Wang, Zhi-Hong; Liu, Wen-Hu; Mong, Mei-Chin

    2017-11-01

    Gynura bicolor leaf aqueous extract (GAE) is rich in phytochemicals including phenolic acids, flavonoids, carotenoids, and anthocyanins. Effects of GAE upon hepatic injury in mice with chronic ethanol intake were examined. Lieber-DeCarli liquid diet with ethanol was used to induce hepatic lipid accumulation, oxidative, glycative, and inflammatory injury. GAE at 0.25% or 0.5% was added in feeds, and supplied to mice consumed Lieber-DeCarli liquid diet with ethanol for 6 wk. Blood and liver were collected for analyses. Results showed that ethanol increased plasma and hepatic triglyceride and cholesterol content, and affected plasma levels of insulin, adiponectin, leptin, and ghrelin. GAE at both doses decreased lipid accumulation, and at high dose improved hormones abnormality. Histological data revealed that GAE supplement mitigated hepatic lipid deposit. Ethanol increased plasma N ε -(carboxyethymethyl)-lysine and pentosidine levels. GAE at high doses lowered those glycative factors. Ethanol depleted glutathione content, increased CYP2E1 activity and reactive oxygen species production, and reduced the activity of glutathione peroxide, glutathione reductase and catalase in liver. GAE supplement at both doses reversed these alterations and attenuated hepatic oxidative stress. GAE supplement also at both doses decreased hepatic inflammatory cytokines release in ethanol treated mice. These findings support that leaves of G. bicolor is a functional food with liver protective activities against ethanol. © 2017 Institute of Food Technologists®.

  15. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahendra Pratap; School of Bioengineering and Biosciences, Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab; Kim, Ki Young

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA{sup −/−}). We found that MsrA{sup −/−} mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA{sup +/+}). The central lobule area of the MsrA{sup −/−} liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA{supmore » −/−} than in MsrA{sup +/+} mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA{sup −/−} than in MsrA{sup +/+} livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA{sup −/−} than in MsrA{sup +/+} livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.« less

  16. [Experimental study of active ingredients group in liver protection from erzhi wan on acute hepatic injury induced by CCl4 in mice].

    PubMed

    Yan, Bing; Cai, Xiujiang; Yao, Weifeng; Zhang, Li; Huang, Meiyan; Ding, Anwei

    2012-05-01

    To study the active ingredients in liver protection from Erzhi Wan (AIEP) on acute hepatic injury induced by carbon tetrachloride (CCl4) in mice. Sixty Kunming mice were randomly divided into six groups: the normal group, the model group, bifendate group (150 mg x kg(-1)), high AIEP group (19.8 g x kg(-1)), middle AIEP group (13.2 g x kg(-1)) and low AIEP group (6.6 g x kg(-1)). The treatment groups were orally administered once per day for 7 d separately, whereas the normal and model groups were orally administered with saline. Except normal rats, all the other rats were injected intraperitoneally CCl4 20 mL x kg(-1) once. The rats were sacrificed 16 h after CCl4 administration. Serum and liver samples were collected for analysis. The acute hepatic injury model was prepared by CCl4 injected intraperitoneally. Then, the therapeutic effects of AIEP on the model were evaluated by the activity determination of serum alanine aminotransferase and aspirate aminotransferase (ALT and AST), superoxide dismutase (SOD) and the content of malondialdehyde (MDA) in liver,and the hepatic pathohistological changes following the treatment. The activities of ALT and AST and the MDA content in liver was significantly increased and the activity of SOD was largely inhibited in the animals of modeling group. Following the treatment with AIEP, ALT and AST activities and MDA content were significantly reduced and SOD activity was obviously increased in the mice of treatment group. Furthermore, AIEP could ameliorate the hepatic pathological changes. AIEP have protective effects on acute hepatic injury induced by CCL4 in mice, and are the effect of the liver protecting active sites.

  17. Gentiana manshurica Kitagawa prevents acetaminophen-induced acute hepatic injury in mice via inhibiting JNK/ERK MAPK pathway

    PubMed Central

    Wang, Ai-Yan; Lian, Li-Hua; Jiang, Ying-Zi; Wu, Yan-Ling; Nan, Ji-Xing

    2010-01-01

    AIM: To investigate the in vivo hepatoprotective effects and mechanisms of Gentiana manshurica Kitagawa (GM) in acetaminophen (APAP)-induced liver injury in mice. METHODS: GM (200, 150 or 50 mg/kg body weight) or N-acetyl-L-cysteine (NAC; 300 mg/kg body weight) was administrated orally with a single dose 2 h prior to APAP (300 mg/kg body weight) injection in mice. RESULTS: APAP treatment significantly depleted hepatic glutathione (GSH), increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and malonyldialdehyde (MDA) and 4-hydroxynonenal levels, and decreased hepatic activity of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD). However, the pretreatment of GM significantly alleviated APAP-induced oxidative stress by increasing GSH content, decreasing serum ALT, AST and MDA, and retaining the activity of GSH-px and SOD in the liver. Furthermore, GM pretreatment can inhibit caspase-3 activation and phosphorylation of c-Jun-NH2-terminal protein kinase 2 (JNK1/2) and extracellular signal-regulated kinase (ERK). GM also remarkably attenuated hepatocyte apoptosis confirmed by the terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling method. CONCLUSION: Hepatoprotective effects of GM against APAP-induced acute toxicity are mediated either by preventing the decline of hepatic antioxidant status or its direct anti-apoptosis capacity. These results support that GM is a potent hepatoprotective agent. PMID:20082487

  18. Complications of nonoperative management of high-grade blunt hepatic injuries.

    PubMed

    Kozar, Rosemary A; Moore, John B; Niles, Sarah E; Holcomb, John B; Moore, Ernest E; Cothren, C Clay; Hartwell, Elizabeth; Moore, Frederick A

    2005-11-01

    Nonoperative management of blunt hepatic injuries is highly successful. Complications associated with high-grade injuries, however, have not been well characterized. The purpose of the present study was therefore to define hepatic-related complications and associated treatment modalities in patients undergoing nonoperative management of high-grade blunt hepatic injuries. Three hundred thirty-seven patients from two regional Level I trauma centers with grade 3 to 5 blunt hepatic injuries during a 40-month period were reviewed. Complications and treatment of hepatic-related complications in patients not requiring laparotomy in the first 24 hours were identified. Of 337 patients with a grade 3 to 5 injury, 230 (68%) were managed nonoperatively. There were 37 hepatic-related complications in 25 patients (11%); 63% (5 of 8) of patients with grade 5 injuries developed complications, 21% (19 of 92) of patients with grade 4 injuries, but only 1% (1 of 130) of patients with grade 3 injuries. Complications included bleeding in 13 patients managed by angioembolization (n = 12) and laparotomy (n = 1), liver abscesses in 2 patients managed with computed tomography-guided drainage (n = 2) and subsequent laparotomy (n = 1). In one patient with bleeding, hepatic necrosis followed surgical ligation of the right hepatic artery and required delayed hepatic lobectomy. Sixteen biliary complications were managed with endoscopic retrograde cholangiopancreatography and stenting (n = 7), drainage (n = 5), and laparoscopy (n = 4). Three patients had suspected abdominal sepsis and underwent a negative laparotomy, whereas an additional three patients underwent laparotomy for abdominal compartment syndrome. Nonoperative management of high-grade liver injuries can be safely accomplished. Mortality is low; however, complications in grade 4 and 5 injuries should be anticipated and may require a combination of operative and nonoperative management strategies.

  19. Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide.

    PubMed

    Toyoda, Tomomi; Tosaka, Shinya; Tosaka, Reiko; Maekawa, Takuji; Cho, Sungsam; Eguchi, Susumu; Nakashima, Masahiro; Sumikawa, Koji

    2014-01-01

    Ischemic postconditioning (PostC) protects the liver against ischemia-reperfusion (IR) injury. Milrinone, a phosphodiesterase 3 inhibitor, has been reported to exhibit preconditioning properties against hepatic IR injury; however, its PostC properties remain unknown. This study investigated whether milrinone has PostC properties against hepatic IR injury and the roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS). Male Wistar rats were separated into six groups: (1) group S: animals that underwent sham operation without ischemia, (2) group C: ischemia followed by reperfusion with no other intervention, (3) group M: milrinone administered immediately after reperfusion, (4) group MW: wortmannin, a PI3K inhibitor, injected before milrinone administration, (5) group MN: l-NAME, a NOS inhibitor, injected before milrinone administration, and (6) group MD, milrinone administered 30 min after reperfusion. Except for group S, all groups underwent 1 h of warm ischemia of median and left lateral lobes, followed by 5 h of reperfusion. Biochemical liver function analysis and histologic examination were performed. Serum aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase levels, histologic damage scores, and apoptotic rate in group M were significantly lower than those in group C. The inhibition of PI3K or NOS prevented this protective effect. Milrinone administered 30 min after reperfusion did not show obvious protective effects. Milrinone-induced PostC protects against hepatic IR injury when it is administered immediately after reperfusion, and PI3K and NOS may play an important role in this protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Epigallocatechin-3-gallate protects against hepatic ischaemia-reperfusion injury by reducing oxidative stress and apoptotic cell death.

    PubMed

    Tak, Eunyoung; Park, Gil-Chun; Kim, Seok-Hwan; Jun, Dae Young; Lee, Jooyoung; Hwang, Shin; Song, Gi-Won; Lee, Sung-Gyu

    2016-12-01

    Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia-reperfusion injury in mice. Methods The partial hepatic ischaemia-reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia-reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia-reperfusion injury (IR, n = 10), and EGCG with ischaemia-reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia-reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia-reperfusion injury in mice.

  1. Epigallocatechin-3-gallate protects against hepatic ischaemia–reperfusion injury by reducing oxidative stress and apoptotic cell death

    PubMed Central

    Tak, Eunyoung; Park, Gil-Chun; Kim, Seok-Hwan; Jun, Dae Young; Lee, Jooyoung; Hwang, Shin; Lee, Sung-Gyu

    2016-01-01

    Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia–reperfusion injury in mice. Methods The partial hepatic ischaemia–reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia–reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia–reperfusion injury (IR, n = 10), and EGCG with ischaemia–reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia–reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia–reperfusion injury in mice. PMID:27807255

  2. Pinelliae Rhizoma Praeparatum Involved in the Regulation of Bile Acids Metabolism in Hepatic Injury.

    PubMed

    Guo, Shun; Zhang, Song; Liu, Linna; Yang, Peng; Dang, Xueliang; Wei, Huamei; Hu, Na; Shi, Lei; Zhang, Yan

    2018-06-01

    Pinelliae Rhizoma Praeparatum (PRP) as traditional Chinese medicine had been used for hepatic diseases in combinative forms. However, the effect of PRP was not clear when used alone. So to explore the hepatoprotective/hepatotoxin of PRP is necessary. The activities of PRP were investigated in acetaminophen-induced hepatic injury mice. Liver function markers, hepatic oxidative stress markers were evaluated. Bile acids metabolic transports and nuclear factor erythroid 2-related factor 2 (Nrf2) were detected. As a drug for the treatment of liver diseases, PRP slightly restored the parameters towards normal in model mice only in low dosage, and also had no antioxidant activity and regulate Nrf2. Cholestasis was significantly elevated in model mice when pretreatment with routine or high dosage of PRP, but had no effect on normal mice. Bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) in model mice were markedly increased when pretreatment with low dose PRP, but significantly decreased when pretreatment in routine or high dosage. Mrp3 was significantly induced in model mice after pretreatment of PRP. But the adjustment effect to bile acids transporters by PRP was not significant in normal mice. These results reveal that PRP has the different effects on bile acids transporter in hepatic injury mice, and therefore, the dosage of PRP need to be paid attention to when it is used in clinical hepatic injury.

  3. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice.

    PubMed

    Honda, Takashi; Ishigami, Masatoshi; Luo, Fangqiong; Lingyun, Ma; Ishizu, Yoji; Kuzuya, Teiji; Hayashi, Kazuhiko; Nakano, Isao; Ishikawa, Tetsuya; Feng, Guo-Gang; Katano, Yoshiaki; Kohama, Tomoya; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Goto, Hidemi; Hirooka, Yoshiki

    2017-04-01

    For successful treatment for nonalcoholic steatohepatitis (NASH), it may be important to treat the individual causative factors. At present, however, there is no established treatment for this disease. Branched-chain amino acids (BCAAs) have been used to treat patients with decompensated cirrhosis. In order to elucidate the mechanisms responsible for the effects of BCAAs on hepatic steatosis and disease progression, we investigated the effects of BCAA supplementation in mice fed a choline-deficient high-fat diet (CDHF), which induces NASH. Male mice were divided into four groups that received (1) choline-sufficient high fat (HF) diet (HF-control), (2) HF plus 2% BCAA in drinking water (HF-BCAA), (3) CDHF diet (CDHF-control), or (4) CDHF-BCAA for 8weeks. We monitored liver injury, hepatic steatosis and cholesterol, gene expression related to lipid metabolism, and hepatic fat accumulation. Serum alanine aminotransferase (ALT) levels and hepatic triglyceride (TG) were significantly elevated in CDHF-control relative to HF-control. Liver histopathology revealed severe steatosis, inflammation, and pericellular fibrosis in CDHF-control, confirming the NASH findings. Serum ALT levels and hepatic TG and lipid droplet areas were significantly lower in CDHF-BCAA than in CDHF-control. Gene expression and protein level of fatty acid synthase (FAS), which catalyzes the final step in fatty acid biosynthesis, was significantly decreased in CDHF-BCAA than in CDHF-control (P<0.05). Moreover, hepatic total and free cholesterol of CDHF-BCAA was significantly lower than those of CDHF-control. BCAA can alleviate hepatic steatosis and liver injury associated with NASH by suppressing FAS gene expression and protein levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Baicalin Attenuates IL-17-Mediated Acetaminophen-Induced Liver Injury in a Mouse Model

    PubMed Central

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2016-01-01

    Background IL-17 has been shown to be involved in liver inflammatory disorders in both mice and humans. Baicalin (BA), a major compound extracted from traditional herb medicine (Scutellariae radix), has potent hepatoprotective properties. Previous study showed that BA inhibits IL-17-mediated lymphocyte adhesion and downregulates joint inflammation. The aim of this study is to investigate the role of IL-17 in the hepatoprotective effects of BA in an acetaminophen (APAP)-induced liver injury mouse model. Methods Eight weeks male C57BL/6 (B6) mice were used for this study. Mice received intraperitoneal hepatotoxic injection of APAP (300 mg/kg) and after 30 min of injection, the mice were treated with BA at a concentration of 30 mg/kg. After 16 h of treatment, mice were killed. Blood samples and liver tissues were harvested for analysis of liver injury parameters. Results APAP overdose significantly increased the serum alanine transferase (ALT) levels, hepatic activities of myeloperoxidase (MPO), expression of cytokines (TNF-α, IL-6, and IL-17), and malondialdehyde (MDA) activity when compared with the control animals. BA treatment after APAP administration significantly attenuated the elevation of these parameters in APAP-induced liver injury mice. Furthermore, BA treatment could also decrease hepatic IL-17-producing γδT cells recruitment, which was induced after APAP overdose. Conclusion Our data suggested that baicalin treatment could effectively decrease APAP-induced liver injury in part through attenuation of hepatic IL-17 expression. These results indicate that baicalin is a potential hepatoprotective agent. PMID:27855209

  5. Factors affecting drug-induced liver injury: antithyroid drugs as instances

    PubMed Central

    Niknahad, Hossein; Jamshidzadeh, Akram; Abdoli, Narges

    2014-01-01

    Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s) of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed. PMID:25320726

  6. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    PubMed

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  7. Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury.

    PubMed

    Llacuna, Laura; Marí, Montserrat; Garcia-Ruiz, Carmen; Fernandez-Checa, José C; Morales, Albert

    2006-09-01

    The molecular mechanisms of hepatic ischemia/reperfusion (I/R) damage are incompletely understood. We investigated the role of ceramide in a murine model of warm hepatic I/R injury. This sphingolipid induces cell death and participates in tumor necrosis factor (TNF) signaling. Hepatic ceramide levels transiently increased after the reperfusion phase of the ischemic liver in mice, because of an early activation of acidic sphingomyelinase (ASMase) followed by acid ceramidase stimulation. In vivo administration of an ASMase inhibitor, imipramine, or ASMase knockdown by siRNA decreased ceramide generation during I/R, and attenuated serum ALT levels, hepatocellular necrosis, cytochrome c release, and caspase-3 activation. ASMase-induced ceramide generation activated JNK resulting in BimL phosphorylation and translocation to mitochondria, as the inhibition of ASMase by imipramine prevented these events. In contrast, blockade of ceramide catabolism by N-oleyolethanolamine (NOE), a ceramidase inhibitor, enhanced ceramide levels and potentiated I/R injury compared with vehicle-treated mice. Pentoxifylline treatment prevented TNF upregulation and ASMase activation. Furthermore, 9 of 11 mice treated with imipramine survived 7 days after total liver ischemia, compared with 4 of 12 vehicle-treated mice, whereas 8 of 8 NOE-treated mice died within 2 days of total liver ischemia. In conclusion, ceramide generated from ASMase plays a key role in I/R-induced liver damage, and its modulation may be of therapeutic relevance.

  8. Prophylactic Treatment with Cerium Oxide Nanoparticles Attenuate Hepatic Ischemia Reperfusion Injury in Sprague Dawley Rats.

    PubMed

    Manne, Nandini D P K; Arvapalli, Ravikumar; Graffeo, Vincent A; Bandarupalli, Venkata V K; Shokuhfar, Tolou; Patel, Sweetu; Rice, Kevin M; Ginjupalli, Gautam Kumar; Blough, Eric R

    2017-01-01

    Hepatic ischemia reperfusion is one the main causes for graft failure following transplantation. Although, the molecular events that lead to hepatic failure following ischemia reperfusion (IR) are diverse and complex, previous studies have shown that excessive formation of reactive oxygen species (ROS) are responsible for hepatic IR injury. Cerium oxide (CeO2) nanoparticles have been previously shown to act as an anti-oxidant and anti-inflammatory agent. Here, we evaluated the protective effects of CeO2 nanoparticles on hepatic ischemia reperfusion injury. Male Sprague Dawley rats were randomly assigned to one of the four groups: Control, CeO2 nanoparticle only, hepatic ischemia reperfusion (IR) group and hepatic ischemia reperfusion (IR) plus CeO2 nanoparticle group (IR+ CeO2). Partial warm hepatic ischemia was induced in left lateral and median lobes for 1h, followed by 6h of reperfusion. Animals were sacrificed after 6h of reperfusion and blood and tissue samples were collected and processed for various biochemical experiments. Prophylactic treatment with CeO2 nanoparticles (0.5mg/kg i.v (IR+CeO2 group)) 1 hour prior to hepatic ischemia and subsequent reperfusion injury lead to a decrease in serum levels of alanine aminotransaminase and lactate dehydrogenase at 6 hours after reperfusion. These changes were accompanied by significant decrease in hepatocyte necrosis along with reduction in several serum inflammatory markers such as macrophage derived chemokine, macrophage inflammatory protein-2, KC/GRO, myoglobin and plasminogen activator inhibitor-1. However, immunoblotting demonstrated no significant changes in the levels of apoptosis related protein markers such as bax, bcl2 and caspase 3 in IR and IR+ CeO2 groups at 6 hours suggesting necrosis as the main pathway for hepatocyte death. Taken together, these data suggest that CeO2 nanoparticles attenuate IR induced cell death and can be used as a prophylactic agent to prevent hepatic injury associated with graft

  9. Treatment of penetrating hepatic injuries: a retrospective analysis of 50 patients.

    PubMed

    Gonullu, D; Koksoy, F N; Ilgun, S; Demiray, O; Yucel, O; Yucel, T

    2009-01-01

    The aim of this study was to determine the possibility of non-operative treatment via retrospective analysis of our patients. Fifty patients with penetrating hepatic injuries were examined retrospectively with respect to trauma scores, associated injuries, complications, and mortality parameters. Thirteen injuries were caused by firearms, whereas 37 injuries were caused by stab wounds. Forty-three patients (86%) underwent laparotomy and 7 patients (14%) were monitored by CT and clinical findings (nonoperative group, NO group). The laparotomies were evaluated as non-therapeutic in 11 patients (22%) (NTL group) and therapeutic in 32 patients (64%) (TL group). The morbidity and mortality rates were 40 and 10%, respectively. RTS and ISS scores of the nonsurviving and the surviving patients were significantly different. The rates of major venous, grade IV-V hepatic injuries, and gunshot wounds were significantly higher in the nonsurviving patients when compared to the surviving patients. Major venous and grade IV-V hepatic injuries were the primary factors determining mortality and these injuries generally occurred as a result of firearm injuries. NTL occurring at a rate of 22% would decrease to 2% if 'RTS <7' criteria was added to the hemodynamic instability and/or peritoneal irritation findings determining surgical candidacy. Copyright 2009 S. Karger AG, Basel.

  10. Withaferin-A Reduces Acetaminophen-Induced Liver Injury in Mice.

    PubMed

    Jadeja, Ravirajsinh N; Urrunaga, Nathalie H; Dash, Suchismita; Khurana, Sandeep; Saxena, Neeraj Kumar

    2015-09-01

    Withaferin-A (WA) has anti-oxidant activities however, its therapeutic potential in acetaminophen (APAP) hepatotoxicity is unknown. We performed a proof-of-concept study to assess the therapeutic potential of WA in a mouse model that mimics APAP-induced liver injury (AILI) in humans. Overnight fasted C57BL/6NTac (5-6 wk. old) male mice received 200 mg/kg APAP intraperitoneally (i.p.). After 1 h mice were treated with 40 mg/kg WA or vehicle i.p., and euthanized 4 and 16 h later; their livers were harvested and serum collected for analysis. At 4 h, compared to vehicle-treated mice, WA-treated mice had reduced serum ALT levels, hepatocyte necrosis and intrahepatic hemorrhage. All APAP-treated mice had reduced hepatic glutathione (GSH) levels however, reduction in GSH was lower in WA-treated when compared to vehicle-treated mice. Compared to vehicle-treated mice, livers from WA-treated mice had reduced APAP-induced JNK activation, mitochondrial Bax translocation, and nitrotyrosine generation. Compared to vehicle-treated mice, WA-treated mice had increased hepatic up-regulation of Nrf2, Gclc and Nqo1, and down-regulation of Il-6 and Il-1β. The hepatoprotective effect of WA persisted at 16 h. Compared to vehicle-treated mice, WA-treated mice had reduced hepatocyte necrosis and hepatic expression of Il-6, Tnf-α and Il-1β, increased hepatic Gclc and Nqo1 expression and GSH levels, and reduced lipid peroxidation. Finally, in AML12 hepatocytes, WA reduced H₂O₂-induced oxidative stress and necrosis by preventing GSH depletion. Collectively, these data show mechanisms whereby WA reduces necrotic hepatocyte injury, and demonstrate that WA has therapeutic potential in AILI. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Characterization of Microparticles after Hepatic Ischemia-Reperfusion Injury

    PubMed Central

    Freeman, Christopher M.; Quillin, Ralph C.; Wilson, Gregory C.; Nojima, Hiroyuki; Johnson, Bobby L.; Sutton, Jeffrey M.; Schuster, Rebecca M.; Blanchard, John; Edwards, Michael J.; Caldwell, Charles C.; Lentsch, Alex B.

    2014-01-01

    Background Hepatic ischemia-reperfusion (I/R) is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs) are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins–platelets, neutrophils, and endolethial cells–following hepatic ischemia-reperfusion injury. Methods A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. Results MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. Conclusion This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver. PMID:24879335

  12. The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats.

    PubMed

    Colak, Emine; Ustuner, Mehmet Cengiz; Tekin, Neslihan; Colak, Ertugrul; Burukoglu, Dilek; Degirmenci, Irfan; Gunes, Hasan Veysi

    2016-01-01

    Cynara scolymus is a pharmacologically important medicinal plant containing phenolic acids and flavonoids. Experimental studies indicate antioxidant and hepatoprotective effects of C. scolymus but there have been no studies about therapeutic effects of liver diseases yet. In the present study, hepatocurative effects of C. scolymus leaf extract on carbon tetrachloride (CCl4)-induced oxidative stress and hepatic injury in rats were investigated by serum hepatic enzyme levels, oxidative stress indicator (malondialdehyde-MDA), endogenous antioxidants, DNA fragmentation, p53, caspase 3 and histopathology. Animals were divided into six groups: control, olive oil, CCl4, C. scolymus leaf extract, recovery and curative. CCl4 was administered at a dose of 0.2 mL/kg twice daily on CCl4, recovery and curative groups. Cynara scolymus extract was given orally for 2 weeks at a dose of 1.5 g/kg after CCl4 application on the curative group. Significant decrease of serum alanine-aminotransferase (ALT) and aspartate-aminotransferase (AST) levels were determined in the curative group. MDA levels were significantly lower in the curative group. Significant increase of superoxide dismutase (SOD) and catalase (CAT) activity in the curative group was determined. In the curative group, C. scolymus leaf extract application caused the DNA % fragmentation, p53 and caspase 3 levels of liver tissues towards the normal range. Our results indicated that C. scolymus leaf extract has hepatocurative effects of on CCl4-induced oxidative stress and hepatic injury by reducing lipid peroxidation, providing affected antioxidant systems towards the normal range. It also had positive effects on the pathway of the regulatory mechanism allowing repair of DNA damage on CCl4-induced hepatotoxicity.

  13. L-arginine reverses alterations in drug disposition induced by spinal cord injury by increasing hepatic blood flow.

    PubMed

    Vertiz-Hernandez, Antonio; Castaneda-Hernandez, Gilberto; Martinez-Cruz, Angelina; Cruz-Antonio, Leticia; Grijalva, Israel; Guizar-Sahagun, Gabriel

    2007-12-01

    High hepatic extraction drugs--such as phenacetin, methylprednisolone, and cyclosporine--exhibit an increased bioavailability after acute spinal cord injury (SCI) due to an impaired clearance. For these drugs, metabolic clearance depends on hepatic blood flow. Thus, it is possible that pharmacokinetic alterations can be reversed by increasing liver perfusion. Therefore, we evaluated the effect of L-arginine, a nitric oxide precursor, on the pharmacokinetics of a prototype drug with high hepatic extraction, and on hepatic microvascular blood flow (MVBF) after acute SCI. Pharmacokinetics of i.v. phenacetin was studied in rats 24 h after a severe T-5 spinal cord contusion; animals being pretreated with L-arginine 100 mg/kg i.v. or vehicle. MVBF was assessed under similar experimental conditions using laser Doppler flowmetry. SCI significantly altered phenacetin pharmacokinetics. Clearance was significantly reduced, resulting in a prolonged half-life and an increase in bioavailability, while volume of distribution was decreased. Pharmacokinetic alterations were reversed when injured rats were pretreated with L -arginine. It was also observed that L-arginine significantly increased hepatic MVBF in injured rats, notwithstanding it exhibited a limited effect on sham-injured animals. Our data hence suggest that L-arginine is able to reverse SCI-induced alterations in phenacetin pharmacokinetics due to an impaired hepatic MVBF, likely by increased nitric oxide synthesis leading to vasodilation. Further studies are warranted to examine the potential usefulness of nitric oxide supplementation in a clinical setting.

  14. Herbal and Dietary Supplement Induced Liver Injury

    PubMed Central

    de Boer, Ynto S.; Sherker, Averell H.

    2016-01-01

    Summary The increase in the use of herbal and dietary supplements (HDS) over the last decades has been accompanied with an increase in the reports of HDS associated hepatotoxicity. The spectrum of HDS induced liver injury is diverse and the outcome may vary from transient liver test elevations to fulminant hepatic failure resulting in death or requiring liver transplantation. There are no validated standardized tools to establish the diagnosis, but some HDS products do have a typical clinical signature that may help to identify HDS induced liver injury. PMID:27842768

  15. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen.

    PubMed

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-02-26

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA -/- ). We found that MsrA -/- mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA -/- liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA -/- than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA -/- than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hepatic macrophage complement receptor clearance function following injury.

    PubMed

    Cuddy, B G; Loegering, D J; Blumenstock, F A; Shah, D M

    1986-03-01

    Previous work has demonstrated that in vivo hepatic macrophage complement receptor clearance function is depressed following thermal injury. The present study was carried out to determine if complement receptor function depression is associated with other states of depressed host defense. Hepatic complement receptor clearance function was determined from the hepatic uptake of rat erythrocytes coated with antierythrocyte IgM (EIgM) in rats. Receptor function was determined following cannulation of a carotid artery, laparotomy plus enterotomy, hemorrhagic shock, trauma, thermal injury, acute bacteremia, acute endotoxemia, and injection of erythrocyte stroma, gelatinized lipid emulsion, or colloidal carbon. Hepatic uptake of EIgM was depressed following each of these experimental interventions except arterial cannulation. This effect was shown not to be due to a decrease in hepatic blood flow or depletion of complement and was therefore due to a depression in hepatic macrophage complement receptor clearance function. Thus, impairment of hepatic macrophage complement receptor function is associated with several states of depressed host defense.

  17. Preventive effects of interleukin-6 in lipopolysaccharide/d-galactosamine induced acute liver injury via regulating inflammatory response in hepatic macrophages.

    PubMed

    Li, Long; Duan, Chaoli; Zhao, Yan; Zhang, Xiaofang; Yin, Hongyan; Wang, Tianxi; Huang, Caoxin; Liu, Suhuan; Yang, Shuyu; Li, Xuejun

    2017-10-01

    Lipopolysaccharide/d-Galactosamine (LPS/d-Gal)-induced acute liver injury is characterized by significant inflammatory responses including TNF-α and interleukin-6 (IL-6) and is a widely applied experimental model for inflammation research. TNF-α is critical in the progression of LPS/d-Gal-induced liver injury. However, the role of IL-6 in this model is still unknown. In the present study, we aim to elucidate the involvement of IL-6 in the pathogenesis of acute liver injury induced by LPS/d-Gal in mice and its underlying mechanism. To induce acute liver injury, LPS (50μg/kg body weight) and d-Gal (400mg/kg body weight) were injected intraperitoneally in the C57BL/6 mice. The vehicle (saline) or a single dose of recombinant IL-6 (200μg/kg body weight) was administered 2h prior to LPS/d-Gal injection. Mice were sacrificed 2h and 6h after LPS/d-Gal injection. The results indicated that IL-6 treatment could protect mice from LPS/d-Gal-induced tissue damage, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation, as well as hepatocyte apoptosis and inflammation. Furthermore, in vitro study showed that IL-6 treatment could significantly suppress LPS-triggered expression of proinflammatory cytokines and chemokines, TNF-α, RANTES and MCP-1 in macrophages while promoting the expression of M2 markers, such as Arg-1 and Mrc-1 in macrophages. Taken together, these findings revealed a novel and unexpected role of IL-6 in ameliorating LPS/d-Gal-induced acute liver injury via regulating inflammatory responses in hepatic macrophages. Copyright © 2017. Published by Elsevier B.V.

  18. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharm

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantlymore » increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.« less

  19. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice.

    PubMed

    Zhou, Tong; Zhang, Yu-Jie; Xu, Dong-Ping; Wang, Fang; Zhou, Yue; Zheng, Jie; Li, Ya; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Chronic excessive alcohol consumption (more than 40-80 g/day for males and more than 20-40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.

  20. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock.

    PubMed

    Matheson, Paul J; Hurt, Ryan T; Franklin, Glen A; McClain, Craig J; Garrison, R Neal

    2009-10-01

    Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.

  1. Role of activin A in carbon tetrachloride-induced acute liver injury.

    PubMed

    Wang, Dong-Hui; Wang, Yi-Nan; Ge, Jing-Yan; Liu, Hai-Yan; Zhang, Hong-Jun; Qi, Yan; Liu, Zhong-Hui; Cui, Xue-Ling

    2013-06-28

    To investigate the expression and role of activin A in a mouse model of acute chemical liver injury. Acute liver injury in C57BL/6 male mice was induced by intraperitoneal injection with carbon tetrachloride (CCl4) (0.5 mL/kg, body weight) dissolved in olive oil (1:19 v/v). Mice were sacrificed 1, 3, 5 and 7 d after the treatment. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were examined and pathological changes of liver observed by hematoxylin and eosin staining to evaluate the liver injury. Activin A protein levels in serum and hepatic tissue homogenate of mice were detected by enzyme-linked immunosorbent assay, and the expression pattern of activin A protein in livers of mice was examined by immunohistochemistry. Activin type IIA receptor (ActRIIA) and Smad3 expressions in the liver were analyzed by real-time quantitative reverse transcription-polymerase chain reaction. In order to further investigate the role of activin A, we also utilized activin A blocking experiment by anti-activin A antibody (500 μg/kg, body weight) injection into mouse tail vein. In CCl4-treated mice, serum ALT and AST levels were significantly increased, compared with that in control mice (P < 0.01). Furthermore, the serious necrosis was observed around hepatic portal areas in CCl4-treated mice. Simultaneously, activin A levels in serum and hepatic tissue homogenate of mice treated with CCl4 for 1, 3 and 5 d increased significantly, compared with that in control mice (P < 0.01). Activin A protein expression in hepatocytes not within the necrotic area was also upregulated in mice following CCl4 treatment. Not only activin A, but also ActRIIA and activin signaling molecule Smad3 mRNA expressions in injury liver induced by CCl4 were significantly higher than that in control liver. In addition, levels of serum ALT and AST in CCl4-treated mice were significantly decreased by injection of anti-activin A antibody to block endogenous activin A

  2. Inhibition of microsomal prostaglandin E synthase-1 facilitates liver repair after hepatic injury in mice.

    PubMed

    Nishizawa, Nobuyuki; Ito, Yoshiya; Eshima, Koji; Ohkubo, Hirotoki; Kojo, Ken; Inoue, Tomoyoshi; Raouf, Joan; Jakobsson, Per-Johan; Uematsu, Satoshi; Akira, Shizuo; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2018-07-01

    Liver repair following hepatic ischemia/reperfusion (I/R) injury is crucial to survival. This study aims to examine the role of endogenous prostaglandin E 2 (PGE 2 ) produced by inducible microsomal PGE synthase-1 (mPGES-1), a terminal enzyme of PGE 2 generation, in liver injury and repair following hepatic I/R. mPGES-1 deficient (Ptges -/- ) mice or their wild-type (WT) counterparts were subjected to partial hepatic ischemia followed by reperfusion. The role of E prostanoid receptor 4 (EP4) was then studied using a genetic knockout model and a selective antagonist. Compared with WT mice, Ptges -/- mice exhibited reductions in alanine aminotransferase (ALT), necrotic area, neutrophil infiltration, chemokines, and proinflammatory cytokine levels. Ptges -/- mice also showed promoted liver repair and increased Ly6C low macrophages (Ly6C low /CD11b high /F4/80 high -cells) with expression of anti-inflammatory and reparative genes, while WT mice exhibited delayed liver repair and increased Ly6C high macrophages (Ly6C high /CD11b high /F4/80 low -cells) with expression of proinflammatory genes. Bone marrow (BM)-derived mPGES-1-deficient macrophages facilitated liver repair with increases in Ly6C low macrophages. In vitro, mPGES-1 was expressed in macrophages polarized toward the proinflammatory profile. Mice treated with the mPGES-1 inhibitor Compound III displayed increased liver protection and repair. Hepatic I/R enhanced the hepatic expression of PGE receptor subtype, EP4, in WT mice, which was reduced in Ptges -/- mice. A selective EP4 antagonist and genetic deletion of Ptger4, which codes for EP4, accelerated liver repair. The proinflammatory gene expression was upregulated by stimulation of EP4 agonist in WT macrophages but not in EP4-deficient macrophages. These results indicate that mPGES-1 regulates macrophage polarization as well as liver protection and repair through EP4 signaling during hepatic I/R. Inhibition of mPGES-1 could have therapeutic potential by

  3. Regional traumatic limb hypothermia attenuates distant hepatic and renal injury following blast limb trauma in rats.

    PubMed

    Zhao, Hongzhi; Ning, Jiaolin; Duan, Jiaxiang; Gu, Jianteng; Yi, Bin; Lu, Kaizhi; Mo, Liwen; Lai, Xinan; Hennah, Lindsay; Ma, Daqing

    2014-09-01

    Blast limb injury was reported to result in distant organ injury including the lungs, which can be attenuated with transient regional hypothermia (RH) to the injured limb. We aimed to further study hepatic and renal injuries following blast limb trauma and also to evaluate the protective effects of regional traumatic limb hypothermia on such injuries in rats. Blast limb trauma (BLT) was created using chartaceous electricity detonators in anesthetized male Sprague-Dawley rats. The BLT rats were randomly allocated to undergo regional traumatic limb hypothermic treatment (RH) for 30 minutes, 60 minutes, or 6 hours immediately after the onset of blast or without RH (n = 8 per group). The severity of hepatic and renal injury was assessed through histologic examination and water content (wet/dry weight) in all animals 6 hours later. The level of plasma tumor necrosis factor α (TNF-α), interleukin 6, hydrogen sulfide (H2S), and myeloperoxidase (MPO) together with hepatic and renal MPO, malondialdehyde (MDA), superoxide dismutase, and total antioxidant capacity were measured 6 hours after the blast injury. Following BLT, hepatic injury was evidenced by histopathologic changes, increased water content, as well as plasma alanine aminotransferase and aspartate aminotransferase. Renal histopathologic but not functional changes were also found. RH treatment for all durations attenuated this distant renal injury, but only RH treatment for 60 minutes and 6 hours attenuated distant hepatic injury following BLT. RH treatment for all durations decreased plasma TNF-α and interleukin 6, reduced liver and kidney MPO activity and kidney MDA, and elevated superoxide dismutase and total antioxidant capacity in both liver and kidneys. RH treatment for 60 minutes is the most effective duration to reduce hepatic MPO activity, plasma TNF-α, and kidney MDA. This study indicates that BLT-induced distant renal and hepatic injury could be attenuated by RH treatment through reduction of

  4. Contrasting effects of cord injury on intravenous and oral pharmacokinetics of diclofenac: a drug with intermediate hepatic extraction.

    PubMed

    Cruz-Antonio, L; Arauz, J; Franco-Bourland, R E; Guízar-Sahagún, G; Castañeda-Hernández, G

    2012-08-01

    Laboratory investigation in rats submitted to experimental spinal cord injury (SCI). To determine the effect of acute SCI on the pharmacokinetics of diclofenac, a marker drug of intermediate hepatic extraction, administered by the intravenous and the oral routes. Female Wistar rats were submitted to complete section of the spinal cord at the T8 level. SCI and sham-injured rats received 3.2 mg kg(-1) of diclofenac sodium either intravenously or orally, diclofenac concentration was measured in whole blood samples and pharmacokinetic parameters were estimated. Diclofenac was not selected as test drug because of its therapeutic properties, but because to its biopharmaceutical properties, that is, intermediate hepatic extraction. Diclofenac bioavailability after intravenous administration was increased in injured rats compared with controls due to a reduced clearance. In contrast, oral diclofenac bioavailability was diminished in SCI animals due to a reduction in drug absorption, which overrides the effect on clearance. Acute SCI induces significant pharmacokinetic changes for diclofenac, a marker drug with intermediate hepatic extraction. SCI-induced pharmacokinetic changes are not only determined by injury characteristics, but also by the route of administration and the biopharmaceutical properties of the studied drug.

  5. Curcumin protects against acetaminophen-induced apoptosis in hepatic injury

    PubMed Central

    Li, Gang; Chen, Jun-Bao; Wang, Chao; Xu, Zhi; Nie, Hao; Qin, Xiao-Yan; Chen, Xiao-Mei; Gong, Quan

    2013-01-01

    AIM: To explore the effects of curcumin (CMN) on hepatic injury induced by acetaminophen (APAP) in vivo. METHODS: Male mice were randomly divided into three groups: group I (control) mice received the equivalent volumes of phosphate-buffered saline (PBS) intraperitoneally (ip); Group II [APAP + carboxymethylcellulose (CMC)] mice received 1% CMC (vehicle) 2 h before APAP injection; Group III (APAP + CMN) mice received curcumin (10 or 20 mg/kg, ip) 2 h before before or after APAP challenge. In Groups II and III, APAP was dissolved in pyrogen-free PBS and injected at a single dose of 300 mg/kg. CMN was dissolved in 1% CMC. Mice were sacrificed 16 h after the APAP injection to determine alanine aminotransferase (ALT) levels in serum and malondialdehyde (MDA) accumulation, superoxide dismutase (SOD) activity and hepatocyte apoptosis in liver tissues. RESULTS: Both pre- and post-treatment with curcumin resulted in a significant decrease in serum ALT compared with APAP treatment group (10 mg/kg: 801.46 ± 661.34 U/L; 20 mg/kg: 99.68 ± 86.48 U/L vs 5406.80 ± 1785.75 U/L, P < 0.001, respectively). The incidence of liver necrosis was significantly lowered in CMN treated animals. MDA contents were significantly reduced in 20 mg/kg CMN pretreatment group, but increased in APAP treated group (10.96 ± 0.87 nmol/mg protein vs 16.03 ± 2.58 nmol/mg protein, P < 0.05). The decrease of SOD activity in APAP treatment group and the increase of SOD in 20 mg/kg CMN pretreatment group were also detected (24.54 ± 4.95 U/mg protein vs 50.21 ± 1.93 U/mg protein, P < 0.05). Furthermore, CMN treatment efficiently protected against APAP-induced apoptosis via increasing Bcl-2/Bax ratio. CONCLUSION: CMN has significant therapeutic potential in both APAP-induced hepatotoxicity and other types of liver diseases. PMID:24259976

  6. Simulating Chemical-Induced Injury Using Virtual Hepatic Tissues

    EPA Science Inventory

    Chemical-induced liver injury involves a dynamic sequence of events that span multiple levels of biological organization. Current methods for testing the toxicity of a single chemical can cost millions of dollars, take up to two years and sacrifice thousands of animals. It is dif...

  7. Osthole ameliorates hepatic fibrosis and inhibits hepatic stellate cell activation.

    PubMed

    Liu, Ya-Wei; Chiu, Yung-Tsung; Fu, Shu-Ling; Huang, Yi-Tsau

    2015-08-01

    Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation. We established the thioacetamide (TAA)-model of Sprague-Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility. Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly.

  8. Traumatic common hepatic artery injury causing isolated right hepatic ischemia due to a left accessory artery. A case report.

    PubMed

    Fernandes, Eduardo; Pedrazzani, Corrado; Gerena, Marielia; Omi, Ellen

    2017-01-01

    Hepatic arterial liver flow is renowned for its redundancy. Previous studies have demonstrated that the common hepatic artery is not essential for liver survival. We present a case of a 31year-old involved in a high-speed motor vehicle accident whose liver survived thanks to the presence of an accessory hepatic artery. We present the case of a 31year-old male who sustained a traumatic injury of the proper hepatic artery following a motor vehicle accident. The patient suffered temporary right liver lobe ischemia due to the presence of an accessory left hepatic artery. This resulted in the selective formation of 'biliary lakes' distinctively within the territory of the right hepatic artery supply. Simultaneously the patient developed a pseudo-aneurysm of the proper hepatic artery which required radiology intervention. At the time of pseudo-aneurysm embolisation, a rich network of arterial collaterals had formed between the accessory left hepatic and the inferior phrenic artery. On follow up the biliary lakes to the right lobe had resolved, but a small area at the periphery of the right lobe had encountered atrophy. This case report is an 'in vivo' demonstration of liver resilience to arterial flow re-distribution and demonstrates the ability of the biliary epithelium to recover from and ischemic injury. Parenchymal liver survival is mostly independent from flow within the common hepatic artery. Acute and chronic liver parenchyma changes following interruption of hepatic artery flow can still occur. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mechanism of Salutary Effects of Astringinin on Rodent Hepatic Injury following Trauma-Hemorrhage: Akt-Dependent Hemeoxygenase-1 Signaling Pathways

    PubMed Central

    Liu, Fu-Chao; Hwang, Tsong-Long; Lau, Ying-Tung; Yu, Huang-Ping

    2011-01-01

    Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35–40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation. PMID:22022464

  10. Mechanism of salutary effects of astringinin on rodent hepatic injury following trauma-hemorrhage: Akt-dependent hemeoxygenase-1 signaling pathways.

    PubMed

    Liu, Fu-Chao; Hwang, Tsong-Long; Lau, Ying-Tung; Yu, Huang-Ping

    2011-01-01

    Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35-40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation.

  11. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice

    PubMed Central

    Zhang, Yu-Jie; Xu, Dong-Ping; Wang, Fang; Zhou, Yue; Zheng, Jie; Li, Ya; Zhang, Jiao-Jiao

    2017-01-01

    Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity. PMID:28567423

  12. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury.

    PubMed

    Haga, Hiroaki; Yan, Irene K; Borrelli, David A; Matsuda, Akiko; Parasramka, Mansi; Shukla, Neha; Lee, David D; Patel, Tushar

    2017-06-01

    Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  13. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    PubMed

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  14. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    PubMed

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  15. Hepatic ischemia/reperfusion injury is diminished by atorvastatin in Wistar rats.

    PubMed

    Cámara-Lemarroy, Carlos Rodrigo; Guzmán-de la Garza, Francisco Javier; Alarcón-Galván, Gabriela; Cordero-Pérez, Paula; Muñoz-Espinosa, Linda; Torres-González, Liliana; Fernández-Garza, Nancy Esthela

    2014-04-01

    Temporal occlusion of the hepatoduodenal ligament (HDL) is often used during liver surgeries in order to reduce blood loss, resulting in ischemia/reperfusion injury (I/R). The aim of the study was to investigate the effects of atorvastatin (ATOR) on hepatic I/R injury and on serum levels of tumor necrosis factor-alpha (TNF-α), endothelin-1 (ET-1), antithrombin III (ATIII) and intracellular adhesion molecule-1 (ICAM-1). Liver ischemia was induced in Wistar rats by clamping the HDL for 60 min, followed by either 60 or 180 min reperfusion. Rats received either vehicle or 10 mg/kg ATOR before hepatic I/R. Control group received sham surgery. Livers were examined for histological damage and serum AST, ALT, TNF-α, ET-1, ATIII and ICAM-1 concentrations were measured. After I/R, AST and ALT were significantly elevated, ATIII levels were significantly depleted, both TNF-α and ICAM-1 levels increased and ET-1 was significantly elevated (at 180 min). ATOR pretreatment attenuated these alterations and diminished histological injury scores. Our results show that ATOR protects the liver from I/R injury. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  16. Non-operative management versus operative management in high-grade blunt hepatic injury.

    PubMed

    Cirocchi, Roberto; Trastulli, Stefano; Pressi, Eleonora; Farinella, Eriberto; Avenia, Stefano; Morales Uribe, Carlos Hernando; Botero, Ana Maria; Barrera, Luis M

    2015-08-24

    Surgery used to be the treatment of choice in cases of blunt hepatic injury, but this approach gradually changed over the last two decades as increasing non-operative management (NOM) of splenic injury led to its use for hepatic injury. The improvement in critical care monitoring and computed tomographic scanning, as well as the more frequent use of interventional radiology techniques, has helped to bring about this change to non-operative management. Liver trauma ranges from a small capsular tear, without parenchymal laceration, to massive parenchymal injury with major hepatic vein/retrohepatic vena cava lesions. In 1994, the Organ Injury Scaling Committee of the American Association for the Surgery of Trauma (AAST) revised the Hepatic Injury Scale to have a range from grade I to VI. Minor injuries (grade I or II) are the most frequent liver injuries (80% to 90% of all cases); severe injuries are grade III-V lesions; grade VI lesions are frequently incompatible with survival. In the medical literature, the majority of patients who have undergone NOM have low-grade liver injuries. The safety of NOM in high-grade liver lesions, AAST grade IV and V, remains a subject of debate as a high incidence of liver and collateral extra-abdominal complications are still described. To assess the effects of non-operative management compared to operative management in high-grade (grade III-V) blunt hepatic injury. The search for studies was run on 14 April 2014. We searched the Cochrane Injuries Group's Specialised Register, The Cochrane Library, Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), Embase Classic+Embase (Ovid), PubMed, ISI WOS (SCI-EXPANDED, SSCI, CPCI-S & CPSI-SSH), clinical trials registries, conference proceedings, and we screened reference lists. All randomised trials that compare non-operative management versus operative management in high-grade blunt hepatic injury. Two authors independently

  17. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage.

    PubMed

    Amin, Kamal Adel; Hashem, Khalid Shaban; Alshehri, Fawziah Saleh; Awad, Said T; Hassan, Mohammed S

    2017-01-01

    Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.

  18. Atypical onset of bicalutamide-induced liver injury.

    PubMed

    Yun, Gee Young; Kim, Seok Hyun; Kim, Seok Won; Joo, Jong Seok; Kim, Ju Seok; Lee, Eaum Seok; Lee, Byung Seok; Kang, Sun Hyoung; Moon, Hee Seok; Sung, Jae Kyu; Lee, Heon Young; Kim, Kyung Hee

    2016-04-21

    Anti-androgen therapy is the leading treatment for advanced prostate cancer and is commonly used for neoadjuvant or adjuvant treatment. Bicalutamide is a non-steroidal anti-androgen, used during the initiation of androgen deprivation therapy along with a luteinizing hormone-releasing hormone agonist to reduce the symptoms of tumor-related flares in patients with advanced prostate cancer. As side effects, bicalutamide can cause fatigue, gynecomastia, and decreased libido through competitive androgen receptor blockade. Additionally, although not as common, drug-induced liver injury has also been reported. Herein, we report a case of hepatotoxicity secondary to bicalutamide use. Typically, bicalutamide-induced hepatotoxicity develops after a few days; however, in this case, hepatic injury occurred 5 mo after treatment initiation. Based on this rare case of delayed liver injury, we recommend careful monitoring of liver function throughout bicalutamide treatment for prostate cancer.

  19. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury.

    PubMed

    Kim, Jin Yong; Lee, Dong Yun; Kang, Sukmo; Miao, Wenjun; Kim, Hyungjun; Lee, Yonghyun; Jon, Sangyong

    2017-07-01

    Hepatic ischemia-reperfusion injury (IRI) remains a major concern in liver transplantation and resection, despite continuing efforts to prevent it. Accumulating evidence suggests that bilirubin possesses antioxidant, anti-inflammatory and anti-apoptotic properties. However, despite obvious potential health benefits of bilirubin, its clinical applications are limited by its poor solubility. We recently developed bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol (PEG)-conjugated bilirubin. Here, we sought to investigate whether BRNPs protect against IRI in the liver by preventing oxidative stress. BRNPs exerted potent antioxidant and anti-apoptotic activity in primary hepatocytes exposed to hydrogen peroxide, a precursor of reactive oxygen species (ROS). In a model of hepatic IRI in mice, BRNP preconditioning exerted profound protective effects against hepatocellular injury by reducing oxidative stress, pro-inflammatory cytokine production, and recruitment of neutrophils. They also preferentially accumulated in IRI-induced inflammatory lesions. Collectively, our findings indicate that BRNP preconditioning provides a simple and safe approach that can be easily monitored in the blood like endogenous bilirubin, and could be a promising strategy to protect against IRI in a clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  1. Differential involvement of IL-6 in the early and late phase of 1-methylnicotinamide (MNA) release in Concanavalin A-induced hepatitis.

    PubMed

    Sternak, Magdalena; Jakubowski, Andrzej; Czarnowska, Elzbieta; Slominska, Ewa M; Smolenski, Ryszard T; Szafarz, Malgorzata; Walczak, Maria; Sitek, Barbara; Wojcik, Tomasz; Jasztal, Agnieszka; Kaminski, Karol; Chlopicki, Stefan

    2015-09-01

    Exogenous 1-methylnicotinamide (MNA) displays anti-inflammatory activity. The aim of this work was to characterize the profile of release of endogenous MNA during the initiation and progression of murine hepatitis induced by Concanavalin A (ConA). In particular we aimed to clarify the role of interleukin-6 (IL-6) as well as the energy state of hepatocytes in MNA release in early and late phases of ConA-induced hepatitis in mice. Hepatitis was induced by ConA in IL-6(+/+) and IL-6(-/-) mice, and various parameters of liver inflammation and injury, as well as the energy state of hepatocytes, were analysed in relation to MNA release. The decrease in ATP/ADP and NADH/NAD ratios, cytokine release (IL-6, IFN-ɤ), acute phase response (e.g. haptoglobin) and liver injury (alanine aminotransaminase, ALT) were all blunted in ConA-induced hepatitis in IL-6(-/-) mice as compared to IL-6(+/+) mice. The release of MNA in response to Con A was also significantly blunted in IL-6(-/-) mice as compared to IL-6(+/+) mice in the early stage of ConA-induced hepatitis. In turn, nicotinamide N-methyltransferase (NNMT) and aldehyde oxidase (AO) activities were blunted in the liver and MNA plasma concentration was elevated to similar degree in the late stage after Concanavalin A in IL-6(+/+) and IL-6(-/-) mice. In conclusion, we demonstrated that in ConA-induced hepatitis, early, but not late MNA release was IL-6-dependent. Our results suggest that in the initiation and early hepatitis, MNA release is linked to the energy deficit/impaired redox status in hepatocytes, while in a later phase, MNA release is rather linked to the systemic inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury.

    PubMed

    Ruddell, Richard G; Knight, Belinda; Tirnitz-Parker, Janina E E; Akhurst, Barbara; Summerville, Lesa; Subramaniam, V Nathan; Olynyk, John K; Ramm, Grant A

    2009-01-01

    Lymphotoxin-beta (LTbeta) is a proinflammatory cytokine and a member of the tumor necrosis factor (TNF) superfamily known for its role in mediating lymph node development and homeostasis. Our recent studies suggest a role for LTbeta in mediating the pathogenesis of human chronic liver disease. We hypothesize that LTbeta co-ordinates the wound healing response in liver injury via direct effects on hepatic stellate cells. This study used the choline-deficient, ethionine-supplemented (CDE) dietary model of chronic liver injury, which induces inflammation, liver progenitor cell proliferation, and portal fibrosis, to assess (1) the cellular expression of LTbeta, and (2) the role of LTbeta receptor (LTbetaR) in mediating wound healing, in LTbetaR(-/-) versus wild-type mice. In addition, primary isolates of hepatic stellate cells were treated with LTbetaR-ligands LTbeta and LTbeta-related inducible ligand competing for glycoprotein D binding to herpesvirus entry mediator on T cells (LIGHT), and mediators of hepatic stellate cell function and fibrogenesis were assessed. LTbeta was localized to progenitor cells immediately adjacent to activated hepatic stellate cells in the periportal region of the liver in wild-type mice fed the CDE diet. LTbetaR(-/-) mice fed the CDE diet showed significantly reduced fibrosis and a dysregulated immune response. LTbetaR was demonstrated on isolated hepatic stellate cells, which when stimulated by LTbeta and LIGHT, activated the nuclear factor kappa B (NF-kappaB) signaling pathway. Neither LTbeta nor LIGHT had any effect on alpha-smooth muscle actin, tissue inhibitor of metalloproteinase 1, transforming growth factor beta, or procollagen alpha(1)(I) expression; however, leukocyte recruitment-associated factors intercellular adhesion molecule 1 and regulated upon activation T cells expressed and secreted (RANTES) were markedly up-regulated. RANTES caused the chemotaxis of a liver progenitor cell line expressing CCR5. This study suggests that

  3. Hepatic resection for post-cholecystectomy bile duct injuries: a literature review.

    PubMed

    Truant, Stéphanie; Boleslawski, Emmanuel; Lebuffe, Gilles; Sergent, Géraldine; Pruvot, François-René

    2010-06-01

    This study seeks to identify factors for hepatectomy in the management of post-cholecystectomy bile duct injury (BDI) and outcome via a systematic review of the literature. Relevant literature was found by searching the PubMed database and the bibliographies of extracted articles. To avoid bias selection, factors for hepatectomy were analysed in series reporting both patients undergoing hepatectomy and patients undergoing biliary repair without hepatectomy (bimodal treatment). Relevant variables were the presence or absence of additional hepatic artery and/or portal vein injury, the level of BDI, and a previous biliary repair. Among 460 potentially relevant publications, only 31 met the eligibility criteria. A total of 99 hepatectomies were reported among 1756 (5.6%) patients referred for post-cholecystectomy BDI. In eight series reporting bimodal treatment, including 232 patients, logistic regression multivariate analysis showed that hepatic arterial and Strasberg E4 and E5 injuries were independent factors associated with hepatectomy. Patients with combined arterial and Strasberg E4 or E5 injury were 43.3 times more likely to undergo hepatectomy (95% confidence interval 8.0-234.2) than patients without complex injury. Despite high postoperative morbidity, mortality rates were comparable with those of hepaticojejunostomy, except in urgent hepatectomies (within 2 weeks; four of nine patients died). Longterm outcome was satisfactory in 12 of 18 patients in the largest series. Hepatectomies were performed mainly in patients showing complex concurrent Strasberg E4 or E5 and hepatic arterial injury and provided satisfactory longterm outcomes despite high postoperative morbidity.

  4. Hepatic resection for post-cholecystectomy bile duct injuries: a literature review

    PubMed Central

    Truant, Stéphanie; Boleslawski, Emmanuel; Lebuffe, Gilles; Sergent, Géraldine; Pruvot, François-René

    2010-01-01

    Objectives: This study seeks to identify factors for hepatectomy in the management of post-cholecystectomy bile duct injury (BDI) and outcome via a systematic review of the literature. Methods: Relevant literature was found by searching the PubMed database and the bibliographies of extracted articles. To avoid bias selection, factors for hepatectomy were analysed in series reporting both patients undergoing hepatectomy and patients undergoing biliary repair without hepatectomy (bimodal treatment). Relevant variables were the presence or absence of additional hepatic artery and/or portal vein injury, the level of BDI, and a previous biliary repair. Results: Among 460 potentially relevant publications, only 31 met the eligibility criteria. A total of 99 hepatectomies were reported among 1756 (5.6%) patients referred for post-cholecystectomy BDI. In eight series reporting bimodal treatment, including 232 patients, logistic regression multivariate analysis showed that hepatic arterial and Strasberg E4 and E5 injuries were independent factors associated with hepatectomy. Patients with combined arterial and Strasberg E4 or E5 injury were 43.3 times more likely to undergo hepatectomy (95% confidence interval 8.0–234.2) than patients without complex injury. Despite high postoperative morbidity, mortality rates were comparable with those of hepaticojejunostomy, except in urgent hepatectomies (within 2 weeks; four of nine patients died). Longterm outcome was satisfactory in 12 of 18 patients in the largest series. Conclusions: Hepatectomies were performed mainly in patients showing complex concurrent Strasberg E4 or E5 and hepatic arterial injury and provided satisfactory longterm outcomes despite high postoperative morbidity. PMID:20590909

  5. Chronic Intermittent Hypoxia and Acetaminophen Induce Synergistic Liver Injury

    PubMed Central

    Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C.; Torbenson, Michael S.; Polotsky, Vsevolod Y.

    2010-01-01

    Obstructive sleep apnea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. OSA has been associated with liver injury. Acetaminophen (APAP) is one of the most commonly used drugs, which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg/kg) or normal saline daily. A combination of CIH and APAP caused liver injury with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. APAP alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a five-fold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. APAP or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA. PMID:19028810

  6. The protective effects of shikonin on hepatic ischemia/reperfusion injury are mediated by the activation of the PI3K/Akt pathway

    PubMed Central

    Liu, Tong; Zhang, QingHui; Mo, Wenhui; Yu, Qiang; Xu, Shizan; Li, Jingjing; Li, Sainan; Feng, Jiao; Wu, Liwei; Lu, Xiya; Zhang, Rong; Li, Linqiang; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Wang, Fan; Dai, Weiqi; Chen, Kan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Zhao, Yan; Guo, Chuanyong

    2017-01-01

    Hepatic ischemia/reperfusion (I/R) injury, which can result in severe liver injury and dysfunction, occurs in a variety of conditions such as liver transplantation, shock, and trauma. Cell death in hepatic I/R injury has been linked to apoptosis and autophagy. Shikonin plays a significant protective role in ischemia/reperfusion injury. The purpose of the present study was to investigate the protective effect of shikonin on hepatic I/R injury and explore the underlying mechanism. Mice were subjected to segmental (70%) hepatic warm ischemia to induce hepatic I/R injury. Two doses of shikonin (7.5 and 12.5 mg/kg) were administered 2 h before surgery. Balb/c mice were randomly divided into four groups: normal control, I/R, and shikonin preconditioning at two doses (7.5 and 12.5 mg/kg). The serum and liver tissues were collected at three time points (3, 6, and 24 h). Shikonin significantly reduced serum AST and ALT levels and improved pathological features. Shikonin affected the expression of Bcl-2, Bax, caspase 3, caspase 9, Beclin-1, and LC3, and upregulated PI3K and p-Akt compared with the levels in the I/R group. Shikonin attenuated hepatic I/R injury by inhibiting apoptosis and autophagy through a mechanism involving the activation of PI3K/Akt signaling. PMID:28322249

  7. Comparative Analysis of Liver Injury-Associated Cytokines in Acute Hepatitis A and B.

    PubMed

    Shin, So Youn; Jeong, Sook-Hyang; Sung, Pil Soo; Lee, Jino; Kim, Hyung Joon; Lee, Hyun Woong; Shin, Eui-Cheol

    2016-05-01

    Acute hepatitis A (AHA) and acute hepatitis B (AHB) are caused by an acute infection of the hepatitis A virus and the hepatitis B virus, respectively. In both AHA and AHB, liver injury is known to be mediated by immune cells and cytokines. In this study, we measured serum levels of various cytokines and T-cell cytotoxic proteins in patients with AHA or AHB to identify liver injury-associated cytokines. Forty-six patients with AHA, 16 patients with AHB, and 14 healthy adults were enrolled in the study. Serum levels of 17 cytokines and T-cell cytotoxic proteins were measured by enzyme-linked immunosorbent assays or cytometric bead arrays and analyzed for correlation with serum alanine aminotransferase (ALT) levels. Interleukin (IL)-18, IL-8, CXCL9, and CXCL10 were significantly elevated in both AHA and AHB. IL-6, IL-22, granzyme B, and soluble Fas ligand (sFasL) were elevated in AHA but not in AHB. In both AHA and AHB, the serum level of CXCL10 significantly correlated with the peak ALT level. Additionally, the serum level of granzyme B in AHA and the serum level of sFasL in AHB correlated with the peak ALT level. We identified cytokines and T-cell cytotoxic proteins associated with liver injury in AHA and AHB. These findings deepen the existing understanding of immunological mechanisms responsible for liver injury in acute viral hepatitis.

  8. Comparative Analysis of Liver Injury-Associated Cytokines in Acute Hepatitis A and B

    PubMed Central

    Shin, So Youn; Jeong, Sook-Hyang; Sung, Pil Soo; Lee, Jino; Kim, Hyung Joon; Lee, Hyun Woong

    2016-01-01

    Purpose Acute hepatitis A (AHA) and acute hepatitis B (AHB) are caused by an acute infection of the hepatitis A virus and the hepatitis B virus, respectively. In both AHA and AHB, liver injury is known to be mediated by immune cells and cytokines. In this study, we measured serum levels of various cytokines and T-cell cytotoxic proteins in patients with AHA or AHB to identify liver injury-associated cytokines. Materials and Methods Forty-six patients with AHA, 16 patients with AHB, and 14 healthy adults were enrolled in the study. Serum levels of 17 cytokines and T-cell cytotoxic proteins were measured by enzyme-linked immunosorbent assays or cytometric bead arrays and analyzed for correlation with serum alanine aminotransferase (ALT) levels. Results Interleukin (IL)-18, IL-8, CXCL9, and CXCL10 were significantly elevated in both AHA and AHB. IL-6, IL-22, granzyme B, and soluble Fas ligand (sFasL) were elevated in AHA but not in AHB. In both AHA and AHB, the serum level of CXCL10 significantly correlated with the peak ALT level. Additionally, the serum level of granzyme B in AHA and the serum level of sFasL in AHB correlated with the peak ALT level. Conclusion We identified cytokines and T-cell cytotoxic proteins associated with liver injury in AHA and AHB. These findings deepen the existing understanding of immunological mechanisms responsible for liver injury in acute viral hepatitis. PMID:26996565

  9. Orlistat-induced fulminant hepatic failure.

    PubMed

    Sall, D; Wang, J; Rashkin, M; Welch, M; Droege, C; Schauer, D

    2014-12-01

    Orlistat was approved by the Food and Drug Administration in 1998 and has been shown to be superior to placebo in achieving weight loss. It is generally well tolerated. However, severe liver injury has been reported. We present a case of hepatic failure in a patient taking orlistat. A 54-year-old African-American woman with hypertension presented with hepatic failure. She had noticed increasing fatigue, jaundice and confusion. She used alcohol sparingly and denied tobacco or illicit drug use, but had been taking over-the-counter orlistat for the past two months. Physical examination revealed scleral icterus, jaundice, asterixis and slow speech. Laboratory testing showed markedly abnormal liver function tests with coagulopathy. Acute viral and autoimmune serologies were negative, as was toxicology screen. Liver biopsy showed necrotic hepatic parenchyma likely secondary to drug toxicity. Based upon her clinical presentation and time course, the pattern of liver injury seen on liver biopsy and lack of an alternative plausible explanation, her liver failure was most likely associated with orlistat use. She continued to deteriorate and ultimately underwent orthotopic liver transplantation. Fourteen cases of severe liver injury associated with orlistat use have been reported, four of which are detailed in the literature. This is the second published case of liver failure associated with over-the-counter orlistat usage. Clinicians should be aware of the growing number of cases associating liver injury and orlistat use and carefully monitor their patients on this medication for signs of hepatic dysfunction. © 2014 The Authors. Clinical Obesity © 2014 World Obesity.

  10. Mesh wrapping for severe hepatic injury: a beneficial option in the trauma surgeon's armamentarium.

    PubMed

    Kennedy, Ryan; Brevard, Sidney B; Bosarge, Patrick; Simmons, Jon D; Frotan, Mohammed A; Baker, Jeremy A; Tuart, Lynda; Pritchett, Cindy; Gonzalez, Richard P

    2015-03-01

    The purpose of this study was to assess the efficacy of absorbable mesh wrapping (MW) versus perihepatic packing (HP) for severe hepatic injury. From January 2001 to December 2012, data were collected for MW patients with hepatic injury. Patients who underwent HP were matched with MW patients by injury mechanism, liver injury grade, Injury Severity Score, and age. Twenty-six MW and twenty-six HP patients were matched. Eighteen blunt and 8 penetrating injuries were present in each group. There were 9 (35%) mortalities in the MW group and 16 (62%) in the HP groups (P = .03). Average transfusions were 12.0 and 24.5 (P = .03) packed red blood cells in the MW and HP groups, respectively. Average laparotomies per survivors were 1.3 for the MW and 3.1 for the HP groups (P = .01). Average length of stay for survivors was 19 and 47 (P = .04) days in the MW and HP groups, respectively. MW for hepatic injuries can significantly decrease mortality, transfusions, laparotomies, and length of stay. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. An Update on Drug-induced Liver Injury.

    PubMed

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  12. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  13. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury.

    PubMed

    Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao

    2016-04-14

    The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.

  14. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model.

    PubMed

    Zhang, Chi; Lu, Xuemian; Tan, Yi; Li, Bing; Miao, Xiao; Jin, Litai; Shi, Xue; Zhang, Xiang; Miao, Lining; Li, Xiaokun; Cai, Lu

    2012-01-01

    Zinc (Zn) deficiency often occurs in the patients with diabetes. Effects of Zn deficiency on diabetes-induced hepatic injury were investigated. Type 1 diabetes was induced in FVB mice with multiple low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with and without Zn chelator, N,N,N',N'-tetrakis (2-pyridylemethyl) ethylenediamine (TPEN), at 5 mg/kg body-weight daily for 4 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level and liver histopathological and biochemical changes. Hepatic Zn deficiency (lower than control level, p<0.05) was seen in the mice with either diabetes or TPEN treatment and more evident in the mice with both diabetes and TPEN. Zn deficiency exacerbated hepatic injuries, shown by further increased serum ALT, hepatic lipid accumulation, inflammation, oxidative damage, and endoplasmic reticulum stress-related cell death in Diabetes/TPEN group compared to Diabetes alone. Diabetes/TPEN group also showed a significant decrease in nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and transcription action along with significant increases in Akt negative regulators, decrease in Akt and GSK-3β phosphorylation, and increase in nuclear accumulation of Fyn (a Nrf2 negative regulator). In vitro study with HepG2 cells showed that apoptotic effect of TPEN at 0.5-1.0 µM could be completely prevented by simultaneous Zn supplementation at the dose range of 30-50 µM. Zn is required for maintaining Akt activation by inhibiting the expression of Akt negative regulators; Akt activation can inhibit Fyn nuclear translocation to export nuclear Nrf2 to cytoplasm for degradation. Zn deficiency significantly enhanced diabetes-induced hepatic injury likely through down-regulation of Nrf2 function.

  15. A Chinese herbal medicine, jia-wei-xiao-yao-san, prevents dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Chien, Shu-Chen; Chang, Wei-Chiao; Lin, Pu-Hua; Chang, Wei-Pin; Hsu, Shih-Chung; Chang, Jung-Chen; Wu, Ya-Chieh; Pei, Jin-Kuo; Lin, Chia-Hsien

    2014-01-01

    Jia-wei-xiao-yao-san (JWXYS) is a traditional Chinese herbal medicine that is widely used to treat neuropsychological disorders. Only a few of the hepatoprotective effects of JWXYS have been studied. The aim of this study was to investigate the hepatoprotective effects of JWXYS on dimethylnitrosamine- (DMN-) induced chronic hepatitis and hepatic fibrosis in rats and to clarify the mechanism through which JWXYS exerts these effects. After the rats were treated with DMN for 3 weeks, serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels were significantly elevated, whereas the albumin level decreased. Although DMN was continually administered, after the 3 doses of JWXYS were orally administered, the SGOT and SGPT levels significantly decreased and the albumin level was significantly elevated. In addition, JWXYS treatment prevented liver fibrosis induced by DMN. JWXYS exhibited superoxide-dismutase-like activity and dose-dependently inhibited DMN-induced lipid peroxidation and xanthine oxidase activity in the liver of rats. Our findings suggest that JWXYS exerts antifibrotic effects against DMN-induced chronic hepatic injury. The possible mechanism is at least partially attributable to the ability of JWXYS to inhibit reactive-oxygen-species-induced membrane lipid peroxidation.

  16. Liver injury in acute hepatitis A is associated with decreased frequency of regulatory T cells caused by Fas-mediated apoptosis.

    PubMed

    Choi, Yoon Seok; Lee, Jeewon; Lee, Hyun Woong; Chang, Dong-Yeop; Sung, Pil Soo; Jung, Min Kyung; Park, Jun Yong; Kim, Ja Kyung; Lee, Jung Il; Park, Hana; Cheong, Jae Youn; Suh, Kyung-Suk; Kim, Hyung Joon; Lee, June Sung; Kim, Kyung-Ah; Shin, Eui-Cheol

    2015-08-01

    Foxp3(+)CD4(+)CD25(+) regulatory T cells (Tregs) control immune responses, but their role in acute viral hepatitis remains elusive. Herein, we investigated alteration in the peripheral blood Treg population during acute hepatitis A (AHA) and its implication in the immune-mediated liver injury. The study included 71 patients with AHA, and peripheral blood mononuclear cells (PBMCs) were isolated. The suppressive activity of Treg population was determined by assessing anti-CD3/CD28-stimulated proliferation of Treg-depleted and reconstituted PBMCs. Treg cell frequency, phenotype and apoptosis in PBMCs were analysed by flow cytometry. The frequency of circulating Tregs was reduced during AHA. Moreover, the suppressive activity of the total Treg pool in the peripheral blood was attenuated during AHA. Treg frequency and suppressive activity of the Treg population inversely correlated with the serum alanine aminotransferase level. Fas was overexpressed on Tregs during AHA, suggesting their susceptibility to Fas-induced apoptosis. Indeed, increased apoptotic death was observed in Tregs of patients with AHA compared with healthy controls. In addition, agonistic anti-Fas treatment further increased apoptotic death of Tregs from patients with AHA. The decreased Treg frequency and Fas overexpression on Tregs were not observed in other acute liver diseases such as acute hepatitis B, acute hepatitis C and toxic/drug-induced hepatitis. The size of the Treg pool was contracted during AHA, resulting from apoptosis of Tregs induced by a Fas-mediated mechanism. Decrease in Treg numbers led to reduced suppressive activity of the Treg pool and consequently resulted in severe liver injury during AHA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  18. Depression of in vivo clearance function of hepatic macrophage complement receptors following thermal injury.

    PubMed

    Cuddy, B G; Loegering, D J; Blumenstock, F A

    1984-09-01

    Previous studies have implicated a role for impaired hepatic macrophage blood clearance function in the increased susceptibility to infection caused by experimental thermal injury. The present study evaluated in vivo hepatic macrophage complement receptor clearance function as a possible factor contributing to impaired hepatic clearance after thermal injury. Rat erythrocytes treated with anti-erythrocyte serum (EA) were used as the test particle in rats. EA were rapidly removed from the circulation primarily by the liver and hepatic uptake of EA was greatly depressed in animals rendered C3 deficient by treatment with cobra venom factor. Thermal injury caused a large depression in the hepatic uptake of EA. It was shown that the depression in the binding of EA to hepatic macrophages was not due to decreased hepatic blood flow, decreased serum complement levels, or increased fluid phase C3b. Also, the depression of the hepatic uptake of EA incubated with serum prior to injection (EAC) was not different from that of EA after thermal injury. On this basis it was concluded that the impairment in binding of EA to the macrophages was at the cellular level and represented a depression in complement receptor clearance function. Additional studies showed that the injection of erythrocyte stroma, as a model of intravascular hemolysis, also depressed in vivo hepatic macrophage complement receptor clearance function. This latter finding suggests that the intravascular hemolysis caused by thermal injury may contribute to the depression of macrophage receptor function. The depression of hepatic macrophage complement receptor clearance function may contribute to the impaired bacterial clearance and increased susceptibility to infection following experimental thermal injury.

  19. ERK Signaling Pathway Plays a Key Role in Baicalin Protection Against Acetaminophen-Induced Liver Injury.

    PubMed

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2017-01-01

    Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15-60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.

  20. Silymarin Prevents Restraint Stress-Induced Acute Liver Injury by Ameliorating Oxidative Stress and Reducing Inflammatory Response.

    PubMed

    Kim, Sou Hyun; Oh, Dal-Seok; Oh, Ji Youn; Son, Tae Gen; Yuk, Dong Yeon; Jung, Young-Suk

    2016-04-01

    Silymarin is a flavonoid extracted from the milk thistle Silybum marianum. It has been reported to prevent liver injuries induced by various chemicals or toxins. Our recent study suggested that silymarin induces hepatic synthesis of glutathione by increasing cysteine availability, which may consequently contribute to increased antioxidant capacity of the liver. In the present study, we investigated the effects of silymarin on acute liver injury induced by restraint stress. Silymarin (100 mg/kg) was orally administered to BALB/c mice every 12 h (3 times in total). After the last dose, mice were subjected to restraint stress for 6 h, and serum levels of aspartate and alanine aminotransferases, and hepatic levels of lipid peroxidation were determined. Hepatic levels of sulfur-containing metabolites such as methionine, S-adenosylmethionine, cysteine, and glutathione were also measured. The level of pro-inflammatory mediators in both liver and serum was determined. To study the mechanism of the effects of silymarin, we assessed Jun N-terminal kinase (JNK) activation and apoptotic signaling. Restraint stress induced severe oxidative stress and increased mRNA levels of pro-inflammatory mediators; both effects of restraint stress were significantly inhibited by silymarin. Moreover, administration of silymarin significantly prevented acute liver injury induced by restraint stress by blocking JNK activation and subsequently apoptotic signaling. In conclusion, these results suggest that the inhibition of restraint stress-induced liver injury by silymarin is due at least in part to its anti-oxidant activity and its ability to suppress the inflammatory response.

  1. The effect of trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57BL mouse.

    PubMed

    Chotimarkorn, Chatchawan; Ushio, Hideki

    2008-11-01

    The effects of the oral administration of trans-ferulic acid and gamma-oryzanol (mixture of steryl ferulates) with ethanol (5.0 g per kg) for 30 days to c57BL mice on ethanol-induced liver injury were investigated. Preventions of ethanol-induced liver injury by trans-ferulic acid and gamma-oryzanol were reflected by markedly decreased serum activities of plasma aspartate aminotransferase, alanine aminotransferase and significant decreases in hepatic lipid hydroperoxide and TBARS levels. Furthermore, the trans-ferulic acid- and gamma-oryzanol-treated mice recovered ethanol-induced decrease in hepatic glutathione level together with enhancing superoxide dismutase activity. These results demonstrate that both trans-ferulic acid and gamma-oryzanol exert a protective action on liver injury induced by chronic ethanol ingestion.

  2. The pathogenesis of diclofenac induced immunoallergic hepatitis in a canine model of liver injury

    PubMed Central

    Selvaraj, Saravanakumar; Oh, Jung-Hwa; Spanel, Reinhard; Länger, Florian; Han, Hyoung-Yun; Lee, Eun-Hee; Yoon, Seokjoo; Borlak, Jürgen

    2017-01-01

    Hypersensitivity to non-steroidal anti-inflammatory drugs is a common adverse drug reaction and may result in serious inflammatory reactions of the liver. To investigate mechanism of immunoallergic hepatitis beagle dogs were given 1 or 3 mg/kg/day (HD) oral diclofenac for 28 days. HD diclofenac treatment caused liver function test abnormalities, reduced haematocrit and haemoglobin but induced reticulocyte, WBC, platelet, neutrophil and eosinophil counts. Histopathology evidenced hepatic steatosis and glycogen depletion, apoptosis, acute lobular hepatitis, granulomas and mastocytosis. Whole genome scans revealed 663 significantly regulated genes of which 82, 47 and 25 code for stress, immune response and inflammation. Immunopathology confirmed strong induction of IgM, the complement factors C3&B, SAA, SERPING1 and others of the classical and alternate pathway. Alike, marked expression of CD205 and CD74 in Kupffer cells and lymphocytes facilitate antigen presentation and B-cell differentiation. The highly induced HIF1A and KLF6 protein expression in mast cells and macrophages sustain inflammation. Furthermore, immunogenomics discovered 24, 17, 6 and 11 significantly regulated marker genes to hallmark M1/M2 polarized macrophages, lymphocytic and granulocytic infiltrates; note, the latter was confirmed by CAE staining. Other highly regulated genes included alpha-2-macroglobulin, CRP, hepcidin, IL1R1, S100A8 and CCL20. Diclofenac treatment caused unprecedented induction of myeloperoxidase in macrophages and oxidative stress as shown by SOD1/SOD2 immunohistochemistry. Lastly, bioinformatics defined molecular circuits of inflammation and consisted of 161 regulated genes. Altogether, the mechanism of diclofenac induced liver hypersensitivity reactions involved oxidative stress, macrophage polarization, mastocytosis, complement activation and an erroneous programming of the innate and adaptive immune system. PMID:29296203

  3. Resolvin D1 attenuates CCl4-induced acute liver injury involving up-regulation of HO-1 in mice.

    PubMed

    Chen, Xiahong; Gong, Xia; Jiang, Rong; Wang, Bin; Kuang, Ge; Li, Ke; Wan, Jingyuan

    2016-01-01

    Acute hepatic failure involves in excessive oxidative stress and inflammatory responses, leading to a high mortality due to lacking effective therapy. Resolvin D1 (RvD1), an endogenous lipid mediator derived from polyunsaturated fatty acids, has been shown anti-inflammatory and anti-oxidative actions, however, whether RvD1 has protective effects on hepatic failure remains elusive. In this study, the roles and molecular mechanisms of RvD1 were explored in carbon tetrachloride (CCl4)-induced acute liver injury. Our results showed that RvD1 protected mice against CCl4-induced hepatic damage, as evaluated by reduced aminotransferase activities and malondialdehyde content, elevated glutathione and superoxide dismutase activities, and alleviated hepatic pathological damage. Moreover, RvD1 significantly attenuated serum tumor necrosis factor-α and interleukin-6 levels as well as hepatic myeloperoxidase activity, whereas enhanced serum IL-10 level in CCl4-administered mice. Further, RvD1 markedly up-regulated the expression and activity of heme oxygenase-1 (HO-1). However, inhibition of HO-1 activity reversed the protective effects of RvD1 on CCl4-induced liver injury. These results suggest that RvD1 could effectively prevent CCl4-induced liver injury by inhibition of oxidative stress and inflammation, and the underlying mechanism may be related to up-regulation of HO-1.

  4. Deficiency of cholesterol 7α‐hydroxylase in bile acid synthesis exacerbates alcohol‐induced liver injury in mice

    PubMed Central

    Donepudi, Ajay C.; Ferrell, Jessica M.; Boehme, Shannon; Choi, Hueng‐Sik

    2017-01-01

    Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1‐deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112) PMID:29404516

  5. Ischemic Preconditioning Produces Comparable Protection Against Hepatic Ischemia/Reperfusion Injury Under Isoflurane and Sevoflurane Anesthesia in Rats.

    PubMed

    Jeong, J S; Kim, D; Kim, K Y; Ryu, S; Han, S; Shin, B S; Kim, G S; Gwak, M S; Ko, J S

    2017-11-01

    Various volatile anesthetics and ischemic preconditioning (IP) have been demonstrated to exert protective effect against ischemia/reperfusion (I/R) injury in liver. We aimed to determine whether application of IP under isoflurane and sevoflurane anesthesia would confer protection against hepatic I/R injury in rats. Thirty-eight rats weighing 270 to 300 grams were randomly divided into 2 groups: isoflurane (1.5%) and sevoflurane (2.5%) anesthesia groups. Each group was subdivided into sham (n = 3), non-IP (n = 8; 45 minutes of hepatic ischemia), and IP (n = 8, IP consisting of 10-minute ischemia plus 15-minute reperfusion before prolonged ischemia) groups. The degree of hepatic injury and expressions of B-cell lymphoma 2 (Bcl-2) and caspase 3 were compared at 2 hours after reperfusion. Hepatic ischemia induced significant degree of I/R injuries in both isoflurane and sevoflurane non-IP groups. In both anesthetic groups, introduction of IP dramatically attenuated I/R injuries as marked by significantly lower aspartate aminotransferase and aminotransferase levels and better histologic grades compared with corresponding non-IP groups. There were 2.3- and 1.7-fold increases in Bcl-2 mRNA levels in isoflurane and sevoflurane IP groups, respectively, compared with corresponding non-IP groups (both P < .05). Caspase 3 level was significantly high in the isoflurane non-IP group compared with the sham group; however, there were no differences among the sevoflurane groups. The degree of hepatic I/R injury was significantly high in both isoflurane and sevoflurane groups in rats. However, application of IP significantly protected against I/R injury in both volatile anesthetic groups to similar degrees, and upregulation of Bcl-2 might be an important mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cyproterone acetate induces a wide spectrum of acute liver damage including corticosteroid-responsive hepatitis: report of 22 cases.

    PubMed

    Bessone, Fernando; Lucena, M I; Roma, Marcelo G; Stephens, Camilla; Medina-Cáliz, Inmaculada; Frider, Bernardo; Tsariktsian, Guillermo; Hernández, Nelia; Bruguera, Miquel; Gualano, Gisela; Fassio, Eduardo; Montero, Joaquín; Reggiardo, María V; Ferretti, Sebastián; Colombato, Luis; Tanno, Federico; Ferrer, Jaime; Zeno, Lelio; Tanno, Hugo; Andrade, Raúl J

    2016-02-01

    Cyproterone acetate (CPA), an anti-androgenic drug for prostate cancer, has been associated with drug-induced liver injury (DILI). We aim to expand the knowledge on the spectrum of phenotypes and outcomes of CPA-induced DILI. Twenty-two males (70 ± 8 years; range 54-83) developing liver damage as a result of CPA therapy (dose: 150 ± 50 mg/day; range 50-200) were included. Severity index and causality by RUCAM were assessed. From 1993 to 2013, 22 patients were retrieved. Latency was 163 ± 97 days. Most patients were symptomatic, showing hepatocellular injury (91%) and jaundice. Liver tests at onset were: ALT 18 ± 13 × ULN, ALP 0.7 ± 0.7 × ULN and total serum bilirubin 14 ± 10 mg/dl. International normalized ratio values higher than 1.5 were observed in 14 (66%) patients. Severity was mild in 1 case (4%), moderate in 7 (32%), severe in 11 (50%) and fatal in 3 (14%). Five patients developed ascitis, and four encephalopathy. One patient had a liver injury that resembled autoimmune hepatitis. Eleven (50%) were hospitalized. Nineteen patients recovered after CPA withdrawal, although three required steroid therapy (two of them had high ANA titres). Liver biopsy was performed in seven patients (two hepatocellular collapse, one submassive necrosis, two cholestatic hepatitis, one cirrhosis with iron overload and one autoimmune hepatitis). RUCAM category was 'highly probable' in 19 (86%), 'probable' in 1 (4%), and 'possible' in 2 (9%). CPA-induced liver injury is severe and can be fatal, and may occasionally resemble autoimmune DILI. The benefit/risk ratio of this drug should be thoroughly assessed in each patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide(CAP)and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice.

    PubMed

    Gao, Zhenzhen; Zhang, Chao; Tian, Weijun; Liu, Kuanhui; Hou, Ranran; Yue, Chanjuan; Wu, Yi; Wang, Deyun; Liu, Jiaguo; Hu, Yuanliang; Yang, Ying

    2017-04-01

    Chinese angelica polysaccharides (CAP) and selenizing CAP (sCAP) were prepared and identified through FTIR and SEM observation. Their antioxidant activities in vitro and hepatoprotective effects in vivo were compared by free radical-scavenging tests or with CCl 4 -induced hepatic injury model mice. The results showed that for DPPH radical, superoxide anion and hydroxyl radical, the scavenging capabilities of sCAP were significantly stronger than those of CAP . In hepatic injury model mice, sCAP could significantly reduce ALT, AST and ALP contents and raised TP content in serum, significantly reduce MDA and ROS contents and raised SOD and T-AOC activities in liver homogenate in comparison with CAP; obviously relieve the pathological changes of liver and significantly inhibit the expressions of p-ERK, p-JNK and p-p38 protein as compared with those in model control group. These results indicate that selenylation modification can enhance the antioxidant and hepatoprotective actions of Chinese angelica polysaccharide. A action mechanism of sCAP is suppressing the protein expression of MAPK signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Apocynin alleviated hepatic oxidative burden and reduced liver injury in hypercholesterolaemia.

    PubMed

    Lu, Long-Sheng; Wu, Chau-Chung; Hung, Li-Man; Chiang, Meng-Tsan; Lin, Ching-Ting; Lin, Chii-Wann; Su, Ming-Jai

    2007-05-01

    This study addressed the effects of apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, on hepatic oxidative burden and liver injury during diet-induced hypercholesterolaemia. Male Wistar rats were fed a 4% cholesterol-enriched diet for 3 weeks. Apocynin was administered in drinking water concurrently. The high-cholesterol diet (HC) significantly increased the serum level of cholesterol and hepatic cholesterol ester deposition, and these parameters were similar between the HC and high-cholesterol diet plus apocynin (HCA) groups. The HC group showed abnormal liver function tests [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (Alk-P)] as well as increased Evans blue extravasation and macrophages infiltration. Apocynin treatment could suppress these inflammation-related parameters. In vivo measurement of NADPH-derived cellular autofluorescence suggested that HC increased oxidative stress in hepatocytes. Biochemical analysis of redox status including thiobarbituric acid reactive substances, reduced glutathione, and oxidized glutathione also confirmed the phenomenon. Apocynin treatment was able to alleviate these indices of oxidative burden owing to HC. Furthermore, apocynin-abrogated HC induced gp91(phox) expression, suggesting the involvement of NADPH oxidase in the pathogenesis. We concluded that apocynin suppressed NADPH oxidase activation and subsequent liver injuries owing to high-cholesterol intake in rats. The impacts of cholesterol metabolism disorders on pathogenesis and progression of steatohepatitis warrant further clinical investigation.

  9. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    PubMed

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Trivalent Chromium Supplementation Ameliorates Oleic Acid-Induced Hepatic Steatosis in Mice.

    PubMed

    Wang, Song; Wang, Jian; Liu, Yajing; Li, Hui; Wang, Qiao; Huang, Zhiwei; Liu, Wenbin; Shi, Ping

    2018-05-24

    Trivalent chromium [Cr(III)] is recognized as an essential trace element for human health, whereas its effect on hepatic lipid metabolism has not yet been fully understood. This study aimed to investigate the beneficial effects and potential mechanisms of Cr(III) on hepatic steatosis in an oleic acid (OA) induced mice model. Mice were fed with high OA for 12 weeks to induce lipid accumulation, and co-administrated with Cr(III) supplementation. Indexes of liver lipid accumulation, associated lipid genes expression, fatty acids (FAs) profile and inflammatory cytokines were analyzed. The data showed that Cr(III) supplementation could attenuate disease progress of hepatic steatosis and protect liver from high OA. After Cr(III) supplementation, elevated body weight and liver injury in steatosis mice were reversed, excessive lipid accumulation and FAs were also reduced. The up-regulation of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2) following steatosis induction were inhibited by Cr(III). Cr(III) reduced the content of pro-inflammatory cytokines (IL-1β and TNF-α, IL-12) and restored the level of anti-inflammatory cytokine (IL-10) to the control values. Our results suggest that Cr(III) supplementation is a novel strategy for alleviating OA-induced hepatic steatosis.

  11. Detrimental effects of nicotine on thioacetamide-induced liver injury in mice.

    PubMed

    Zhou, Zixiong; Park, Surim; Kim, Jong Won; Zhao, Jing; Lee, Moo-Yeol; Choi, Kyung Chul; Lim, Chae Woong; Kim, Bumseok

    2017-09-01

    Nicotine exerts a number of physiological effects. The purpose of this study was to determine the effects of nicotine on thioacetamide (TAA)-induced liver fibrosis in mice. For in vivo experiments, hepatic fibrosis was induced by TAA (0.25 g/kg, i.p.) three times a week for 6 weeks. Mice of TAA treated groups were administered daily with distilled water and nicotine (50 or 100 μg/mL) via gastrogavage throughout the experimental period. For in vitro experiments, HepG2 (human liver cancer cell line) and LX-2 (human hepatic stellate cell line) were used to determine oxidative stress and fibrosis, respectively. Compared to control groups, TAA treated groups had significantly differences in serum alanine transferase and aspartate aminotransferase levels and nicotine accentuated liver injury. Moreover, nicotine increased the mRNA levels of TAA-induced transforming growth factor-β (TGF-β) and collagen type I alpha 1 in the liver. Nicotine also increased TAA-induced oxidative stress. Histological examination confirmed that nicotine aggravated the degree of fibrosis caused by TAA treatment. Additionally, nicotine enhanced hepatic stellate cell activation via promoting the expression of α-smooth muscle actin. Oral administration of nicotine significantly aggravated TAA-induced hepatic fibrosis in mice through enhancing TGF-β secretion and TAA-induced oxidative stress. The increase in TGF-β levels might be associated with the strengthening of oxidative processes, subsequently leading to increased hepatic stellate cell activation and extracellular matrix deposition. These results suggest that patients with liver disease should be advised to abandon smoking since nicotine may exacerbate hepatic fibrosis.

  12. Impacts of Blast-Induced Traumatic Brain Injury on Expressions of Hepatic Cytochrome P450 1A2, 2B1, 2D1, and 3A2 in Rats.

    PubMed

    Ma, Jie; Wang, Junrui; Cheng, Jingmin; Xiao, Wenjing; Fan, Kaihua; Gu, Jianwen; Yu, Botao; Yin, Guangfu; Wu, Juan; Ren, Jiandong; Hou, Jun; Jiang, Yan; Tan, Yonghong; Jin, Weihua

    2017-01-01

    The hepatic cytochrome P450 (CYP450) enzyme superfamily is one of the most important drug-metabolizing enzyme systems, which is responsible for the metabolism of a large number of clinically relevant medications used in traumatic brain injury (TBI) therapy. Modification of CYP450 expression may have important influences on drug metabolism and lead to untoward effects on those with narrow therapeutic windows. However, the impact of blast-induced TBI (bTBI) on the expression of CYP450 has received little attention. The subfamilies of CYP1A, 2B, 2D, and 3A account for about 85 % of all human drug metabolism of clinical significance. Therefore, in this study, we investigated the expressions of hepatic CYP1A2, CYP2B1, CYP2D1, and CYP3A2 in rats suffering bTBI. Meanwhile, we also measured some important cytokines in serum after injury, and calculated the correlation between these cytokines and the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. The results showed that bTBI could significantly reduce mRNA expressions of CYP1A2, CYP2D1, and CYP3A2 at the early stage and induce the expressions from 48 h to 1 week after injury. The protein expressions of these CYP450s had all been downregulated from 24 to 48 h post- injury, and then began to elevate at 48 h after bTBI. The cytokines, IL-1β, IL-2, IL-6, and TNF-α, increased significantly in the early phase, and began to reduce at the delayed phase of bTBI. The serum levels of IL-1β, IL-6, and TNF-α but not IL-2 were significantly negative correlated with the mRNA expressions of CYP2B1 and CYP2D1 and the proteins expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. In conclusion, our work has, for the first time, indicated that bTBI has significant impact on the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2, which may be related to the cytokines induced by the injury.

  13. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis.

    PubMed

    Wang, Xiao-Yu; Luo, Jian-Ping; Chen, Rui; Zha, Xue-Qiang; Wang, He

    2014-09-01

    Polysaccharides isolated from edible Dendrobium huoshanense have been shown to possess a hepatoprotection function for selenium- and carbon tetrachloride-induced liver injury. In this study, we investigated the preventive effects of daily supplementation with an homogeneous polysaccharide (DHP) purified from D. huoshanense on ethanol-induced subacute liver injury in mice and its potential mechanisms in liver protection by a proteomic approach. DHP was found to effectively depress the increased ratio of liver weight to body weight, reduce the elevated levels of serum aspartate aminotransferase, total cholesterol, total bilirubin and low density lipoprotein, and alleviate hepatic steatosis in mice with ethanol-induced subacute liver injury. Hepatic proteomics analysis performed by two-dimensional difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) revealed that cystathionine beta-synthase (Cbs) and D-lactate dehydrogenase (Ldhd) were two key proteins regulated by daily DHP intervention, which may assist in correcting the abnormal hepatic methionine metabolism pathway and decreasing the level of hepatic methylglyoxal generated from disordered metabolic pathways caused by ethanol. Our data suggest that DHP can protect liver function from alcoholic injury with complicated molecular mechanisms involving regulation of Cbs and Ldhd.

  14. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu; Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu; Duan, Xiaoxian, E-mail: x0duan02@louisville.edu

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestrationmore » by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer

  15. Hepatoprotective effect of an immortal human fetal hepatic cell transplantation on CCL(4)-induced acute liver injury in mice.

    PubMed

    Yan, Y B; Song, H; Zhong, B S; Wang, Z Y; Ying, S J; Wang, F

    2010-09-01

    Hepatocyte transplantation has been widely confirmed in the animal model experiments as an effective method for treatment of fulminant hepatic failure. However, the lack of donor organs remains a major problem. One solution is the development of transplantable hepatocytes. Herein we have transplanted intraperitoneally an established immortalized human fetal hepatic cell line (HL-7702) into CCl(4)-treated mice with acute liver injury to determine whether they provided life-saving metabolic support. The results showed lower levels of blood ammonia and higher content of liver albumin (P < .05) after HL-7702 transplantation versus nontransplanted controls at days 3 and 7. Histologic examination showed the transplantation group to be less affected at day 7 with no difference at day 14. In conclusion, an established immortal human fetal hepatic cell line may be a promising cell source providing life-saving metabolic support as a bioartificial liver device for the treatment of acute liver injury. 2010. Published by Elsevier Inc.

  16. Levetiracetam-induced transaminitis in a young male with traumatic brain injury.

    PubMed

    Rachamallu, Vivekananda; Song, Michael M; Reed, Jace M; Aligeti, Manish

    2017-11-01

    Levetiracetam is a commonly prescribed antiepileptic drug for seizure prophylaxis in patients with traumatic brain injury (TBI). Levetiracetam metabolism has been reported to be non-dependent on hepatic cytochrome P450 (CYP450) isoenzyme system. Furthermore, levetiracetam and its metabolites are reported to be eliminated from systemic circulation via renal excretion. Therefore, due to its well-known renal clearance mechanism with no dosage adjustments recommended for hepatic impairment, levetiracetam is often chosen as the drug of choice in patients with suspected or ongoing hepatic dysfunction. Furthermore, monitoring of liver enzymes is often not considered to be critical in levetiracetam therapy. However, hepatotoxicity is still possible with levetiracetam. Here, we report on an 18-year-old male with TBI who developed transaminitis with levetiracetam therapy which resolved following the discontinuation of levetiracetam. A close monitoring of liver enzymes and early recognition of hepatotoxicity is still necessary and critical to preventing major sequelae stemming from levetiracetam-induced hepatotoxicity.

  17. Biochemical metabolic changes assessed by 31P magnetic resonance spectroscopy after radiation-induced hepatic injury in rabbits

    PubMed Central

    Yu, Ri-Sheng; Hao, Liang; Dong, Fei; Mao, Jian-Shan; Sun, Jian-Zhong; Chen, Ying; Lin, Min; Wang, Zhi-Kang; Ding, Wen-Hong

    2009-01-01

    AIM: To compare the features of biochemical metabolic changes detected by hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) with the liver damage score (LDS) and pathologic changes in rabbits and to investigate the diagnostic value of 31P MRS in acute hepatic radiation injury. METHODS: A total of 30 rabbits received different radiation doses (ranging 5-20 Gy) to establish acute hepatic injury models. Blood biochemical tests, 31P MRS and pathological examinations were carried out 24 h after irradiation. The degree of injury was evaluated according to LDS and pathology. Ten healthy rabbits served as controls. The MR examination was performed on a 1.5 T imager using a 1H/31P surface coil by the 2D chemical shift imaging technique. The relative quantities of phosphomonoesters (PME), phosphodiesters (PDE), inorganic phosphate (Pi) and adenosine triphosphate (ATP) were measured. The data were statistically analyzed. RESULTS: (1) Relative quantification of phosphorus metabolites: (a) ATP: there were significant differences (P < 0.05) (LDS-groups: control group vs mild group vs moderate group vs severe group, 1.83 ± 0.33 vs 1.55 ± 0.24 vs 1.27 ± 0.09 vs 0.98 ± 0.18; pathological groups: control group vs mild group vs moderate group vs severe group, 1.83 ± 0.33 vs 1.58 ± 0.25 vs 1.32 ± 0.07 vs 1.02 ± 0.18) of ATP relative quantification among control group, mild injured group, moderate injured group, and severe injured group according to both LDS grading and pathological grading, respectively, and it decreased progressively with the increased degree of injury (r = -0.723, P = 0.000). (b) PME and Pi; the relative quantification of PME and Pi decreased significantly in the severe injured group, and the difference between the control group and severe injured group was significant (P < 0.05) (PME: LDS-control group vs LDS-severe group, 0.86 ± 0.23 vs 0.58 ± 0.22, P = 0.031; pathological control group vs pathological severe group, 0.86 ± 0.23 vs 0.60

  18. Protective effects from Houttuynia cordata aqueous extract against acetaminophen-induced liver injury.

    PubMed

    Chen, Wei-Ting; Yang, Chieh-Ling; Yin, Mei-Chin

    2014-01-01

    Protective effects of Houttuynia cordata aqueous extract (HCAE) against acetaminophen-induced hepatotoxicity in Balb/cA mice were examined. HCAE, at 1 or 2 g/L, was added into the drinking water for 4 weeks. Acute liver injury was induced by acetaminophen treatment intraperitoneally (350 mg/kg body weight). Acetaminophen treatment significantly depleted hepatic glutathione (GSH) content, increased hepatic malonyldialdehyde (MDA), reactive oxygen species (ROS) and oxidized glutathione (GSSG) levels, and decreased hepatic activity of glutathione peroxidase (GPX), catalase and superoxide dismutase (SOD) ( p <0.05). The pre-intake of HCAE alleviated acetaminophen-induced oxidative stress by retaining GSH content, decreasing MDA, ROS and GSSG production, and maintaining activity of GPX, catalase and SOD in liver ( p <0.05). The pre-intake of HCAE also significantly lowered acetaminophen-induced increase in cytochrome P450 2E1 activity ( p <0.05). Acetaminophen treatment increased hepatic release of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein-1 ( p <0.05). HCAE intake significantly diminished acetaminophen-induced elevation of these cytokines ( p <0.05). These results support that HCAE could provide hepato-protection.

  19. Hepatoprotective activity of Tridax procumbens against d-galactosamine/lipopolysaccharide-induced hepatitis in rats.

    PubMed

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-10-03

    The hepatoprotective activity of aerial parts of Tridax procumbens was investigated against d-Galactosamine/Lipopolysaccharide (d-GalN/LPS) induced hepatitis in rats. d-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight)-induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase) and bilirubin level in serum and lipids both in serum and liver. Pretreatment of rats with a chloroform insoluble fraction from ethanolic extract of Tridax procumbens reversed these altered parameters to normal values. The biochemical observations were supplemented by histopathological examination of liver sections. Results of this study revealed that Tridax procumbens could afford a significant protection in the alleviation of d-GalN/LPS-induced hepatocellular injury.

  20. Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats.

    PubMed

    Salem, Gamal A; Shaban, Ahmed; Diab, Hussain A; Elsaghayer, Wesam A; Mjedib, Manal D; Hnesh, Aomassad M; Sahu, Ravi P

    2018-05-16

    The current studies were sought to determine effects of antioxidant potential of aqueous and methanolic extracts of Phoenix dactylifera leaves (PLAE and PLME) against the widely-used analgesic paracetamol (PCM) induced hepatotoxicity. Groups of rats were treated with or without PCM (1500 mg/kg), PLAE and PLME (300 mg/kg) and n-acetylcysteine (NAC, 50 mg/kg) followed by assessments of liver function tests, oxidative stress, antioxidant defenses, and hepatotoxicity. We observed that PCM significantly elevated serum liver markers, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), and bilirubin compared to control (untreated) group. These PCM-induced effects were associated with oxidative stress as demonstrated by increased levels of malondialdehyde (MDA) and reduced levels of hepatic antioxidant enzymes, glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Pretreatment of PLME decreased ALT and AST by 78.2% and tissue MDA by 54.1%, and increased hepatic GPx (3.5 folds), CAT (7 folds) and SOD (2.5 folds) compared to PCM group. These PLME-mediated effects were comparable to NAC pretreatment. Histological analysis demonstrates that PLME conserved hepatic tissues against lesions such as inflammation, centrilobular necrosis, and hemorrhages induced by PCM. In contrast, PLAE-mediated effects were less effective in reducing levels of liver function enzymes, oxidative stress, and liver histopathological profiles, and restoring antioxidant defenses against PCM-induced intoxication. These findings indicate that PLME exerts protective effects against PCM-induced hepatotoxicity via scavenging free radicals and restoring hepatic antioxidant enzymes. Thus, PLME and its bioactive components could further be evaluated for their pharmacological properties against drug-induced deleterious effects. Copyright © 2018. Published by Elsevier Masson SAS.

  1. Chronic intermittent hypoxia and acetaminophen induce synergistic liver injury in mice.

    PubMed

    Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C; Torbenson, Michael S; Polotsky, Vsevolod Y

    2009-02-01

    Obstructive sleep apnoea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. Obstructive sleep apnoea has been associated with liver injury. Acetaminophen (APAP; known as paracetamol outside the USA) is one of the most commonly used drugs which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. Adult C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg kg(-1)) or normal saline daily. A combination of CIH and APAP caused liver injury, with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma-glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. Acetaminophen alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a fivefold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. Acetaminophen or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA.

  2. Saccharomyces boulardii ameliorates clarithromycin- and methotrexate-induced intestinal and hepatic injury in rats.

    PubMed

    Duman, Deniz Güney; Kumral, Zarife Nigâr Özdemir; Ercan, Feriha; Deniz, Mustafa; Can, Güray; Cağlayan Yeğen, Berrak

    2013-08-28

    Saccharomyces boulardii is a probiotic used for the prevention of antibiotic-associated diarrhoea. We aimed to investigate whether S. boulardii could alter the effects of clarithromycin (CLA) and methotrexate (MTX) on oro-caecal intestinal transit and oxidative damage in rats. Rats were divided into two groups receiving a single dose of MTX (20 mg/kg) or CLA (20 mg/kg per d) for 1 week. Groups were treated with either saline or S. boulardii (500 mg/kg) twice per d throughout the experiment. The control group was administered only saline. Following decapitation, intestinal transit and inflammation markers of glutathione (GSH), malondialdehyde and myeloperoxidase were measured in intestinal and hepatic tissues. CLA and MTX increased intestinal transit, while S. boulardii treatment slowed down CLA-facilitated transit back to control level. Both MTX and CLA increased lipid peroxidation while depleting the antioxidant GSH content in the hepatic and ileal tissues. Conversely, lipid peroxidation was depressed and GSH levels were increased in the ileal and hepatic tissues of S. boulardii-treated rats. Increased ileal neutrophil infiltration due to MTX and CLA treatments was also reduced by S. boulardii treatment. Histological analysis supported that S. boulardii protected intestinal tissues against the inflammatory effects of both agents. These findings suggest that S. boulardii ameliorates intestinal injury and the accompanying hepatic inflammation by supporting the antioxidant state of the tissues and by inhibiting the recruitment of neutrophils. Moreover, a preventive effect on MTXinduced toxicity is a novel finding of S. boulardii, proposing it as an adjunct to chemotherapy regimens.

  3. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    PubMed

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang,

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines andmore » adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.« less

  5. A mouse model of severe halothane hepatitis based on human risk factors.

    PubMed

    Dugan, Christine M; MacDonald, Allen E; Roth, Robert A; Ganey, Patricia E

    2010-05-01

    Halothane (2-bromo-2-chloro-1,1,1-trifluoro-ethane) is an inhaled anesthetic that induces severe, idiosyncratic liver injury, i.e., "halothane hepatitis," in approximately 1 in 20,000 human patients. We used known human risk factors (female sex, adult age, and genetics) as well as probable risk factors (fasting and inflammatory stress) to develop a murine model with characteristics of human halothane hepatitis. Female and male BALB/cJ mice treated with halothane developed dose-dependent liver injury within 24 h; however, the liver injury was severe only in females. Livers had extensive centrilobular necrosis, inflammatory cell infiltrate, and steatosis. Fasting rendered mice more sensitive to halothane hepatotoxicity, and 8-week-old female mice were more sensitive than males of the same age or than younger (4-week-old) females. C57BL/6 mice were insensitive to halothane, suggesting a strong genetic predisposition. In halothane-treated females, plasma concentration of tumor necrosis factor-alpha was greater than in males, and neutrophils were recruited to liver more rapidly and to a greater extent. Anti-CD18 serum attenuated halothane-induced liver injury in female mice, suggesting that neutrophil migration, activation, or both are required for injury. Coexposure of halothane-treated male mice to lipopolysaccharide to induce modest inflammatory stress converted their mild hepatotoxic response to a pronounced, female-like response. This is the first animal model of an idiosyncratic adverse drug reaction that is based on human risk factors and produces reproducible, severe hepatitis from halothane exposure with lesions characteristic of human halothane hepatitis. Moreover, these results suggest that a more robust innate immune response underlies the predisposition of female mice to halothane hepatitis.

  6. [Management of hepatic injuries with multiple trauma in the emergency unit. Report of three cases].

    PubMed

    Qamouss, Y; Belyamani, L; Azendour, H; Balkhi, H; Haimeur, C; Atmani, M

    2006-01-01

    The problems put by the blunt hepatic injuries at the multiple traumas are discussed after the exposition of three observations. 60% of the blunt hepatic injuries are due to the accidents of the public way. The strategy diagnosis and therapeutic facing a hepatic lesion remains guided by the patient's state haemodynamic. The exam essential to the arrival in the sieve of the emergencies is the abdominal scan that searches for one extrusion intra and possibly retroperitoneal and analyze the hepatic parenchyrma. However, it depends extensively on the experience of the echographist. The city scan stood to the first plan of the medical imagery: it permits a precise diagnosis of the parenchymateuses hepatic lesions, specify the abundance of the hemoperitoine, facilitate the therapeutic conduct in presence of associated lesions and the surveillance of the blunt hepatic injuries.

  7. Hepatoprotective Effect of Wheat-Based Solid-State Fermented Antrodia cinnamomea in Carbon Tetrachloride-Induced Liver Injury in Rat

    PubMed Central

    Chiu, Huan-Wen; Hua, Kuo-Feng

    2016-01-01

    Antrodia cinnamomea (A. cinnamomea) is an indigenous medical fungus in Taiwan and has multiple biological functions, including hepatoprotective and immune-modulatory effects. Currently, the commercially available A. cinnamomea are mainly liquid- and solid-state fermented A. cinnamomea. However, the hepatoprotective effect of solid-state fermented A. cinnamomea has never been reported. Here we evaluate the ability of air-dried, ground and non-extracted wheat-based solid-state fermented A. cinnamomea (WFAC) to protect against carbon tetrachloride (CCl4)-induced hepatic injury in vivo. The results showed that oral administration of WFAC dose dependently (180, 540 and 1080 mg/kg) ameliorated the increase in plasma aspartate aminotransferase and alanine aminotransferase levels caused by chronic repeated CCl4 intoxication in rats. WFAC significantly reduced the CCl4-induced increase in hepatic lipid peroxidation levels and hydroxyproline contents, as well as reducing the spleen weight and water content of the liver. WFAC also restored the hepatic soluble protein synthesis and plasma albumin concentration in CCl4-intoxicated rats, but it did not affect the activities of superoxide dismutase, catalase, or glutathione peroxidase. In addition, a hepatic morphological analysis showed that the hepatic fibrosis and necrosis induced by CCl4 were significantly ameliorated by WFAC. Furthermore, the body weights of control rats and WFAC-administered rats were not significantly different, and no adverse effects were observed in WFAC-administered rats. These results indicate that WFAC is a nontoxic hepatoprotective agent against chronic CCl4-induced hepatic injury. PMID:27046059

  8. 2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice.

    PubMed

    Andersen, Charlotte; Schjoldager, Janne G; Tortzen, Christian G; Vegge, Andreas; Hufeldt, Majbritt R; Skaanild, Mette T; Vogensen, Finn K; Kristiansen, Karsten; Hansen, Axel K; Nielsen, John

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice.

  9. 2-Heptyl-Formononetin Increases Cholesterol and Induces Hepatic Steatosis in Mice

    PubMed Central

    Andersen, Charlotte; Schjoldager, Janne G.; Tortzen, Christian G.; Vegge, Andreas; Hufeldt, Majbritt R.; Skaanild, Mette T.; Vogensen, Finn K.; Kristiansen, Karsten; Hansen, Axel K.; Nielsen, John

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice. PMID:23738334

  10. Protective effects of cassia seed ethanol extract against carbon tetrachloride-induced liver injury in mice.

    PubMed

    Xie, Qing; Guo, Fang-Fang; Zhou, Wen

    2012-01-01

    Oxidative stress has been recognized as a critical pathogenetic mechanism for the initiation and the progression of hepatic injury in a variety of liver disorders. Antioxidants, including many natural compounds or extracts, have been used to cope with liver disorders. The present study was designed to investigate the hepatoprotective effects of cassia seed ethanol extract (CSE) in carbon tetrachloride (CCl(4))-induced liver injury in mice. The animals were pre-treated with different doses of CSE (0.5, 1.0, 2.0 g/kg body weight) or distilled water for 5 days, then were injected intraperitoneally with CCl(4) (0.1% in corn oil, v/v, 20 ml/kg body weight), and sacrificed at 16 hours after CCl(4) exposure. The serum aminotransferase activities, histopathological changes, hepatic and mitochondrial antioxidant indexes, and cytochrome P450 2E1 (CYP2E1) activities were examined. Consistent with previous studies, acute CCl(4) administration caused great lesion to the liver, shown by the elevation of the serum aminotransferase activities, mitochondria membrane permeability transition (MPT), and the ballooning degeneration of hepatocytes. However, these adverse effects were all significantly inhibited by CSE pretreatment. CCl(4)-induced decrease of the CYP2E1 activity was dose-dependently inhibited by CSE pretreatment. Furthermore, CSE dramatically decreased the hepatic and mitochondrial malondialdehyde (MDA) levels, increased the hepatic and mitochondrial glutathione (GSH) levels, and restored the activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione S-transferase (GST). These results suggested that CSE could protect mice against CCl(4)-induced liver injury via enhancement of the antioxidant capacity.

  11. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  12. Statin-induced liver injury in an area endemic for hepatitis B virus infection: risk factors and outcome analysis.

    PubMed

    Wang, Li Yueh; Huang, Yi-Shin; Perng, Chin-Lin; Huang, Bryan; Lin, Han-Chieh

    2016-09-01

    Statin-induced liver injury (SILI) is quite rare, but may be severe. Little is known about the impact of chronic hepatitis B infection (CHBI) on SILI. We aimed to investigate the risk factors and outcome of SILI, with special reference to its interaction with CHBI. Patients with SILI were recruited from our hospital, and three-to-one drug-matched controls were randomly selected. The clinical data of the patients were then compared. A total of 108 patients with SILI and 324 controls were enrolled. The patients with SILI were both older and had a higher statin dose than the controls. There was no predilection of liver injury associated with the seven available statins. Among the SILI patients, there was no statistical difference between the baseline and peak liver enzyme tests, and latency and severity between hepatitis B carriers (n = 16) and non-carriers (n = 92). High dose of statin and age were the two independent risk factors of SILI (OR and 95% CI: 1.93, 1.08-3.35, P = 0.025, and 1.73, 1.07-2.80, P = 0.027, respectively). Permanent discontinuation of statin was noted in 50 (46.3%) patients with SILI due to severe SILI or recurrent hepatotoxicity after rechallenge of other statins. High dose of statin and old age may increase patient susceptibility to SILI; however, CHBI and abnormal baseline liver tests are not risk factors of SILI. Nonetheless, SILI is still worthy of notice, because nearly half of the overt cases discontinued statin treatment due to severe hepatotoxicity in this study. © 2016 The British Pharmacological Society.

  13. [Protective effects of polysaccharides from Dendrobium huoshanense on CCl4-induced acute liver injury in mice].

    PubMed

    Huang, Jing; Li, Sheng-Li; Zhao, Hong-Wei; Pan, Li-Hua; Sun, Hao-Qiao; Luo, Jian-Ping

    2013-02-01

    To study the protective effects of polysaccharides from Dendrobium huoshanense (DHP) against CCl4-induced liver injury in mice. Eighty male Kunming mice were randomly divided into normal control group, model control group, dextran control group, starch control group, hydrolyzate control group, three different dose of DPH groups consisting of high-dosage group, middle-dosage group and low-dosage group (200, 100, 50 mg x kg(-1)). Each group contained ten mice. The mice were treated with DHP via intragastric administration for 15 days before treatment of 50% CCl4 in olive oil for consecutive two days. Both alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents in liver tissues were determined in all groups. Immunohistochemistry was used to detect the expression of TNF-alpha in hepatic tissue. Hepatic histopathological examination was observed. DHP effectively decreased the activities of ALT and AST in serum and the contents of hepatic MDA, and restored hepatic SOD activities in acute liver injury mice. Liver tissue damage induced by CCl4 was ameliorated in mice with DHP administration through histopathology examination. Furthermore, the expression of TNF-alpha was greatly decreased in groups treated with polysaccharides. DHP has a significantly hepatoprotective effect on CCl4-induced acute liver injury in mice. Protective effect of DHP on the liver may be related to its function of scavenging free radicals and inhibiting lipid peroxidation and TNF-alpha expression.

  14. Aloe-induced Toxic Hepatitis

    PubMed Central

    Yang, Ha Na; Kim, Young Mook; Kim, Byoung Ho; Sohn, Kyoung Min; Choi, Myung Jin; Choi, Young Hee

    2010-01-01

    Aloe has been widely used in phytomedicine. Phytomedicine describes aloe as a herb which has anti-inflammatory, anti-proliferative, anti-aging effects. In recent years several cases of aloe-induced hepatotoxicity were reported. But its pharmacokinetics and toxicity are poorly described in the literature. Here we report three cases with aloe-induced toxic hepatitis. A 57-yr-old woman, a 62-yr-old woman and a 55-yr-old woman were admitted to the hospital for acute hepatitis. They had taken aloe preparation for months. Their clinical manifestation, laboratory findings and histologic findings met diagnostic criteria (RUCAM scale) of toxic hepatitis. Upon discontinuation of the oral aloe preparations, liver enzymes returned to normal level. Aloe should be considered as a causative agent in hepatotoxicity. PMID:20191055

  15. Albendazole Induced Recurrent Acute Toxic Hepatitis: A Case Report.

    PubMed

    Bilgic, Yilmaz; Yilmaz, Cengiz; Cagin, Yasir Furkan; Atayan, Yahya; Karadag, Nese; Harputluoglu, Murat Muhsin Muhip

    2017-01-01

    Drug induced acute toxic hepatitis can be idiosyncratic. Albendazole, a widely used broad spectrum antiparasitic drug is generally accepted as a safe drug. It may cause asymptomatic transient liver enzyme abnormalities but acute toxic hepatitis is very rare. Case Report : Herein, we present the case of 47 year old woman with recurrent acute toxic hepatitis after a single intake of albendazole in 2010 and 2014. The patient was presented with symptoms and findings of anorexia, vomiting and jaundice. For diagnosis, other acute hepatitis etiologies were excluded. Roussel Uclaf Causality Assessment Method (RUCAM) score was calculated and found to be 10, which meant highly probable drug hepatotoxicity. Within 2 months, all pathological findings came to normal. There are a few reported cases of albendazole induced toxic hepatitis, but at adults, there is no known recurrent acute toxic hepatitis due to albendazole at this certainty according to RUCAM score. Physicians should be aware of this rare and potentially fatal adverse effect of albendazole. © Acta Gastro-Enterologica Belgica.

  16. Fatty acid binding protein-4 (FABP4) is a hypoxia inducible gene that sensitizes mice to liver ischemia/reperfusion injury.

    PubMed

    Hu, Bingfang; Guo, Yan; Garbacz, Wojciech G; Jiang, Mengxi; Xu, Meishu; Huang, Hai; Tsung, Allan; Billiar, Timothy R; Ramakrishnan, Sadeesh K; Shah, Yatrik M; Lam, Karen S L; Huang, Min; Xie, Wen

    2015-10-01

    Fatty acid binding protein 4 (FABP4) has been known as a mediator of inflammatory response in the macrophages and adipose tissue, but its hepatic function is poorly understood. The goal of this study is to investigate the role of FABP4 in liver ischemia/reperfusion (I/R), a clinical condition that involves both hypoxia and inflammation. To examine the I/R regulation of FABP4, mice were subjected to I/R surgery before being measured for FABP4 gene expression. Both loss-of-function (by using a pharmacological FABP4 inhibitor) and gain-of-function (by adenoviral overexpression of FABP4) were used to determine the functional relevance of FABP4 expression and its regulation during I/R. To determine the hypoxia responsive regulation of FABP4, primary mouse hepatocytes were exposed to hypoxia. The FABP4 gene promoter was cloned and its regulation by hypoxia inducible factor 1α (HIF-1α) was characterized by luciferase reporter gene, electrophoretic mobility shift, and chromatin immunoprecipitation assays. We found that the hepatic expression of FABP4 was markedly induced by I/R. At the functional level, pharmacological inhibition of FABP4 alleviated the I/R injury, whereas adenoviral overexpression of FABP4 sensitized mice to I/R injury. We also showed that exposure of primary hepatocytes to hypoxia or transgenic overexpression of HIF-1α in the mouse liver was sufficient to induce the expression of FABP4. Our promoter analysis established FABP4 as a novel transcriptional target of HIF-1α. FABP4 is a hypoxia inducible gene that sensitizes mice to liver I/R injury. FABP4 may represent a novel therapeutic target, and FABP4 inhibitors may be used as therapeutic agents to manage hepatic I/R injury. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  18. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Serafín, Anna; Roselló-Catafau, Joan; Prats, Neus; Xaus, Carme; Gelpí, Emilio; Peralta, Carmen

    2002-01-01

    Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after 60 minutes of ischemia compared with lean rats. Fatty livers showed a degree of neutrophil accumulation and microcirculatory alterations similar to that of normal livers. However, in presence of steatosis, an increased lipid peroxidation that could be reduced with glutathione-ester pretreatment was observed after hepatic reperfusion. Ischemic preconditioning reduced hepatic injury and increased animal survival. Both in normal and fatty livers, this endogenous protective mechanism was found to control lipid peroxidation, hepatic microcirculation failure, and neutrophil accumulation, reducing the subsequent hepatic injury. These beneficial effects could be mediated by nitric oxide, because the inhibition of nitric oxide synthesis and nitric oxide donor pretreatment abolished and simulated, respectively, the benefits of preconditioning. Thus, ischemic preconditioning could be an effective surgical strategy to reduce the hepatic ischemia-reperfusion injury in normal and fatty livers under normothermic conditions, including hepatic resections, and liver transplantation. PMID:12163383

  19. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice.

    PubMed

    Gong, Shenhai; Lan, Tian; Zeng, Liyan; Luo, Haihua; Yang, Xiaoyu; Li, Na; Chen, Xiaojiao; Liu, Zhanguo; Li, Rui; Win, Sanda; Liu, Shuwen; Zhou, Hongwei; Schnabl, Bernd; Jiang, Yong; Kaplowitz, Neil; Chen, Peng

    2018-07-01

    Acetaminophen (APAP) induced hepatotoxicity is a leading cause of acute liver failure worldwide. It is well established that the liver damage induced by acetaminophen exhibits diurnal variation. However, the detailed mechanism for the hepatotoxic variation is not clear. Herein, we aimed to determine the relative contributions of gut microbiota in modulating the diurnal variation of hepatotoxicity induced by APAP. Male Balb/C mice were treated with or without antibiotics and a single dose of orally administered APAP (300 mg/kg) at ZT0 (when the light is on-start of resting period) and ZT12 (when the light is off-start of active period). In agreement with previous findings, hepatic injury was markedly enhanced at ZT12 compared with ZT0. Interestingly, upon antibiotic treatment, ZT12 displayed a protective effect against APAP hepatotoxicity similar to ZT0. Moreover, mice that received the cecal content from ZT12 showed more severe liver damage than mice that received the cecal content from ZT0. 16S sequencing data revealed significant differences in the cecal content between ZT0 and ZT12 in the compositional level. Furthermore, metabolomic analysis showed that the gut microbial metabolites were also different between ZT0 and ZT12. Specifically, the level of 1-phenyl-1,2-propanedione (PPD) was significantly higher at ZT12 than ZT0. Treatment with PPD alone did not cause obvious liver damage. However, PPD synergistically enhanced APAP-induced hepatic injury in vivo and in vitro. Finally, we found Saccharomyces cerevisiae, which could reduce intestinal PPD levels, was able to markedly alleviate APAP-induced liver damage at ZT12. The gut microbial metabolite PPD was responsible, at least in part, for the diurnal variation of hepatotoxicity induced by APAP by decreasing glutathione levels. Acetaminophen (APAP) induced acute liver failure because of over dose is a leading public health problem. APAP-induced liver injury exhibits diurnal variation, specifically APAP causes

  20. Protective effect of gastrodin on bile duct ligation-induced hepatic fibrosis in rats.

    PubMed

    Zhao, Shuangshuang; Li, Naren; Zhen, Yongzhan; Ge, Maoxu; Li, Yi; Yu, Bin; He, Hongwei; Shao, Rong-Guang

    2015-12-01

    Gastrodin has been showed to possess many beneficial physiological functions, including protection against inflammation and oxidation and apoptosis. Studies showed inflammation and oxidation play important roles in producing liver damage and initiating hepatic fibrogenesis. However, it has not been reported whether gastrodin has a protective effect against hepatic fibrosis or not. This is first ever made attempts to test gastrodin against liver fibrosis in bile duct ligation (BDL) rats. The aim of the present study is to evaluate the effect of gastrodin on BDL-induced hepatic fibrosis in rats. BDL rats were divided into two groups, BDL alone group, and BDL-gastrodin group treated with gastrodin (5 mg/ml in drinking water). The effects of gastrodin on BDL-induced hepatic injury and fibrosis in rats were estimated by assessing serum, urine, bile and liver tissue biochemistry followed by liver histopathology (using hematoxylin & eosin and sirius red stain) and hydroxyproline content measurement. The results showed that gastrodin treatment significantly reduced collagen content, bile duct proliferation and parenchymal necrosis after BDL. The serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST) decreased with gastrodin treatment by 15.1 and 23.6 percent respectively in comparison to BDL group did not receive gastrodin. Gastrodin also significantly increased the level of serum high density lipoprotein (HDL) by 62.5 percent and down-regulated the elevated urine total bilirubin (TBIL) by 56.5 percent, but had no effect on total bile acid (TBA) in serum, bile and liver tissues. The immunohistochemical assay showed gastrodin remarkably reduced the expressions of CD68 and NF-κB in BDL rats. Hepatic SOD levels, depressed by BDL, were also increased by gastrodin by 8.4 percent. In addition, the increases of hepatic MDA and NO levels in BDL rats were attenuated by gastrodin by 31.3 and 38.7 percent separately. Our results indicate that gastrodin

  1. Use of apixaban after development of suspected rivaroxaban-induced hepatic steatosis; a case report.

    PubMed

    Anastasia, Emily J; Rosenstein, Robert S; Bergsman, Jeffrey A; Parra, David

    2015-09-01

    Postmarketing reports have emerged associating rivaroxaban with drug-induced liver injury (DILI); however, management strategies of patients with suspected rivaroxaban-induced liver injury requiring continued anticoagulation have not been published. The present report describes a 67-year-old male with atrial fibrillation receiving rivaroxaban who developed a 16-fold elevation in alanine transaminase, a nearly two-fold elevation in total bilirubin, and ultrasound confirmed hepatic steatosis. The patient was switched from rivaroxaban to apixaban with subsequent rapid resolution of laboratory abnormalities. Rapid improvement in liver function tests despite use of an alternative factor Xa inhibitor suggests that rivaroxaban's mechanism of hepatotoxicity may be unrelated to its pharmacologic action. When using rivaroxaban, clinicians should be aware of the small but potentially serious risk of DILI. Because most anticoagulants have been associated with DILI, selection of an alternative anticoagulant may be challenging; however, the use of apixaban in this case suggests it may be a reasonable alternative.

  2. The pathogenesis of ethanol versus methionine and choline deficient diet-induced liver injury.

    PubMed

    Gyamfi, Maxwell Afari; Damjanov, Ivan; French, Samuel; Wan, Yu-Jui Yvonne

    2008-02-15

    The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (six/group) received one of four Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. However, the combination diet produced massive steatosis with minor necrosis and inflammation. MCD and combination diets, but not ethanol, induced serum ALT levels by 1.6- and 10-fold, respectively. MCD diet, but not ethanol, also induced serum alkaline phosphatase levels suggesting bile duct injury. Ethanol increased liver fatty acid binding protein (L-FABP) mRNA and protein levels. In contrast, the combination diet decreased L-FABP mRNA and protein levels and increased hepatic free fatty acid and lipid peroxide levels. Ethanol, but not MCD, reduced hepatic S-adenosylmethionine (SAM) and GSH levels. Hepatic TNFalpha protein levels were increased in all treatment groups, however, IL-6, a hepatoprotective cytokine which promotes liver regeneration was increased in ethanol-fed mice (2-fold), but decreased in the combination diet-treated mice. In addition, the combination diet reduced phosphorylated STAT3 and Bcl-2 levels. While MCD diet might cause bile duct injury and cholestasis, ethanol preferentially interferes with the SAM-GSH oxidative stress pathway. The exacerbated liver injury induced by the combination diet might be explained by reduced L-FABP, increased free fatty acids, oxidative stress, and decreased IL-6 protein levels. The combination diet is an efficient model of steatohepatitis.

  3. Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists' perspective.

    PubMed

    Karamchandani, Dipti M; Chetty, Runjan

    2018-04-27

    Immune checkpoint inhibitors (CPIs) are a relatively new class of 'miracle' dugs that have revolutionised the treatment and prognosis of some advanced-stage malignancies, and have increased the survival rates significantly. This class of drugs includes cytotoxic T lymphocyte antigen-4 inhibitors such as ipilimumab; programmed cell death protein-1 inhibitors such as nivolumab, pembrolizumab and avelumab; and programmed cell death protein ligand-1 inhibitors such as atezolizumab. These drugs stimulate the immune system by blocking the coinhibitory receptors on the T cells and lead to antitumoural response. However, a flip side of these novel drugs is immune-related adverse events (irAEs), secondary to immune-mediated process due to disrupted self-tolerance. The irAEs in the gastrointestinal (GI) tract/liver may result in diarrhoea, colitis or hepatitis. An accurate diagnosis of CPI-induced colitis and/or hepatitis is essential for optimal patient management. As we anticipate greater use of these drugs in the future given the significant clinical response, pathologists need to be aware of the spectrum of histological findings that may be encountered in GI and/or liver biopsies received from these patients, as well as differentiate them from its histopathological mimics. This present review discusses the clinical features, detailed histopathological features, management and the differential diagnosis of the luminal GI and hepatic irAEs that may be encountered secondary to CPI therapy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Mincle Signaling Promotes Con A Hepatitis.

    PubMed

    Greco, Stephanie H; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R; Nagaraj, Savitha V; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E; Katz, Steven C; Miller, George

    2016-10-01

    Con A hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor that is critical in the immune response to mycobacteria and fungi but does not have a well-defined role in preclinical models of non-pathogen-mediated inflammation. Because Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis. Acute liver injury was assessed in the murine Con A hepatitis model using C57BL/6, Mincle(-/-), and Dectin-1(-/-) mice. The role of C/EBPβ and hypoxia-inducible factor-1α (HIF-1α) signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con A hepatitis. Most significantly, Mincle deletion or blockade protected against Con A hepatitis, whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other C-type lectin receptors did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ-related signaling intermediates C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con A hepatitis and inhibition of both C/EBPβ and HIF-1α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Protective effects of Fraxinus xanthoxyloides (Wall.) leaves against CCl4 induced hepatic toxicity in rat.

    PubMed

    Younis, Tahira; Khan, Muhammad Rashid; Sajid, Moniba

    2016-10-24

    Leaves and root bark of Fraxinus xanthoxyloides Wall. (Oleaceae) are used locally for the treatment of jaundice, malaria and pneumonia. Decoction of stem, twigs and bark is used in pain, internal injuries, rheumatism and in bone fracture. In this investigation we have evaluated the methanol extract of leaves for its hepatoprotective potential against CCl 4 induced hepatic injuries in rat. Powder of F. xanthoxyloides leaves was extracted with methanol (FXM) and subjected for the determination of polyphenolics through HPLC-DAD analysis. Sprague-Dawley (Rattus novergicus) male rats were divided into eight groups (six rats in each). Group I: non-treated control; Group II: vehicle treated (DMSO plus olive oil) while Group III- VI treated with 1 ml/kg body weight (bw) of CCl 4 (30 % in olive oil) for 30 days (15 dosages) to induce the hepatic injuries. Group IV: treated with silymarin (100 mg/kg bw); Group V and VI with FXM (200, 400 mg/kg bw) on alternate days with CCl 4 treatment. Group VII and VIII was administered with FXM (200, 400 mg/kg bw) alone (15 dosages). After 30 days the serum was evaluated for liver function enzymes and biochemical markers, liver samples for antioxidant enzymes, biochemical markers, comet assay and for histopathology. HPLC-DAD analysis of FXM revealed the existence of rutin and caffeic acid. In CCl 4 treated rats the level of alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin was significantly increased while the albumin concentration in serum was decreased as compared to control group. The level of hepatic antioxidant enzymes, catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GSR) was significantly decreased against the control group. Further, significant decrease in GSH while increase in lipid peroxides (TBARS), H 2 O 2 , DNA damages and comet length was induced with CCl 4 in hepatic tissues of rat. In contrast, co-administration of FXM

  6. Chronic Alcohol Consumption Causes Liver Injury in High-Fructose-Fed Male Mice Through Enhanced Hepatic Inflammatory Response

    PubMed Central

    Song, Ming; Chen, Theresa; Prough, Russell A.; Cave, Matthew C.; McClain, Craig J.

    2017-01-01

    Background Obesity and the metabolic syndrome occur in approximately one-third of patients with alcoholic liver disease (ALD). The increased consumption of fructose parallels the increased prevalence of obesity and the metabolic syndrome in the United States and worldwide. In this study, we investigated whether dietary high fructose potentiates chronic alcohol-induced liver injury, and explored potential mechanism(s). Methods Six-week-old male C57BL/6J mice were assigned to 4 groups: control, high fructose, chronic ethanol (EtOH), and high fructose plus chronic alcohol. The mice were fed either control diet or high-fructose diet (60%, w/w) for 18 weeks. Chronic alcohol-fed mice were given 20% (v/v) ethanol (Meadows-Cook model) ad libitum as the only available liquid from the 9th week through the 18th week. Liver injury, steatosis, hepatic inflammatory gene expression, and copper status were assessed. Results High-fructose diet and chronic alcohol consumption alone each induce hepatic fat accumulation and impair copper status. However, the combination of dietary high fructose plus chronic alcohol synergistically induced liver injury as evidenced by robustly increased plasma alanine aminotransferase and aspartate aminotransferase, but the combination did not exacerbate hepatic fat accumulation nor worsen copper status. Moreover, FE-fed mice were characterized by prominent microvesicular steatosis. High-fructose diet and chronic alcohol ingestion together led to a significant up-regulation of Kupffer cell (KC) M1 phenotype gene expression (e.g., tumor necrosis factor-a and monocyte chemoattractant protein-1), as well as Toll-like receptor 4 (TLR4) signaling gene expression, which is also associated with the up-regulation of KCs and activation marker gene expression, including Emr1, CD68, and CD163. Conclusions Our data suggest that dietary high fructose may potentiate chronic alcohol consumption-induced liver injury. The underlying mechanism might be due to the

  7. Recurrent Acute Liver Failure Because of Acute Hepatitis Induced by Organic Solvents: A Case Report.

    PubMed

    Ito, Daisuke; Tanaka, Tomohiro; Akamatsu, Nobuhisa; Ito, Kyoji; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Nakagawa, Hayato; Fujinaga, Hidetaka; Kokudo, Norihiro

    2016-01-01

    The authors present a case of recurrent acute liver failure because of occupational exposure to organic solvents. A 35-year-old man with a 3-week history of worsening jaundice and flu-like symptoms was admitted to our hospital. Viral hepatitis serology and autoimmune factors were negative. The authors considered liver transplantation, but the patient's liver function spontaneously recovered. Liver biopsy revealed massive infiltration of neutrophils, but the cause of the acute hepatitis was not identified. Four months after discharge, the patient's liver function worsened again. The authors considered the possibility of antinuclear antibody-negative autoimmune hepatitis and initiated steroid treatment, which was effective. Four months after discharge, the patient was admitted for repeated liver injury. The authors started him on steroid pulse therapy, but this time it was not effective. Just before the first admission, he had started his own construction company where he was highly exposed to organic solvents, and thus the authors considered organic solvent-induced hepatitis. Although urine test results for organic solvents were negative, a second liver biopsy revealed severe infiltration of neutrophils, compatible with toxic hepatitis. Again, his liver function spontaneously improved. Based on the pathology and detailed clinical course, including the patient's high exposure to organic solvents since just before the first admission, and the spontaneous recovery of his liver damage in the absence of the exposure, he was diagnosed with toxic hepatitis. The authors strongly advised him to avoid organic solvents. Since then, he has been in good health without recurrence. This is the first report of recurrent acute liver failure because of exposure to organic solvents, which was eventually diagnosed through a meticulous medical history and successfully recovered by avoiding the causative agents. In acute liver failure with an undetermined etiology, clinicians should rule

  8. Treatment with milk thistle extract (Silybum marianum), ursodeoxycholic acid, or their combination attenuates cholestatic liver injury in rats: Role of the hepatic stem cells.

    PubMed

    Alaca, Nuray; Özbeyli, Dilek; Uslu, Serap; Şahin, Hasan Hüseyin; Yiğittürk, Gürkan; Kurtel, Hızır; Öktem, Gülperi; Çağlayan Yeğen, Berrak

    2017-11-01

    Cholestasis, which results in hepatic cell death, fibrosis, cirrhosis, and eventually liver failure, is associated with oxidative stress. The aim of this study was to evaluate the effects of milk thistle (MT, Silybum marianum) and ursodeoxycholic acid (UDCA) or their combination on the activation of hepatic stem cells and on the severity of cholestasis liver injury in rats. Under anesthesia, bile ducts of female Sprague Dawley rats were ligated (BDL) or had sham operation. BDL rats were administered saline, UDCA (15 mg/kg/d), MT (600 mg/kg/d), or UDCA+MT by gavage for 10 days. On the 11th day, rats were sacrificed and blood and liver samples were obtained. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA) levels, and myeloperoxidase (MPO) activity were measured. Hepatic injury, a-smooth muscle actin expression, and stem cell markers c-kit, c-Myc, Oct3/4, and SSEA-1 were histologically determined. Histological scores, serum ALT, and hepatic MDA levels were higher in BDL group than in the sham rats, while all treatments significantly reduced these levels. The reduction in ALT was significantly greater in UCDA+MT-treated group than in other treatment groups. c-Kit, c-Myc, Oct3/4, and SSEA-1 were increased in saline-treated BDL group with respect to sham-operated control group, and these markers were significantly reduced in all treatment groups. In addition to a modulatory effect on the stem cell-induced regenerative response of the liver, UDCA, MT, and their combination demonstrated similar anti-inflammatory and antiproliferative effects on cholestasis-induced hepatic injury.

  9. Reappraisal of xenobiotic-induced, oxidative stress-mediated cellular injury in chronic pancreatitis: A systematic review

    PubMed Central

    Siriwardena, Ajith K

    2014-01-01

    AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895

  10. Liver metabolomics study reveals protective function of Phyllanthus urinaria against CCl4-induced liver injury.

    PubMed

    Guo, Qing; Zhang, Qian-Qian; Chen, Jia-Qing; Zhang, Wei; Qiu, Hong-Cong; Zhang, Zun-Jian; Liu, Bu-Ming; Xu, Feng-Guo

    2017-07-01

    Phyllanthus Urinaria L. (PUL) is a traditional Chinese medicine used to treat hepatic and renal disorders. However, the mechanism of its hepatoprotective action is not fully understood. In the present study, blood biochemical indexes and liver histopathological changes were used to estimate the extent of hepatic injury. GC/MS and LC/MS-based untargeted metabolomics were used in combination to characterize the potential biomarkers associated with the protective activity of PUL against CCl 4 -induced liver injury in rats. PUL treatment could reverse the increase in ALT, AST and ALP induced by CCl 4 and attenuate the pathological changes in rat liver. Significant changes in liver metabolic profiling were observed in PUL-treated group compared with liver injury model group. Seventeen biomarkers related to the hepatoprotective effects of PUL against CCl 4 -induced liver injury were screened out using nonparametric test and Pearson's correlation analysis (OPLS-DA). The results suggested that the potential hepatoprotective effects of PUL in attenuating CCl 4 -induced hepatotoxicity could be partially attributed to regulating L-carnitine, taurocholic acid, and amino acids metabolism, which may become promising targets for treatment of liver toxicity. In conclusion, this study provides new insights into the mechanism of the hepatoprotection of Phyllanthus Urinaria. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Fatty acid binding protein-4 (FABP4) is a hypoxia inducible gene that sensitizes mice to liver ischemia/re-perfusion injury

    PubMed Central

    Hu, Bingfang; Guo, Yan; Garbacz, Wojciech G.; Jiang, Mengxi; Xu, Meishu; Huang, Hai; Tsung, Allan; Billiar, Timothy R.; Ramakrishnan, Sadeesh K.; Shah, Yatrik; Lam, Karen S. L.; Huang, Min; Xie, Wen

    2016-01-01

    Background & Aims Fatty acid binding protein 4 (FABP4) has been known as a mediator of inflammatory response in the macrophages and adipose tissue, but its hepatic function is poorly understood. The goal of this study is to investigate the role of FABP4 in liver ischemia/reperfusion (I/R), a clinical condition involves both hypoxia and inflammation. Methods To examine the I/R regulation of FABP4, mice were subjected to I/R surgery before being measured for FABP4 gene expression. Both loss-of-function (by using a pharmacological FABP4 inhibitor) and gain-of-function (by adenoviral overexpression of FABP4) were used to determine the functional relevance of FABP4 expression and its regulation during I/R. To determine the hypoxia responsive regulation of FABP4, primary mouse hepatocytes were exposed to hypoxia. The FABP4 gene promoter was cloned and its regulation by hypoxia inducible factor 1α (HIF-1α) was characterized by luciferase reporter gene, electrophoretic mobility shift, and chromatin immunoprecipitation assays. Results We found that the hepatic expression of FABP4 was markedly induced by I/R. At the functional level, pharmacological inhibition of FABP4 alleviated the I/R injury, whereas adenoviral overexpression of FABP4 sensitized mice to I/R injury. We also showed that exposure of primary hepatocytes to hypoxia or transgenic overexpression of HIF-1α in the mouse liver was sufficient to induce the expression of FABP4. Our promoter analysis established FABP4 as a novel transcriptional target of HIF-1α. Conclusions FABP4 is a hypoxia inducible gene that sensitizes mice to liver I/R injury. FABP4 may represent a novel therapeutic target, and FABP4 inhibitors may be used as therapeutic agents to manage hepatic I/R injury. PMID:26070408

  12. Amelioration of CCl4-induced liver injury in rats by selenizing Astragalus polysaccharides: Role of proinflammatory cytokines, oxidative stress and hepatic stellate cells.

    PubMed

    Hamid, Mohammed; Liu, Dandan; Abdulrahim, Yassin; Liu, Yunhuan; Qian, Gang; Khan, Alamzeb; Gan, Fang; Huang, Kehe

    2017-10-01

    Selenizing Astragalus polysaccharides (sAPS) were prepared by nitric acid-sodium selenite method. Effect of sAPS on carbon tetrachloride (CCl4)-induced liver injury and the underlying mechanisms were investigated in the rat. Forty male Wistar rats were divided into five equal groups as follows: control group; CCl 4 group; CCl 4 +Astragalus polysaccharides group; CCl 4 +sodium selenite group and CCl 4 +selenizing Astragalus polysaccharides group. The results showed that sAPS significantly decreased the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase in the serum, malondialdehyde and hydroxyproline content in liver (P<0.01), and increased the levels of total protein, total antioxidant capacity, glutathione peroxidase, and superoxide dismutase in liver of rats induced by CCl 4. In addition, expression levels of antioxidant-related genes (GPX1, SOD1, and Nrf2) were significantly increased following supplementation of the sAPS (P<0.01). Furthermore, sAPS effectively ameliorated CCl 4 induced hepatic necrosis and inflammation, and it also reduced the expression levels of proinflammatory cytokines including TNF-α, IL-6, COX-2 and NFκB (P<0.01) . Moreover, sAPS significantly decreased the expression levels of α-smooth muscle actin, collagen 1, TGF-β1, but increased the Bcl-2/Bax mRNA ratio in rats administered CCl 4 (P<0.01). Taken together, it could be concluded that sAPS could increase the activities of Astragalus polysaccharides and sodium selenite to protect the liver from damage by attenuating hepatic inflammation, oxidative stress, fibrogenesis, and induces apoptosis and cell cycle arrest in hepatic stellate cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hepatoprotective effects of Vaccinium arctostaphylos against CCl4-induced acute liver injury in rats.

    PubMed

    Ravan, Alireza Pouyandeh; Bahmani, Mahdi; Ghasemi Basir, Hamid Reza; Salehi, Iraj; Oshaghi, Ebrahim Abbasi

    2017-09-26

    This study was carried out to evaluate the antioxidant and hepatoprotective effects of Vaccinium arctostaphylos (V.a) methanolic extract on carbon tetrachloride (CCl4)-induced acute liver injury in Wistar rats. Total phenolic and total flavonoid contents as well as antioxidant activity of V.a were determined. Extracts of V.a at doses of 200 and 400 mg/kg were administered by oral gavage to rats once per day for 7 days and then were given an intraperitoneal injection of 1 mL/kg CCl4 (1:1 in olive oil) for 3 consecutive days. Serum biochemical markers of liver injury, oxidative markers, as well as hydroxyproline (HP) content and histopathology of liver were evaluated. The obtained results showed that V.a had strong antioxidant activity. Treatment of rats with V.a blocked the CCl4-induced elevation of serum markers of liver function and enhanced albumin and total protein levels. The level of hepatic HP content was also reduced by the administration of V.a treatment. Histological examination of the liver section revealed that V.a prevented the occurrence of pathological changes in CCl4-treated rats. These findings suggested that V.a may be useful in the treatment and prevention of hepatic injury induced by CCl4.

  14. Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats

    PubMed Central

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Ola, Olaniyi Solomon; Adeyemo, Oluwatobi Adewumi

    2015-01-01

    Cyclophosphamide (CP), a bifunctional alkylating agent used in chemotherapy has been reported to induce organ toxicity mediated by generation of reactive oxygen species and oxidative stress. Gallic acid (GA), a phenolic substance, is a natural antioxidant with proven free radical scavenging activity and offers protection against oxidative damage. This research study was designed to investigate the ameliorative effect of GA against CP-induced toxicity in rats. Twenty-five male Wistar rats (180–200 g) were randomized into five treatment groups: (A) control, (B) CP, 2 mg/kg body weight (b.w.), (C) pre-treatment with GA (20 mg/kg b.w.) for seven days followed by CP (2 mg/kg b.w.) for seven days, (D) co-treatment with GA (20 mg/kg b.w) and CP (2 mg/kg b.w.) for seven days, and (E) GA (20 mg/kg b.w.) for seven days. CP induced marked renal and hepatic damages as plasma levels of urea, creatinine, bilirubin and activities of AST, ALT, ALP and GGT were significantly elevated (p < 0.05) in the CP-treated group relative to control. In addition, hepatic levels of GSH, vitamin C and activities of SOD, catalase and GST significantly reduced in the CP-treated group when compared with control. This was accompanied with a significant increase in hepatic lipid peroxidation. The restoration of the markers of renal and hepatic damages as well as antioxidant indices and lipid peroxidation by pre- and co-treatment with GA clearly shows that GA offers ameliorative effect by scavenging the reactive oxygen species generated by CP. This protective effect may be attributed to the antioxidant property of gllic acid. PMID:29083393

  15. Suppressive role of hepatic dendritic cells in concanavalin A-induced hepatitis

    PubMed Central

    Tomiyama, C; Watanabe, H; Izutsu, Y; Watanabe, M; Abo, T

    2011-01-01

    Concanavalin A (Con A)-induced hepatitis is a mouse model of acute autoimmune hepatitis. The aim of this study was to investigate the role of hepatic dendritic cells (DC) in the immune modulation of tissue damage. Almost all hepatic DC were plasmacytoid DC (CD11c+ I-Alow B220+); however, conventional DC were CD11c+ I-Ahigh B220–. At an early stage (3–6 h) after Con A administration, the number of DC in both the liver and spleen decreased, increasing thereafter (12–24 h) in parallel with hepatic failure. The hepatic CD11c+ DC population contained many CD11b- cells, while the majority of splenic CD11c+ DC were CD11b+. After Con A administration, the proportion of I-A+ and CD11b+ cells within the CD11c+ DC population tended to increase in the liver, but not in the spleen. Similarly, expression of the activation markers CD80, CD86 and CD40 by CD11c+ DC increased in the liver, but not in the spleen. Next, adoptive transfer of DC isolated from the liver and spleen was performed 3 h after Con A administration to examine the immunomodulatory function of DC. Only hepatic DC had the ability to suppress hepatic failure. Analysis of cytokine production and subsequent identification of the effector cells showed that hepatic DC achieved this by suppressing the production of interleukin (IL)-12 and IL-2, rather than modulating effector cell function. PMID:21985372

  16. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    PubMed

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Transcatheter Arterial Embolization for Hepatic Arterial Injury Related to Percutaneous Transhepatic Portal Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimohira, Masashi, E-mail: mshimohira@gmail.com; Hashizume, Takuya; Sasaki, Shigeru

    PurposeTo assess the usefulness of transcatheter arterial embolization (TAE) for the hepatic arterial injury related to percutaneous transhepatic portal intervention (PTPI).Materials and MethodsFifty-four patients, 32 males and 22 females with a median age of 68 years (range 43–82 years), underwent PTPI. The procedures consisted of 33 percutaneous transhepatic portal vein embolizations, 19 percutaneous transhepatic variceal embolizations, and 2 percutaneous transhepatic portal venous stent placements. Two patients with gastric varices underwent percutaneous transhepatic variceal embolization twice because of recurrence. Therefore, the total number of procedures was 56. Among them, hepatic arterial injury occurred in 6 PTPIs in 5 patients, and TAE was performed.more » We assessed technical success, complications related to TAE, and clinical outcome. Technical success was defined as the disappearance of findings due to hepatic arterial injury on digital subtraction angiography.ResultsAs hepatic arterial injuries, 4 extravasations and 2 arterioportal shunts developed. All TAEs were performed successfully. The technical success rate was 100 %. Complication of TAE occurred in 5 of 6 TAEs; 3 were focal liver infarction, not requiring further treatment, and 2 were biloma that required percutaneous drainage. Five TAEs in 4 patients were performed immediately after the PTPI, and these 4 patients were alive. However, one TAE was performed 10 h later, and the patient died due to multiple organ failure 2 months later although TAE was successful.ConclusionTAE is a useful treatment for hepatic arterial injury related to PTPI. However, it should be performed at an early stage.« less

  18. β-Hydroxybutyrate protects from alcohol-induced liver injury via a Hcar2-cAMP dependent pathway.

    PubMed

    Chen, Yonglin; Ouyang, Xinshou; Hoque, Rafaz; Garcia-Martinez, Irma; Yousaf, Muhammad Nadeem; Tonack, Sarah; Offermanns, Stefan; Dubuquoy, Laurent; Louvet, Alexandre; Mathurin, Philippe; Massey, Veronica; Schnabl, Bernd; Bataller, Ramon Alberola; Mehal, Wajahat Zafar

    2018-04-27

    liver injury, and β-hydroxybutyrate can protect from alcohol-induced liver injury via a receptor on liver macrophages. This opens the possibility of metabolite-based therapy for alcoholic hepatitis. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.ed; Bhopale, Kamlesh K.; Kondraganti, Shakuntala

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanolmore » via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.« less

  20. Lung Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ferrigno, Andrea; Rizzo, Vittoria; Tarantola, Eleonora

    2014-01-01

    Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury. PMID:24592193

  1. Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice.

    PubMed

    Bao, Suxia; Zhao, Qiang; Zheng, Jianming; Li, Ning; Huang, Chong; Chen, Mingquan; Cheng, Qi; Zhu, Mengqi; Yu, Kangkang; Liu, Chenghai; Shi, Guangfeng

    2017-05-01

    Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). High serum IL-23 was

  2. Neutrophil elastase contributes to the development of ischemia/reperfusion-induced liver injury by decreasing the production of insulin-like growth factor-I in rats.

    PubMed

    Kawai, Miho; Harada, Naoaki; Takeyama, Hiromitsu; Okajima, Kenji

    2010-06-01

    Neutrophil elastase (NE) decreases the endothelial production of prostacyclin (PGI(2)) through the inhibition of endothelial nitric oxide synthase (NOS) activation and thereby contributes to the development of ischemia/reperfusion (I/R)-induced liver injury. We previously demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons increases the insulin-like growth factor- I (IGF-I) production and thereby reduces I/R-induced liver injury. Because PGI(2) is capable of stimulating sensory neurons, we hypothesized that NE contributes to the development of I/R-induced liver injury by decreasing IGF-I production. In the present study, we examined this hypothesis in rats subjected to hepatic I/R. Ischemia/reperfusion-induced decreases of hepatic tissue levels of CGRP and IGF-I were prevented significantly by NE inhibitors, sivelestat, and L-658, 758, and these effects of NE inhibitors were reversed completely by the nonselective cyclooxygenase inhibitor indomethacin (IM) and the nonselective NOS inhibitor L-NAME but not by the selective inducible NOS inhibitor 1400W. I/R-induced increases of hepatic tissue levels of caspase-3, myeloperoxidase and the number of apoptotic cells were inhibited by NE inhibitors, and these effects of NE inhibitors were reversed by IM and L-NAME but not by 1400W. Administration of iloprost, a stable PGI(2) analog, produced effects similar to those induced by NE inhibitors. Taken together, these observations strongly suggest that NE may play a critical role in the development of I/R-induced liver injury by decreasing the IGF-I production through the inhibition of sensory neuron stimulation, which may lead to an increase of neutrophil accumulation and hepatic apoptosis through activation of caspase-3 in rats.

  3. Caspase recruitment domain 6 protects against hepatic ischemia/reperfusion injury by suppressing ASK1.

    PubMed

    Qin, Juan-Juan; Mao, Wenzhe; Wang, Xiaozhan; Sun, Peng; Cheng, Daqing; Tian, Song; Zhu, Xue-Yong; Yang, Ling; Huang, Zan; Li, Hongliang

    2018-06-26

    The comprehensive interplay in sterile inflammation and liver cell death predominantly determines hepatic injury caused by ischemia/reperfusion (I/R) insult. Caspase recruitment domain family member 6 (CARD6) was initially shown to play important roles in NF-κB activation. In our preliminary studies, CARD6 downregulation was closely related to hepatic I/R injury in liver transplantation patients and mouse models. Thus, we hypothesized that CARD6 protects against hepatic I/R injury and investigated the underlying molecular mechanisms. A partial hepatic I/R operation was performed in hepatocyte-specific Card6 knockout mice (HKO), Card6 transgenic mice with CARD6 overexpression specifically in hepatocytes (HTG), and the corresponding control mice. Hepatic histology, serum aminotransferase, inflammatory cytokines/chemokines, cell death, and inflammatory signaling were examined to assess liver damage. The molecular mechanisms of CARD6 function were explored in vivo and in vitro. Card6-HTG mice alleviated liver injury compared with control mice as shown by decreased cell death, lower serum transaminase levels, and reduced inflammation and infiltration, whereas Card6-HKO mice had the opposite phenotype. Mechanistically, phosphorylation of ASK1 and its downstream effectors JNK and p38 were increased in the livers of Card6-HKO mice but repressed in those of Card6-HTG mice. Furthermore, ASK1 knockdown normalized the effect of CARD6 deficiency on the activation of NF-κB, JNK and p38, while ASK1 overexpression abrogated the suppressive effect of CARD6. Finally, CARD6 interacted with Ask1. Mutant CARD6 that lacked the ability to interact with ASK1 could not inhibit ASK1 and failed to protect against hepatic I/R injury. CARD6 is a novel protective factor of hepatic I/R injury that suppresses inflammation and liver cell death by inhibiting the ASK1 signaling pathway. CARD6 participate and play an important role during the process of liver blood flow restriction followed by

  4. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  5. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  6. Azathioprine and 6-Mercaptopurine Induced Liver Injury: Clinical Features and Outcomes

    PubMed Central

    Björnsson, Einar S.; Gu, Jiezhun; Kleiner, David E.; Chalasani, Naga; Hayashi, Paul H.; Hoofnagle, Jay H.

    2017-01-01

    Goals To define the clinical, biochemical and histologic features of liver injury from thiopurines. Background Azathioprine (Aza) and 6-mercaptopurine (6-MP) can cause liver injury but no large series exist. Methods Clinical and laboratory data and 6-months outcomes were analyzed from patients with thiopurine hepatotoxicity from the Drug-Induced Liver Injury Network Prospective Study. Results 22 patients were identified, 12 due to Aza and 10 6-MP, with a median age of 55 years and the majority females (68%). Inflammatory bowel disease was the indication in 55%, and median thiopurine dose 150 (range 25–300) mg daily. The median latency to onset was 75 (range 3 to 2584) days. Injury first arose after a dose escalation in 59% of patients; the median latency after dose increase being 44 (range 3 to 254) days. At onset, the median alanine aminotransferase was 210 U/L, alkaline phosphatase 151 U/L and bilirubin 7.4 mg/dL (peak 13.4 mg/dL). There were no major differences between Aza and 6-MP cases, but anicteric cases typically had non-specific symptoms and a hepatocellular pattern of enzyme elevations, whereas icteric cases experienced a cholestatic hepatitis with modest enzyme elevations in a mixed pattern. One patient with pre-existing cirrhosis required liver transplantation, all others resolved clinically. One patient still had moderate alkaline phosphatase elevations 2 years after onset. Conclusions Nearly three-quarters of patients with thiopurine-induced liver injury present with self-limited, cholestatic hepatitis, typically within 3 months of starting or a dose increase. The prognosis is favorable except in patients with pre-existing cirrhosis. PMID:27648552

  7. High fat diet feeding exaggerates perfluorooctanoic acid-induced liver injury in mice via modulating multiple metabolic pathways.

    PubMed

    Tan, Xiaobing; Xie, Guoxiang; Sun, Xiuhua; Li, Qiong; Zhong, Wei; Qiao, Peter; Sun, Xinguo; Jia, Wei; Zhou, Zhanxiang

    2013-01-01

    High fat diet (HFD) is closely linked to a variety of health issues including fatty liver. Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated carboxylic acid, also causes liver injury. The present study investigated the possible interactions between high fat diet and PFOA in induction of liver injury. Mice were pair-fed a high-fat diet (HFD) or low fat control with or without PFOA administration at 5 mg/kg/day for 3 weeks. Exposure to PFOA alone caused elevated plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels and increased liver weight along with reduced body weight and adipose tissue mass. HFD alone did not cause liver damage, but exaggerated PFOA-induced hepatotoxicity as indicated by higher plasma ALT and AST levels, and more severe pathological changes including hepatocyte hypertrophy, lipid droplet accumulation and necrosis as well as inflammatory cell infiltration. These additive effects of HFD on PFOA-induced hepatotoxicity correlated with metabolic disturbance in liver and blood as well as up-regulation of hepatic proinflammatory cytokine genes. Metabolomic analysis demonstrated that both serum and hepatic metabolite profiles of PFOA, HFD, or HFD-PFOA group were clearly differentiated from that of controls. PFOA affected more hepatic metabolites than HFD, but HFD showed positive interaction with PFOA on fatty acid metabolites including long chain fatty acids and acylcarnitines. Taken together, dietary high fat potentiates PFOA-induced hepatic lipid accumulation, inflammation and necrotic cell death by disturbing hepatic metabolism and inducing inflammation. This study demonstrated, for the first time, that HFD increases the risk of PFOA in induction of hepatotoxicity.

  8. Azathioprine and 6-Mercaptopurine-induced Liver Injury: Clinical Features and Outcomes.

    PubMed

    Björnsson, Einar S; Gu, Jiezhun; Kleiner, David E; Chalasani, Naga; Hayashi, Paul H; Hoofnagle, Jay H

    2017-01-01

    The objective of the study was to define the clinical, biochemical, and histologic features of liver injury from thiopurines. Azathioprine (Aza) and 6-mercaptopurine (6-MP) can cause liver injury, but no large series exist. Clinical and laboratory data and 6-month outcomes of patients with thiopurine hepatotoxicity from the Drug-Induced Liver Injury Network Prospective Study were analyzed. Twenty-two patients were identified, 12 due to Aza and 10 due to 6-MP, with a median age of 55 years; the majority were female (68%). Inflammatory bowel disease was the indication in 55%, and the median thiopurine dose was 150 (range, 25 to 300) mg daily. The median latency to onset was 75 (range, 3 to 2584) days. Injury first arose after a dose escalation in 59% of patients, the median latency after dose increase being 44 (range, 3 to 254) days. At onset, the median alanine aminotransferase level was 210 U/L, alkaline phosphatase was 151 U/L, and bilirubin was 7.4 mg/dL (peak, 13.4 mg/dL). There were no major differences between Aza and 6-MP cases, but anicteric cases typically had nonspecific symptoms and a hepatocellular pattern of enzyme elevations, whereas icteric cases experienced cholestatic hepatitis with modest enzyme elevations in a mixed pattern. One patient with preexisting cirrhosis required liver transplantation; all others resolved clinically. One patient still had moderate alkaline phosphatase elevations 2 years after onset. Nearly three-quarters of patients with thiopurine-induced liver injury present with self-limited, cholestatic hepatitis, typically within 3 months of starting or a dose increase. The prognosis is favorable except in patients with preexisting cirrhosis.

  9. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis.

    PubMed

    McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan

    2018-04-01

    Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.

  10. Gamma-glutamylcysteinylethyl ester attenuates progression of carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Nishida, K; Ohta, Y; Ishiguro, I

    1998-02-20

    We examined the effect of gamma-glutamylcysteinylethyl ester (gamma-GCE), which is readily transported into hepatocytes and increases hepatocellular reduced glutathione (GSH) levels, on the progression of carbon tetrachloride (CCl4)-induced liver injury in mice in comparison with that of GSH. Administration of more than 160 micromol/kg of gamma-GCE, but not GSH, to mice at 3 h after intraperitoneal injection of CCl4 (1 ml/kg) significantly attenuated increases in serum aspartate aminotransferase and alanine aminotransferase activities at 24 h after the CCl4 injection. Increases in hepatic lipid peroxide (LPO) concentrations and decreases in hepatic GSH concentrations after the CCl4 injection were significantly diminished by the gamma-GCE (160 micromol/kg) administration, but not by the same dose of GSH. Gamma-GCE, gamma-glutamylcysteine, and cysteine acted as substrates for glutathione peroxidases much less efficiently than GSH in the post-mitochondrial fraction of normal mouse liver cells. These results indicate that gamma-GCE attenuates the progression of CCl4-induced acute liver injury in mice through the maintenance of hepatic GSH levels, leading to inhibition of hepatic LPO formation, which could be due to an efficient utilization of GSH converted from gamma-GCE in the liver cells.

  11. Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially-targeted antioxidants

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Bėla; Zsengellėr, Zsuzsanna; Bátkai, Sándor; Cao, Zongxian; Kechrid, Malek; Holovac, Eileen; Erdėlyi, Katalin; Tanchian, Galin; Liaudet, Lucas; Stillman, Isaac E.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2012-01-01

    Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury, however its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explored the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 hours of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute pro-inflammatory response (TNF-α, MIP-1αCCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 hours of reperfusion and peaking at 24 hours). Mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage. PMID:22683818

  12. ASS and SULT2A1 are Novel and Sensitive Biomarkers of Acute Hepatic Injury-A Comparative Study in Animal Models.

    PubMed

    Prima, Victor; Cao, Mengde; Svetlov, Stanislav I

    2013-01-10

    Liver and kidney damage associated with polytrauma, endotoxic shock/sepsis, and organ transplantation, are among the leading causes of the multiple organ failure. Development of novel sensitive biomarkers that detect early stages of liver and kidney injury is vital for the effective diagnostics and treatment of these life-threatening conditions. Previously, we identified several hepatic proteins, including Argininosuccinate Synthase (ASS) and sulfotransferases which were degraded in the liver and rapidly released into circulation during Ischemia/Reperfusion (I/R) injury. Here we compared sensitivity and specificity of the newly developed sandwich ELISA assays for ASS and the sulfotransferase isoform SULT2A1 with the standard clinical liver and kidney tests Alanine Aminotransferase (ALT) and Aspartate Transaminase (AST) in various pre-clinical models of acute injury. Our data suggest that ASS and SULT2A1 have superior characteristics for liver and kidney health assessment in endotoxemia, Ischemia/Reperfusion (I/R), chemical and drug-induced liver injury and may be of high potential value for clinical applications.

  13. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury - Corrected and republished from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi: 10.7603/s40681-016-0009-1PMCID: PMC4864770.

    PubMed

    Chen, Lung-Che; Hu, Li-Hong; Yin, Mei-Chin

    2017-06-01

    Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent. © Author(s) 2017. This article is published with open access by China Medical University.

  14. Inhibition of GSK-3beta ameliorates hepatic ischemia-reperfusion injury through GSK-3beta/beta-catenin signaling pathway in mice.

    PubMed

    Xia, Yong-Xiang; Lu, Ling; Wu, Zheng-Shan; Pu, Li-Yong; Sun, Bei-Cheng; Wang, Xue-Hao

    2012-06-01

    Glycogen synthase kinase (GSK)-3beta/beta-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3beta has beneficial effects on I/R injury in the heart and the central nervous system. However, the role of this signaling in hepatic I/R injury remains unclear. The present study aimed to investigate the effects and mechanism of GSK-3beta/beta-catenin signaling in hepatic I/R injury. Male C57BL/6 mice (weighing 22-25 g) were pretreated with either SB216763, an inhibitor of GSK-3beta, or vehicle. These mice were subjected to partial hepatic I/R. Blood was collected for test of alanine aminotransferase (ALT), and liver specimen for assays of phosphorylation at the Ser9 residue of GSK-3beta, GSK-3beta activity, axin 2 and the anti-apoptotic factors Bcl-2 and survivin, as well as the proliferative factors cyclin D1 and proliferating cell nuclear antigen, and apoptotic index (TUNEL). Real-time PCR, Western blotting and immunohistochemical staining were used. SB216763 increased phospho-GSK-3beta levels and suppressed GSK-3beta activity (1880+/-229 vs 3280+/-272 cpm, P<0.01). ALT peaked at 6 hours after reperfusion. Compared with control, SB216763 decreased ALT after 6 hours of reperfusion (4451+/-424 vs 7868+/-845 IU/L, P<0.01), and alleviated hepatocyte necrosis and vacuolization. GSK-3beta inhibition led to the accumulation of beta-catenin in the cytosol (0.40+/-0.05 vs 1.31+/-0.11, P<0.05) and nucleus (0.62+/-0.14 vs 1.73+/-0.12, P<0.05), beta-catenin further upregulated the expression of axin 2. Upregulation of GSK-3beta/beta-catenin signaling increased Bcl-2, survivin and cyclin D1. Serological and histological analyses showed that SB216763 alleviated hepatic I/R-induced injury by reducing apoptosis (1.4+/-0.2% vs 3.6+/-0.4%, P<0.05) and enhanced liver proliferation (56+/-8% vs 19+/-4%, P<0.05). Inhibition of GSK-3beta ameliorates hepatic I/R injury through the GSK-3beta/beta-catenin signaling pathway.

  15. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver.

    PubMed

    Savransky, Vladimir; Bevans, Shannon; Nanayakkara, Ashika; Li, Jianguo; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-10-01

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (CIH) during sleep. OSA is associated with nonalcoholic steatohepatitis (NASH) in obese individuals and may contribute to progression of nonalcoholic fatty liver disease from steatosis to NASH. The purpose of this study was to examine whether CIH induces inflammatory changes in the liver in mice with diet-induced hepatic steatosis. C57BL/6J mice (n = 8) on a high-fat, high-cholesterol diet were exposed to CIH for 6 mo and were compared with mice on the same diet exposed to intermittent air (control; n = 8). CIH caused liver injury with an increase in serum ALT (461 +/- 58 U/l vs. 103 +/- 16 U/l in the control group; P < 0.01) and AST (637 +/- 37 U/l vs. 175 +/- 13 U/l in the control group; P < 0.001), whereas alkaline phosphatase and total bilirubin levels were unchanged. Histology revealed hepatic steatosis in both groups, with mild accentuation of fat staining in the zone 3 hepatocytes in mice exposed to CIH. Animals exposed to CIH exhibited lobular inflammation and fibrosis in the liver, which were not evident in control mice. CIH caused significant increases in lipid peroxidation in serum and liver tissue; significant increases in hepatic levels of myeloperoxidase and proinflammatory cytokines IL-1beta, IL-6, and CXC chemokine MIP-2; a trend toward an increase in TNF-alpha; and an increase in alpha1(I)-collagen mRNA. We conclude that CIH induces lipid peroxidation and inflammation in the livers of mice on a high-fat, high-cholesterol diet.

  16. Curcumin Attenuates Lipopolysaccharide-Induced Hepatic Lipid Metabolism Disorder by Modification of m6 A RNA Methylation in Piglets.

    PubMed

    Lu, Na; Li, Xingmei; Yu, Jiayao; Li, Yi; Wang, Chao; Zhang, Lili; Wang, Tian; Zhong, Xiang

    2018-01-01

    N 6 -methyladenosine (m 6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m 6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m 6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m 6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m 6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases. © 2018 AOCS.

  17. Hepatic ischemia reperfusion injury is associated with acute kidney injury following donation after brain death liver transplantation.

    PubMed

    Leithead, Joanna A; Armstrong, Matthew J; Corbett, Christopher; Andrew, Mark; Kothari, Chirag; Gunson, Bridget K; Muiesan, Paolo; Ferguson, James W

    2013-11-01

    Donation after cardiac death liver transplant recipients have an increased frequency of acute kidney injury (AKI). This suggests that hepatic ischemia-reperfusion injury may play a critical role in the pathogenesis of AKI after liver transplantation. The aim of this single-center study was to determine if hepatic ischemia-reperfusion injury, estimated by peak peri-operative serum amino-transferase (AST), is associated with AKI following donation after brain death (DBD) liver transplantation. A total of 296 patients received 298 DBD liver transplants from January 2007 to June 2011. The incidence of AKI was 35.9%. AKI was a risk factor for chronic kidney disease (P = 0.037) and mortality (P = 0.002). On univariate analysis, peak AST correlated with peak creatinine (P < 0.001) and peak change in creatinine from baseline (P < 0.001). Peak AST was higher in AKI patients (P < 0.001). The incidence of AKI in patients with a peak AST of <1500, 1500-2999 and ≥ 3000 U/l was 26.1%, 39.8% and 71.2%, respectively (P < 0.001). On multiple logistic regression analysis, peak AST was independently associated with the development of AKI (P < 0.001). In conclusion, hepatic ischemia-reperfusion injury demonstrates a strong relationship with peri-operative AKI in DBD liver transplant recipients. © 2013 Steunstichting ESOT. Published by John Wiley & Sons Ltd.

  18. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    PubMed Central

    Li, Ruidong; Wang, Yaxin; Zhao, Ende; Wu, Ke; Li, Wei; Shi, Liang; Wang, Di; Xie, Gengchen; Yin, Yuping; Deng, Meizhou; Zhang, Peng; Tao, Kaixiong

    2016-01-01

    Maresin 1 (MaR 1) was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb) and mitogen-activated protein kinases (MAPKs) in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway. PMID:26881046

  19. Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.

    PubMed

    Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun

    2018-05-01

    Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Nonoperative management of blunt hepatic injury: an Eastern Association for the Surgery of Trauma practice management guideline.

    PubMed

    Stassen, Nicole A; Bhullar, Indermeet; Cheng, Julius D; Crandall, Marie; Friese, Randall; Guillamondegui, Oscar; Jawa, Randeep; Maung, Adrian; Rohs, Thomas J; Sangosanya, Ayodele; Schuster, Kevin; Seamon, Mark; Tchorz, Kathryn M; Zarzuar, Ben L; Kerwin, Andrew

    2012-11-01

    During the last century, the management of blunt force trauma to the liver has changed from observation and expectant management in the early part of the 1900s to mainly operative intervention, to the current practice of selective operative and nonoperative management. These issues were first addressed by the Eastern Association for the Surgery of Trauma in the Practice Management Guidelines for Nonoperative Management of Blunt Injury to the Liver and Spleen published online in 2003. Since that time, a large volume of literature on these topics has been published requiring a reevaluation of the previous Eastern Association for the Surgery of Trauma guideline. The National Library of Medicine and the National Institutes of Health MEDLINE database were searched using PubMed (http://www.pubmed.gov). The search was designed to identify English-language citations published after 1996 (the last year included in the previous guideline) using the keywords liver injury and blunt abdominal trauma. One hundred seventy-six articles were reviewed, of which 94 were used to create the current practice management guideline for the selective nonoperative management of blunt hepatic injury. Most original hepatic guidelines remained valid and were incorporated into the greatly expanded current guidelines as appropriate. Nonoperative management of blunt hepatic injuries currently is the treatment modality of choice in hemodynamically stable patients, irrespective of the grade of injury or patient age. Nonoperative management of blunt hepatic injuries should only be considered in an environment that provides capabilities for monitoring, serial clinical evaluations, and an operating room available for urgent laparotomy. Patients presenting with hemodynamic instability and peritonitis still warrant emergent operative intervention. Intravenous contrast enhanced computed tomographic scan is the diagnostic modality of choice for evaluating blunt hepatic injuries. Repeated imaging should be

  1. Gap Junction Inhibition Prevents Drug-induced Liver Toxicity and Fulminant Hepatic Failure

    PubMed Central

    Patel, Suraj J; Milwid, Jack M; King, Kevin R; Bohr, Stefan; Iracheta, Arvin; Li, Matthew; Vitalo, Antonia; Parekkadan, Biju; Jindal, Rohit; Yarmush, Martin L

    2013-01-01

    Drug-induced liver injury (DILI) limits the development and utilization of numerous therapeutic compounds, and consequently presents major challenges to the pharmaceutical industry and clinical medicine1, 2. Acetaminophen (APAP) containing compounds are among the most frequently prescribed drugs, and also the most common cause of DILI3. Here we describe a pharmacological strategy that targets gap junction communication to prevent amplification of fulminant hepatic failure and APAP-induced hepatotoxicity. We report that connexin 32 (Cx32), a key hepatic gap junction protein, is an essential mediator of DILI by showing that mice deficient in Cx32 are protected against liver damage, acute inflammation, and death. We identified a small molecule inhibitor of Cx32 as a novel hepatoprotectant that achieves the same result in wildtype mice when coadministered with known hepatotoxic drugs. These findings demonstrate that gap junction inhibition is an effective therapy for limiting DILI, and suggest a novel pharmaceutical strategy to improve drug safety. PMID:22252509

  2. Acetaminophen-induced acute liver injury in HCV transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wildmore » type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.« less

  3. Hepatic drug clearance following traumatic injury.

    PubMed

    Slaughter, R L; Hassett, J M

    1985-11-01

    Trauma is a complex disease state associated with physiologic changes that have the potential to alter hepatic drug clearance mechanisms. These responses include alterations in hepatic blood flow, reduction in hepatic microsomal activity, reduction in hepatic excretion processes, and changes in protein binding. Hepatic blood flow is influenced by sympathomimetic activity. Both animal and human studies demonstrate an initial reduction and subsequent increase in hepatic blood flow, which coincides with an observed increase and subsequent return to normal in serum catecholamine concentrations. Unfortunately, there are no human studies that address the importance these findings may have to the clearance processes of high intrinsic clearance compounds. Animal studies of trauma indicate that hepatic microsomal activity is depressed during the post-traumatic period. Reduction in the hepatic clearance of antipyrine, a model low intrinsic compound, has also been demonstrated in animal models of trauma. In addition to these effects, hepatic excretion of substances such as indocyanine green and bilirubin have been demonstrated to be impaired in both traumatized animals and humans. Finally, substantial increases in the serum concentration of the binding protein alpha 1-acid glycoprotein occur in trauma patients. This has been reported to be associated with subsequent decreases in the free fraction of lidocaine and quinidine. In addition to changing serum drug concentration/response relationships, the pharmacokinetic behavior of drugs bound to alpha 1-acid glycoprotein should also change. Preliminary observations in our laboratory in a dog model of surgically-induced trauma have shown a reduction in the total clearance of lidocaine and reduction in free lidocaine concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury.

    PubMed

    Ming, Ke; Chen, Yun; Shi, Jintong; Yang, Jingjing; Yao, Fangke; Du, Hongu; Zhang, Wei; Bai, Jingying; Liu, Jiaguo; Wang, Deyun; Hu, Yuanliang; Wu, Yi

    2017-09-01

    To explore new effective anti-duck hepatitis A virus drugs, Chrysanthemum indicum polysaccharide (CIPS) was phosphorylation modified using STMP-STPP method, and phosphorylated Chrysanthemum indicum polysaccharide (pCIPS) was obtained. Characteristic absorption peaks were observed in pCIPS using IR spectrum, suggested that CIPS was successfully modified. In addition, field emission scanning electron micro-scope (FE-SEM) was used to observe the polysaccharides' surface features. In vitro, we found that the survival rate of DHAV-infected hepatocytes increased after the two drugs treatment, indicated that the two drugs possess good anti-DHAV activity. The results of real-time PCR showed that pCIPS inhibited the virus gene replication more effectively than CIPS. Reed-Muench assay was used to observe the changes of the virulence, and the expression level of IFN-β was observed to verify the changes of virulence. In vivo experiment, the blood virus content reduced after CIPS and pCIPS treatment. To evaluate the ducklings' hepatic injury, the serum ALT, AST, TP and ALB levels were detected. Results showed that both CIPS and pCIPS could alleviate the hepatic injury of ducklings infected DHAV, especially for pCIPS. All the results above mentioned demonstrated that the anti-DHAV activity of CIPS was enhanced after phosphorylation modification. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Indocyanine green. Its use as an early indicator of hepatic dysfunction following injury in man.

    PubMed

    Gottlieb, M E; Stratton, H H; Newell, J C; Shah, D M

    1984-03-01

    To evaluate hepatic function, the kinetics of indocyanine green clearance were studied in seven injured patients with hepatic venous catheters. Indocyanine green clearance after a bolus injection of 20 mg was relatively monoexponential on the first day after injury. Following this, a second slower compartment of indocyanine green clearance was uniformly evident, becoming most prominent around the fourth day after injury. Indocyanine green clearance again became more uniform as recovery continued. Fractional indocyanine green extraction ten minutes after injection decreased from 0.9 on the first day after injury to 0.2 three days later, and then returned to 0.7 on the seventh day after injury. These decreases in indocyanine green clearance preceded an increase in total serum bilirubin concentration to a mean value of 1.9 mg/dL. Indocyanine green clearance was thus found to be an early and sensitive indicator of impaired hepatic function.

  6. Hepatic artery bridging lessens temporary ischemic injury to bile canaliculi

    PubMed Central

    Wang, Jia-Zhong; Liu, Yang; Wang, Jin-Long; Lu, Le; Zhang, Ya-Fei; Lu, Hong-Wei; Li, Yi-Ming

    2015-01-01

    AIM: To study whether transfer of blood between the right gastroepiploic artery and gastroduodenal artery could lessens the damage to bile canaliculi. METHODS: Forty male Bama miniature pigs were divided into four groups as follows: a control group, two hepatic artery ischemia groups (1 h and 2 h), and a hepatic artery bridging group. The hemodynamics of the hepatic artery in the hepatic artery bridging group was measured using color Doppler ultrasound. Morphological changes in the bile canaliculus were observed by transmission electron microscopy. Cofilin, heat shock protein 27 and F-actin expression was detected by immunohistochemistry, Western blot, and real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated nick end-labeling method was used to evaluate liver injury. RESULTS: The hemodynamics was not changed in the hepatic artery bridging group. The microvilli in the bile canaliculus were impaired in the two hepatic artery ischemia groups. The down-regulation of cofilin and F-actin and up-regulation of heat shock protein 27 were observed in the two hepatic artery ischemia groups, while there were no significant differences between the control group and hepatic artery bridging group. CONCLUSION: Hepatic artery ischemia aggravates damage to bile canaliculi, and this damage can be diminished by a hepatic artery bridging duct. PMID:26401076

  7. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death

    PubMed Central

    Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2011-01-01

    Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor alpha (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, inter-cellular adhesion molecule 1 mRNA levels, tissue neutrophil infiltration, nuclear factor kappa B (NF-KB) activation), stress signaling (p38MAPK and JNK) and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress and cell death, and also attenuated the bacterial endotoxin-triggered NF-KB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecules expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α, and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent from classical CB1/2 receptors. PMID:21362471

  8. MAVS-dependent host species range and pathogenicity of human hepatitis A virus.

    PubMed

    Hirai-Yuki, Asuka; Hensley, Lucinda; McGivern, David R; González-López, Olga; Das, Anshuman; Feng, Hui; Sun, Lu; Wilson, Justin E; Hu, Fengyu; Feng, Zongdi; Lovell, William; Misumi, Ichiro; Ting, Jenny P-Y; Montgomery, Stephanie; Cullen, John; Whitmire, Jason K; Lemon, Stanley M

    2016-09-30

    Hepatotropic viruses are important causes of human disease, but the intrahepatic immune response to hepatitis viruses is poorly understood because of a lack of tractable small- animal models. We describe a murine model of hepatitis A virus (HAV) infection that recapitulates critical features of type A hepatitis in humans. We demonstrate that the capacity of HAV to evade MAVS-mediated type I interferon responses defines its host species range. HAV-induced liver injury was associated with interferon-independent intrinsic hepatocellular apoptosis and hepatic inflammation that unexpectedly resulted from MAVS and IRF3/7 signaling. This murine model thus reveals a previously undefined link between innate immune responses to virus infection and acute liver injury, providing a new paradigm for viral pathogenesis in the liver. Copyright © 2016, American Association for the Advancement of Science.

  9. Comparison of isolated and concomitant liver injuries: is hepatic trauma entirely responsible for the outcome?

    PubMed

    Yazici, P; Aydin, U; Sozbilen, M

    2010-01-01

    This study was undertaken to examine both isolated and concomitant liver injuries to clarify the role of liver trauma on outcome. This retrospective study was a review of all abdominal trauma patients who presented with liver injuries, with or without concomitant injury at Ege University School of Medicine over a 3-year period. Presentation, injury grade, management, and outcomes were analyzed. Patients with isolated hepatic injury (Group A) were compared with patients who had concomitant hepatic injury (liver and spleen/small bowel) (Group B). Significance was set at 95% confidence intervals. Of 368 patients, 80 (21%) presented with liver injury. Of these, the aetiology was as follows: 53 (66.2%) blunt injury, 19 (23%) penetrating injury, and 8 (10%) gun shot trauma. There were 38 patients in Group A and 42 in Group B. Of these 42 patients, 19 were diagnosed with serious types of injury ; eight thoracic, three open long bone fracture, one intra-cardiac, one intracranial. Six additional patients were observed with injuries to large abdominal vessels. Eleven patients (28.9%) with isolated hepatic injury were managed non-operatively. Mortality, intensive care unit and hospital length of stay, and transfusion requirements were significantly higher in Group B. Only the number of transfused blood units and the grade of liver injury were found to be effective on outcome whereas stepwise regression analysis revealed that injury type (penetrating) and blood transfusion were predictive for mortality. This study highlighted that although isolated liver injury results in good outcome with non-operative management, concomitant injuries to the liver lead to a higher failure and mortality rate. However, liver injury itself is rarely responsible for death.

  10. Drug-induced liver injury caused by iodine-131

    PubMed Central

    Kim, Chei Won; Park, Ji Sun; Oh, Se Hwan; Park, Jae-Hyung; Shim, Hyun-Ik; Yoon, Jae Woong; Park, Jin Seok; Hong, Seong Bin; Kim, Jun Mi; Le, Trong Binh; Lee, Jin Woo

    2016-01-01

    Iodine-131 is a radioisotope that is routinely used for the treatment of differentiated thyroid cancer after total or near-total thyroidectomy. However, there is some evidence that iodine-131 can induce liver injury . Here we report a rare case of drug-induced liver injury (DILI) caused by iodine-131 in a patient with regional lymph node metastasis after total thyroidectomy. A 47-year-old woman was admitted with elevated liver enzymes and symptoms of general weakness and nausea. Ten weeks earlier she had undergone a total thyroidectomy for papillary thyroid carcinoma and had subsequently been prescribed levothyroxine to reduce the level of thyroid-stimulating hormone. Eight weeks after surgery she underwent iodine-131 ablative therapy at a dose of 100 millicuries, and subsequently presented with acute hepatitis after 10 days. To rule out all possible causative factors, abdominal ultrasonography, endoscopic ultrasonography (on the biliary tree and gall bladder), and a liver biopsy were performed. DILI caused by iodine-131 was suspected. Oral prednisolone was started at 30 mg/day, to which the patient responded well. PMID:27209646

  11. Drug-induced liver injury caused by iodine-131.

    PubMed

    Kim, Chei Won; Park, Ji Sun; Oh, Se Hwan; Park, Jae-Hyung; Shim, Hyun-Ik; Yoon, Jae Woong; Park, Jin Seok; Hong, Seong Bin; Kim, Jun Mi; Le, Trong Binh; Lee, Jin Woo

    2016-06-01

    Iodine-131 is a radioisotope that is routinely used for the treatment of differentiated thyroid cancer after total or near-total thyroidectomy. However, there is some evidence that iodine-131 can induce liver injury . Here we report a rare case of drug-induced liver injury (DILI) caused by iodine-131 in a patient with regional lymph node metastasis after total thyroidectomy. A 47-year-old woman was admitted with elevated liver enzymes and symptoms of general weakness and nausea. Ten weeks earlier she had undergone a total thyroidectomy for papillary thyroid carcinoma and had subsequently been prescribed levothyroxine to reduce the level of thyroid-stimulating hormone. Eight weeks after surgery she underwent iodine-131 ablative therapy at a dose of 100 millicuries, and subsequently presented with acute hepatitis after 10 days. To rule out all possible causative factors, abdominal ultrasonography, endoscopic ultrasonography (on the biliary tree and gall bladder), and a liver biopsy were performed. DILI caused by iodine-131 was suspected. Oral prednisolone was started at 30 mg/day, to which the patient responded well.

  12. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.

    PubMed

    Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C

    2015-01-01

    Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.

  13. Psoriatic inflammation causes hepatic inflammation with concomitant dysregulation in hepatic metabolism via IL-17A/IL-17 receptor signaling in a murine model.

    PubMed

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Zoheir, Khairy M A; Ansari, Mushtaq A; El-Sherbeeny, Ahmed M; Alanazi, Khalid M; Alotaibi, Moureq R; Ahmad, Sheikh F

    2017-02-01

    Psoriatic inflammation has been shown to be associated with cardiovascular dysfunction and systemic inflammation. Recently, psoriasis has also been linked to hepatic disorders, however underlying mechanism connecting the two are unknown. IL-17A being a central pro-inflammatory cytokine in the pathogenesis of psoriasis may be involved in hepatic inflammation through its receptor and downward signaling; however so far no study has investigated IL-17A related signaling in the liver during psoriasis in a murine model. Therefore, this study explored psoriasis-induced hepatic inflammation and concurrent metabolic changes. Mice were applied topically imiquimod (IMQ) to develop psoriatic inflammation. Additionally mice were also treated either with IL-17A or anti-IL17A antibody to explore the role of IL-17 related signaling in liver. Mice were then assessed for hepatic inflammation through assessment of inflammatory/oxidative stress markers (IL-17RC, NFκB, IL-6, MCP-1, IL-1β, GM-CSF, ICAM-1, iNOS, lipid peroxides and myeloperoxidase activity) as well as hepatic injury (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and protein/lipid metabolic biomarkers (total proteins, albumin, total bilirubin, triglycerides, HDL cholesterol, and total cholesterol). IMQ treatment led to hepatic inflammation as evidenced by increased pro-inflammatory cytokines and oxidative stress with concomitant dysregulation in hepatic protein/lipid metabolism. Treatment with IL-17A further aggravated, whereas treatment with anti-IL17A antibody ameliorated IMQ-induced changes in hepatic injury/inflammation and protein/lipid metabolism. Our study shows for the first time that psoriatic inflammation leads to hepatic inflammation which results in dysregulated protein/lipid metabolism through IL-17RC/NFκB signaling. This could result in increased risk of cardiovascular dysfunction in patients with psoriasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Protective Effect of Tropisetron on Rodent Hepatic Injury after Trauma-Hemorrhagic Shock through P38 MAPK-Dependent Hemeoxygenase-1 Expression

    PubMed Central

    Hwang, Tsong-Long; Tsai, Yung-Fong

    2012-01-01

    Tropisetron can decrease inflammatory cell responses and alleviate organ damage caused by trauma-hemorrhage, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase/hemeoxygenase-1 (p38 MAPK/HO-1) pathway exerts anti-inflammatory effects on different tissues. The aim of this study was to investigate whether p38 MAPK/HO-1 plays any role in the tropisetron-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 min), followed by fluid resuscitation. During resuscitation, several treatment regimens were administered: four doses of tropisetron alone (0.1, 0.3, 1, 3 mg/kg body weight), or a single dose of tropisetron (1 mg/kg body weight) with and without a p38 MAPK inhibitor (SB-203580, 2 mg/kg body weight) or HO antagonist (chromium-mesoporphyrin, 2.5 mg/kg body weight). Various parameters were measured, and the animals were sacrificed at 24 h post-resuscitation. The results showed that trauma-hemorrhage increased the following parameters: plasma concentrations of aspartate (AST) and alanine aminotransferases (ALT), hepatic myeloperoxidase (MPO) activity, and levels of cytokine-induced neutrophil chemoattractant-1 and -3 (CINC-1 and CINC-3), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1α (MIP-1α). These parameters were significantly improved in the tropisetron-treated rats subjected to trauma-hemorrhage. Tropisetron treatment also increased hepatic p38 MAPK and HO-1 expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 or chromium-mesoporphyrin with tropisetron abolished the tropisetron-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of tropisetron administration on alleviation of hepatic injury

  15. Protective effect of tropisetron on rodent hepatic injury after trauma-hemorrhagic shock through P38 MAPK-dependent hemeoxygenase-1 expression.

    PubMed

    Liu, Fu-Chao; Yu, Huang-Ping; Hwang, Tsong-Long; Tsai, Yung-Fong

    2012-01-01

    Tropisetron can decrease inflammatory cell responses and alleviate organ damage caused by trauma-hemorrhage, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase/hemeoxygenase-1 (p38 MAPK/HO-1) pathway exerts anti-inflammatory effects on different tissues. The aim of this study was to investigate whether p38 MAPK/HO-1 plays any role in the tropisetron-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 min), followed by fluid resuscitation. During resuscitation, several treatment regimens were administered: four doses of tropisetron alone (0.1, 0.3, 1, 3 mg/kg body weight), or a single dose of tropisetron (1 mg/kg body weight) with and without a p38 MAPK inhibitor (SB-203580, 2 mg/kg body weight) or HO antagonist (chromium-mesoporphyrin, 2.5 mg/kg body weight). Various parameters were measured, and the animals were sacrificed at 24 h post-resuscitation. The results showed that trauma-hemorrhage increased the following parameters: plasma concentrations of aspartate (AST) and alanine aminotransferases (ALT), hepatic myeloperoxidase (MPO) activity, and levels of cytokine-induced neutrophil chemoattractant-1 and -3 (CINC-1 and CINC-3), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1α (MIP-1α). These parameters were significantly improved in the tropisetron-treated rats subjected to trauma-hemorrhage. Tropisetron treatment also increased hepatic p38 MAPK and HO-1 expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 or chromium-mesoporphyrin with tropisetron abolished the tropisetron-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of tropisetron administration on alleviation of hepatic injury

  16. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Qing; Second Affiliated Hospital, Anhui Medical University, Hefei 230601; Chen, Xi

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{submore » 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4

  17. [Protective effect of purple sweet potato flavonoids on CCL4-induced acute liver injury in mice].

    PubMed

    Ye, Shuya; Li, Xiangrong; Shao, Yingying

    2013-11-01

    To investigate the protective effect of purple sweet potato flavonoids (PSPF) on CCl4-induced acute liver injury in mice. Sixty mice were randomly divided into six groups (n=10 in each): blank group, model group, PSPF groups (400 mg*kg(-1), 200 mg*kg-1 and 100 mg*kg(-1)) and positive control group (DDB 150 mg*kg(-1)). Acute liver injury was induced by administration of peanut oil with 0.1% CCl4 (10 mg*kg(-1)) in mice. The viscera index, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured, and the activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) in hepatic tissues were also measured. The pathological changes of liver were observed with microscopy. PSPF significantly decreased serum ALT, AST and LDH levels (P<0.05 or P<0.01) and MDA content in hepatic tissues (P<0.01), increased the activities of SOD (P<0.01). Purple sweet potato total flavonoids can prevent CCl4-induced acute liver injury in mice, which may be related to inhibition of lipid peroxidation and reduction of oxygen free radicals.

  18. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  19. Computed tomography arterial portography for assessment of portal vein injury after blunt hepatic trauma.

    PubMed

    Fu, Chen Ju; Wong, Yon Cheong; Tsang, Yuk Ming; Wang, Li Jen; Chen, Huan Wu; Ku, Yi Kang; Wu, Cheng Hsien; Chen, Huan Wen; Kang, Shih Ching

    2015-01-01

    Intrahepatic portal vein injuries secondary to blunt abdominal trauma are difficult to diagnose and can result in insidious bleeding. We aimed to compare computed tomography arterial portography (CTAP), reperfusion CTAP (rCTAP), and conventional computed tomography (CT) for diagnosing portal vein injuries after blunt hepatic trauma. Patients with blunt hepatic trauma, who were eligible for nonoperative management, underwent CTAP, rCTAP, and CT. The number and size of perfusion defects observed using the three methods were compared. A total of 13 patients (seven males/six females) with a mean age of 34.5±14.1 years were included in the study. A total of 36 hepatic segments had perfusion defects on rCTAP and CT, while there were 47 hepatic segments with perfusion defects on CTAP. The size of perfusion defects on CT (239 cm3; interquartile range [IQR]: 129.5, 309.5) and rCTAP (238 cm3; IQR: 129.5, 310.5) were significantly smaller compared with CTAP (291 cm3; IQR: 136, 371) (both, P = 0.002). Perfusion defects measured by CTAP were significantly greater than those determined by either rCTAP or CT in cases of blunt hepatic trauma. This finding suggests that CTAP is superior to rCTAP and CT in evaluating portal vein injuries after blunt liver trauma.

  20. Toxic hepatitis induced by Gymnema sylvestre, a natural remedy for type 2 diabetes mellitus.

    PubMed

    Shiyovich, Arthur; Sztarkier, Ignacio; Nesher, Lior

    2010-12-01

    Toxic hepatitis or drug-induced liver injury (DILI) encompasses a spectrum of conditions ranging from mild biochemical abnormalities to acute liver failure. Recent studies report that 35% to 48% of patients with diabetes use some form of complementary and alternative medical therapy. Moreover, >800 plants have been traditionally used for the treatment of diabetes. Despite this widespread use, only few were supported by rigorous clinical evidence. Gymnema sylvestre, also known as gurmar (sugar destroyer in Hindi), is a plant considered to be with potent antidiabetic effects and, hence, widely used in folk, ayurvedic and homeopathic systems in medicine. The authors were unable to find previous reports associating G sylvestre to liver injury. Herein, the authors report a case of DILI in a patient who was treated with G sylvestre for diabetes mellitus and review the literature to suggest possible mechanisms that led to this acute condition.

  1. Nrf2 activation prevents cadmium-induced acute liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-nullmore » mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1

  2. ASS and SULT2A1 are Novel and Sensitive Biomarkers of Acute Hepatic Injury-A Comparative Study in Animal Models

    PubMed Central

    Prima, Victor; Cao, Mengde; Svetlov, Stanislav I

    2013-01-01

    Liver and kidney damage associated with polytrauma, endotoxic shock/sepsis, and organ transplantation, are among the leading causes of the multiple organ failure. Development of novel sensitive biomarkers that detect early stages of liver and kidney injury is vital for the effective diagnostics and treatment of these life-threatening conditions. Previously, we identified several hepatic proteins, including Argininosuccinate Synthase (ASS) and sulfotransferases which were degraded in the liver and rapidly released into circulation during Ischemia/Reperfusion (I/R) injury. Here we compared sensitivity and specificity of the newly developed sandwich ELISA assays for ASS and the sulfotransferase isoform SULT2A1 with the standard clinical liver and kidney tests Alanine Aminotransferase (ALT) and Aspartate Transaminase (AST) in various pre-clinical models of acute injury. Our data suggest that ASS and SULT2A1 have superior characteristics for liver and kidney health assessment in endotoxemia, Ischemia/Reperfusion (I/R), chemical and drug-induced liver injury and may be of high potential value for clinical applications. PMID:23724364

  3. Protection of rat liver against hepatic ischemia-reperfusion injury by a novel selenocysteine-containing 7-mer peptide

    PubMed Central

    Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Li, Hui

    2016-01-01

    Hepatic ischemia-reperfusion (I-R) injury causes acute organ damage or dysfunction, and remains a problem for liver transplantation. In the I-R phase, the generation of reactive oxygen species aggravates the injury. In the current study, a novel selenocysteine-containing 7-mer peptide (H-Arg-Sec-Gly-Arg-Asn-Ala-Gln-OH) was constructed to imitate the active site of an antioxidant enzyme, glutathione peroxidase (GPX). The 7-mer peptide which has a lower molecular weight, and improved water-solubility, higher stability and improved cell membrane permeability compared with other GPX mimics. Its GPX activity reached 13 U/µmol, which was 13 times that of ebselen (a representative GPX mimic). The effect of this GPX mimic on I-R injury of the liver was assessed in rats. The 7-mer peptide significantly inhibited the increase in serum hepatic amino-transferases, tissue malondialdehyde, nitric oxide contents, myeloperoxidase activity and decrease of GPX activity compared with I-R tissue. Following treatment with the 7-mer peptide, the expression of B-cell CLL/lymphoma-2 (Bcl-2) was significantly upregulated at the mRNA and protein level compared with the I-R group, as determined by reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. By contrast, Bcl-2 associated X protein (Bax) was downregulated by the 7-mer peptide compared the I-R group. Histological and ultrastructural changes of the rat liver tissue were also compared among the experimental groups. The results of the current study suggest that the 7-mer peptide protected the liver against hepatic I-R injury via suppression of oxygen-derived free radicals and regulation of Bcl-2 and Bax expression, which are involved in the apoptosis of liver cells. The findings of the present study will further the investigation of the 7-mer peptide as an effective therapeutic agent in hepatic I-R injury. PMID:27431272

  4. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice

    PubMed Central

    Hasegawa, Tadashi; Ito, Yoshiya; Wijeweera, Jayanthika; Liu, Jie; Malle, Ernst; Farhood, Anwar; McCuskey, Robert S.; Jaeschke, Hartmut

    2016-01-01

    Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12–24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 ± 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 ± 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers. PMID:17307725

  5. Consumption of Goats’ Milk Protects Mice From Carbon Tetrachloride-Induced Acute Hepatic Injury and Improves the Associated Gut Microbiota Imbalance

    PubMed Central

    Zhang, Jiachao; Wang, Zhaoxia; Huo, Dongxue; Shao, Yuyu

    2018-01-01

    Drugs used to treat liver diseases have serious side effects; it is important to search for safe functional foods with hepatoprotective functions and few side effects. In this study, potential hepatoprotective effects of goats’ milk and cows’ milk on mice with CCl4-induced acute hepatic injury were evaluated. We also elucidated the role of goats’ and cows’ milk on the regulation of CCl4-induced gut microbiota imbalance. In mice with liver damage induced by CCl4, administration of goats’ milk for 7 days prior to injection of CCl4 had beneficial effects on the indicators of liver damage within 1 day: the area of liver necrosis was small; activity of alanine transaminase (ALT) and aspartate transaminase (AST) and expression of the genes CYP2E1 and TNF-α were lower than that of model group of mice. By 7 days after CCl4 injection, there were no significant differences in liver damage indicators (ALT, AST, malondialdehyde, superoxide dismutase, and glutathione) between the goats’ milk group, which continued to receive goats’ milk, and the untreated control group of mice showing that goats’ milk continued to protect against liver damage. Throughout the entire experiment, the community of gut microbes from mice in the goats’ milk treatment was more similar to the untreated control group than to the cows’ milk group and the model group, indicating that intake of goats’ milk prior and post-CCl4 injection effectively prevented and alleviated the intestinal microbial disorder that caused by CCl4 in mice. Our research suggests that goats’ milk could be developed as a potential functional food to prevent/protect against liver injury. PMID:29867999

  6. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity.

    PubMed

    Guo, Yao Xue; Xu, Xue Fei; Zhang, Qi Zhi; Li, Chun; Deng, Ye; Jiang, Pei; He, Lei Yan; Peng, Wen Xing

    2015-01-01

    Co-treatment of isoniazid (INH) and rifampicin (RFP) is well known for clinically apparent liver injury. However, the mechanism of INH/RFP-induced liver injury is controversial. Emerging evidence shows links between inhibition of bile acids transporters and drug-induced liver injury (DILI). The present study investigates whether sodium taurocholate cotransporting polypeptide (NTCP/Ntcp; SLC10A1) and bile salt export pump (BSEP/Bsep; ABCB11) are involved in the anti-tuberculosis medicines induced liver injury. ICR female mice were intragastrically treated with INH (50 or 100 mg/kg), RFP (100 or 200 mg/kg), or the combination of INH/RFP (50 + 100 mg/kg or 100 + 200 mg/kg) for 14 consecutive days. Liver histopathological examination, serum biochemical and liver malondialdehyde tests were evaluated. Apparent histopathological alterations and hepatic oxidative stress showed in INH (100 mg/kg), RFP (200 mg/kg) and their combination group. The hepatoxic effect was also indicated by increased serum biomarkers, such as aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (DBil), total bilirubin (TBil) and total bile acids (TBA). Both doses of INH/RFP administration significantly down-regulated the expression of Ntcp and Bsep in liver. Furthermore, the combination of INH and RFP displayed stronger effect on the expression of Ntcp compared with the corresponding dose of INH or RFP alone. In conclusion, down-regulated expression of hepatic Ntcp and Bsep might play an important role in the development of INH and RFP induced liver injury.

  7. Protection afforded by pre- or post-treatment with 4-phenylbutyrate against liver injury induced by acetaminophen overdose in mice.

    PubMed

    Shimizu, Daisuke; Ishitsuka, Yoichi; Miyata, Keishi; Tomishima, Yoshiro; Kondo, Yuki; Irikura, Mitsuru; Iwawaki, Takao; Oike, Yuichi; Irie, Tetsumi

    2014-09-01

    Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is a widely used analgesic/antipyretic drug with few adverse effects at therapeutic doses; suicidal or unintentional overdose of APAP frequently induces severe hepatotoxicity. To explore a new and effective antidote for APAP hepatotoxicity, this study examined the effects of sodium 4-phenylbutyrate (4-PBA) on liver injury induced by APAP overdose in mice. Liver injury was induced in C57BL/6 male mice by intraperitoneal injection of APAP (400mg/kg). The effects of 4-PBA (100-200mg/kg) treatment at 1h before the APAP injection were evaluated with serum alanine aminotransferase (ALT) and blood ammonia levels, hepatic pathological changes, including histopathology, DNA damage, nitrotyrosine formation, and mRNA or protein expression involved in the development of hepatotoxicity, such as X-box binding protein-1 (XBP1), c-Jun N-terminal kinase (JNK), C/EBP homologous protein (CHOP) and B-cell lymphoma 2 interacting mediator of cell death (Bim). In addition, glutathione depletion and CYP2E1 protein expression, which are measures of the metabolic conversion of APAP to a toxic metabolite, were examined. Furthermore, we examined the effects of post-treatment with 4-PBA against APAP-induced hepatotoxicity in mice. When administered at 1h before APAP injection, 4-PBA significantly prevented the increase in serum ALT and blood ammonia levels, centrilobular necrosis of hepatocytes, DNA fragmentation, and nitrotyrosine formation induced by APAP in mice. 4-PBA also inhibited hepatic Xbp1 mRNA splicing and JNK phosphorylation induced by APAP, but did not suppress CHOP and Bim mRNA and protein expression. In addition, 4-PBA had little effect on hepatic glutathione depletion and CYP2E1 expression, parameters of toxic APAP metabolite production. Post-treatment with 4-PBA administration at 1 or 2h after APAP injection also attenuated the increase in serum ALT and blood ammonia levels and hepatic pathological changes in APAP-induced

  8. Managing injuries of hepatic duct confluence variants after major hepatobiliary surgery: An algorithmic approach

    PubMed Central

    Fragulidis, Georgios; Marinis, Athanasios; Polydorou, Andreas; Konstantinidis, Christos; Anastasopoulos, Georgios; Contis, John; Voros, Dionysios; Smyrniotis, Vassilios

    2008-01-01

    AIM:To investigate injuries of anatomy variants of hepatic duct confluence during hepatobiliary surgery and their impact on morbidity and mortality of these procedures. An algorithmic approach for the management of these injuries is proposed. METHODS: During a 6-year period 234 patients who had undergone major hepatobiliary surgery were retrospectively reviewed in order to study postoperative bile leakage. Diagnostic workup included endoscopic and magnetic retrograde cholangiopancreatography (E/MRCP), scintigraphy and fistulography. RESULTS: Thirty (12.8%) patients who developed postoperative bile leaks were identified. Endoscopic stenting and percutaneous drainage were successful in 23 patients with bile leaks from the liver cut surface. In the rest seven patients with injuries of hepatic duct confluence, biliary variations were recognized and a stepwise therapeutic approach was considered. Conservative management was successful only in 2 patients. Volume of the liver remnant and functional liver reserve as well as local sepsis were used as criteria for either resection of the corresponding liver segment or construction of a biliary-enteric anastomosis. Two deaths occurred in this group of patients with hepatic duct confluence variants (mortality rate 28.5%). CONCLUSION: Management of major biliary fistulae that are disconnected from the mainstream of the biliary tree and related to injury of variants of the hepatic duct confluence is extremely challenging. These patients have a grave prognosis and an early surgical procedure has to be considered. PMID:18494057

  9. Sterile inflammation in acetaminophen-induced liver injury is mediated by Cot/tpl2.

    PubMed

    Sanz-Garcia, Carlos; Ferrer-Mayorga, Gemma; González-Rodríguez, Águeda; Valverde, Angela M; Martín-Duce, Antonio; Velasco-Martín, Juan P; Regadera, Javier; Fernández, Margarita; Alemany, Susana

    2013-05-24

    Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.

  10. Sterile Inflammation in Acetaminophen-induced Liver Injury Is Mediated by Cot/tpl2*

    PubMed Central

    Sanz-Garcia, Carlos; Ferrer-Mayorga, Gemma; González-Rodríguez, Águeda; Valverde, Ángela M.; Martín-Duce, Antonio; Velasco-Martín, Juan P.; Regadera, Javier; Fernández, Margarita; Alemany, Susana

    2013-01-01

    Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms. PMID:23572518

  11. A rare case of hepatic duct injury from blunt abdominal trauma.

    PubMed

    Hasaniya, Nahidh W; Premaratne, Shyamal; Premaratne, Ishani D; McNamara, J Judson

    2013-01-01

    A 25 year-old male was brought to the emergency room following an apparent suicide attempt by jumping from the fourth floor. Patient had a large abdominal laceration in the right upper quadrant (RUQ). CT scan showed a sub-scapular hematoma of the liver. Due to the repeated episodes of hypotension, a laporotomy was performed and the left hepatic artery was ligated while the ductal injury was managed with a Roux-en-Y left hepatic jejunostomy and stent. Bile leakage was resolved post-operatively by day 5 and the patient was discharged home on day 13 after clearance from psychiatry. While non-iatrogenic extrahepatic biliary trauma is rare, a high degree of suspicion is essential, especially in cases like the one discussed in this report. Diagnosis can be difficult in patients undergoing observation.

  12. Protective effect of Curcuma longa L. extract on CCl4-induced acute hepatic stress.

    PubMed

    Lee, Geum-Hwa; Lee, Hwa-Young; Choi, Min-Kyung; Chung, Han-Wool; Kim, Seung-Wook; Chae, Han-Jung

    2017-02-01

    The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl 4 )-induced liver stress model. Acute hepatic stress was induced by a single intraperitoneal injection of CCl 4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl 4 -treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl 4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl 4 -treated group (p < 0.05), leading to a reduced lipid peroxidase level. Our data suggested that CLL extract and curcumin protect the liver from acute CCl 4 -induced injury in a rodent model by suppressing

  13. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.

    PubMed

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A; Jia, Jidong; Zhuang, Hui

    2017-08-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.

  14. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice

    PubMed Central

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A.; Jia, Jidong; Zhuang, Hui

    2017-01-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28–30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation. PMID:28627620

  15. SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy.

    PubMed

    You, Yan; Li, Wan-Zhen; Zhang, Sulin; Hu, Bin; Li, Yue-Xuan; Li, Hai-Dong; Tang, Huan-Huan; Li, Qian-Wen; Guan, Yun-Yun; Liu, Li-Xin; Bao, Wei-Lian; Shen, Xiaoyan

    2018-07-01

    Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. However, the cellular defense mechanisms underlying ALD are not well understood. Recent studies highlighted the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Sorting nexin (SNX)-10 has a regulatory function in endolysosomal trafficking and stabilisation. Here, we investigated the roles of SNX10 in CMA activation and in the pathogenesis of alcohol-induced liver injury and steatosis. Snx10 knockout (Snx10 KO) mice and their wild-type (WT) littermates fed either the Lieber-DeCarli liquid alcohol diet or a control liquid diet, and primary cultured WT and Snx10 KO hepatocytes stimulated with ethanol, were used as in vivo and in vitro ALD models, respectively. Activation of CMA, liver injury parameters, inflammatory cytokines, oxidative stress and lipid metabolism were measured. Compared with WT littermates, Snx10 KO mice exhibited a significant amelioration in ethanol-induced liver injury and hepatic steatosis. Both in vivo and in vitro studies showed that SNX10 deficiency upregulated lysosome-associated membrane protein type 2A (LAMP-2A) expression and CMA activation, which could be reversed by SNX10 overexpression in vitro. LAMP-2A interference confirmed that the upregulation of Nrf2 and AMPK signalling pathways induced by SNX10 deficiency relied on CMA activation. Pull-down assays revealed an interaction between SNX10 and cathepsin A (CTSA), a key enzyme involved in LAMP-2A degradation. Deficiency in SNX10 inhibited CTSA maturation and increased the stability of LAMP-2A, resulting in an increase in CMA activity. SNX10 controls CMA activity by mediating CTSA maturation, and, thus, has an essential role in alcohol-induced liver injury and steatosis. Our results provide evidence for SNX10 as a potential promising therapeutic target for preventing or ameliorating liver injury in ALD. Alcoholic liver disease is a major cause of morbidity and

  16. Protective effect of chitosan from Sepia kobiensis (Hoyle 1885) cuttlebone against CCl4 induced hepatic injury.

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2014-04-01

    Carbon tetrachloride (CCl4) is a potent hepatotoxic agent causing hepatic necrosis and it is widely used in animal models for induction of acute and chronic liver damage. The antioxidative and hepatoprotective effects of chitosan from Sepia kobiensis against CCl4 induced liver toxicity in Wistar rats was studied by measuring the activity of lipid peroxidation (TBARS, lipid hydroperoxides), non enzymatic antioxidant (GSH), antioxidant enzyme activities (SOD, CAT and GPx), liver marker enzymes (ALT and AST), lipid profile (FFA, TG, cholesterol and HDL cholesterol) and histopathological changes. Rats treated with chitosan against CCl4 toxicity showed significantly decreased levels of ALT and AST activities, total cholesterol, triglyceride and free fatty acid in plasma and tissue. Whereas the treatment with chitosan along with CCl4 showed markedly increased level of hepatic and circulatory in SOD, CAT, GPx and reduced glutathione and decreased the malondialdehyde level. Histopathological observations proved the marked hepatoprotective effect of chitosan. The CCl4 induced alterations in circulatory and hepatic antioxidant defense system were normalized by chitosan and it could be concluded that the hepatoprotective effect of chitosan may be due to its antioxidant and antilipidemic properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.

    PubMed

    de Castro, Mauro Robson Torres; Ferreira, Ana Paula de Oliveira; Busanello, Guilherme Lago; da Silva, Luís Roberto Hart; da Silveira Junior, Mauro Eduardo Porto; Fiorin, Fernando da Silva; Arrifano, Gabriela; Crespo-López, Maria Elena; Barcelos, Rômulo Pillon; Cuevas, María J; Bresciani, Guilherme; González-Gallego, Javier; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2017-09-01

    An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as

  18. Effects of OPC-6535 on lipopolysaccharide-induced acute liver injury in the rat: involvement of superoxide and tumor necrosis factor-alpha from hepatic macrophages.

    PubMed

    Hasegawa, Tadashi; Sakurai, Kazushi; Kambayashi, Yasuhiro; Saniabadi, Abby R; Nagamoto, Hisashi; Tsukada, Katsuhiko; Takahashi, Atsushi; Kuwano, Hiroyuki; Nakano, Minoru

    2003-11-01

    The objective of this study was to investigate the effects of OPC-6535 on Propionibacterium acnes-primed and lipopolysaccharide-induced liver injury in the rat. P. acnes was administered intravenously to the rat at 16 mg/kg 7 days before the experiments. In liver perfusion experiments, lipopolysaccharide was mixed in perfusion buffer at 2.5 microg/mL. The chemiluminescence method and histochemical reduction of nitro blue tetrazolium were used for detecting superoxide. Release of cytokines into the perfusate was examined. In in vivo experiments, lipopolysaccharide was administered intravenously to the rat at 200 microg/kg. Concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and cytokines were determined in the plasma, and myeloperoxidase activity was measured in the liver tissue. OPC-6535 was given intravenously at 1 mg/kg 30 minutes before lipopolysaccharide challenge, and was then, in perfusion experiments, added to the buffer at 10 micromol/L. In perfusion experiments, P. acnes and lipopolysaccharide caused dramatic production of superoxide, tumor necrosis factor-alpha (TNF-alpha) and growth-related oncogene/cytokine-induced neutrophil chemoattractant-1 (GRO/CINC-1). Superoxide was mainly from hepatic macrophages. Treatment with OPC-6535 suppressed superoxide and TNF-alpha but did not affect GRO/CINC-1. In in vivo experiments, P. acnes and lipopolysaccharide increased the level of TNF-alpha, GRO/CINC-1, AST and ALT in the plasma, and myeloperoxidase activity in the liver. OPC-6535 reduced TNF-alpha, AST, and ALT, but did not affect GRO/CINC-1 or myeloperoxidase. Attenuation of liver injury by OPC-6535 is believed to be due to its inhibitory effects on superoxide and TNF-alpha production by hepatic macrophages in P. acnes- and lipopolysaccharide-treated rats.

  19. Apocynum venetum Attenuates Acetaminophen-Induced Liver Injury in Mice.

    PubMed

    Xie, Wenyan; Chen, Chen; Jiang, Zhihui; Wang, Jian; Melzig, Matthias F; Zhang, Xiaoying

    2015-01-01

    Apocynum venetum L. (A. venetum) has long been used in oriental folk medicine for the treatment of some liver diseases; however, the underlying mechanisms remain to be fully elucidated. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. In this study, we investigated the potential protective effect of A. venetum leaf extract (ALE) against APAP-induced hepatotoxicity. Mice were intragastrically administered with ALE once daily for 3 consecutive days prior to receiving a single intraperitoneal injection of APAP. The APAP group showed severe liver injury characterized by the noticeable fluctuations in the following parameters: serum aminotransferases; hepatic malondialdehyde (MDA), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione (GSH). These liver damages induced by APAP were significantly attenuated by ALE pretreatments. A collective analysis of histopathological examination, DNA laddering and western blot for caspase-3 and cytochrome c indicated that the ALE is also capable of preventing APAP-induced hepatocyte death. Hyperoside, isoquercitrin and their derivatives have been identified as the major components of ALE using HPLC-MS/MS. Taken together, the A. venetum possesses hepatoprotective effects partially due to its anti-oxidant action.

  20. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice

    PubMed Central

    Niu, Liman; Cui, Xueling; Qi, Yan; Xie, Dongxue; Wu, Qian; Chen, Xinxin; Ge, Jingyan; Liu, Zhonghui

    2016-01-01

    Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF

  1. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    PubMed

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  2. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy.

    PubMed

    Abdelaziz, Rania R; Elkashef, Wagdi F; Said, Eman

    2015-07-01

    Hepatic encephalopathy is a serious neuropsychiatric disorder usually affecting either acute or chronic hepatic failure patients. Hepatic encephalopathy was replicated in a validated rat model to assess the potential protective efficacy of tranilast against experimentally induced hepatic encephalopathy. Thioacetamide injection significantly impaired hepatic synthetic, metabolic and excretory functions with significant increase in serum NO, IL-6 and IL-13 levels and negative shift in the oxidant/antioxidant balance. Most importantly, there was a significant increase in serum ammonia levels with significant astrocytes' swelling and vacuolization; hallmarks of hepatic encephalopathy. Tranilast administration (300 mg/kg, orally) for 15 days significantly improved hepatic functions, restored oxidant/antioxidant balance, reduced serum NO, IL-6 and IL-13 levels. Meanwhile, serum ammonia significantly declined with significant reduction in astrocytes' swelling and vacuolization. Several mechanisms can be implicated in the observed hepato- and neuroprotective potentials of tranilast, such as its anti-inflammatory potential, its antioxidant potential as well as its immunomodulatory properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mitogen-activated Protein Kinase Phosphatase (Mkp)-1 Protects Mice against Acetaminophen-induced Hepatic Injury

    PubMed Central

    Wancket, Lyn M.; Meng, Xiaomei; Rogers, Lynette K.; Liu, Yusen

    2012-01-01

    c-Jun N-terminal kinase (JNK) activation promotes hepatocyte death during acetaminophen overdose, a common cause of drug-induced liver failure. While mitogen-activated protein kinase (MAPK) phosphatase (Mkp)-1 is a critical negative regulator of JNK MAPK, little is known about the role of Mkp-1 during hepatotoxicity. In this study, we evaluated the role of Mkp-1 during acute acetaminophen toxicity. Mkp-1+/+ and Mkp-1−/− mice were dosed ip with vehicle or acetaminophen at 300 mg/kg (for mechanistic studies) or 400 mg/kg (for survival studies). Tissues were collected 1–6 hr post 300 mg/kg dosing to assess glutathione levels, organ damage, and MAPK activation. Mkp-1−/− mice exhibited more rapid plasma clearance of acetaminophen than did Mkp-1+/+ mice, indicated by a quicker decline of plasma acetaminophen level. Moreover, Mkp-1−/− mice suffered more severe liver injury, indicated by higher plasma alanine transaminase activity and more extensive centrilobular apoptosis and necrosis. Hepatic JNK activity in Mkp-1−/− mice was higher than in Mkp-1+/+ mice. Finally, Mkp-1−/− mice displayed a lower overall survival rate and shorter median survival time after dosing with 400 mg/kg acetaminophen. The more severe phenotype exhibited by Mkp-1−/− mice indicates that Mkp-1 plays a protective role during acute acetaminophen overdose, potentially through regulation of JNK. PMID:22623522

  4. ALLYLISOPROPYLACETAMIDE INDUCES RAT HEPATIC ORNITHINE DECARBOXYLASE

    EPA Science Inventory

    In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). y either the oral or the subcutaneous routes, AIA produced a long-lasting induction (30 to 4O hours) of hepatic ODC activity. hree analogs o...

  5. Computed tomography arterial portography for assessment of portal vein injury after blunt hepatic trauma

    PubMed Central

    Fu, Chen-Ju; Wong, Yon-Cheong; Tsang, Yuk-Ming; Wang, Li-Jen; Chen, Huan-Wu; Ku, Yi-Kang; Wu, Cheng-Hsien; Chen, Huan-Wen; Kang, Shih-Ching

    2015-01-01

    PURPOSE Intrahepatic portal vein injuries secondary to blunt abdominal trauma are difficult to diagnose and can result in insidious bleeding. We aimed to compare computed tomography arterial portography (CTAP), reperfusion CTAP (rCTAP), and conventional computed tomography (CT) for diagnosing portal vein injuries after blunt hepatic trauma. METHODS Patients with blunt hepatic trauma, who were eligible for nonoperative management, underwent CTAP, rCTAP, and CT. The number and size of perfusion defects observed using the three methods were compared. RESULTS A total of 13 patients (seven males/six females) with a mean age of 34.5±14.1 years were included in the study. A total of 36 hepatic segments had perfusion defects on rCTAP and CT, while there were 47 hepatic segments with perfusion defects on CTAP. The size of perfusion defects on CT (239 cm3; interquartile range [IQR]: 129.5, 309.5) and rCTAP (238 cm3; IQR: 129.5, 310.5) were significantly smaller compared with CTAP (291 cm3; IQR: 136, 371) (both, P = 0.002). CONCLUSION Perfusion defects measured by CTAP were significantly greater than those determined by either rCTAP or CT in cases of blunt hepatic trauma. This finding suggests that CTAP is superior to rCTAP and CT in evaluating portal vein injuries after blunt liver trauma. PMID:26268303

  6. Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats.

    PubMed

    El-Beshbishy, Hesham A; Tork, Ola M; El-Bab, Mohamed F; Autifi, Mohamed A

    2011-04-01

    Green tea polyphenols (GTP) is considered to have protective effects against several diseases. The hepatotoxicity of azathioprine (AZA) has been reported and was found to be associated with oxidative damage. This study was conducted to evaluate the role of GTP to protect against AZA-induced liver injury in rats. AZA was administered i.p. in a single dose (50mgkg(-1)) to adult male rats. AZA-intoxicated rats were orally administered GTP (either 100mgkg(-1)day(-1) or 300mgkg(-1)day(-1), for 21 consecutive days, started 7 days prior AZA injection). AZA administration to rats resulted in significant elevation of serum transaminases (sALT and sAST), alkaline phosphatase (sALP), depletion of hepatic reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx), accumulation of oxidized glutathione (GSSG), elevation of lipid peroxides (LPO) expressed as malondialdehyde (MDA), reduction of the hepatic total antioxidant activity (TAA), decrease serum total proteins and elevation of liver protein carbonyl content. Significant rises in liver tumor necrosis factor-alpha (TNF-α) and caspase-3 levels were noticed in AZA-intoxicated rats. Treatment of the AZA-intoxicated rats with GTP significantly prevented the elevations of sALT, sAST and sALP, inhibited depletion of hepatic GSH, GPx, CAT and GSSG and inhibited MDA accumulation. Furthermore, GTP had normalized serum total proteins and hepatic TAA, CAT, TNF-α and caspase-3 levels of AZA-intoxicated rats. In addition, GTP prevented the AZA-induced apoptosis and liver injury as indicated by the liver histopathological analysis. The linear regression analysis showed significant correlation in either AZA-GTP100 or AZA-GTP300 groups between TNF-α and each of serum ALT, AST, ALP and total proteins and liver TAA, GPX, CAT, GSH, GSSG, MDA and caspase-3 levels. However, liver TNF-α produced non-significant correlation with the serum total proteins in both AZA-GTP100 and AZA-GTP300 groups. In conclusion, our data indicate

  7. Drug-induced liver injury: Do we know everything?

    PubMed Central

    Alempijevic, Tamara; Zec, Simon; Milosavljevic, Tomica

    2017-01-01

    Interest in drug-induced liver injury (DILI) has dramatically increased over the past decade, and it has become a hot topic for clinicians, academics, pharmaceutical companies and regulatory bodies. By investigating the current state of the art, the latest scientific findings, controversies, and guidelines, this review will attempt to answer the question: Do we know everything? Since the first descriptions of hepatotoxicity over 70 years ago, more than 1000 drugs have been identified to date, however, much of our knowledge of diagnostic and pathophysiologic principles remains unchanged. Clinically ranging from asymptomatic transaminitis and acute or chronic hepatitis, to acute liver failure, DILI remains a leading causes of emergent liver transplant. The consumption of unregulated herbal and dietary supplements has introduced new challenges in epidemiological assessment and clinician management. As such, numerous registries have been created, including the United States Drug-Induced Liver Injury Network, to further our understanding of all aspects of DILI. The launch of LiverTox and other online hepatotoxicity resources has increased our awareness of DILI. In 2013, the first guidelines for the diagnosis and management of DILI, were offered by the Practice Parameters Committee of the American College of Gastroenterology, and along with the identification of risk factors and predictors of injury, novel mechanisms of injury, refined causality assessment tools, and targeted treatment options have come to define the current state of the art, however, gaps in our knowledge still undoubtedly remain. PMID:28443154

  8. Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice.

    PubMed

    Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang

    2016-10-01

    Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. Copyright © 2016 by the Research Society on Alcoholism.

  9. Dietary fisetin supplementation protects against alcohol-induced liver injury in mice

    PubMed Central

    Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang

    2016-01-01

    Background Overproduction of reactive oxygen species (ROS) is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary inverventions for multiple diseases including ALD. The objective of the present study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. Methods C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol diet for four weeks with or without fisetin supplementation at 10 mg/kg/d. Results Alcohol feeding induced lipid accumulation in the liver and increased plasma ALT and AST activities, which were attenuated by fisetin suplementation. The ethanol concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin suplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin suplementation remarkably reduced hepatic NADPH oxidase 4 (NOX4) levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal (4HNE) levels after alcohol exposure. Alcohol-induced apoptosis and upregulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin suplementation attenuated alcohol-induced hepatic streatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. Conclusion The present study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating ethanol clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. PMID:27575873

  10. Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine

    PubMed Central

    Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N.; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C.

    2015-01-01

    Background Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Methods Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. Results The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. Conclusions This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides. PMID:25978364

  11. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    PubMed

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  12. Microparticles Mediate Hepatic Ischemia-Reperfusion Injury and Are the Targets of Diannexin (ASP8597)

    PubMed Central

    Wong, Heng Jian; Croft, Kevin; Mori, Trevor; Farrell, Geoffrey C.

    2014-01-01

    Background & Aims Ischemia–reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemic reperfusion, and whether such microparticles have pro-inflammatory, platelet-activating and pro-injurious effects that could contribute to IRI pathogenesis. Methods C57BL6 mice underwent 60 min of partial hepatic ischemia followed by 15 min–24 hrs of reperfusion. We collected blood and liver samples, isolated circulating microparticles, and determined protein and lipid content. To establish mechanism for microparticle production, we subjected murine primary hepatocytes to hypoxia-reoxygenation. Because microparticles express everted phosphatidylserine residues that are the target of annexin V, we analyzed the effects of an annexin V-homodimer (Diannexin or ASP8597) on post-ischemia microparticle production and function. Results Microparticles were detected in the circulation 15–30 min after post-ischemic reperfusion, and contained markers of SECs, platelets, natural killer T cells, and CD8+ cells; 4 hrs later, they contained markers of macrophages. Microparticles contained F2-isoprostanes, indicating oxidative damage to membrane lipids. Injection of mice with TNF-α increased microparticle formation, whereas Diannexin substantially reduced microparticle release and prevented IRI. Hypoxia-re-oxygenation generated microparticles from primary hepatocytes by processes that involved oxidative stress. Exposing cultured hepatocytes to preparations of microparticles isolated from the circulation during IRI caused injury involving mitochondrial membrane permeability transition. Microparticles also activated platelets and induced neutrophil migration in vitro. The inflammatory

  13. Hepatitis C Virus Induces the Mitochondrial Translocation of Parkin and Subsequent Mitophagy

    PubMed Central

    Kim, Seong-Jun; Syed, Gulam H.; Siddiqui, Aleem

    2013-01-01

    Hepatitis C Virus (HCV) induces intracellular events that trigger mitochondrial dysfunction and promote host metabolic alterations. Here, we investigated selective autophagic degradation of mitochondria (mitophagy) in HCV-infected cells. HCV infection stimulated Parkin and PINK1 gene expression, induced perinuclear clustering of mitochondria, and promoted mitochondrial translocation of Parkin, an initial event in mitophagy. Liver tissues from chronic HCV patients also exhibited notable levels of Parkin induction. Using multiple strategies involving confocal and electron microscopy, we demonstrated that HCV-infected cells display greater number of mitophagosomes and mitophagolysosomes compared to uninfected cells. HCV-induced mitophagy was evidenced by the colocalization of LC3 puncta with Parkin-associated mitochondria and lysosomes. Ultrastructural analysis by electron microscopy and immunoelectron microscopy also displayed engulfment of damaged mitochondria in double membrane vesicles in HCV-infected cells. The HCV-induced mitophagy occurred irrespective of genotypic differences. Silencing Parkin and PINK1 hindered HCV replication suggesting the functional relevance of mitophagy in HCV propagation. HCV-mediated decline of mitochondrial complex I enzyme activity was rescued by chemical inhibition of mitophagy or by Parkin silencing. Overall our results suggest that HCV induces Parkin-dependent mitophagy, which may have significant contribution in mitochondrial liver injury associated with chronic hepatitis C. PMID:23555273

  14. The effects of epidural bupivacaine on ischemia/reperfusion-induced liver injury.

    PubMed

    Sarikus, Z; Bedirli, N; Yilmaz, G; Bagriacik, U; Bozkirli, F

    2016-01-01

    Several animal studies showed beneficial effects of thoracic epidural anesthesia (TEA) in hippocampal, mesenteric and myocardial IR injury (2-4). In this study, we investigated the effects of epidural bupivacaine on hepatic ischemia reperfusion injury in a rat model. Eighteen rats were randomly divided into three groups each containing 6 animals. The rats in Group C had sham laparotomy. The rats in the Group S were subjected to liver IR through laparotomy and 20 mcg/kg/h 0.9% NaCl was administered to these rats via an epidural catheter. The rats in the Group B were subjected to liver IR and were given 20 mcg/kg/h bupivacaine via an epidural catheter. Liver tissue was harvested for MDA analysis, apoptosis and histopathological examination after 60 minutes of ischemia followed by 360 minutes of reperfusion. Blood samples were also collected for TNF-α, IL-1β, AST and ALT analysis. The AST and ALT levels were higher in ischemia and reperfusion group, which received only normal saline via the thoracic epidural catheter, compared to the sham group. In the ischemia reperfusion group, which received bupivacaine via the epidural catheter, IL-1 levels were significantly higher than in the other groups. TNF-α levels were higher in the Groups S and B compared to the sham group. Bupivacaine administration induced apoptosis in all animals. These results showed that thoracic epidural bupivacaine was not a suitable agent for preventing inflammatory response and lipid peroxidation in experimental hepatic IR injury in rats. Moreover, epidural bupivacaine triggered apoptosis in hepatocytes. Further research is needed as there are no studies in literature investigate the effects of epidural bupivacaine on hepatic ischemia reperfusion injury (Tab. 3, Fig. 3, Ref. 34).

  15. The protective effect of huperzine A against hepatic ischemia reperfusion injury in mice.

    PubMed

    Yang, Y; Yang, J; Jiang, Q

    2014-06-01

    Nowadays, hepatic ischemia reperfusion (HI/R) injury is regarded as a serious concern in clinical practices. Huperzine A (HupA) is an alkaloid isolated from the Chinese folk medicine huperzia serrate, which has possessed diverse pharmacological actions. A mouse model of HI/R was caused by clamping the hepatic artery, the hepatoportal vein, and the bile duct with a vascular clamp for 30 minutes followed by reperfusion for 6 hours under anesthesia. The sham group experienced the identical procedure without hepatic ischemia. The HupA group received an injection into the tail vein 5 minutes prior to HI/R at the doses of 167 and 500 μg/kg. The vehicle group was injected with physiological saline instead of HupA. The liver function was assessed by determinations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA), and glutathione (GSH) were also measured spectrophotometrically. In addition, the activities of hepatic inflammatory mediators such as nuclear factor kappa B (NF-κB) p65, tumor necrosis factors-α (TNF-α, interleukin-1β (IL-1β) and IL-6 were also measured. Furthermore, the apoptotic damage was evaluated by measuring caspase-3 activity in hepatic tissues. Treatment with HupA in mice at the doses of 167 and 500 μg/kg remarkably reduced serum ALT and AST activities in HupA-treated ischemic mice. Furthermore, HupA treatment could enhance the activities of hepatic tissue SOD, CAT, and GSH but decrease MDA tissue content. The activities of inflammatory cytokines including NF-κB p65, TNF-α, IL-1β and IL-6 were all decreased in ischemic mice treated with HupA. Colorimetric test results illustrated that a marked reduction of caspase-3 activity was found in the HupA-treated group compared with the vehicle group. Our present data suggest that HupA has a protective role against HI/R injury of mice and antioxidative, anti-inflammatory, and antiapoptotic

  16. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4.

    PubMed

    Lin, Yan; Yu, Le-Xing; Yan, He-Xin; Yang, Wen; Tang, Liang; Zhang, Hui-Lu; Liu, Qiong; Zou, Shan-Shan; He, Ya-Qin; Wang, Chao; Wu, Meng-Chao; Wang, Hong-Yang

    2012-09-01

    Robust clinical and epidemiologic data support the role of inflammation as a key player in hepatocellular carcinoma (HCC) development. Our previous data showed that gut-derived lipopolysaccharide (LPS) promote HCC development by activating Toll-like receptor 4 (TLR4) expressed on myeloid-derived cells. However, the effects of gut-derived LPS on other types of liver injury models are yet to be studied. The purpose of this study was to determine the importance of gut-derived LPS and TLR4 signaling in a T-cell-mediated hepatitis-Con A-induced hepatitis model, which mimic the viral hepatitis. Reduction of endotoxin using antibiotics regimen or genetic ablation of TLR4 in mice significantly alleviate Con A-induced liver injury by inhibiting the infiltration of T lymphocytes into the liver and the activation of CD4(+) T lymphocytes as well as the production of T helper 1 cytokines; in contrast, exogenous LPS can promote Con A-induced hepatitis and CD4(+) T cells activation in vivo and in vitro. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored Con A-induced liver injury and inflammation, indicating the major cell target of LPS. In addition, TLR4 may positively regulate the target hepatocellular apoptosis via the perforin/granzyme B pathway. These data suggest that gut-derived LPS and TLR4 play important positive roles in Con A-induced hepatitis and modulation of the gut microbiotia may represent a new avenue for therapeutic intervention to treat acute hepatitis induced by hepatitis virus infection, thus to prevent hepatocellular carcinoma.

  17. Dietary choline and folate relationships with serum hepatic inflammatory injury markers in Taiwanese adults.

    PubMed

    Cheng, Chin-Pao; Chen, Chien-Hung; Kuo, Chang-Sheng; Kuo, Hsing-Tao; Huang, Kuang-Ta; Shen, Yu-Li; Chang, Chin-Hao; Huang, Rwei Fen S

    The relationships of dietary choline and folate intake with hepatic function have yet to be established in the Taiwanese population. We investigated the associations of choline and folate intake with hepatic inflammatory injury in Taiwanese adults. Blood samples and data on dietary choline components and folate intake from 548 Taiwanese adults without pathological liver disease were collected. Dietary intake was derived using a semiquantitative food-frequency questionnaire. Serum liver injury markers of alanine transaminase, aspartate transaminase, and hepatitis viral infection were measured. Elevated serum hepatic injury markers (>40 U/L) were associated with low folate and free choline intake (p<0.05). Folate intake was the most significant dietary determinant of serum aspartate transaminase concentration (beta=-0.05, p=0.04), followed by free choline intake (beta=-0.249, p=0.055). Folate intake exceeding the median level (268 μg/d) was correlated with a reduced rate of hepatitis viral infection (p=0.032) and with normalized serum aspartate transaminase (odds ratio [OR]=0.998, 95% confidence interval [CI]=0.996-1, p=0.042) and alanine transaminase (OR=0.998, 95% CI=0.007-1, p=0.019). Total choline intake exceeding the median level (233 mg/d) was associated with normalized serum aspartate transaminase (OR=0.518, 95% CI=0.360-0.745, p=0.018). The newly established relationships of dietary intake of total choline and folate with normalized hepatic inflammatory markers can guide the development of dietary choline and folate intake recommendations for Taiwanese adults.

  18. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism.

    PubMed

    Wilhelm, Annika; Aldridge, Victoria; Haldar, Debashis; Naylor, Amy J; Weston, Christopher J; Hedegaard, Ditte; Garg, Abhilok; Fear, Janine; Reynolds, Gary M; Croft, Adam P; Henderson, Neil C; Buckley, Christopher D; Newsome, Philip N

    2016-07-01

    CD248 (endosialin) is a stromal cell marker expressed on fibroblasts and pericytes. During liver injury, myofibroblasts are the main source of fibrotic matrix. To determine the role of CD248 in the development of liver fibrosis in the rodent and human setting. CD248 expression was studied by immunostaining and quantitative PCR in both normal and diseased human and murine liver tissue and isolated hepatic stellate cells (HSCs). Hepatic fibrosis was induced in CD248(-/-) and wild-type controls with carbon tetrachloride (CCl4) treatment. Expression of CD248 was seen in normal liver of humans and mice but was significantly increased in liver injury using both immunostaining and gene expression assays. CD248 was co-expressed with a range of fibroblast/HSC markers including desmin, vimentin and α-smooth muscle actin (α-SMA) in murine and human liver sections. CD248 expression was restricted to isolated primary murine and human HSC. Collagen deposition and α-SMA expression, but not inflammation and neoangiogenesis, was reduced in CD248(-/-) mice compared with wild-type mice after CCl4 treatment. Isolated HSC from wild-type and CD248(-/-) mice expressed platelet-derived growth factor receptor α (PDGFR-α) and PDGFR-β at similar levels. As expected, PDGF-BB stimulation induced proliferation of wild-type HSC, whereas CD248(-/-) HSC did not demonstrate a proliferative response to PDGF-BB. Abrogated PDGF signalling in CD248(-/-) HSC was confirmed by significantly reduced c-fos expression in CD248(-/-) HSC compared with wild-type HSC. Our data show that deletion of CD248 reduces susceptibility to liver fibrosis via an effect on PDGF signalling, making it an attractive clinical target for the treatment of liver injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Cordyceps sinensis prevents apoptosis in mouse liver with D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Cheng, Yu-Jung; Cheng, Shiu-Min; Teng, Yi-Hsien; Shyu, Woei-Cherng; Chen, Hsiu-Ling; Lee, Shin-Da

    2014-01-01

    Cordyceps sinensis (C. sinensis) has long been considered to be an herbal medicine and has been used in the treatment of various inflammatory diseases. The present study examined the cytoprotective properties of C. sinensis on D(+)-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were randomly assigned into control, GalN/LPS, CS 20 mg and CS 40 mg groups (C. sinensis, oral gavage, five days/week, four weeks). After receiving saline or C. sinensis, mice were intraperitoneally given GalN (800 mg/kg)/LPS (10 μg/kg). The effects of C. sinensis on TNF-α, IL-10, AST, NO, SOD, and apoptoticrelated proteins after the onset of endotoxin intoxication were determined. Data demonstrated that GalN/LPS increased hepatocyte degeneration, circulating AST, TNF-α, IL-10, and hepatic apoptosis and caspase activity. C. sinensis pre-treatment reduced AST, TNF-α, and NO and increased IL-10 and SOD in GalN/LPS induced fulminant hepatic failure. C. sinensis attenuated the apoptosis of hepatocytes, as evidenced by the TUNEL and capase-3, 6 activity analyses. In summary, C. sinensis alleviates GalN/LPS-induced liver injury by modulating the cytokine response and inhibiting apoptosis.

  20. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  1. Concomitant injuries are an important determinant of outcome of high-grade blunt hepatic trauma.

    PubMed

    Schnüriger, B; Inderbitzin, D; Schafer, M; Kickuth, R; Exadaktylos, A; Candinas, D

    2009-01-01

    Little is known about the clinical importance of concomitant injuries in polytraumatized patients with high-grade blunt liver injury. A retrospective single-centre study was performed to investigate the safety of non-operative management of liver injury and the impact of concomitant intra- and extra-abdominal injuries on clinical outcome. Some 183 patients with blunt liver injury were admitted to Berne University Hospital, Switzerland, between January 2000 and December 2006. Grade 3-5 injuries were considered to be high grade. Immediate laparotomy was required by 35 patients (19.1 per cent), owing to extrahepatic intra-abdominal injury (splenic and vascular injuries, perforations) in 21 cases. The mortality rate was 16.9 per cent; 22 of the 31 deaths were due to concomitant lesions. Of 81 patients with high-grade liver injury, 63 (78 per cent) were managed without surgery; liver-related and extra-abdominal complication rates in these patients were 11 and 17 per cent respectively. Grades 4 and 5 liver injury were associated with hepatic-related and extra-abdominal complications. Concomitant injuries are a major determinant of outcome in patients with blunt hepatic injury and should be given high priority by trauma surgeons. An algorithm for the management of blunt liver injury is proposed. Copyright (c) 2008 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  2. Quercetin ameliorates liver injury induced with Tripterygium glycosides by reducing oxidative stress and inflammation.

    PubMed

    Wang, Junming; Miao, Mingsan; Zhang, Yueyue; Liu, Ruixin; Li, Xaobing; Cui, Ying; Qu, Lingbo

    2015-06-01

    Quercetin (Que) is one of main compounds in Lysimachia christinae Hance (Christina loosestrife), and has both medicinal and nutritional value. Glycosides from Tripterygium wilfordii Hook.f. (léi gōng téng [the thunder duke vine]; TG) have diverse and broad bioactivities but with a high incidence of liver injury. Our previous study reported on the hepatoprotective properties of an ethanol extract from L. christinae against TG-induced liver injury in mice. This research is designed to observe, for the first time, the possible protective properties of the compound Que against TG-induced liver injury, and the underlying mechanisms that are involved in oxidative stress and anti-inflammation. The results indicated that TG caused excessive elevation in serum levels of alanine/aspartate transaminase (ALT/AST), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT), and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α), as well as hepatic lipid peroxidation (all P < 0.01). On the other hand, following TG exposure, we observed significantly reduced levels of biomarkers, including hepatic glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and the anti-inflammatory cytokine interleukin (IL)-10, as well as the enzyme activity and mRNA expression of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) (all P < 0.01). Nevertheless, all of these alterations were reversed by the pre-administration of Que or the drug bifendate (positive control) for 7 consecutive days. Therefore, this study suggests that Que ameliorates TG-induced acute liver injury, probably through its ability to reduce oxidative stress and its anti-inflammatory properties.

  3. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV. Glucuronidation.

    PubMed

    Griffeth, L K; Rosen, G M; Rauckman, E J

    1985-01-01

    A previously validated small mammal trauma model, hind-limb ischemia secondary to infrarenal aortic ligation in the rat, was utilized to investigate the effects of traumatic injury on hepatic glucuronidation activity. As was previously observed with hepatic oxidative drug metabolism, model trauma resulted in a significant decrease in the in vivo glucuronidation of chloramphenicol, with a 23% drop in clearance of this drug. The effect on in vivo pharmacokinetics appeared to result from a complex interaction between trauma's differential influences on conjugating enzyme(s), deconjugating enzyme(s), and hepatic UDP-glucuronic acid levels, as well as the relative physiological importance of these variables. Hepatic UDP-glucuronyltransferase activities towards both p-nitrophenol and chloramphenicol were elevated (44-54%) after model injury when measured in native hepatic microsomes. However, microsomes which had been "activated" by treatment with Triton X-100 showed no significant difference between control and traumatized animals. Serum beta-glucuronidase activities were elevated by 58%, while hepatic beta-glucuronidase rose by about 16%. Nevertheless, in vivo deconjugation showed no significant change. Model trauma also resulted in a 46% decrease in hepatic UDP-glucuronic acid content. Thus, the observed post-traumatic depression of in vivo chloramphenicol glucuronidation could be due either to a diminished availability of a necessary cofactor (UDP-glucuronic acid) or to an alteration in enzyme kinetics or function in vivo.

  4. Carvedilol Improves Inflammatory Response, Oxidative Stress and Fibrosis in the Alcohol-Induced Liver Injury in Rats by Regulating Kuppfer Cells and Hepatic Stellate Cells

    PubMed Central

    Leitão, Renata Ferreira de Carvalho; Brito, Gerly Anne de Castro; Miguel, Emilio de Castro; Guedes, Paulo Marcos Matta; de Araújo, Aurigena Antunes

    2016-01-01

    -α, procollagen type I (PCI), procollagen type III (PCIII), and NF-κB were decreased in the alcohol-CARV 5 mg/kg group relative to the alcohol-only group. Conclusions CARV can reduce the stress oxidative, inflammatory response and fibrosis in ethanol-induced liver injury in a rat model by downregulating signalling of Kuppfer cells and hepatic stellate cells (HSCs) through suppression of inflammatory cytokines. PMID:26891124

  5. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  6. Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats.

    PubMed

    Lu, Kuan-Hung; Weng, Ching-Yi; Chen, Wei-Cheng; Sheen, Lee-Yan

    2017-07-01

    Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng ( Panax ginseng ), American ginseng ( Panax quinquefolius ), lotus seed ( Nelumbo nucifera ), and lily bulb ( Lilium longiflorum ). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride (CCl 4 )-induced liver injury in rats. We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1 st wk of treatment, rats were administered 20% CCl 4 (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in CCl 4 -treated rats. Moreover, CCl 4 -induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S -transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited CCl 4 -induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that CCl 4 -triggered activation of hepatic stellate cells was reduced. These findings demonstrate that GE improves CCl 4 -induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

  7. Isofraxidin, a coumarin component improves high-fat diet induced hepatic lipid homeostasis disorder and macrophage inflammation in mice.

    PubMed

    Li, Jian; Li, Xiaofei; Li, Zhike; Zhang, Lu; Liu, Yonggang; Ding, Hong; Yin, Shanye

    2017-08-01

    Isofraxidin (IF) is a coumarin compound produced in the functional foods Siberian ginseng and Apium graveolens. The first objective of this study was to investigate the protective effects and putative methods of IF in combating lipotoxicity in vitro and in vivo. Oleic acid was used to induce lipid turbulence in human hepatoma cells (HepG2). Alterations in triglyceride metabolism, inflammation and oxidative status were monitored. Results show that IF mainly reduced triglyceride accumulation, TNF-α release and ROS activation in metabolic disordered cells. Next, a high-fat diet, which induced a non-alcoholic fatty liver disease, was used to evaluate the therapeutic action of IF. Our results show that treatment with IF significantly inhibited the high-fat diet-induced elevation in body weight, liver weight, lipid metabolism (TG, TC and HDL-C) and hepatic injury in mice. In biochemical terms, treatment with IF resulted in enhanced phosphorylation of AMPKα and ACC, as well as reduced hepatic expression of FAS and HMGC, suggesting that lipogenesis was compromised. We also found robust evidence that treatment with IF significantly depleted infiltrating inflammatory cells (F4/80 + Kupffer cells and CD68 + macrophages) and inflammatory cytokine release (TNFα and IL-6). Moreover, the anti-inflammatory activity in IF-treated hepatic tissue correlated with down-regulation of TLR4 expression and NF-κB transcription. In sum, these results suggest that IF might play a protective role against lipid metabolism disorder induced by a high-fat diet via inhibition of lipid production and inflammation in the liver.

  8. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    PubMed

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats

    PubMed Central

    Milton Prabu, S.; Muthumani, M.; Shagirtha, K.

    2012-01-01

    The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats. PMID:23961183

  10. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats.

    PubMed

    Milton Prabu, S; Muthumani, M; Shagirtha, K

    2012-04-01

    The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.

  11. Attenuation of CCl4-Induced Hepatic Fibrosis in Mice by Vaccinating against TGF-β1

    PubMed Central

    Li, Shuang; Lv, Yifei; Su, Houqiang; Jiang, Huiping; Hao, Zhiming

    2013-01-01

    Transforming growth factor β1 (TGF-β1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β125–[41-65] and TGF-β130–[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases. PMID:24349218

  12. Pentoxifylline attenuates cytokine stress and Fas system in syngeneic liver proteins induced experimental autoimmune hepatitis.

    PubMed

    Hendawy, Nevien

    2017-08-01

    Apoptosis is a hallmark in the pathogenesis of autoimmune hepatitis (AIH). Cytokine stresses and extrinsic apoptotic pathway have been implicated in this type of hepatic injury. Pentoxifylline plays an important role in controlling inflammation and apoptosis in different autoimmune diseases. To assess the protective effect of pentoxifylline for 30days against pro-inflammatory cytokines as tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ) and mediators of extrinsic apoptotic pathway involving TNF receptor 1 (TNFR1) and its ligand TNF-α and Fas receptor and its ligand (FasL) in experimental autoimmune hepatitis (EAH) model. EAH was induced by intraperitoneal injection of syngeneic liver antigen emulsified in complete Freund's adjuvant (CFA) in male C57BL/6 mice. Five groups of mice were used: two control groups; Control PBS group and Control CFA group, EAH group and two EAH+pentoxifylline treated groups in doses (100 or 200mg/kg/d, given by oral gavage). Serum transaminase, pro-inflammatory cytokines (TNF-α and interferon-γ) and hepatic caspase-8 and 3 activities were evaluated. Signs of autoimmune hepatitis were confirmed by liver histology. In addition, hepatic TNFR1, Fas and FasL mRNA expression were assayed. Serum transaminase levels and signs of AIH observed in EAH mice were significantly reduced by pentoxifylline. Upregulated serum TNF-α, IFN-γ, hepatic caspase-8 and 3 activities and TNFR1, Fas and FasL mRNA expression in liver tissues in EAH group were significantly downregulated by pentoxifylline. Pentoxifylline protects against syngeneic liver antigen induced hepatitis and associating apoptosis through attenuating the exaggerated cytokine release and extrinsic apoptotic pathway. Thus, this may represent a new therapeutic strategy for hepatitis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Hepatic metabolic response to injury and sepsis.

    PubMed

    Dahn, M S; Mitchell, R A; Lange, M P; Smith, S; Jacobs, L A

    1995-05-01

    Experimental reports have indicated that hepatic oxidative and synthetic metabolism may become depressed in sepsis. Because the mechanism of infection-related liver dysfunction has not been established, further study of these functional alterations could contribute to the therapeutic management of septic organ failure syndromes. However, recently controversy has arisen over the existence of these derangements that must be reconciled before further progress in this field can be made. Splanchnic balance studies for the measurement of glucose output and oxygen consumption were used to assess hepatic function in fasted normal volunteers (n = 18), injured patients (n = 10), and patients with sepsis (n = 18). The liver's contribution to splanchnic metabolism was estimated from a comparison of splanchnic oxygen utilization in response to increases in the liver-specific process of glucogenesis. In addition, in vivo liver albumin production was determined by using the [14C] carbonate technique. Glucose output after injury and sepsis was increased by 12.8% and 76.6%, respectively, compared with controls. On the basis of substrate balance studies, gluconeogenesis was estimated to account for 46%, 87%, and 93%, respectively, of splanchnic glucose output in each of the three groups. In patients with sepsis glucose output was also noted to be linearly related to regional oxygen consumption, indicating that these processes were coupled and increases in the respiratory activity of the splanchnic cellular mass could be accounted for by increases in new glucose output and gluconeogenic substrate clearance. The mean albumin synthetic rate increased during injury and sepsis by 22% and 29%, respectively, compared with normal volunteers. These studies cast doubt on the commonly held notion that tissue respiratory dysfunction may occur during sepsis. On the contrary, hepatic function is accelerated during hyperdynamic sepsis, and evidence indicating oxidative or synthetic functional

  14. Protective mechanism of turmeric (Curcuma longa) on carbofuran-induced hematological and hepatic toxicities in a rat model.

    PubMed

    Hossen, Md Sakib; Tanvir, E M; Prince, Maruf Billah; Paul, Sudip; Saha, Moumoni; Ali, Md Yousuf; Gan, Siew Hua; Khalil, Md Ibrahim; Karim, Nurul

    2017-12-01

    Turmeric (Curcuma longa L. [Zingiberaceae]) is used in the treatment of a variety of conditions including pesticide-induced toxicity. The study reports the antioxidant properties and the protective effects of turmeric against carbofuran (CF)-induced toxicity in rats. The antioxidant potential was determined by using free radicals scavenging activity and ferric reducing antioxidant power values. Male Wistar rats were randomly divided into four groups, designated as control, turmeric (100 mg/kg/day), CF (1 mg/kg/day) and turmeric (100 mg/kg/day) + CF (1 mg/kg/day) treatments. All of the doses were administered orally for 28 consecutive days. The biological activity of the turmeric and CF was determined by using several standard biochemical methods. Turmeric contains high concentrations of polyphenols (8.97 ± 0.15 g GAEs), flavonoids (5.46 ± 0.29 g CEs), ascorbic acid (0.06 ± 0.00 mg AEs) and FRAP value (1972.66 ± 104.78 μM Fe 2+ ) per 100 g of sample. Oral administration of CF caused significant changes in some of the blood indices, such as, mean corpuscular volume, corpuscular hemoglobin, white blood cell, platelet distribution width and induced severe hepatic injuries associated with oxidative stress, as observed by the significantly higher lipid peroxidation (LPO) levels when compared to control, while the activities of cellular antioxidant enzymes (including superoxide dismutase and glutathione peroxidase) were significantly suppressed in the liver tissue. Turmeric supplementation could protect against CF-induced hematological perturbations and hepatic injuries in rats, plausibly by the up-regulation of antioxidant enzymes and inhibition of LPO to confer the protective effect.

  15. Drug induced liver injury with analysis of alternative causes as confounding variables.

    PubMed

    Teschke, Rolf; Danan, Gaby

    2018-04-01

    Drug-induced liver injury (DILI) is rare compared to the worldwide frequent acute or chronic liver diseases. Therefore, patients included in series of suspected DILI are at high risk of not having DILI, whereby alternative causes may confound the DILI diagnosis. The aim of this review is to evaluate published case series of DILI for alternative causes. Relevant studies were identified using a computerized search of the Medline database for publications from 1993 through 30 October 2017. We used the following terms: drug hepatotoxicity, drug induced liver injury, hepatotoxic drugs combined with diagnosis, causality assessment and alternative causes. Alternative causes as variables confounding the DILI diagnosis emerged in 22 published DILI case series, ranging from 4 to 47%. Among 13 335 cases of suspected DILI, alternative causes were found to be more likely in 4555 patients (34.2%), suggesting that the suspected DILI was probably not DILI. Biliary diseases such as biliary obstruction, cholangitis, choledocholithiasis, primary biliary cholangitis and primary sclerosing cholangitis were among the most missed diagnoses. Alternative causes included hepatitis B, C and E, cytomegalovirus, Epstein-Barr virus, ischemic hepatitis, cardiac hepatopathy, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and alcoholic liver disease. In more than one-third of published global DILI case series, alternative causes as published in these reports confounded the DILI diagnosis. In the future, published DILI case series should include only patients with secured DILI diagnosis, preferentially established by prospective use of scored items provided by robust diagnostic algorithms such as the updated Roussel Uclaf causality assessment method. © 2018 The British Pharmacological Society.

  16. Hepatic pseudoaneurysm after traumatic liver injury; is CT follow-up warranted?

    PubMed

    Østerballe, Lene; Helgstrand, Frederik; Axelsen, Thomas; Hillingsø, Jens; Svendsen, Lars Bo

    2014-01-01

    Hepatic pseudoaneurysm (HPA) is a rare complication after liver trauma, yet it is potentially fatal, as it can lead to sudden severe haemorrhage. The risk of developing posttraumatic HPA is one of the arguments for performing follow-up CT of patients with liver injuries. The aim of this study was to investigate the occurrence of HPA post liver trauma. A retrospective study from 2000-2010 of conservatively treated patients with blunt liver trauma was performed to investigate the incidence and nature of HPA. After the initial CT scan patients were admitted to the department and if not clinically indicated prior a follow-up CT was performed on day 4-5. A total of 259 non-operatively managed patients with liver injury were reviewed. 188 had a follow-up CT or US and in 7 patients a HPA was diagnosed. All aneurysms were treated with angiographic embolization and there were no treatment failures. There was no correlation between the severity of the liver injury and development of HPA. 5 out of 7 patients were asymptomatic and would have been discharged without treatment if the protocol did not include a default follow-up CT. In conclusion, this study shows that HPA is not correlated to the severity of liver injury and it develops in 4% of patients after traumatic liver injury. In order to avoid potentially life-threatening haemorrhage from a post trauma hepatic pseudoaneurysm, it seems appropriate to do follow-up CT as part of the conservative management of blunt and penetrating liver injuries.

  17. Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation.

    PubMed

    Pan, Chen-wei; Pan, Zhen-zhen; Hu, Jian-jian; Chen, Wei-lai; Zhou, Guang-yao; Lin, Wei; Jin, Ling-xiang; Xu, Chang-long

    2016-01-05

    Mangiferin, a glucosylxanthone from Mangifera indica, has been reported to have anti-inflammatory effects. However, the protective effects and mechanisms of mangiferin on liver injury remain unclear. This study aimed to determine the protective effects and mechanisms of mangiferin on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver injury. Mangiferin was given 1h after LPS and D-GalN treatment. The results showed that mangiferin inhibited the levels of serum ALT, AST, IL-1β, TNF-α, MCP-1, and RANTES, as well as hepatic malondialdehyde (MDA) and ROS levels. Moreover, mangiferin significantly inhibited IL-1β and TNF-α production in LPS-stimulated primary hepatocytes. Mangiferin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. Furthermore, mangiferin inhibited LPS/d-GalN-induced hepatic NLRP3, ASC, caspase-1, IL-1β and TNF-α expression. In conclusion, mangiferin protected against LPS/GalN-induced liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Vismodegib Suppresses TRAIL-mediated Liver Injury in a Mouse Model of Nonalcoholic Steatohepatitis

    PubMed Central

    Hirsova, Petra; Ibrahim, Samar H.; Bronk, Steven F.; Yagita, Hideo; Gores, Gregory J.

    2013-01-01

    Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH. PMID:23894677

  19. Multiple alterations of canalicular membrane transport activities in rats with CCl(4)-induced hepatic injury.

    PubMed

    Song, Im-Sook; Lee, Young-Mi; Chung, Suk-Jae; Shim, Chang-Koo

    2003-04-01

    The influence of CCl(4)-induced experimental hepatic injury (CCl(4)-EHI) on the expression and transport activities of primary active transporters on the canalicular membrane, including P-glycoprotein (P-gp), a bile salt export pump (Bsep) and a multidrug resistance associated protein2 (Mrp2), was assessed. CCl(4)-EHI was induced by an intraperitoneal injection of CCl(4) to rats at a dose of 1 ml/kg 24 h prior to the preparation of canalicular liver plasma membrane (cLPM) vesicles and pharmacokinetic studies. The expression of each transporter was measured for the vesicles via Western blot analysis at 6, 12, 24, 36, and 48 h after the injection of CCl(4). The in vivo canalicular excretion clearance (CL(exc)) of [(3)H]daunomycin, [(3)H]taurocholate and [(3)H]17beta-estradiol-17beta-D-glucuronide (E(2)17betaG), representative substrates of P-gp, Bsep, and Mrp2, respectively, was determined following an i.v. infusion to rats. The uptake of each substrate into cLPM vesicles in the presence of ATP was also measured by a rapid filtration technique. As the result of the CCl(4)-EHI, the protein level of transporters was altered as a function of time in multiple manners; it was increased by 3.6-fold for P-gp, unchanged for Bsep, and decreased by 73% for Mrp2 at 24 h. The in vivo CL(exc) and the intrinsic uptake clearance into cLPM vesicles (CL(int)) at 24 h after the CCl(4) injection (CCl(4)-EHI(24 h)) were also influenced by the EHI in a similar manner; they were increased by 1.8- and 1.9-fold for daunomycin, unchanged for taurocholate, and decreased by 41 and 39% for E(2)17betaG, respectively, consistent with multiple alterations in the expression of the relevant transporters.

  20. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress.

    PubMed

    Zhang, Tao; Zhao, Qiang; Ye, Fang; Huang, Chan-Yan; Chen, Wan-Mei; Huang, Wen-Qi

    2018-04-13

    Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1 h, followed by 6 h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30 min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.

  1. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway.

    PubMed

    Du, Yingdong; Li, Dawei; Han, Conghui; Wu, Haoyu; Xu, Longmei; Zhang, Ming; Zhang, Jianjun; Chen, Xiaosong

    2017-01-01

    This study aimed to evaluate the effects of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury, as well as the underlying mechanisms. Exosomes derived from hiPSC-MSCs were isolated and characterized both biochemically and biophysically. hiPSC-MSCs-Exo were injected systemically into a murine ischemia/reperfusion injury model via the inferior vena cava, and then the therapeutic effects were evaluated. The serum levels of transaminases (aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Primary hepatocytes and human hepatocyte cell line HL7702 were used to test whether exosomes could induce hepatocytes proliferation in vitro. In addition, the expression levels of proliferation markers (proliferation cell nuclear antigen, PCNA; Phosphohistone-H3, PHH3) were measured by immunohistochemistry and Western blot. Moreover, SK inhibitor (SKI-II) and S1P1 receptor antagonist (VPC23019) were used to investigate the role of sphingosine kinase and sphingosine-1-phosphate-dependent pathway in the effects of hiPSC-MSCs-Exo on hepatocytes. hiPSCs were efficiently induced into hiPSC-MSCs that had typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 100 to 200 nm and expressed exosome markers (Alix, CD63 and CD81). After hiPSC-MSCs-Exo administration, hepatocyte necrosis and sinusoidal congestion were markedly suppressed in the ischemia/reperfusion injury model, with lower histopathological scores. The levels of hepatocyte injury markers AST and ALT were significantly lower in the treatment group compared to control, and the expression levels of proliferation markers (PCNA and PHH3) were greatly induced after hiPSC-MSCs-Exo administration. Moreover, hiPSC-MSCs-Exo also induced primary hepatocytes and HL7702 cells proliferation in vitro in a dose-dependent manner. We found that hiPSC-MSCs-Exo could

  2. Antioxidative effect of melatonin, ascorbic acid and N-acetylcysteine on caerulein-induced pancreatitis and associated liver injury in rats

    PubMed Central

    Eşrefoğlu, Mukaddes; Gül, Mehmet; Ateş, Burhan; Batçıoğlu, Kadir; Selimoğlu, Mukadder Ayşe

    2006-01-01

    AIM: To investigate the role of oxidative injury in pancreatitis-induced hepatic damage and the effect of antioxidant agents such as melatonin, ascorbic acid and N-acetyl cysteine on caerulein-induced pancreatitis and associated liver injury in rats. METHODS: Thirty-eight female Wistar rats were used. Acute pancreatitis (AP) was induced by two i.p. injections of caerulein at 2-h intervals (at a total dose of 100 µg/kg b.wt). The other two groups received additional melatonin (20 mg/kg b.wt) or an antioxidant mixture containing L(+)-ascorbic acid (14.3 mg/kb.wt.) and N-acetyl cysteine (181 mg/kg b.wt.) i.p. shortly before each injection of caerulein. The rats were sacrificed by decapitation 12 h after the last injection of caerulein. Pancreatic and hepatic oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as malondialdehyde (MDA) and changes in tissue antioxidant enzyme levels, catalase (CAT) and glutathione peroxidase (GPx). Histopathological examination was performed using scoring systems. RESULTS: The degree of hepatic cell degeneration, intracellular vacuolization, vascular congestion, sinusoidal dilatation and inflammatory infiltration showed a significant difference between caerulein and caerulein + melatonin (P  = 0.001), and careulein and caerulein + L(+)-ascorbic acid + N-acetyl cysteine groups (P  = 0.002). The degree of aciner cell degeneration, pancreatic edema, intracellular vacuolization and inflammatory infiltration showed a significant difference between caerulein and caerulein + melatonin (P  = 0.004), and careulein and caerulein + L(+)-ascorbic acid + N-acetyl cysteine groups (P = 0.002). Caerulein-induced pancreatic and liver damage was accompanied with a significant increase in tissue MDA levels (P  = 0.01, P  = 0.003, respectively) whereas a significant decrease in CAT (P  = 0.002, P = 0.003, respectively) and GPx activities (P  = 0.002, P

  3. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  4. Epigenetic Alterations of IL-6/STAT3 Signaling by Placental Stem Cells Promote Hepatic Regeneration in a Rat Model with CCl4-induced Liver Injury.

    PubMed

    Jung, Jieun; Moon, Ji Wook; Choi, Jong-Ho; Lee, Yong Woo; Park, Sun-Hwa; Kim, Gi Jin

    2015-05-01

    Human chorionic plate-derived mesenchymal stem cells (CP-MSCs) isolated from the placenta have been reported to demonstrate therapeutic effects in animal models of liver injury; however, the underlying epigenetic mechanism of this effect has not been elucidated. Thus, we investigated whether CP-MSCs influence epigenetic processes during regeneration of the injured liver. CP-MSCs were engrafted into a carbon tetrachloride (CCl4)-injured rat model through direct transplantation into the liver (DTX), intrasplenic transplantation (STX), and intravenous transplantation via the tail vein (TTX). Non-transplanted (NTX) rats were maintained as sham controls. Liver tissues were analyzed after transplantation using immunohistochemistry, western blot analysis, and quantitative methylation-specific polymerase chain reaction. Proliferation and human interleukin-6 (hIL-6) enzyme-linked immunosorbent assays were performed using CCl4-treated hepatic cells that were co-cultured with CP-MSCs. The Ki67 labeling index, cell cyclins, albumin, IL-6, and gp130 levels were elevated in the CP-MSC transplantation groups. The concentration of hIL-6 in supernatants and the proliferation of CCl4-treated rat hepatic cells were enhanced by co-culturing with CP-MSCs (p<0.05), while the methylation of IL-6/IL-6R and STAT3 by CP-MSC transplantation decreased. These results suggest that administration of CP-MSCs promotes IL-6/STAT3 signaling by decreasing the methylation of the IL-6/SATA3 promoters and thus inducing the proliferation of hepatic cells in a CCl4-injured liver rat model. These data advance our understanding of the therapeutic mechanisms in injured livers, and can facilitate the development of cell-based therapies using placenta-derived stem cells.

  5. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    PubMed

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All

  6. ASMASE IS REQUIRED FOR CHRONIC ALCOHOL INDUCED HEPATIC ENDOPLASMIC RETICULUM STRESS AND MITOCHONDRIAL CHOLESTEROL LOADING

    PubMed Central

    Fernandez, Anna; Matias, Núria; Fucho, Raquel; Ribas, Vicente; Von Montfort, Claudia; Nuño, Natalia; Baulies, Anna; Martinez, Laura; Tarrats, Núria; Mari, Montserrat; Colell, Anna; Morales, Albert; Dubuquoy, Laurent; Mathurin, Philippe; Bataller, Ramón; Caballeria, Joan; Elena, Montserrat; Balsinde, Jesus; Kaplowitz, Neil; Garcia-Ruiz, Carmen; Fernandez-Checa, Jose C.

    2013-01-01

    Background & aims The pathogenesis of alcohol-induced liver disease (ALD) is poorly understood. Here, we examined the role of acid sphingomyelinase (ASMase) in alcohol induced hepatic endoplasmic reticulum (ER) stress, a key mechanism of ALD Methods We examined ER stress, lipogenesis, hyperhomocysteinemia, mitochondrial cholesterol (mChol) trafficking and susceptibility to LPS and concanavalin-A in ASMase−/− mice fed alcohol. Results Alcohol feeding increased SREBP-1c, DGAT-2 and FAS mRNA in ASMase+/+ but not in ASMase−/− mice. Compared to ASMase+/+ mice, ASMase−/− mice exhibited decreased expression of ER stress markers induced by alcohol, but the level of tunicamycin-mediated upregulation of ER stress markers and steatosis was similar in both types of mice. The increase in homocysteine levels induced by alcohol feeding was comparable in both ASMase+/+ mice and ASMase−/− mice. Exogenous ASMase, but not neutral SMase, induced ER stress by perturbing ER Ca2+ homeostasis. Moreover, alcohol-induced mChol loading and StARD1 overexpression were blunted in ASMase−/− mice. Tunicamycin upregulated StARD1 expression and this outcome was abrogated by tauroursodeoxycholic acid. Alcohol-induced liver injury and sensitization to LPS and concanavalin-A were prevented in ASMase−/− mice. These effects were reproduced in alcohol-fed TNFR1/R2−/− mice. Moreover, ASMase does not impair hepatic regeneration following partial hepatectomy. Of relevance, liver samples from patients with alcoholic hepatitis exhibited increased expression of ASMase, StARD1 and ER stress markers. Conclusion Our data indicate that ASMase is critical for alcohol-induced ER stress, and provide a rationale for further clinical investigation in ALD. PMID:23707365

  7. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice.

    PubMed

    Iracheta-Vellve, Arvin; Petrasek, Jan; Gyogyosi, Benedek; Bala, Shashi; Csak, Timea; Kodys, Karen; Szabo, Gyongyi

    2017-07-01

    Inflammation and impaired hepatocyte regeneration contribute to liver failure in alcoholic hepatitis (AH). Interleukin (IL)-1 is a key inflammatory cytokine in the pathobiology of AH. The role of IL-1 in liver regeneration in the recovery phase of alcohol-induced liver injury is unknown. In this study, we tested IL-1 receptor antagonist to block IL-1 signalling in a mouse model of acute-on-chronic liver injury on liver inflammation and hepatocyte regeneration in AH. We observed that inhibition of IL-1 signalling decreased liver inflammation and neutrophil infiltration, and resulted in enhanced regeneration of hepatocytes and increased rate of recovery from liver injury in AH. Our novel findings suggest that IL-1 drives sustained liver inflammation and impaired hepatocyte regeneration even after cessation of ethanol exposure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    PubMed

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury.

    PubMed

    Wang, Yuping; Mukhopadhyay, Partha; Cao, Zongxian; Wang, Hua; Feng, Dechun; Haskó, György; Mechoulam, Raphael; Gao, Bin; Pacher, Pal

    2017-09-21

    Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD or vehicle was administered daily throughout the alcohol feeding study. At the conclusion of the feeding protocol, serums samples, livers or isolated neutrophils were utilized for molecular biology, biochemistry and pathology analysis. CBD significantly attenuated the alcohol feeding-induced serum transaminase elevations, hepatic inflammation (mRNA expressions of TNFα, MCP1, IL1β, MIP2 and E-Selectin, and neutrophil accumulation), oxidative/nitrative stress (lipid peroxidation, 3-nitrotyrosine formation, and expression of reactive oxygen species generating enzyme NOX2). CBD treatment also attenuated the respiratory burst of neutrophils isolated from chronic plus binge alcohol fed mice or from human blood, and decreased the alcohol-induced increased liver triglyceride and fat droplet accumulation. Furthermore, CBD improved alcohol-induced hepatic metabolic dysregulation and steatosis by restoring changes in hepatic mRNA or protein expression of ACC-1, FASN, PPARα, MCAD, ADIPOR-1, and mCPT-1. Thus, CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.

  10. Management of adult blunt hepatic trauma.

    PubMed

    Kozar, Rosemary A; McNutt, Michelle K

    2010-12-01

    To review the nonoperative and operative management of blunt hepatic injury in the adult trauma population. Although liver injury scale does not predict need for surgical intervention, a high-grade complex liver injury should alert the physician to a patient at increased risk of hepatic complications following nonoperative management. Blunt hepatic injury remains a frequent intraabdominal injury in the adult trauma population. The management of blunt hepatic injury has undergone a major paradigm shift from mandatory operative exploration to nonoperative management. Hemodynamic instability with a positive focused abdominal sonography for trauma and peritonitis are indications for emergent operative intervention. Although surgical intervention for blunt hepatic trauma is not as common as in years past, it is imperative that the current trauma surgeon be familiar with the surgical skill set to manage complex hepatic injuries. This study represents a review of both nonoperative and operative management of blunt hepatic injury.

  11. [Ketoconazole-induced hepatitis. Case report].

    PubMed

    Henning, H; Kasper, B; Lüders, C J

    1983-12-01

    Since Oct. 1981 a new systemic antifungal drug Ketoconazole is available in the Federal Republic of Germany that has proven effective even in severe cases with fungal infections. This case-study will call attention on a rare but important side effect, namely Ketoconazole induced hepatitis. As an acute icteric viral hepatitis, type Non-A-Non-B-hepatitis possibly misdiagnosed only a carefully compiled history of the recent intake of drugs points at the real cause of hepatitis. In our case-report we observed a considerable increase in serum enzymes, especially GOT, GPT and GLDH after a drug-challenge with two tablets. We recommend so-called liver functions tests 2 to 3 weeks after beginning of therapy and further-on in monthly intervals. Histologically at that time toxic hydropic changes of the liver cells and a mesenchymal reaction with portal and intralobular mainly eosinophilic infiltration could be established. The serum enzymes came to normal only after 12 weeks.

  12. Treatment With Human Wharton’s Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction

    PubMed Central

    Cóndor, José M.; Rodrigues, Camila E.; de Sousa Moreira, Roberto; Canale, Daniele; Volpini, Rildo A.; Shimizu, Maria H.M.; Camara, Niels O.S.; Noronha, Irene de L.

    2016-01-01

    The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks. Downregulation of endothelial nitric oxide synthase contributes to sepsis-induced endothelial dysfunction. Human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are known to reduce expression of proinflammatory cytokines and markers of apoptosis. We hypothesized that treatment with WJ-MSCs would protect renal, hepatic, and endothelial function in a cecal ligation and puncture (CLP) model of sepsis in rats. Rats were randomly divided into three groups: sham-operated rats; rats submitted to CLP and left untreated; and rats submitted to CLP and intraperitoneally injected, 6 hours later, with 1 × 106 WJ-MSCs. The glomerular filtration rate (GFR) was measured at 6 and 24 hours after CLP or sham surgery. All other studies were conducted at 24 hours after CLP or sham surgery. By 6 hours, GFR had decreased in the CLP rats. At 24 hours, Klotho renal expression significantly decreased. Treatment with WJ-MSCs improved the GFR; improved tubular function; decreased the CD68-positive cell count; decreased the fractional interstitial area; decreased expression of nuclear factor κB and of cytokines; increased expression of eNOS, vascular endothelial growth factor, and Klotho; attenuated renal apoptosis; ameliorated hepatic function; increased glycogen deposition in the liver; and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. Klotho protein expression was higher in WJ-MSCs than in human adipose-derived MSCs. Because WJ-MSCs preserve renal and hepatic function, they might play a protective role in sepsis. Significance Sepsis is the leading cause of death in intensive care units. Although many different treatments for sepsis have been tested, sepsis-related mortality rates remain high. It was hypothesized in this study that treatment with human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) would

  13. Hepatoprotective activity of Sonchus asper against carbon tetrachloride-induced injuries in male rats: a randomized controlled trial

    PubMed Central

    2012-01-01

    Abstract Background Sonchus asper (SAME) is used as a folk medicine in hepatic disorders. In this study, the hepatoprotective effects of the methanol extract of SAME was evaluated against carbon tetrachloride (CCl4)-induced liver injuries in rats. Methods To evaluate the hepatoprotective effects of SAME, 36 male Sprague–Dawley rats were equally divided into 6 groups. Rats of Group I (control) were given free access to approved feed and water. Rats of Group II were injected intraperitoneally with CCl4 (3 ml/kg) as a 30% solution in olive oil (v/v) twice a week for 4 weeks. Animals of Groups III (100 mg/kg) and IV (200 mg/kg) received SAME, whereas those of Group V were given silymarin via gavage (100 mg/kg) after 48 h of CCl4 treatment. Group VI received SAME (200 mg/kg) twice a week for 4 weeks without CCl4 treatment. Various parameters, such as the serum enzyme levels, serum biochemical marker levels, antioxidant enzyme activities, and liver histopathology were used to estimate the hepatoprotective efficacy of SAME. Results The administration of SAME and silymarin significantly lowered the CCl4-induced serum levels of hepatic marker enzymes (aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase), cholesterol, low-density lipoprotein, and triglycerides while elevating high-density lipoprotein levels. The hepatic contents of glutathione and activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase were reduced. The levels of thiobarbituric acid-reactive substances that were increased by CCl4 were brought back to control levels by the administration of SAME and silymarin. Liver histopathology showed that SAME reduced the incidence of hepatic lesions induced by CCl4 in rats. Conclusion SAME may protect the liver against CCl4-induced oxidative damage in rats. PMID:22776436

  14. Thermal injury decreases hepatic blood flow and the intrinsic clearance of indocyanine green in the rat.

    PubMed

    Pollack, G M; Brouwer, K L

    1991-01-01

    The influence of severe thermal injury (full-thickness burns involving 50% of the body surface area) on hepatic blood flow in the rat was assessed using the tricarbocyanine dye indocyanine green (ICG). In a randomized crossover fashion, rats received sequential infusions of ICG through both the femoral vein and the portal vein, allowing the estimation of total hepatic plasma clearance and transhepatic extraction of the dye. These two parameters, along with the hematocrit, were used to calculate intrinsic hepatic clearance of ICG and hepatic blood flow. Animals were examined at 0 (control), 0.5, 12, or 24 hr following infliction of scald burns. Hepatic blood flow was decreased significantly by 0.5 hr postburn and remained approximately 20% below normal throughout the remainder of the study. The intrinsic efficiency of the liver in removing ICG from the systemic circulation was also decreased by thermal injury. The potential mechanisms involved in these two physiologic perturbations are discussed.

  15. Ascorbate promotes carbon tetrachloride-induced hepatic injury in senescence marker protein 30-deficient mice by enhancing inflammation.

    PubMed

    Ki, Mi-Ran; Lee, Hye-Rim; Park, Jin-Kyu; Hong, Il-Hwa; Han, Seon-Young; You, Sang-Young; Lee, Eun-Mi; Kim, Ah-Young; Lee, Seung-Sook; Jeong, Kyu-Shik

    2011-06-01

    The genetic deletion of the senescence marker protein 30 (SMP30) gene results in ascorbate deficiency and the premature aging processes in mice. Apparent liver injury of SMP30(-/-) mice was less severe than those of wild type (WT) mice, upon chronic CCl(4) injection. The purpose of this study was to investigate the pathophysiology underlying the mild CCl(4) toxicity in SMP30(-/-) mice. Along with the lower level of serum alanine aminotransferase, the livers of SMP30(-/-) mice revealed a lesser glycogen depletion, a decrease in c-Jun N-terminal kinase (JNK)-mediated inflammatory signaling in parallel with tumor necrosis factor-alpha and interleukin-1 beta, inducible nitric oxide synthase and glutathione peroxidase, and the lower lipid peroxidation as compared to those of WT mice. CCl(4)-induced proliferation, measured by the expression of proliferating cell nuclear antigen, was low in SMP30(-/-) mice as compared with that of WT mice whereas the levels of p21 and Bax were comparable to those of the CCl(4)-treated WT mice. Moreover, CCl(4) toxicity in ascorbate-fed SMP30(-/-) mice was comparable to that of the CCl(4)-alone treated WT mice, accompanied by an increase in the above mentioned factors. Conversely, ascorbate partly compensated for the CCl(4)-induced oxidative stress in WT mice, indicating that sufficient ascorbate may be required for an antioxidant function under severe levels of oxidative stress. Our data suggest that the restoration of ascorbate-deficiency reverses a sluggish immune system into an activated condition by an increase in JNK-mediated inflammation and free radical cascade; thus leading to accelerated hepatic damage in SMP30(-/-) mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling.

    PubMed

    Yin, Huquan; Liang, Xiaomei; Jogasuria, Alvin; Davidson, Nicholas O; You, Min

    2015-05-01

    Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Protective effect of Mangifera indica L. extract (Vimang) on the injury associated with hepatic ischaemia reperfusion.

    PubMed

    Sánchez, Gregorio Martínez; Rodríguez H, María A; Giuliani, Attilia; Núñez Sellés, Alberto J; Rodríguez, Niurka Pons; León Fernández, Olga Sonia; Re, L

    2003-03-01

    The effect of Mangifera indica L. extract (Vimang) on treatment of injury associated with hepatic ischaemia/reperfusion was tested. Vimang protects from the oxidative damage induced by oxygen-based free radicals as shown in several in vitro test systems conducted. The ability of Vimang to reduce liver damage was investigated in rats undergoing right-lobe blood fl ow occlusion for 45 min followed by 45 min of reperfusion. The ischaemia/reperfusion model leads to an increase of transaminase (ALT and AST), membrane lipid peroxidation, tissue neutrophil in filtration, DNA fragmentation, loss of protein -SH groups, cytosolic Ca2+ overload and a decrease of catalase activity. Oral administration of Vimang (50, 110 and 250 mg/kg, b.w.) 7 days before reperfusion, reduced transaminase levels and DNA fragmentation in a dose dependent manner (p < 0.05). Vimang also restored the cytosolic Ca2+ levels and inhibited polymorphonuclear migration at a dose of 250 mg/kg b.w., improved the oxidation of total and non protein sulfhydryl groups and prevented modification in catalase activity, uric acid and lipid peroxidation markers (p < 0.05). These data suggest that Vimang could be a useful new natural drug for preventing oxidative damage during hepatic injury associated with free radical generation. Copyright 2003 John Wiley & Sons, Ltd.

  18. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice.

    PubMed

    Martin-Murphy, Brittany V; Holt, Michael P; Ju, Cynthia

    2010-02-15

    The idiosyncratic nature, severity and poor diagnosis of drug-induced liver injury (DILI) make these reactions a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. Elucidation of the underlying mechanism(s) is necessary for identifying predisposing factors and developing strategies in the treatment and prevention of DILI. Acetaminophen (APAP) is a widely used over the counter therapeutic that is known to be effective and safe at therapeutic doses. However, in overdose situations fatal and non-fatal hepatic necrosis can result. Evidence suggests that the chemically reactive metabolite of the drug initiates hepatocyte damage and that inflammatory innate immune responses also occur within the liver, leading to the exacerbation and progression of tissue injury. Here we investigate whether following APAP-induced liver injury (AILI) damaged hepatocytes release "danger" signals or damage associated molecular pattern (DAMP) molecules, which induce pro-inflammatory activation of hepatic macrophages, further contributing to the progression of liver injury. Our study demonstrated a clear activation of Kupffer cells following early exposure to APAP (1h). Activation of a murine macrophage cell line, RAW cells, was also observed following treatment with liver perfusate from APAP-treated mice, or with culture supernatant of APAP-challenged hepatocytes. Moreover, in these media, the DAMP molecules, heat-shock protein-70 (HSP-70) and high mobility group box-1 (HMGB1) were detected. Overall, these findings reveal that DAMP molecules released from damaged and necrotic hepatocytes may serve as a crucial link between the initial hepatocyte damage and the activation of innate immune cells following APAP-exposure, and that DAMPs may represent a potential therapeutic target for AILI. Published by Elsevier Ireland Ltd.

  19. Drug-Induced Liver Injury Associated with Complementary and Alternative Medicines

    PubMed Central

    Takahashi, Koji; Kanda, Tatsuo; Yasui, Shin; Haga, Yuki; Kumagai, Junichiro; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Nakamura, Masato; Arai, Makoto; Yokosuka, Osamu

    2016-01-01

    A 24-year-old man was admitted due to acute hepatitis with unknown etiology. After his condition and laboratory data gradually improved with conservative therapy, he was discharged 1 month later. Two months after his discharge, however, liver dysfunction reappeared. After his mother accidentally revealed that he took complementary and alternative medicine, discontinuation of the therapy caused his condition to improve. Finally, he was diagnosed with a recurrent drug-induced liver injury associated with Japanese complementary and alternative medicine. It is important to take the medical history in detail and consider complementary and alternative medicine as a cause of liver disease. PMID:28100990

  20. Curcumin attenuated acute Propionibacterium acnes-induced liver injury through inhibition of HMGB1 expression in mice.

    PubMed

    Gu, Qiaoli; Guan, Honggeng; Shi, Qin; Zhang, Yanyun; Yang, Huilin

    2015-02-01

    Curcumin is a phenolic product isolated from the rhizome of Curcuma longa and has protective effects on inflammatory diseases. Here we investigated the protective effect of curcumin in acute Propionibacterium acnes (P. acnes)-induced inflammatory liver injury. C57BL/6 mice were primed with P. acnes followed by LPS challenge to induce fulminant hepatitis. Curcumin or vehicle control was administered perorally by gavage once daily starting 2days before P. acnes priming. We found that curcumin significantly improved mouse mortality. Then, to investigate the underlying mechanisms of curcumin in this acute inflammatory liver injury model, we primed C57BL/6 mice with P. acnes only. We found that curcumin treatment attenuated P. acnes-induced liver injury as evidenced by decreased production of ALT. In addition, curcumin treatment reduced the production of proinflammatory cytokines such as TNF-α and IFN-γ, accompanied by reduced hepatocyte apoptosis. Furthermore, curcumin treatment significantly reduced HMGB1 cytoplasmic translocation and expression by down-regulating acetylation of lysine. Taken together, our results suggest that curcumin protects mice from P. acnes-induced liver injury through reduction of HMGB1 cytoplasmic translocation and expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A pilot study of the use of kaolin-impregnated gauze (Combat Gauze) for packing high-grade hepatic injuries in a hypothermic coagulopathic swine model.

    PubMed

    Sena, Matthew J; Douglas, Geoffrey; Gerlach, Travis; Grayson, J Kevin; Pichakron, Kullada O; Zierold, Dustin

    2013-08-01

    Severe hepatic injuries may be highly lethal, and perihepatic packing remains the mainstay of treatment. This is not always successful, particularly in the setting of hypothermia and coagulopathy. Kaolin-impregnated Combat Gauze (CG) is an effective hemostatic dressing used primarily to treat external wounds. The objective of this study was to determine the ability of CG to control severe hemorrhage in hypothermic, coagulopathic swine with a high-grade hepatic injury. Anesthetized animals underwent splenectomy and were cooled to 32°C while undergoing a 60% exchange transfusion with Hextend. A grade V liver injury was created in the left middle hepatic lobe. Animals were allowed to freely bleed for 30 s and then randomized to treatment with CG or plain gauze laparotomy pads (PG) applied to the injury site. Animals were then resuscitated with warmed Hextend. There was no difference between groups in preinjury hemodynamic or laboratory values. Animals packed with CG had less blood loss when compared with standard packing (CG = 25 mL/kg versus PG = 58 mL/kg, P = 0.05). There was a trend towards lower hetastarch resuscitation requirements in the CG group (CG = 7 mL/kg versus PG = 44 mL/kg, P = 0.06) but no statistically significant difference in mortality (CG = 13% versus PG = 50%, P = 0.11). Histology of the injury sites revealed more adherent clot in the CG group, but no inflammation, tissue necrosis, or residual material. In pigs with severe hepatic injury, Combat Gauze reduced blood loss and resuscitation requirements when compared with plain laparotomy pads. Combat Gauze may be safe and effective for use on severe liver injuries. Published by Elsevier Inc.

  2. 5-lipoxygenase activation is involved in the mechanisms of chronic hepatic injury in a rat model of chronic aluminum overload exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Shaoshan

    We previously confirmed that rats overloaded with aluminum exhibited hepatic function damage and increased susceptibility to hepatic inflammation. However, the mechanism of liver toxicity by chronic aluminum overload is poorly understood. In this study, we investigated changes in the 5-lipoxygenase (5-LO) signaling pathway and its effect on liver injury in aluminum-overloaded rats. A rat hepatic injury model of chronic aluminum injury was established via the intragastric administration of aluminum gluconate (Al{sup 3+} 200 mg/kg per day, 5 days a week for 20 weeks). The 5-LO inhibitor, caffeic acid (10 and 30 mg/kg), was intragastrically administered 1 h after aluminum administration.more » Hematoxylin and eosin staining was used to visualize pathological changes in rat liver tissue. A series of biochemical indicators were measured with biochemistry assay or ELISAs. Immunochemistry and RT-PCR methods were used to detect 5-LO protein and mRNA expression in the liver, respectively. Caffeic acid administration protected livers against histopathological injury, decreased plasma ALT, AST, and ALP levels, decreased TNF-α, IL-6, IL-1β and LTs levels, increased the reactive oxygen species content, and down-regulated the mRNA and protein expressions of 5-LO in aluminum overloaded rats. Our results indicate that 5-lipoxygenase activation is mechanistically involved in chronic hepatic injury in a rat model of chronic aluminum overload exposure and that the 5-LO signaling pathway, which associated with inflammation and oxidative stress, is a potential therapeutic target for chronic non-infection liver diseases. - Highlights: • 5-LO signaling contributes to mechanisms of hepatotoxicity of aluminum overload. • Oxidative and inflammatory reaction involve in chonic aluminum hepatotoxicity. • 5-LO inhibitor has a protective effect on aluminum-overload liver injury. • 5-LO signaling is a potential therapeutic target for non-infection liver diseases.« less

  3. Acanthoic acid protectsagainst ethanol-induced liver injury: Possible role of AMPK activation and IRAK4 inhibition.

    PubMed

    Yao, You-Li; Han, Xin; Song, Jian; Zhang, Jing; Li, Ya-Mei; Lian, Li-Hua; Wu, Yan-Ling; Nan, Ji-Xing

    2017-11-05

    The aim of this study was to investigate the effects of acanthoic acid (AA) on the regulation of inflammatory response, lipid accumulation, and fibrosis via AMPK- IRAK4 signaling against chronic alcohol consumption in mice. Ethanol-induced liver injury was induced in male mice by Lieber-DeCarli diet for 28d. And mice in AA groups were gavaged with AA (20 or 40mg/kg) for 28d. AA treatment significantly decreased serum AST and TG, hepatic TG levels, serum ethanol and LPS levels compared with chronic ethanol administration. AA ameliorated histological changes, lipid droplets, hepatic fibrosis, and inflammation induced by ethanol. AA significantly increased the expressions of p-LKB1, p-AMPK, and SIRT1 caused by chronic ethanol administration, and attenuated the increasing protein expressions of IRAK1 and IRAK4.siRNA against AMPKα1 blocked AMPKα1 and increased IRAK4 protein expressions, compared with control-siRNA-transfected group, while AA treatment significantly decreased IRAK4 expressions compared with AMPKα1-siRNA-transfected group. AMPK-siRNA also blocked the decreased effect of AA on inflammatory factors. AA decreased over-expression of IRAK4 and inflammation under ethanol plus LPS challenge. AA recruited LKB1-AMPK phosphorylation and activated SIRT1 to regulate alcoholic liver injury, especially, inhibited IRAK1/4 signaling pathway to regulate lipid metabolism, hepatic fibrosis and inflammation caused by alcohol consumption. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury

    PubMed Central

    Pyzik, Michal; Rath, Timo; Kuo, Timothy T.; Win, Sanda; Baker, Kristi; Hubbard, Jonathan J.; Grenha, Rosa; Gandhi, Amit; Krämer, Thomas D.; Mezo, Adam R.; McDonnell, Kevin; Nienaber, Vicki; Andersen, Jan Terje; Mizoguchi, Atsushi; Blumberg, Laurence; Purohit, Shalaka; Jones, Susan D.; Christianson, Greg; Lencer, Wayne I.; Sandlie, Inger; Kaplowitz, Neil; Roopenian, Derry C.; Blumberg, Richard S.

    2017-01-01

    The neonatal crystallizable fragment receptor (FcRn) is responsible for maintaining the long half-life and high levels of the two most abundant circulating proteins, albumin and IgG. In the latter case, the protective mechanism derives from FcRn binding to IgG in the weakly acidic environment contained within endosomes of hematopoietic and parenchymal cells, whereupon IgG is diverted from degradation in lysosomes and is recycled. The cellular location and mechanism by which FcRn protects albumin are partially understood. Here we demonstrate that mice with global or liver-specific FcRn deletion exhibit hypoalbuminemia, albumin loss into the bile, and increased albumin levels in the hepatocyte. In vitro models with polarized cells illustrate that FcRn mediates basal recycling and bidirectional transcytosis of albumin and uniquely determines the physiologic release of newly synthesized albumin into the basal milieu. These properties allow hepatic FcRn to mediate albumin delivery and maintenance in the circulation, but they also enhance sensitivity to the albumin-bound hepatotoxin, acetaminophen (APAP). As such, global or liver-specific deletion of FcRn results in resistance to APAP-induced liver injury through increased albumin loss into the bile and increased intracellular albumin scavenging of reactive oxygen species. Further, protection from injury is achieved by pharmacologic blockade of FcRn–albumin interactions with monoclonal antibodies or peptide mimetics, which cause hypoalbuminemia, biliary loss of albumin, and increased intracellular accumulation of albumin in the hepatocyte. Together, these studies demonstrate that the main function of hepatic FcRn is to direct albumin into the circulation, thereby also increasing hepatocyte sensitivity to toxicity. PMID:28330995

  5. Restorative effects of hydroxysafflor yellow A on hepatic function in an experimental regression model of hepatic fibrosis induced by carbon tetrachloride

    PubMed Central

    Li, Yanuo; Shi, Yan; Sun, Yan; Liu, Luying; Bai, Xianyong; Wang, Dong; Li, Hongxing

    2017-01-01

    Hepatic fibrosis is a reversible pathological process, in which fibrotic tissue is excessively deposited in the liver during the repair process that follows hepatic injury. Early prevention or treatment of hepatic fibrosis has great significance on the treatment of chronic hepatic diseases. Hydroxysafflor yellow A (HSYA) is a water-soluble monomer extracted from safflower, which serves numerous pharmacological roles. However, it remains to be elucidated how HSYA regulates hepatic fibrogenesis. The aim of the present study was to reveal the possible mechanisms underlying the effects of HSYA on the prevention and treatment of hepatic fibrosis. A rat model of hepatic fibrosis was established in the present study, and the rats were administered various doses of HSYA. The effects of HSYA on pathological alterations of the liver tissue in rats with hepatic fibrosis were observed using hematoxylin-eosin staining and Masson staining. In order to explore the anti-hepatic fibrosis effects and underlying mechanisms of HSYA, serum levels, and hepatic function and hepatic fibrosis indices were evaluated. The results demonstrated that HSYA can improve the general condition of rats with hepatic fibrosis and relieve cellular swelling of the liver, fatty degeneration, necrosis, inflammatory cell infiltration and fibroplastic proliferation. Subsequent to administration of HSYA, globulin was increased during hepatic fibrosis caused by tetrachloromethane. However, total cholesterol, triglyceride, alanine aminotransferase, aspartate aminotransferase and levels of hyaluronic acid, laminin, procollagen III N-terminal peptide, collagen type IV and hydroxyproline were significantly reduced. The results additionally demonstrated that HSYA could enhance superoxide dismutase activity and reduce malondialdehyde levels, inhibiting lipid peroxidation caused by free radicals. PMID:27909717

  6. Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-α induced hepatocyte apoptosis.

    PubMed

    Tao, Yan-yan; Yan, Xiu-chuan; Zhou, Tao; Shen, Li; Liu, Zu-long; Liu, Cheng-hai

    2014-11-18

    What was the relationship of Fuzheng Huayu recipe (FZHY) inhibiting hepatocyte apoptosis and HSC activation at different stage of liver fibrosis? In order to answer this question, the study was carried out to dynamically observe FZHY's effect on hepatocyte apoptosis and HSC activation and further explored underling mechanism of FZHY against hepatocyte apoptosis. Mice were randomly divided into four groups: normal, model, FZHY, and N-acetylcystein (NAC) groups. Acute hepatic injury and liver fibrosis in mice were induced by CCl4. Three days before the first CCl4 injection, treatment with FZHY powder or NAC respectively was started. In vitro, primary hepatocytes were pretreated with FZHY medicated serum or Z-VAD-FMK and then incubated with ActD and TNF-α. Primary HSCs were treated with DNA from apoptotic hepatocytes incubated by Act D/TNF-α or FZHY medicated. Liver sections were analyzed for HE staining and immunohistochemical evaluation of apoptosis. Serum ALT and AST, Alb content and TNF-α expression in liver tissue were detected. Hyp content was assayed and collagen deposition was visualized. Expressions of α-SMA and type I collagen were analyzed by immunofluorescence and immunoblotting. Flow cytometry, immunofluorescence, and DNA ladder for hepatocyte apoptosis and immunoblotting for TNF-R1, Bcl-2 and Bax were also analyzed. Mice showed characteristic features of massive hepatocytes apoptosis in early stage of liver injury and developed severe hepatic fibrosis in later phase. FZHY treatment significantly alleviated acute liver injury and hepatocyte apoptosis, and inhibited liver fibrosis by decreasing α-SMA expression and hepatic Hyp content. In vitro, primary hepatocytes were induced by TNF-α and Act D. The anti-apoptotic effect of FZHY was generated by reducing TNFR1 expression and balancing the expressions of Bcl-2 and Bax. Meanwhile, the nuclear DNA from apoptotic hepatocytes stimulated HSC activation in a dose dependent manner, and the DNA from

  7. Hypervitaminosis A-induced hepatic fibrosis in a cat.

    PubMed

    Guerra, Juliana M; Daniel, Alexandre G T; Aloia, Thiago P A; de Siqueira, Adriana; Fukushima, André R; Simões, Denise M N; Reche-Júior, Archivaldo; Cogliati, Bruno

    2014-03-01

    The excessive intake of vitamin A in the form of vitamin concentrate, supplement or vitamin-rich liver can result in hypervitaminosis A in man and animals. Although osteopathologies resulting from chronic vitamin A intoxication in cats are well characterized, no information is available concerning feline hypervitaminosis A-induced liver disease. We report the first case of hepatic stellate cell lipidosis and hepatic fibrosis in a domestic cat that had been fed a diet based on raw beef liver. Radiographic examination revealed exostoses and ankylosis between vertebrae C1 and T7, compatible with deforming cervical spondylosis. Necropsy showed a slightly enlarged and light yellow to bronze liver. Microscopic and ultrastructural analyses of liver tissues revealed diffuse and severe liver fibrosis associated with hepatic stellate cell hyperplasia and hypertrophy. These cells showed immunopositive staining for α-smooth muscle actin and desmin markers. The necropsy findings of chronic liver disease coupled with osteopathology supported the diagnosis of hypervitaminosis A. As in human hepatology, if there is dietary evidence to support increased intake of vitamin A, then hypervitaminosis A should be considered in the differential diagnosis of chronic liver disease in cats.

  8. Drug-induced hepatitis superimposed on the presence of anti-SLA antibody: a case report.

    PubMed

    Etxagibel, Aitziber; Julià, M Rosa; Brotons, Alvaro; Company, M Margarita; Dolz, Carlos

    2008-01-28

    Autoimmune hepatitis is a necroinflammatory disorder of unknown etiology characterized by the presence of circulating antibodies, hypergammaglobulinemia, and response to immunosuppression. It has the histological features of chronic hepatitis. The onset is usually insidious, but in some patients the presentation may be acute and occasionally severe. Certain drugs can induce chronic hepatitis mimicking autoimmune hepatitis. Different autoantibodies have been associated with this process but they are not detectable after drug withdrawal and clinical resolution. We describe a case of drug-induced acute hepatitis associated with antinuclear, antisoluble liver-pancreas and anti-smooth muscle autoantibodies in a 66-year-old woman. Abnormal clinical and biochemical parameters resolved after drug withdrawal, but six months later anti-soluble liver-pancreas antibodies remained positive and liver biopsy showed chronic hepatitis and septal fibrosis. Furthermore, our patient has a HLA genotype associated with autoimmune hepatitis. Patient follow-up will disclose whether our patient suffers from an autoimmune disease and if the presence of anti-soluble liver antigens could precede the development of an autoimmune hepatitis, as the presence of antimitochondrial antibodies can precede primary biliary cirrhosis.

  9. Reduction of carbon tetrachloride-induced rat liver injury by IRFI 042, a novel dual vitamin E-like antioxidant.

    PubMed

    Campo, G M; Squadrito, F; Ceccarelli, S; Calò, M; Avenoso, A; Campo, S; Squadrito, G; Altavilla, D

    2001-04-01

    Carbon tetrachloride (CCl4 )-induced hepatotoxicity is likely the result of a CCl4 -induced free radical production which causes membrane lipid peroxidation and activation of transcription factors regulating both the TNF-alpha gene and the early-immediate genes involved in tissue regeneration. IRFI 042 is a novel vitamin E-like compound having a masked sulphydryl group in the aliphatic side chain. We studied the effect of IRFI 042 on CCl4 -induced liver injury. Liver damage was induced in male rats by an intraperitoneal injection of CCl4 (1 ml/kg in vegetal oil). Serum alanine aminotransferase (ALT) activity, liver malondialdehyde (MAL), hydroxyl radical formation (OH*), calculated indirectly by a trapping agent, hepatic reduced glutathione (GSH) concentration, plasma TNF-alpha, liver histology and hepatic mRNA levels for TNF-alpha were evaluated 48 h after CCl4 administration. Hepatic vitamin E (VE) levels were evaluated, in a separate group of animals, 2 h after CCl4 injection. A control group with vitamin E (100 mg/kg) was also treated in order to evaluate the differences versus the analogue treated groups. Intraperitoneal injection of carbon tetrachloride produced a marked increase in serum ALT activity (CCl4 = 404.61 +/- 10.33 U/L; Controls= 28.54 +/- 4.25 U/L), liver MAL (CCl4 = 0.67 +/- 0.16 nmol/mg protein; Controls= 0.13 +/- 0.06 nmol/mg protein), OH(7) levels assayed as 2,3-DHBA (CCl4 = 8.73 +/- 1.46 microM; Controls= 0.45 +/- 0.15 microM) and 2,5-DHBA (CCl4 = 24.61 +/- 3.32 microM; Controls= 2.75 +/- 0.93 microM), induced a severe depletion of GSH (CCl4 = 3.26 +/- 1.85 micromol/g protein; Controls= 17.82 +/- 3.13 micromol/g protein) and a marked decrease in VE levels (CCl4 = 5.67 +/- 1.22 nmol/g tissue; Controls= 13.47 +/- 3.21 nmol/g tissue), caused liver necrosis, increased plasma TNF-alpha levels (CCl4 = 57.36 +/- 13.24 IU/ml; Controls= 7.26 +/- 2.31 IU/ml) and enhanced hepatic mRNA for TNF-alpha (CCl4 = 19.22 +/- 4.38 a.u.; Controls= 0.76 +/- 0.36 a

  10. Drag reducing polymers decrease hepatic injury and metastases after liver ischemia-reperfusion

    PubMed Central

    Yazdani, Hamza O.; Sud, Vikas; Goswami, Julie; Loughran, Patricia; Huang, Hai; Simmons, Richard L.; Tsung, Allan

    2017-01-01

    Introduction Surgery, a crucial therapeutic modality in the treatment of solid tumors, can induce sterile inflammatory processes which can result in metastatic progression. Liver ischemia and reperfusion (I/R) injury, an inevitable consequence of hepatic resection of metastases, has been shown to foster hepatic capture of circulating cancer cells and accelerate metastatic growth. Efforts to reduce these negative consequences have not been thoroughly investigated. Drag reducing polymers (DRPs) are blood-soluble macromolecules that can, in nanomolar concentrations, increase tissue perfusion, decrease vascular resistance and decrease near-wall microvascular concentration of neutrophils and platelets thereby possibly reducing the inflammatory microenvironment. We hypothesize that DRP can potentially be used to ameliorate metastatic capture of tumor cells and tumor growth within the I/R liver. Methods Experiments were performed utilizing a segmental ischemia model of mice livers. Five days prior or immediately prior to ischemia, murine colon adenocarcinoma cells (MC38) were injected into the spleen. DRP (polyethylene oxide) or a control of low-molecular-weight polyethylene glycol without drag reducing properties were administered intraperitoneally at the onset of reperfusion. Results After three weeks from I/R, we observed that liver I/R resulted in an increased ability to capture and foster growth of circulating tumor cells; in addition, the growth of pre-existing micrometastases was accelerated three weeks later. These effects were significantly curtailed when mice were treated with DRPs at the time of I/R. Mechanistic investigations in vivo indicated that DRPs protected the livers from I/R injury as evidenced by significant decreases in hepatocellular damage, neutrophil recruitment into the liver, formation of neutrophil extracellular traps, deposition of platelets, formation of microthrombi within the liver sinusoids and release of inflammatory cytokines

  11. BIOMARKERS DISTINGUISH APOPTOTIC AND NECROTIC CELL DEATH DURING HEPATIC ISCHEMIA-REPERFUSION INJURY IN MICE

    PubMed Central

    Yang, Min; Antoine, Daniel J.; Weemhoff, James L.; Jenkins, Rosalind E.; Farhood, Anwar; Park, B. Kevin; Jaeschke, Hartmut

    2014-01-01

    Hepatic ischemia-reperfusion (IRP) injury is a significant clinical problem during tumor resection surgery (Pringle maneuver), and liver transplantation. However, the relative contribution of necrotic and apoptotic cell death to the overall liver injury is still controversial. In order to address this important issue in a standard murine model of hepatic IRP injury, plasma biomarkers of necrotic cell death such as micro-RNA-122, full-length cytokeratin-18 (FK18) and high mobility group box-1 (HMGB1) protein, and apoptosis including plasma caspase-3 activity and caspase-cleaved cytokeratin-18 (CK18), coupled with markers of inflammation (hyper-acetylated HMGB1) were compared with histological features in H&E- and TUNEL-stained liver sections. After 45 min of hepatic ischemia and 1–24h of reperfusion, all necrosis markers increased dramatically in plasma by 40-to->10,000-fold over baseline with a time course similar to ALT. These data correlated well with histological characteristics of necrosis. Within the area of necrosis, most cells were TUNEL-positive; initially (≤ 3h of RP) the staining was restricted to nuclei but later spread to the cytosol characteristic for karyorrhexis during necrotic cell death. In contrast, the lack of morphological evidence of apoptotic cell death and relevant caspase-3 activity in the postischemic liver correlated well with the absence of caspase-3 activity and CK18 (except a minor increase at 3h RP) in plasma. The quantitative comparison of FK18 (necrosis) and CK18 (apoptosis) release indicated the dominant cell death by necrosis during IRP and only a temporary and very minor degree of apoptosis. These data suggest that the focus of future research should be on the elucidation of necrotic signaling mechanisms to identify relevant targets, which may be used to attenuate hepatic IRP injury. PMID:25046819

  12. Babao Dan attenuates hepatic fibrosis by inhibiting hepatic stellate cells activation and proliferation via TLR4 signaling pathway.

    PubMed

    Liang, Lei; Yang, Xue; Yu, Yang; Li, Xiaoyong; Wu, Yechen; Shi, Rongyu; Jiang, Jinghua; Gao, Lu; Ye, Fei; Zhao, Qiudong; Li, Rong; Wei, Lixin; Han, Zhipeng

    2016-12-13

    Babao Dan (BBD), a traditional Chinese medicine, has been widely used as a complementary and alternative medicine to treat chronic liver diseases. In this study, we aimed to observe the protective effect of BBD on rat hepatic fibrosis induced by diethylnitrosamine (DEN) and explore it possible mechanism. BBD was administrated while DEN was given. After eight weeks, values of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) indicated that BBD significantly protected liver from damaging by DEN and had no obvious side effect on normal rat livers. Meanwhile, BBD attenuated hepatic inflammation and fibrosis in DEN-induced rat livers through histopathological examination and hepatic hydroxyproline content. Furthermore, we found that BBD inhibited hepatic stellate cells activation and proliferation without altering the concentration of lipopolysaccharide (LPS) in portal vein. In vitro study, serum from BBD treated rats (BBD-serum) could also significantly suppress LPS-induced HSCs activation through TLR4/NF-κB pathway. In addition, BBD-serum also inhibited the proliferation of HSCs by regulating TLR4/ERK pathway. Our study demonstrated that BBD may provide a new therapy strategy of hepatic injury and hepatic fibrosis.

  13. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.

    PubMed

    Morris, E Matthew; Meers, Grace M E; Koch, Lauren G; Britton, Steven L; Fletcher, Justin A; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C; Ibdah, Jamal A; Rector, R Scott; Thyfault, John P

    2016-10-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity.

  14. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis

    PubMed Central

    Morris, E. Matthew; Meers, Grace M. E.; Koch, Lauren G.; Britton, Steven L.; Fletcher, Justin A.; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C.; Ibdah, Jamal A.; Rector, R. Scott

    2016-01-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity. PMID:27600823

  15. Hepatic parenchymal atrophy induction for intractable segmental bile duct injury after liver resection.

    PubMed

    Hwang, Shin; Park, Gil-Chun; Ha, Tae-Yong; Ko, Gi-Young; Gwon, Dong-Il; Choi, Young-Il; Song, Gi-Won; Lee, Sung-Gyu

    2012-05-01

    Liver resection can result in various types of bile duct injuries but their treatment is usually difficult and often leads to intractable clinical course. We present an unusual case of hepatic segment III duct (B3) injury, which occurred after left medial sectionectomy for large hepatocellular carcinoma and was incidentally detected 1 week later due to bile leak. Since the pattern of this B3 injury was not adequate for operative biliary reconstruction, atrophy induction of the involved hepatic parenchyma was attempted. This treatment consisted of embolization of the segment III portal branch to inhibit bile production, induction of heavy adhesion at the bile leak site and clamping of the percutaneous transhepatic biliary drainage (PTBD) tube to accelerate segment III atrophy. This entire procedure, from liver resection to PTBD tube removal took 4 months. This patient has shown no other complication or tumor recurrence for 4 years to date. These findings suggest that percutaneous segmental portal vein embolization, followed by intentional clamping of external biliary drainage, can effectively control intractable bile leak from segmental bile duct injury.

  16. Hepatic Complications of Anorexia Nervosa.

    PubMed

    Rosen, Elissa; Bakshi, Neeru; Watters, Ashlie; Rosen, Hugo R; Mehler, Philip S

    2017-11-01

    Anorexia nervosa (AN) has the highest mortality rate of all psychiatric illnesses due to the widespread organ dysfunction caused by the underlying severe malnutrition. Starvation causes hepatocyte injury and death leading to a rise in aminotransferases. Malnutrition-induced hepatitis is common among individuals with AN especially as body mass index decreases. Acute liver failure associated with coagulopathy and encephalopathy can rarely occur. Liver enzymes may also less commonly increase as part of the refeeding process due to hepatic steatosis and can be distinguished from starvation hepatitis by the finding of a fatty liver on ultrasonography. Individuals with AN and starvation-induced hepatitis are at increased risk of hypoglycemia due to depleted glycogen stores and impaired gluconeogenesis. Gastroenterology and hepatology consultations are often requested when patients with AN and signs of hepatitis are hospitalized. It should be noted that additional laboratory testing, imaging, or liver biopsy all have low diagnostic yield, are costly, and potentially invasive, therefore, not generally recommended for diagnostic purposes. While the hepatitis of AN can reach severe levels, a supervised increase in caloric intake and a return to a healthy body weight often quickly lead to normalization of elevated aminotransferases caused by starvation.

  17. Primary hepatic artery embolization in pediatric blunt hepatic trauma.

    PubMed

    Ong, Caroline C P; Toh, Luke; Lo, Richard H G; Yap, Te-Lu; Narasimhan, Kannan

    2012-12-01

    Non-operative management of isolated blunt hepatic trauma is recommended except when hemodynamic instability requires immediate laparotomy. Hepatic artery angioembolization is increasingly used for hepatic injuries with ongoing bleeding as demonstrated by contrast extravasation on the CT scan. It is used primarily or after laparotomy to control ongoing hemorrhage. Hepatic angioembolization as part of multimodality management of hepatic trauma is reported mainly in adults, with few pediatric case reports. We describe our institution experience with primary pediatric hepatic angioembolization and review the literature with regard to indications and complications. Two cases (3 and 8 years old), with high-grade blunt hepatic injuries with contrast extravasation on the CT scan were successfully managed by emergency primary hepatic angioembolization with minimal morbidity and avoided laparotomy. To date, the only reports of pediatric hepatic angioembolization for trauma are 5 cases for acute bleeding and 15 delayed cases for pseudoaneurysm. The role of hepatic angioembolization in the presence of an arterial blush on CT in adults is accepted, but contested in a pediatric series, despite higher transfusion rate and mortality rate. We propose that hepatic angioembolization should be considered adjunct treatment, in lieu of, or in addition to emergency laparotomy for hemostasis in pediatric blunt hepatic injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Autoimmune-like hepatitis during masitinib therapy in an amyotrophic lateral sclerosis patient

    PubMed Central

    Salvado, Maria; Vargas, Victor; Vidal, Marta; Simon-Talero, Macarena; Camacho, Jessica; Gamez, Josep

    2015-01-01

    We report a case of acute severe hepatitis resulting from masitinib in a young amyotrophic lateral sclerosis patient. Hepatotoxicity induced by masitinib, a tyrosine kinase inhibitor, is usually transient with mild elevation of transaminases, although acute hepatitis has been not reported to date. The hepatitis was resolved after masitinib was discontinued and a combination of prednisone and azathioprine was started. The transaminases returned to baseline normal values five months later. This is the first case in the hepatitis literature associated with masitinib. The autoimmune role of this drug-induced liver injury is discussed. Physicians should be aware of this potential complication. PMID:26420975

  19. CRACC-CRACC Interaction between Kupffer and NK Cells Contributes to Poly I:C/D-GalN Induced Hepatitis

    PubMed Central

    Li, Yangxi; Cao, Guoshuai; Zheng, Xiaodong; Wang, Jun; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2013-01-01

    CD2-like receptor activating cytotoxic cells (CRACC) is known as a critical activating receptor of natural killer (NK) cells. We have previously reported that NK cells contribute to Poly I:C/D-galactosamine (D-GalN)-induced fulminant hepatitis. Since natural killer group 2, member D (NKG2D) is considered critical but not the only activating receptor for NK cells, we investigated the role of CRACC in this model. We found that CRACC was abundant on hepatic NK cells but with low expression levels on Kupffer cells under normal conditions. Expression of CRACC on NK cells and Kupffer cells was remarkably upregulated after poly I:C injection. Hepatic CRACC mRNA levels were also upregulated in Poly I:C/D-GalN-treated mice, and correlated positively with the serum alanine aminotransferase (ALT) levels. CRACC expression on Kupffer cells was specifically silenced by nano-particle encapsulated siRNA in vivo, which significantly reduced Poly I:C/D-GalN-induced liver injury. In co-culture experiments, it was further verified that silencing CRACC expression or blockade of CRACC activation by mAb reduced the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Collectively, our findings suggest that CRACC-CRACC interaction between NK cells and resident Kupffer cells contributes to Poly I:C/D-GalN-induced fulminant hepatitis. PMID:24098802

  20. Combinatorial usage of fungal polysaccharides from Cordyceps sinensis and Ganoderma atrum ameliorate drug-induced liver injury in mice.

    PubMed

    Fan, Songtao; Huang, Xiaojun; Wang, Sunan; Li, Chang; Zhang, Zhihong; Xie, Mingyong; Nie, Shaoping

    2018-05-15

    This study investigated the possible protective effect of combined fungal polysaccharides (CFP), consisting of Cordyceps sinensis polysaccharides (CSP) and Ganoderma atrum polysaccharides (PSG) with well-defined structural characteristics, against cyclophosphamide (CTX)-induced hepatotoxicity in mice. Our results indicated CFP effectively prevented the liver injury by decreasing toxicity markers (aspartate transaminase, alanine aminotransferase and alkaline phosphatase). Further biochemical and molecular analysis indicated CSP particularly inhibited the activation of Toll-like receptor 9 (TLR9) and its related inflammatory signals, including pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 to modulate hepatic inflammation response. Relatively, through activation of peroxisome proliferator-activated receptor α (PPARα), PSG increased hepatic glutathione peroxidase and glutathione content depleted by CTX, as well as prevented mitochondria-dependent apoptosis with regulation on Bcl-2 family proteins (Bad, Bax and Bcl-2). In addition, protective effect of CFP was associated with enhanced modulations on cellular oxidant/antioxidant imbalance, mitochondrial apoptotic pathway and pro-inflammatory factors via PPARα upregulation and TLR9 downregulation. Taking together, the combinatorial approach based on CSP and PSG presented a practical option for the management of drug-induced liver injury. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2016-01-01

    Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and

  2. Extrahepatic ischemia-reperfusion injury reduces hepatic oxidative drug metabolism as determined by serial antipyrine clearance.

    PubMed

    Gurley, B J; Barone, G W; Yamashita, K; Polston, S; Estes, M; Harden, A

    1997-01-01

    All transplanted solid organs experience some degree of ischemia-reperfusion (I-R) injury. This I-R injury can contribute to graft dysfunction which stems in part from the acute phase response and a resultant host of cytokines. Recent evidence suggests that organs remote to the site of I-R injury can be affected by circulating cytokines originating from these I-R injuries. Since many of these acute phase cytokines inhibit hepatic cytochrome P-450 (CYP) enzymes, we chose to investigate whether extrahepatic I-R injuries could influence hepatic oxidative drug metabolism. Fifteen dogs were divided into three surgical groups: (I) sham I-R; (II) bilateral normothermic renal I-R; and (III) normothermic intestinal I-R. Antipyrine (AP) was selected as a model substrate and administered intravenously at a dose of 10 mg/kg. AP serum concentrations were determined by HPLC and cytokine activity (IL-1, IL-6, and TNFalpha) was measured via bioassay. Serial AP clearance and serum cytokine concentrations were determined 3 days prior to and at 4 hr, 24 hr, 3 days and 7 days after surgery. Hematology and blood chemistries were monitored throughout the study period. AP clearance was significantly reduced in groups II and III at 4 and 24 hrs post-l-R injury, while AP binding and apparent volume of distribution were unaffected. Peak levels of TNF and IL-6 activity occurred at 1 and 4 hours, respectively. IL-I activity was not detected in any group. AP clearance correlated strongly to circulating levels of IL-6 (r = -0.789, p = 0.0002). Our findings indicate that extrahepatic I-R injury can affect hepatic oxidative drug metabolism and this effect is mediated in part by circulating cytokines.

  3. Growth Arrest-Specific Protein 6 is Hepatoprotective Against Ischemia/Reperfusion Injury

    PubMed Central

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert

    2010-01-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here, we report an early increase in serum GAS6 levels following I/R exposure. Moreover, unlike wild type mice, Gas6-/- mice were highly sensitive to partial hepatic I/R, with 90% of mice dying within 12 hours of reperfusion due to massive hepatocellular injury. I/R induced early hepatic AKT phosphorylation in wild type but not in Gas6-/- mice, without significant changes in JNK phosphorylation or nuclear NF-κB translocation, whereas hepatic IL-1β and TNF mRNA levels were higher in Gas6-/- mice compared to wild type mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes protecting them from hypoxia-induced cell death, while GAS6 diminished lipopolysaccharide (LPS)-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, in vivo recombinant GAS6 treatment not only rescued GAS6 knockout mice from I/R-induced severe liver damage, but also attenuated hepatic damage in wild type mice following I/R. In conclusion, our data uncover GAS6 as a new player in liver I/R injury, emerging as a potential therapeutic target to reduce post-ischemic hepatic damage. PMID:20730776

  4. Protection of the liver against CCl4-induced injury by intramuscular electrotransfer of a kallistatin-encoding plasmid.

    PubMed

    Diao, Yong; Zhao, Xiao-Feng; Lin, Jun-Sheng; Wang, Qi-Zhao; Xu, Rui-An

    2011-01-07

    To investigate the effect of transgenic expression of kallistatin (Kal) on carbon tetrachloride (CCl(4))-induced liver injury by intramuscular (im) electrotransfer of a Kal-encoding plasmid formulated with poly-L-glutamate (PLG). The pKal plasmid encoding Kal gene was formulated with PLG and electrotransferred into mice skeletal muscle before the administration of CCl4. The expression level of Kal was measured. The serum biomarker levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malonyldialdehyde (MDA), and tumor necrosis factor (TNF)-α were monitored. The extent of CCl4-induced liver injury was analyzed histopathologically. The transgene of Kal was sufficiently expressed after an im injection of plasmid formulated with PLG followed by electroporation. In the Kal gene-transferred mice, protection against CCl4-induced liver injury was reflected by significantly decreased serum ALT, AST, MDA and TNF-α levels compared to those in control mice (P<0.01 to 0.05 in a dose-dependent manner). Histological observations also revealed that hepatocyte necrosis, hemorrhage, vacuolar change and hydropic degeneration were apparent in mice after CCl4 administration. In contrast, the damage was markedly attenuated in the Kal gene-transferred mice. The expression of hepatic fibrogenesis marker transforming growth factor-β1 was also reduced in the pKal transferred mice. Intramuscular electrotransfer of plasmid pKal which was formulated with PLG significantly alleviated the CCl4-induced oxidative stress and inflammatory response, and reduced the liver damage in a mouse model.

  5. Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors.

    PubMed

    Alessandrino, F; Tirumani, S H; Krajewski, K M; Shinagare, A B; Jagannathan, J P; Ramaiya, N H; Di Salvo, D N

    2017-07-01

    The purpose of this review is to familiarise radiologists with the spectrum of hepatic toxicity seen in the oncology setting, in view of the different systemic therapies used in cancer patients. Drug-induced liver injury can manifest in various forms, and anti-neoplastic agents are associated with different types of hepatotoxicity. Although chemotherapy-induced liver injury can present as hepatitis, steatosis, sinusoidal obstruction syndrome, and chronic parenchymal damages, molecular targeted therapy-associated liver toxicity ranges from mild liver function test elevation to fulminant life-threatening acute liver failure. The recent arrival of immune checkpoint inhibitors in oncology has introduced a new range of immune-related adverse events, with differing mechanisms of liver toxicity and varied imaging presentation of liver injury. High-dose chemotherapy regimens for haematopoietic stem cell transplantation are associated with sinusoidal obstruction syndrome. Management of hepatic toxicity depends on the clinical scenario, the drug in use, and the severity of the findings. In this article, we will (1) present the most common types of oncological drugs associated with hepatic toxicity and associated liver injuries; (2) illustrate imaging findings of hepatic toxicities and the possible differential diagnosis; and (3) provide a guide for management of these conditions. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Inducing a visceral organ to protect a peripheral capillary bed: stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy.

    PubMed

    Hoppe, George; Lee, Tamara J; Yoon, Suzy; Yu, Minzhong; Peachey, Neal S; Rayborn, Mary; Zutel, M Julieta; Trichonas, George; Au, John; Sears, Jonathan E

    2014-06-01

    Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Influence of diabetes on liver injury induced by antitubercular drugs and on silymarin hepatoprotection in rats.

    PubMed

    Srivastava, R K; Sharma, S; Verma, S; Arora, B; Lal, H

    2008-12-01

    Isoniazid, rifampicin and pyrazinamide during short-course chemotherapy for tuberculosis can result in liver injury. The coexistence of tuberculosis and diabetes is common in patients who receive inadequate treatment. The risk of hepatotoxicity from many toxicants is increased in diabetic rats. Silymarin provides protection against liver injury caused by many hepatotoxicants, including antitubercular drugs (ATDs). In the wake of increased severity of ATD-induced hepatotoxicity in diabetes we report here the results of a study on the influence of diabetes on silymarin hepatoprotection in rats. Rats with diabetes induced via intraperitoneally injected streptozotocin (50 mg/kg), nondiabetic rats and insulin-treated diabetic rats received isoniazid (7.5 mg/kg/day), rifampicin (10 mg/kg/day) and pyrazinamide (35 mg/kg/day) orally (p.o.) with or without silymarin (100 mg/kg/day p.o.) treatment for 45 days. Compared to nondiabetic rats, liver function tests and histological changes of liver revealed exaggerated liver injury in diabetic rats caused by ATDs which was evident by 5- to 8-fold increases in serum levels of marker enzymes (aspartate and alanine aminotransferase, alkaline phosphatase and gamma-glutamyltranspeptidase) and 1- to 2-fold increases in bilirubin accompanied by a 2-fold decrease in total serum proteins, intense fatty and inflammatory infiltrations, necrosis and fibrosis. Coadministration of silymarin provided protection against ATD hepatotoxicity in all animals. However, insulin-treated diabetic animals showed greater silymarin-induced hepatoprotection against ATD-induced liver injury, which was characterized by near normal levels of marker enzymes, an increase in total proteins and normal hepatic structure. These results thus indicate that diabetes exaggerates ATD-induced liver injury and attenuates silymarin-induced hepatoprotection. However, insulin treatment for diabetes offers greater silymarin-induced hepatoprotection against ATD-induced liver

  8. The antifibrinolytic drug tranexamic acid reduces liver injury and fibrosis in a mouse model of chronic bile duct injury.

    PubMed

    Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P

    2014-06-01

    Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.

  9. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl4-Induced Liver Injury through Antioxidant Effect.

    PubMed

    Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin

    2018-01-01

    Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.

  10. Drug-induced hepatitis superimposed on the presence of anti-SLA antibody: a case report

    PubMed Central

    Etxagibel, Aitziber; Julià, M Rosa; Brotons, Alvaro; Company, M Margarita; Dolz, Carlos

    2008-01-01

    Introduction Autoimmune hepatitis is a necroinflammatory disorder of unknown etiology characterized by the presence of circulating antibodies, hypergammaglobulinemia, and response to immunosuppression. It has the histological features of chronic hepatitis. The onset is usually insidious, but in some patients the presentation may be acute and occasionally severe. Certain drugs can induce chronic hepatitis mimicking autoimmune hepatitis. Different autoantibodies have been associated with this process but they are not detectable after drug withdrawal and clinical resolution. Case presentation We describe a case of drug-induced acute hepatitis associated with antinuclear, antisoluble liver-pancreas and anti-smooth muscle autoantibodies in a 66-year-old woman. Abnormal clinical and biochemical parameters resolved after drug withdrawal, but six months later anti-soluble liver-pancreas antibodies remained positive and liver biopsy showed chronic hepatitis and septal fibrosis. Furthermore, our patient has a HLA genotype associated with autoimmune hepatitis. Conclusion Patient follow-up will disclose whether our patient suffers from an autoimmune disease and if the presence of anti-soluble liver antigens could precede the development of an autoimmune hepatitis, as the presence of antimitochondrial antibodies can precede primary biliary cirrhosis. PMID:18226219

  11. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries.

    PubMed

    Liu, Qingsheng; Pan, Ran; Ding, Lei; Zhang, Fuli; Hu, Linfeng; Ding, Bin; Zhu, Linwensi; Xia, Yongliang; Dou, Xiaobing

    2017-08-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and oxidative injury of hepatocytes. Rutin is a natural flavonoid with significant roles in combating cellular oxidative stress and regulating lipid metabolism. The current study aims to investigate the molecular mechanisms underlying rutin's hypolipidemic and hepatoprotective effects in nonalcoholic fatty liver disease. Rutin treatment was applied to male C57BL/6 mice maintained on a high-fat diet and HepG2 cells challenged with oleic acid. Hepatic lipid accumulation was evaluated by triglyceride assay and Oil Red O staining. Oxidative hepatic injury was assessed by malondialdehyde assay, superoxide dismutase assay and reactive oxygen species assay. The expression levels of various lipogenic and lipolytic genes were determined by quantitative real-time polymerase chain reactions. In addition, liver autophagy was investigated by enzyme-linked immunosorbent assay. In both fat-challenged murine liver tissues and HepG2 cells, rutin treatment was shown to significantly lower triglyceride content and the abundance of lipid droplets. Rutin was also found to reduce cellular malondialdehyde level and restore superoxide dismutase activity in hepatocytes. Among the various lipid-related genes, rutin treatment was able to restore the expression of peroxisome proliferator-activated receptor alpha (PPAR-α) and its downstream targets, carnitine palmitoyltransferase 1 and 2 (CPT-1 and CPT-2), while suppressing those of sterol regulatory element-binding protein 1c (SREBP-1c), diglyceride acyltransfase 1 and 2 (DGAT-1 and 2), as well as acyl-CoA carboxylase (ACC). In addition, rutin was shown to repress the autophagic function of liver tissues by down-regulating key autophagy biomarkers, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β). The experimental data demonstrated that rutin could reduce triglyceride content and mitigate oxidative injuries in fat

  12. Flurbiprofen, a Cyclooxygenase Inhibitor, Protects Mice from Hepatic Ischemia/Reperfusion Injury by Inhibiting GSK-3β Signaling and Mitochondrial Permeability Transition

    PubMed Central

    Fu, Hailong; Chen, Huan; Wang, Chengcai; Xu, Haitao; Liu, Fang; Guo, Meng; Wang, Quanxing; Shi, Xueyin

    2012-01-01

    Flurbiprofen acts as a nonselective inhibitor for cyclooxygenases (COX-1 and COX-2), but its impact on hepatic ischemia/reperfusion (I/R) injury remains unclear. Mice were randomized into sham, I/R and flurbiprofen (Flurb) groups. The hepatic artery and portal vein to the left and median liver lobes were occluded for 90 min and unclamped for reperfusion to establish a model of segmental (70%) warm hepatic ischemia. Pretreatment of animals with flurbiprofen prior to I/R insult significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and prevented hepatocytes from I/R-induced apoptosis/necrosis. Moreover, flurbiprofen dramatically inhibited mitochondrial permeability transition (MPT) pore opening, and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that flurbiprofen markedly inhibited glycogen synthase kinase (GSK)-3β activity and increased phosphorylation of GSK-3β at Ser9, which, consequently, could modulate the adenine nucleotide translocase (ANT)–cyclophilin D (CyP-D) complex and the susceptibility to MPT induction. Therefore, administration of flurbiprofen prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through inhibition of MPT and inactivation of GSK-3β, and provides experimental evidence for clinical use of flurbiprofen to protect liver function in surgical settings in addition to its conventional use for pain relief. PMID:22714712

  13. Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice.

    PubMed

    Fu, Tianhua; Wang, Shijie; Liu, Jinping; Cai, Enbo; Li, Haijun; Li, Pingya; Zhao, Yan

    2018-05-15

    The purpose of this study was to evaluate the protective effects of α-mangostin against acetaminophen (APAP)-induced acute liver injury and discover its potential mechanisms in mice. Mice were continuously treated with α-mangostin (12.5 and 25 mg/kg) by intragastric administration once daily for 6 days, and injected intraperitoneally with APAP (300 mg/kg) after 1 h of α-mangostin administration on the last day. After APAP exposure for 24 h, the liver and serum were gathered to evaluate the hepatotoxicity. The results showed that α-mangostin effectively decreased the serum levels of alanine aminotransferase, aspartate transaminase, tumor necrosis factor (TNF-α), interleukin-1β and 6 (IL-1β, IL-6), and hepatic malondialdehyde level; and recovered hepatic glutathione (GSH), superoxide dismutase and catalase activities. Liver histopathological observation provided further evidence that α-mangostin pretreatment significantly inhibited APAP-induced hepatocellular necrosis, infiltration of inflammatory cell and hyperemia. According to the analysis of western-blot and RT-PCR detection, α-mangostin pretreatment validly inhibited the phosphorylation of ERK, JNK and p38 MAPK induced by APAP, which was consistent with the changes of TNF-α, IL-6 and IL-1β levels; the phosphorylation of IκBα and the translocation of NF-κBp65 were also attenuated by α-mangostin. These results provided a new mechanism for the protective effects of α-mangostin against APAP-induced acute liver injury. α-Mangostin significantly restrainted the oxidative stress induced by APAP. Moreover, the anti-inflammatory property of α-mangostin, which is mediated by the NF-κB and MAPK signaling pathways, also contributed to its hepatoprotective effect. Taken together, we believed that α-mangostin might be a potential material for drug development against drug-related hepatotoxicity. Copyright © 2018. Published by Elsevier B.V.

  14. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    PubMed

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Role of liver fatty acid binding protein in hepatocellular injury: effect of CrPic treatment.

    PubMed

    Fan, Weijiang; Chen, Kun; Zheng, Guoqiang; Wang, Wenhang; Teng, Anguo; Liu, Anjun; Ming, Dongfeng; Yan, Peng

    2013-07-01

    This study was designed to investigate the molecular mechanisms of chromium picolinate (CrPic, Fig. 1) hepatoprotective activity from alloxan-induced hepatic injury. Diabetes is induced by alloxan-treatment concurrently with the hepatic injury in mice. In this study, we investigate the protective effect of CrPic treatment in hepatic injury and the signal role of liver fatty acid binding protein in early hepatocellular injury diagnostics. In this study, alanine aminotransferase (ALT; EC 2.6.1.2) and aspartate aminotransferase (AST; EC 2.6.1.1) levels in the alloxan group were higher 71% and 50%, respectively, than those of the control group (ALT: 14.51±0.74; AST: 22.60±0.69). The AST and ALT levels in CrPic group were of minimal difference compared to the control groups. Here, CrPic exhibited amelioration alloxan induced oxidative stress in mouse livers. A significant increase in liver fatty acid-binding protein (L-FABP) was observed, which indicates increased fatty acid utilization in liver tissue [1]. In this study, the mRNA levels of L-FABP increased in both the control (1.1 fold) and CrPic (0.78 fold) groups compared the alloxan group. These findings suggest that hepatic injury may be prevented by CrPic, and is a potential target for use in the treatment of early hepatic injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hepatoprotective Effects of Sophoricoside against Fructose-Induced Liver Injury via Regulating Lipid Metabolism, Oxidation, and Inflammation in Mice.

    PubMed

    Li, Wenfeng; Lu, Yalong

    2018-02-01

    The dried fruit of Sophora japonica L. is a traditional Chinese herb tea rich in sophoricoside that is an isoflavone glycoside. The aim of current study was to investigate the hepatic protective effect of sophoricoside in high fructose (HF) diet fed mice. Healthy male mice were fed 30% fructose water and treated 80 and 160 mg/kg·bw sophoricoside continuously for 8 wk. Our data showed that administration of sophoricoside at 80 and 160 mg/kg·bw observably decreased the body weight and liver weight in HF-fed mice. It was found that the treatment of sophoricoside decreased the hepatic cholesterol and triglyceride levels, and serum low-density lipoprotein-cholesterol and apolipoprotein-B levels, and elevated the serum high-density lipoprotein-cholesterol and apolipoprotein-A1 levels. Moreover, the administration of sophoricoside decreased the HF-caused elevations of hepatic malonaldehyde, interleukin-1 and tumor necrosis factor-α levels, while increased the HF-induced decreases of hepatic superoxide dismutase and glutathione peroxidase activities. Meanwhile, serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities were reduced by treatment of sophoricoside in HF-fed mice. Histopathology of hematoxylin and eosin (H&E) and oil red O staining of liver tissues also confirmed the beneficial effects of sophoricoside against liver injury induced by HF-diet in mice. These findings indicated that sophoricoside may be a novel natural isoflavone for alleviating HF-induced liver injury. Fruit of Sophora japonica L. is a traditional herb tea and it recently becomes popular in China. Sophoricoside is an isoflavone glycoside (Genistein-4'-O-β-d-glucopyranoside) isolated from S. japonical L, and it possessed differential effects on the body health. The ingestion of sophoricoside or sophora fruit tea may be a novel strategy to prevent non-alcoholic fatty liver disease. © 2018 Institute of Food Technologists®.

  17. A different approach to missile induced head injuries.

    PubMed

    Pabuscu, Yüksel; Bulakbasi, Nail; Kocaoglu, Murat; Ustünsöz, Bahri; Tayfun, Cem

    2003-01-01

    Missile induced head injuries can be influenced by the anatomical location of the injury, i.e. type of tissue and by the ballistic properties such as the design of the weapon and the mass, shape and construction of the projectile, as well as its velocity characteristics and trajectory angle. In the diagnostic work up of the patients with missile induced head injuries, every available modality can be used. It is important, however, to recognize that CT scan is the primary and most efficacious diagnostic tool in such patients. In this article we have identified risk factors for both morbidity and mortality in patients with missile induced head injury with excluding the patients who had also extracranial serious trauma and systemic disease.

  18. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury.

    PubMed

    Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao

    2017-05-02

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.

  19. An unusual cause of febrile hepatitis

    PubMed Central

    Stelzer, Teresa; Kohler, Sibylle; Marques Maggio, Ewerton; Heuss, Ludwig Theodor

    2015-01-01

    We describe the case of a 51-year-old man with recently diagnosed ulcerative colitis who developed fever and elevated liver enzymes as well as cholestasis a few weeks after starting treatment with mesalazine. As no obvious cause was found and fever persisted, liver biopsy was performed and revealed granulomatous hepatitis. The patient recovered completely after cessation of mesalazine, so that a drug-induced granulomatous hepatitis after exclusion of other differential diagnoses in an extensive work up was assumed. The present case demonstrates that even though drug-induced liver injury due to mesalazine is rare, it should be considered in unclear cases and lead to prompt discontinuation of mesalazine. PMID:26113581

  20. Tezosentan, a Novel Endothelin Receptor Antagonist, Markedly Reduces Rat Hepatic Ischemia and Reperfusion Injury in Three Different Models

    PubMed Central

    Farmer, Douglas G.; Kaldas, Fady; Anselmo, Dean; Katori, Masamichi; Shen, Xiu-Da; Lassman, Charles; Kaldas, Marian; Clozel, Martine; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy

    2010-01-01

    This study investigated the effects of dual endothelin (ET) receptor blockade in rat models of liver ischemia and reperfusion injury (IRI). Three models of IRI were used: (1) in vivo total hepatic warm ischemia with portal shunting for 60 minutes with control (saline) and treatment groups (15 mg/kg tezosentan intravenously prior to reperfusion), (2) ex vivo hepatic perfusion after 24 hours of cold storage in University of Wisconsin solution with control and treatment groups (10 mg/kg tezosentan in the perfusate), and (3) syngeneic liver transplantation (LT) after 24 hours of cold storage in University of Wisconsin solution with control and treatment groups (10 mg/kg tezosentan intravenously prior to reperfusion). Tezosentan treatment significantly improved serum transaminase and histology after IRI in all 3 models. This correlated with reduced vascular resistance, improved bile production, and an improved oxygen extraction ratio. Treatment led to a reduction in neutrophil infiltration and interleukin-1 beta and macrophage inflammatory protein 2 production. A reduction in endothelial cell injury as measured by purine nucleoside phosphorylase was seen. Survival after LT was significantly increased with tezosentan treatment (90% versus 50%). In conclusion, this is the first investigation to examine dual receptor ET blockade in 3 models of hepatic IRI and the first to use the parenterally administered agent tezosentan. The results demonstrate that in both warm and cold IRI tezosentan administration improves sinusoidal hemodynamics and is associated with improved tissue oxygenation and reduced endothelial cell damage. In addition, reduced tissue inflammation, injury, and leukocyte chemotactic signaling were seen. These results provide compelling data for the further investigation of the use of tezosentan in hepatic IRI. PMID:19025917

  1. Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer

    PubMed Central

    YOSHIMOTO, KATSUHIRO; TAJIMA, HIDEHIRO; OHTA, TETSUO; OKAMOTO, KOICHI; SAKAI, SEISHO; KINOSHITA, JUN; FURUKAWA, HIROYUKI; MAKINO, ISAMU; HAYASHI, HIRONORI; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; ITOH, HIROSHI; FUJITA, HIDETO; TAKAMURA, HIROYUKI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; WAKAYAMA, TOMOHIKO; ISEKI, SHOICHI; SHIMIZU, KOICHI

    2012-01-01

    Several recent studies have reported that selectins are produced during ischemia-reperfusion injury, and that selectin ligands play an important role in cell binding to the endothelium and in liver metastasis. Portal clamping during pancreaticoduodenectomy with vessel resection for pancreatic head cancer causes hepatic ischemia-reperfusion injury, which might promote liver metastasis. We investigated the liver colonization of pancreatic cancer cells under hepatic ischemia-reperfusion and examined the involvement of E-selectin and its ligands. A human pancreatic cancer cell line (Capan-1) was injected into the spleen of mice after hepatic ischemia-reperfusion (I/R group). In addition, to investigate the effect of an anti-E-selectin antibody on liver colonization in the IR group, mice received an intraperitoneal injection of the anti-E-selectin antibody following hepatic ischemia-reperfusion and tumor inoculation (IR+Ab group). Four weeks later, mice were sacrificed and the number of tumor nodules on the liver was compared to mice without hepatic ischemia-reperfusion (control group). The incidence of liver metastasis in the I/R group was significantly higher (16 of 20, 80%) than that in the control group (6 of 20, 30%) (P<0.01). Moreover, mice in the I/R group had significantly more tumor nodules compared to those in the control group (median, 9.9 vs. 2.7 nodules) (P<0.01). In the I/R+Ab group, only 2 of 5 (40%) mice developed liver metastases. RT-PCR and southern blotting of the liver extracts showed that the expression of IL-1 and E-selectin mRNA after hepatic ischemia-reperfusion was significantly higher than the basal levels. Hepatic ischemia-reperfusion increases liver metastases and E-selectin expression in pancreatic cancer. These results suggest that E-selectin produced due to hepatic ischemia-reperfusion is involved in liver metastasis. PMID:22766603

  2. Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCδ-JNK Pathway

    PubMed Central

    Das, Joydeep; Ghosh, Jyotirmoy; Manna, Prasenjit; Sil, Parames C.

    2010-01-01

    Background Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. Methodology/Principal Findings Rats were exposed to NaAsO2 (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO2 (10 µM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCδ and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCδ is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO2 exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. Conclusions/Significance Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKC

  3. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    PubMed

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  4. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury

    PubMed Central

    2014-01-01

    Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Results Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. Conclusion These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci. PMID:24397824

  5. Pantoprazole-induced acute kidney injury: A case report.

    PubMed

    Peng, Tao; Hu, Zhao; Zheng, Hongnan; Zhen, Junhui; Ma, Chengjun; Yang, Xiangdong

    2018-06-01

    The present study reports a case of pantoprazole-induced acute kidney disease. The patient was diagnosed with acute kidney injury with wide interstitial inflammation and eosinophil infiltration. Following 1 month of glucocorticoid therapy, the patient's serum creatinine and urea nitrogen decreased to within normal ranges. The presentation, clinical course, diagnosis and prognosis of pantoprazole-induced acute kidney injury are discussed herein to highlight the importance of early and correct diagnosis for good prognosis. Disease characteristics include short-term increased serum creatinine levels that respond to glucocorticoid treatment. The patient had no history of chronic kidney disease or proteinuria and presented with increased serum creatinine following treatment with pantoprazole. Following the end of pantoprazole treatment, short-term RRT and long-term prednisolone was administered, then serum creatinine returned to normal. Pantoprazole-induced acute kidney injury is commonly misdiagnosed and late diagnosis results in poor patient prognoses. Misdiagnosis leads to the administration of treatments that may exacerbate the condition, so appropriate diagnosis and treatment for pantoprazole-induced acute kidney injury is necessary.

  6. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB.

    PubMed

    Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y

    2001-10-01

    Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.

  7. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    PubMed

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  8. Therapeutic Role of Ursolic Acid on Ameliorating Hepatic Steatosis and Improving Metabolic Disorders in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Rats

    PubMed Central

    Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Methodology/Principal Findings Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. Conclusions/Significance These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD. PMID:24489777

  9. Alcohol Modulation of the Post Burn Hepatic Response

    PubMed Central

    Chen, Michael M; Carter, Stewart R; Curtis, Brenda J; O’Halloran, Eileen B; Gamelli, Richard L; Kovacs, Elizabeth J

    2015-01-01

    The widespread and rapidly increasing trend of binge drinking is accompanied by a concomitant rise in the prevalence of trauma patients under the influence of alcohol at the time of their injury. Epidemiologic evidence suggests up to half of all adult burn patients are intoxicated at the time of admission and the presence of alcohol is an independent risk factor for death in the early stages post burn. As the major site of alcohol metabolism and toxicity, the liver is a critical determinant of post burn outcome and experimental evidence implies an injury threshold exists beyond which burn-induced hepatic derangement is observed. Alcohol may lower this threshold for post burn hepatic damage through a variety of mechanisms including modulation of extrahepatic events, alteration of the gut-liver axis, and changes in signaling pathways. The direct and indirect effects of alcohol may prime the liver for the second-hit of many overlapping physiologic responses to burn injury. In an effort to gain a deeper understanding of how alcohol potentiates post burn hepatic damage, we summarize possible mechanisms by which alcohol modulates the post burn hepatic response. PMID:26284631

  10. Research on Protective Effect and Mechanism of Idazoxan on lps Attacked Acute Hepatic Injury

    NASA Astrophysics Data System (ADS)

    Zhu, Junyu; Ying, Shangqi; Kang, Wenyuan; Huang, Wenjuan; Liang, Huaping

    2018-01-01

    Objective: To observe the protection effect of Idazoxan (IDA) on LPS induced acute hepatic injury, and to explore its action mechanism. Methods: 60 adult C57BL/6 mice were divided into a control group (20 mice, intraperitoneal injection of phosphate buffer), a model group (20 mice, intraperitoneal injection of LPS 10 mg/kg) and a agmatine group (20 mice, intraperitoneal injection of LPS 10 mg/kg and agmatine 200 mg/kg) according to random number table method. Blood and liver tissue were collected for preparation of tissue homogenate. Enzyme-linked immunosorbent assay (ELISA) was adopted for detecting tumor necrosis factor-α (TNF-α) and interleukin (IL- 1β and IL - 6) contents in the serum and liver tissue at 24h after molding. Automatic biochemical analyzer is used for determining alanine transaminase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level at 24h after molding; The liver tissue pathology changes were observed at 24h after molding. Macrophage RAW264.7 cells were stimulated by 10 μg/mL LPS and with or without IDA (100 μmol/L). 2’, 7’-dichlorofluoresce in diacetate (DCFH-DA) was used as a fluorescent probe for detection of intracellular reactive oxygen species (ROS) level; qRT - PCR method was used for detecting antioxidant enzymes HO-1 and NQO-1 mRNA expression level at 2h, 4h and 8 h. Results: mice in the model group suffered from depression, curling and food water forbidding at 6h after molding. Mice in the Idazoxan group have obviously better spirit and activity than that of model group. The serum ALT, AST and LDH level of LPS attacked acute hepatic injury mice can be effectively alleviated after Idazoxan treatment. The expression of proinflammatory factor TNF-α and IL-6 in the liver can be reduced. The liver showed obvious pathological changes at 24 h after injection, such as liver cell swelling, necrosis, congestion, inflammatory cell infiltration, etc.; The liver cell injury was prominently alleviated in IDA

  11. Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against α-naphthylisothiocyanate-induced cholestatic liver injury in rats.

    PubMed

    Yan, Jia-Yin; Ai, Guo; Zhang, Xiao-Jian; Xu, Hai-Jiang; Huang, Zheng-Ming

    2015-08-22

    The decoction of the flowers of Abelmoschus manihot (L.) Medic was traditionally used for the treatment of jaundice and various types of chronic and acute hepatitis in Anhui and Jiangsu Provinces of China for hundreds of years. Phytochemical studies have indicated that total flavonoids extracted from flowers of A. manihot (L.) Medic (TFA) were the major constituents of the flowers. Our previous studies have investigated the hepatoprotective effects of the TFA against carbon tetrachloride (CCl4) induced hepatocyte damage in vitro and liver injury in vivo. This study aimed to investigate the protective effects and mechanisms of TFA on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in rats. The hepatoprotective activities of TFA (125, 250 and 500mg/kg) were investigated on ANIT-induced cholestatic liver injury in rats. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were used as indices of hepatic cell damage and measured. Meanwhile, the serum levels of alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA) were used as indices of biliary cell damage and cholestasis and evaluated. Hepatic malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione transferase (GST), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were measured in the liver homogenates. The bile flow in 4h was estimated and the histopathology of the liver tissue was evaluated. Furthermore, the expression of transporters, bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and Na(+)-taurocholate cotransporting polypeptide (NTCP) were studied by western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-PCR) to elucidate the protective mechanisms of TFA against ANIT-induced cholestasis. The oral administration of TFA to ANIT-treated rats could

  12. A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury.

    PubMed

    Horváth, Bėla; Magid, Lital; Mukhopadhyay, Partha; Bátkai, Sándor; Rajesh, Mohanraj; Park, Ogyi; Tanchian, Galin; Gao, Rachel Y; Goodfellow, Catherine E; Glass, Michelle; Mechoulam, Raphael; Pacher, Pál

    2012-04-01

    Cannabinoid CB(2) receptor activation has been reported to attenuate myocardial, cerebral and hepatic ischaemia-reperfusion (I/R) injury. We have investigated the effects of a novel CB(2) receptor agonist ((1S,4R)-2-(2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl)-7,7-dimethylbicyclo[2.2.1]hept-2-en-1-yl)methanol (HU-910) on liver injury induced by 1 h of ischaemia followed by 2, 6 or 24 h of reperfusion, using a well-established mouse model of segmental hepatic I/R. Displacement of [(3) H]CP55940 by HU-910 from specific binding sites in CHO cell membranes transfected with human CB(2) or CB(1) receptors (hCB(1/2) ) yielded K(i) values of 6 nM and 1.4 µM respectively. HU-910 inhibited forskolin-stimulated cyclic AMP production by hCB(2) CHO cells (EC(50) = 162 nM) and yielded EC(50) of 26.4 nM in [(35) S]GTPγS binding assays using hCB(2) expressing CHO membranes. HU-910 given before ischaemia significantly attenuated levels of I/R-induced hepatic pro-inflammatory chemokines (CCL3 and CXCL2), TNF-α, inter-cellular adhesion molecule-1, neutrophil infiltration, oxidative stress and cell death. Some of the beneficial effect of HU-910 also persisted when given at the beginning of the reperfusion or 1 h after the ischaemic episode. Furthermore, HU-910 attenuated the bacterial endotoxin-triggered TNF-α production in isolated Kupffer cells and expression of adhesion molecules in primary human liver sinusoidal endothelial cells stimulated with TNF-α. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of HU-910, while pretreatment with a CB(1) antagonist tended to enhance them. HU-910 is a potent CB(2) receptor agonist which may exert protective effects in various diseases associated with inflammation and tissue injury. This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and

  13. Characterizations and hepatoprotective effect of polysaccharides from Mori Fructus in rats with alcoholic-induced liver injury.

    PubMed

    Zhou, Xin; Deng, Qingfang; Chen, Huaguo; Hu, Enming; Zhao, Chao; Gong, Xiaojian

    2017-09-01

    Crude polysaccharides of Mori Fructus (MFPs) were found to have anti-inflammatory antioxidant, and immuno-enhancing activities. However, the structure of the polysaccharides was ambiguous and its holistic hepatic protection evaluation was defective. This study was conducted to illustrate the characterization of MFPs, and evaluate its hepatoprotective activities. The results found that MFPs contained 67.93±1.18% carbohydrates, 31.03±0.54% uronic acid, and little protein and sulfate. The average molecular weight was ranging from 112.2kDa to 181.9kDa. Monosaccharide component analysis indicated that MFPs was mainly composed of glucose, galacturonic acid, rhamnose and galactose. Both the acute and subacute alcoholic-induced liver injury animal models were adopted to evaluate the MFPs's hepatoprotective activity. After administration of MFPs, both serological indexes (aspartate aminotransferase and alanine aminotransferase) and hepatic indicators (glutathione, superoxide dismutase, glutathione peroxidase and malondialdehyde) were improved by comparing with the non-MFPs group. The hepatic histopathology results also showed a prominent lipid degeneration and microvesicular steatosis attenuation in the MFPs groups. These outstanding hepatic protecting activities of MFPs might be related to its activation of ethanol dehydrogenase, elimination of free radicals and/or inhibition of lipid peroxidation capacities. MFPs could be important active substances for preventing and remedying liver injury. Copyright © 2017. Published by Elsevier B.V.

  14. A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury

    PubMed Central

    Horváth, Bėla; Magid, Lital; Mukhopadhyay, Partha; Bátkai, Sándor; Rajesh, Mohanraj; Park, Ogyi; Tanchian, Galin; Gao, Rachel Y; Goodfellow, Catherine E; Glass, Michelle; Mechoulam, Raphael; Pacher, Pál

    2012-01-01

    BACKGROUND AND PURPOSE Cannabinoid CB2 receptor activation has been reported to attenuate myocardial, cerebral and hepatic ischaemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH We have investigated the effects of a novel CB2 receptor agonist ((1S,4R)-2-(2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl)-7,7-dimethylbicyclo[2.2.1]hept-2-en-1-yl)methanol (HU-910) on liver injury induced by 1 h of ischaemia followed by 2, 6 or 24 h of reperfusion, using a well-established mouse model of segmental hepatic I/R. KEY RESULTS Displacement of [3H]CP55940 by HU-910 from specific binding sites in CHO cell membranes transfected with human CB2 or CB1 receptors (hCB1/2) yielded Ki values of 6 nM and 1.4 µM respectively. HU-910 inhibited forskolin-stimulated cyclic AMP production by hCB2 CHO cells (EC50= 162 nM) and yielded EC50 of 26.4 nM in [35S]GTPγS binding assays using hCB2 expressing CHO membranes. HU-910 given before ischaemia significantly attenuated levels of I/R-induced hepatic pro-inflammatory chemokines (CCL3 and CXCL2), TNF-α, inter-cellular adhesion molecule-1, neutrophil infiltration, oxidative stress and cell death. Some of the beneficial effect of HU-910 also persisted when given at the beginning of the reperfusion or 1 h after the ischaemic episode. Furthermore, HU-910 attenuated the bacterial endotoxin-triggered TNF-α production in isolated Kupffer cells and expression of adhesion molecules in primary human liver sinusoidal endothelial cells stimulated with TNF-α. Pretreatment with a CB2 receptor antagonist attenuated the protective effects of HU-910, while pretreatment with a CB1 antagonist tended to enhance them. CONCLUSION AND IMPLICATIONS HU-910 is a potent CB2 receptor agonist which may exert protective effects in various diseases associated with inflammation and tissue injury. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph

  15. Multidisciplinary approach for the management of complex hepatic injuries AAST-OIS grades IV-V: a prospective study.

    PubMed

    Asensio, J A; Petrone, P; García-Núñez, L; Kimbrell, B; Kuncir, E

    2007-01-01

    Complex hepatic injuries grades IV-V are highly lethal. The objective of this study is to assess the multidisciplinary approach for their management and to evaluate if survival could be improved with this approach. Prospective 54-month study of all patients sustaining hepatic injuries grades IV-V managed operatively at a Level I Trauma Center. survival. univariate and stepwise logistic regression. Seventy-five patients sustained penetrating (47/63%) and blunt (28/37%) injuries. Seven (9%) patients underwent emergency department thoracotomy with a mortality of 100%. Out of the 75 patients, 52 (69%) sustained grade IV, and 23 (31%) grade V. The estimated blood loss was 3,539+/-3,040 ml. The overall survival was 69%, adjusted survival excluding patients requiring emergency department thoracotomy was 76%. Survival stratified to injury grade: grade IV 42/52-81%, grade V 10/23-43%. Mortality grade IV versus V injuries (p < 0.002; RR 2.94; 95% CI 1.52-5.70). Risk factors for mortality: packed red blood cells transfused in operating room (p=0.024), estimated blood loss (p < 0.001), dysryhthmia (p < 0.0001), acidosis (p = 0.051), hypothermia (p = 0.04). The benefit of angiography and angioembolization indicated: 12% mortality (2/17) among those that received it versus a 36% mortality (21/58) among those that did not (p = 0.074; RR 0.32; 95% CI 0.08-1.25). Stepwise logistic regression identified as significant independent predictors of outcome: estimated blood loss (p= 0.0017; RR 1.24; 95% CI 1.08-1.41) and number of packed red blood cells transfused in the operating room (p = 0.0358; RR 1.16; 95% CI 1.01-1.34). The multidisciplinary approach to the management of these severe grades of injuries appears to improve survival in these highly lethal injuries. A prospective multi-institutional study is needed to validate this approach.

  16. Baicalein Reduces Liver Injury Induced by Myocardial Ischemia and Reperfusion.

    PubMed

    Lai, Chang-Chi; Huang, Po-Hsun; Yang, An-Han; Chiang, Shu-Chiung; Tang, Chia-Yu; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2016-01-01

    Baicalein is a component of the root of Scutellaria baicalensis Georgi, which has traditionally been used to treat liver disease in China. In the present study, we investigated baicalein' ability to reduce the liver injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R was induced in this experiment by a 40[Formula: see text]min occlusion of the left anterior descending coronary artery and a 3[Formula: see text]h reperfusion in rats. The induced myocardial I/R significantly increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), indicating the presence of liver injury. Hepatic apoptosis was significantly increased. The serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as was the TNF-[Formula: see text] level in the liver. Intravenous pretreatment with baicalein (3, 10, or 30[Formula: see text]mg/kg) 10[Formula: see text]min before myocardial I/R significantly reduced the serum level increase of AST and ALT, apoptosis in the liver, and the elevation of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 levels. Moreover, baicalein increased Bcl-2 and decreased Bax in the liver. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was also increased. In conclusion, we found that baicalein can reduce the liver injury induced by myocardial I/R. The underlying mechanisms are likely related to the inhibition of the extrinsic and intrinsic apoptotic pathways, possibly via the inhibition of TNF-[Formula: see text] production, the modulation of Bcl-2 and Bax, and the activation of Akt and ERK1/2. Our findings may provide a rationale for the application of baicalein or traditional Chinese medicine containing large amounts of baicalein to prevent liver injury in acute myocardial infarction and cardiac

  17. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36),more » an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the

  18. Ursodeoxycholyl Lysophosphatidylethanolamide Protects Against CD95/FAS-Induced Fulminant Hepatitis.

    PubMed

    Utaipan, Tanyarath; Otto, Ann-Christin; Gan-Schreier, Hongying; Chunglok, Warangkana; Pathil, Anita; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-08-01

    Increased activation of CD95/Fas by Fas ligand in viral hepatitis and autoimmunity is involved in pathogenesis of fulminant hepatitis and liver failure. We designed a bile-acid phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE with LPE containing oleate at the sn-1) as a hepatoprotectant that was shown to protect against fulminant hepatitis induced by endotoxin. We herein further assessed the ability of UDCA-LPE to prevent death receptor CD95/Fas-induced fulminant hepatitis. C57BL/6 mice were intravenously administered with CD95/Fas agonistic monoclonal antibody (Jo-2) with or without 1 h pretreatment with 50 mg/kg UDCA-LPE. Jo-2 administration caused massive hepatocyte damage as seen by histology, and this was associated with a significant decrease in hepatic phosphatidylcholine (PC), lysoPC, and lysophosphatidylethanolamine levels. By histology, UDCA-LPE pretreatment improved hepatocyte damage and restored the loss of these phospholipids in part by a mechanism involving an inhibition of cytosolic phospholipaseA2 expression. Accordingly, Jo-2 treatment increased hepatic expression of cleaved caspase 8, caspase 3, and poly (ADP-Ribose) polymerase-1, and on the other hand decreased that of anti-apoptotic cellular FLICE-inhibitory protein. UDCA-LPE pretreatment was able to reverse all these changes. Moreover, UDCA-LPE attenuated inflammatory response by lowering the levels of Jo-2-induced proinflammatory cytokines TNF-α, IL-6, and IL-1β in liver and serum. UDCA-LPE was also able to decrease the levels of stimulated Th1/Th17 cytokines in Jo-2-primed isolated splenocytes. Taken together, UDCA-LPE exhibited potent anti-inflammatory effects against CD95/Fas-induced fulminant hepatitis.

  19. Ameliorative effect of parsley oil on cisplatin-induced hepato-cardiotoxicity: A biochemical, histopathological, and immunohistochemical study.

    PubMed

    Abdellatief, Suhair A; Galal, Azza A A; Farouk, Sameh M; Abdel-Daim, Mohamed M

    2017-02-01

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is an effective DNA alkylating agent used in the treatment of different types of tumors; however, its clinical use is associated with hepato-cardiotoxicity. The current study was designed to assess the potential protective effect of parsley oil (PO) against CDDP-induced hepato-cardiotoxicity. For this purpose, 25 adult male rats were assigned into five groups, each containing five animals. Group I (control) was administered saline solution. Group II was administered PO at a dosage of 0.42ml/kg BW. Group III were administered CDDP at a dosage of 5mg/kg BW. Group IV was administered PO in addition to CDDP. Group V was administered saline solution in addition to CDDP, after which they were administered PO for five days. Oral administration of either saline solution or PO was performed each day for 10days, while administration of CDDP was via a single intraperitoneal injection five days following the commencement of the experiment. The recorded results revealed that CDDP induced obvious hepatic and cardiac injuries that were indicated by biochemical, histopathological, and immunohistochemical alterations, including elevation of serum hepatic and cardiac injury markers as well as proinflammatory cytokines. Moreover, CDDP induced an increase in the level of hepatic and cardiac injury biomarkers, decreases in the activities of antioxidant enzymes, a decrease in GSH concentration, and an increase in MDA concentration. CDDP also induced histopathological hepatocellular and myocardial changes, and overexpression of p53 and COX-2 in hepatic and cardiac tissues. Administration of PO either as a preventative medicine or as treatment significantly improved all the observed deleterious effects induced by CDDP in rat liver and heart. Thus, it may be concluded that PO, with its antioxidant, anti-inflammatory, and antiapoptotic activities, can potentially be used in the treatment of CDDP-induced hepatic and cardiac injuries. Copyright

  20. Analysis of Arg-Gly-Asp mimetics and soluble receptor of tumour necrosis factor as therapeutic modalities for concanavalin A induced hepatitis in mice.

    PubMed Central

    Bruck, R; Shirin, H; Hershkoviz, R; Lider, O; Kenet, G; Aeed, H; Matas, Z; Zaidel, L; Halpern, Z

    1997-01-01

    BACKGROUND/AIMS: It has been shown that synthetic non-peptidic analogues of Arg-Gly-Asp, a major cell adhesive ligand of extracellular matrix, prevented an increase in serum aminotransferase activity, as a manifestation of concanavalin A induced liver damage in mice. This study examined the effects of an Arg-Gly-Asp mimetic on liver histology and cytokine release in response to concanavalin A administration, and the efficacy of soluble receptor of tumour necrosis factor (TNF) alpha in preventing hepatitis in this model of liver injury. METHODS: Mice were pretreated with either the Arg-Gly-Asp mimetic SF-6,5 or recombinant soluble receptor of TNF alpha before their inoculation with 10 mg/kg concanavalin A. Liver enzymes, histology, and the serum values of TNF alpha and interleukin (IL)6 were examined. RESULTS: The histopathological damage in the liver, and the concanavalin A induced release of TNF alpha and IL6 were significantly inhibited by the synthetic Arg-Gly-Asp mimetic (p < 0.001). Liver injury, manifested by the increase in serum aminotransferase and cytokines, as well as by histological manifestations of hepatic damage, was effectively prevented by pretreatment of the mice with the soluble TNF receptor (p < 0.001). CONCLUSIONS: This study confirms the efficacy of a synthetic Arg-Gly-Asp mimetic and soluble TNF receptor in the prevention of immune mediated liver damage in mice. Images PMID:9155591

  1. Radiation-Induced Liver Injury Mimicking Metastatic Disease in a Patient With Esophageal Cancer: Correlation of Positron Emission Tomography/Computed Tomography With Magnetic Resonance Imaging and Literature Review.

    PubMed

    Rabe, Tiffany M; Yokoo, Takeshi; Meyer, Jeffrey; Kernstine, Kemp H; Wang, David; Khatri, Gaurav

    2016-01-01

    Post-radiation therapy evaluation of distal esophageal cancers with positron emission tomography/computed tomography can be problematic. Differentiation of recurrent neoplasm from postradiation changes is difficult in areas of fluorodeoxyglucose avidity in adjacent, incidentally irradiated organs. Few studies have described the magnetic resonance imaging appearance of radiation-induced hepatic injury. We report a case of focal radiation-induced liver injury with a new focus of fluorodeoxyglucose uptake on posttreatment positron emission tomography as well as masslike enhancement and signal abnormality on magnetic resonance imaging, thus mimicking new liver metastasis. Correlation with radiation planning images suggested the correct diagnosis, which was confirmed on follow-up imaging.

  2. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: An experimental research.

    PubMed

    Uylaş, Mustafa Ufuk; Şahin, Adnan; Şahintürk, Varol; Alataş, İbrahim Özkan

    2018-05-01

    Quercetin found in fruits and vegetables has an antioxidative effect. We aimed to investigate the protective effects of quercetin according to different doses on hepatic and ischemia-reperfusion (I/R) injury. Fifty mature male Sprague-Dawley rats were randomly divided into five groups (n = 10 for each). All the animal groups underwent laparotomy. Group 1 rats served as a sham-operated group. Groups 2-5 underwent 1 h hepatic ischemia and were followed by 2 h reperfusion. Group 3-5 animals received an additional intraperitoneal dose of 25, 50 or 100 mg/kg quercetin respectively before I/R operation. Blood samples were collected for determining serum aspartate transaminase (AST), alanine transaminase (ALT) and malondialdehyde (MDA) levels. Also, liver tissue samples were taken for measuring of liver MDA concentration and for histopathology assessment. The highest levels of biochemical parameters were observed in group 2. In quercetin-treated groups, serum AST, ALT, MDA levels, and tissue MDA concentration were decreased as inversely with increasing quercetin dose. Microscopic evaluation revealed that most conspicuous histological improvement was observed in 50 mg/kg quercetin co-treated rats. 25 and 100 mg/kg quercetin co-treatment could not protect completely against hepatic I/R injury. Quercetin can be effective in preventing of hepatic I/R injury when the correct dose was used. Copyright © 2018. Published by Elsevier Ltd.

  3. Management of severe blunt hepatic injury in the era of computed tomography and transarterial embolization: A systematic review and critical appraisal of the literature.

    PubMed

    Melloul, Emmanuel; Denys, Alban; Demartines, Nicolas

    2015-09-01

    During the last decade, the management of blunt hepatic injury has considerably changed. Three options are available as follows: nonoperative management (NOM), transarterial embolization (TAE), and surgery. We aimed to evaluate in a systematic review the current practice and outcomes in the management of Grade III to V blunt hepatic injury. The MEDLINE database was searched using PubMed to identify English-language citations published after 2000 using the key words blunt, hepatic injury, severe, and grade III to V in different combinations. Liver injury was graded according to the American Association for the Surgery of Trauma classification on computed tomography (CT). Primary outcome analyzed was success rate in intention to treat. Critical appraisal of the literature was performed using the validated National Institute for Health and Care Excellence "Quality Assessment for Case Series" system. Twelve articles were selected for critical appraisal (n = 4,946 patients). The median quality score of articles was 4 of 8 (range, 2-6). Overall, the median Injury Severity Score (ISS) at admission was 26 (range, 0.6-75). A median of 66% (range, 0-100%) of patients was managed with NOM, with a success rate of 94% (range, 86-100%). TAE was used in only 3% of cases (range, 0-72%) owing to contrast extravasation on CT with a success rate of 93% (range, 81-100%); however, 9% to 30% of patients required a laparotomy. Thirty-one percent (range, 17-100%) of patients were managed with surgery owing to hemodynamic instability in most cases, with 12% to 28% requiring secondary TAE to control recurrent hepatic bleeding. Mortality was 5% (range, 0-8%) after NOM and 51% (range, 30-68%) after surgery. NOM of Grade III to V blunt hepatic injury is the first treatment option to manage hemodynamically stable patients. TAE and surgery are considered in a highly selective group of patients with contrast extravasation on CT or shock at admission, respectively. Additional standardization of

  4. Comparative Analysis of Hepatic CD14 Expression between Two Different Endotoxin Shock Model Mice: Relation between Hepatic Injury and CD14 Expression

    PubMed Central

    Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276

  5. Association Between MC-2 Peptide and Hepatic Perfusion and Liver Injury Following Resuscitated Hemorrhagic Shock.

    PubMed

    Matheson, Paul J; Fernandez-Botran, Rafael; Smith, Jason W; Matheson, Samuel A; Downard, Cynthia D; McClain, Craig J; Garrison, Richard N

    2016-03-01

    Hemorrhagic shock (HS) due to trauma remains a major cause of morbidity and mortality in the United States, despite continuing progression of advanced life support and treatment. Trauma is the third most common cause of death worldwide and is the leading cause of death in the 1- to 44-year-old age group. Hemorrhagic shock often progresses to multiple organ failure despite conventional resuscitation (CR) that restores central hemodynamics. To examine whether MC-2 would bind glycosaminoglycans to decrease proinflammatory cytokines' influence in the liver, minimize organ edema, prevent liver injury, and improve hepatic perfusion. MC-2, a synthetic octapeptide derived from the heparin-binding domain of murine interferon gamma (IFN-γ), binds glycosaminoglycans to modulate serum and interstitial cytokine levels and activity. A controlled laboratory study of 3y male Sprague-Dawley rats that were randomized to 4 groups of 8 each: sham, sham+MC-2 (50 mg/kg), HS/CR, or HS/CR+MC-2 (HS = 40% of baseline mean arterial pressure for 60 minutes; CR = return of shed blood and 2 volumes of saline). The study began in March, 2013. Effective hepatic blood flow (EHBF) by galactose clearance, wet-dry weights, cytokines, histopathology, complete metabolic panel, and complete blood cell count were performed at 4 hours after CR. MC-2 partially reversed the HS/CR-induced hepatic hypoperfusion at 3 and 4 hours postresuscitation compared with HS/CR alone. Effective hepatic blood flow decreased during the HS period from a mean (SD) of 7.4 (0.3) mL/min/100 g and 7.5 (0.5) mL/min/100g at baseline to 3.7 (0.4) mL/min/100g and 5.9 (0.5) mL/min/100g for the HS/CR and HS/CR+MC-2 groups, respectively (P <.05). Effective hepatic blood flow remained constant in the sham groups throughout the experimental protocol. Organ edema was increased in the ileum and liver in the HS/CR vs sham group, and MC-2 decreased edema in the ileum vs the HS/CR group. MC-2 in HS also decreased levels of alanine

  6. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  7. [Trends in drug-induced liver injury based on reports of adverse reactions to PMDA in Japan].

    PubMed

    Sudo, Chie; Maekawa, Keiko; Segawa, Katsunori; Hanatani, Tadaaki; Sai, Kimie; Saito, Yoshiro

    2012-01-01

    Reports on drug-related adverse reactions from manufacturing/distributing pharmaceutical companies or medical institutions/pharmacies are regulated under the Pharmaceutical Affairs Law of Japan, and this system is important for post-marketing safety measures. Although association between the medicine and the adverse event has not been clearly evaluated, and an incidence may be redundantly reported, this information would be useful to roughly grasp the current status of drug-related adverse reactions. In the present study, we analyzed the incidence of drug-induced liver injury by screening the open-source data publicized by the homepage of Pharmaceutical and Medical Devices Agency from 2005 to 2011 fiscal years. Major drug-classes suspected to cause general drug-induced liver injury were antineoplastics, anti-inflammatory agents/common cold drugs, chemotherapeutics including antituberculous drugs, antidiabetics, antiulcers and antiepileptics. In addition, reported cases for fulminant hepatitis were also summarized. We found that antituberculous isoniazid and antineoplastic tegafur-uracil were the top two suspected drugs. These results might deepen understanding of current situations for the drug-induced liver injury in Japan.

  8. Biliary leakage due to a rapidly growing post-traumatic hepatic artery pseudoaneurysm: a case report.

    PubMed

    Hasegawa, Satoshi; Moriwaki, Yoshihiro; Uchida, Keiji; Kosuge, Takayuki; Yamamoto, Toshiro; Sugiyama, Mitsugi

    2004-01-01

    Post-traumatic hepatic pseudoaneurysms are rare. We report a very unusual case of bile duct injury complicated with an asymptomatic post-traumatic hepatic pseudoaneurysm. A previously healthy 17-year-old man sustained multiple traumas after a motorcycle accident. Post-traumatic hepatic pseudoaneurysms were detected after blunt liver injury. The rapid growth of the pseudoaneurysms in the hepatic hilus compressed the common hepatic bile duct and caused extrahepatic bile leakage at the lateral lobe. At first, the hepatic arterial pseudoaneurysms were embolized and bile leakage at the left lobe was treated conservatively. Finally, however, segment 2 and 3 partial liver resection should have been performed to stop the bile leakage. Post-traumatic pseudoaneurysm should be ruled out, in addition to the presence of biliary tract injury, if the intraperitoneal bile leakage appears after liver injury.

  9. Mangiferin, a Natural Xanthone, Protects Murine Liver in Pb(II) Induced Hepatic Damage and Cell Death via MAP Kinase, NF-κB and Mitochondria Dependent Pathways

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2013-01-01

    One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction. PMID:23451106

  10. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    PubMed

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-06-01

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury.

    PubMed

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C; García de Frutos, Pablo; Morales, Albert

    2010-10-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here we report an early increase in serum GAS6 levels after I/R exposure. Moreover, unlike wild-type (WT) mice, Gas6(-/-) mice were highly sensitive to partial hepatic I/R, with 90% of the mice dying within 12 hours of reperfusion because of massive hepatocellular injury. I/R induced early hepatic protein kinase B (AKT) phosphorylation in WT mice but not in Gas6(-/-) mice without significant changes in c-Jun N-terminal kinase phosphorylation or nuclear factor kappa B translocation, whereas hepatic interleukin-1β (IL-1β) and tumor necrosis factor (TNF) messenger RNA levels were higher in Gas6(-/-) mice versus WT mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes and thus protected them from hypoxia-induced cell death, whereas GAS6 diminished lipopolysaccharide-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, recombinant GAS6 treatment in vivo not only rescued GAS6 knockout mice from severe I/R-induced liver damage but also attenuated hepatic damage in WT mice after I/R. Our data have revealed GAS6 to be a new player in liver I/R injury that is emerging as a potential therapeutic target for reducing postischemic hepatic damage.

  12. Chlorogenic acid protects D-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice.

    PubMed

    Feng, Yan; Yu, Ying-Hua; Wang, Shu-Ting; Ren, Jing; Camer, Danielle; Hua, Yu-Zhou; Zhang, Qian; Huang, Jie; Xue, Dan-Lu; Zhang, Xiao-Fei; Huang, Xu-Feng; Liu, Yi

    2016-01-01

    Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. The current study investigates the effects of protective effects of chlorogenic acid (CGA) on D-galactose-induced liver and kidney injury. Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of D-galactose (D-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in D-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in D-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in D-gal mice (p <0.05). These findings suggest that CGA attenuates D-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities.

  13. Mincle Signaling Promotes Con-A Hepatitis

    PubMed Central

    Greco, Stephanie H.; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R.; Nagaraj, Savitha V.; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E.; Katz, Steven C.; Miller, George

    2016-01-01

    Concanavalin-A (Con-A) hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor (CLR) that is critical in the immune response to mycobacteria and fungi, but does not have a well-defined role in pre-clinical models of non-pathogen mediated inflammation. Since Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con-A hepatitis. Acute liver injury was assessed in the murine Con-A hepatitis model using C57BL/6, Mincle−/−, and Dectin-1−/− mice. The role of C/EBPβ and HIF-1α signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con-A hepatitis. Most significantly, Mincle deletion or blockade protected against Con-A hepatitis whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other CLRs did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ related signaling intermediates, C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con-A hepatitis and inhibition of both C/EBPβ and HIF1-α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con-A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. PMID:27559045

  14. Bowel injury following induced abortion.

    PubMed

    Jhobta, R S; Attri, A K; Jhobta, A

    2007-01-01

    Bowel injury is an uncommonly reported yet serious complication of induced abortion, which is often performed illegally by persons without any medical training in developing countries. A sudden increase in cases prompted the authors to analyze this problem. A retrospective review was done of 11 cases of bowel injury following induced abortion seen over 2 years at Government Medical College and Hospital, Chandigarh, India. Young, married women of low socioeconomic status with a strong preference for male children were the predominant recipients of induced abortion in India. The terminal ileum and pelvic colon were the most commonly injured portions of the bowel owing to their anatomic locations. Preoperative resuscitation, then resection with exteriorization of bowel and thorough peritoneal lavage, is the treatment for bowel injury incurred during induced abortion when the patient presents late.

  15. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6 -/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6 -/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6 -/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6 -/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  16. Preventive effects of the deleted form of hepatocyte growth factor against various liver injuries.

    PubMed

    Masunaga, H; Fujise, N; Shiota, A; Ogawa, H; Sato, Y; Imai, E; Yasuda, H; Higashio, K

    1998-01-26

    The effects of a naturally occurring deleted form of hepatocyte growth factor (HGF) on hepatic disorder were studied in various models of hepatic failure. The pretreatment of rats and mice with the deleted form of HGF prevented the liver injuries and coagulopathy induced by endotoxin, dimethylnitrosamine and acetaminophen and reduced the mortality due to hepatic dysfunction induced by these hepatotoxins. The concurrent administration of the deleted form of HGF also prevented the liver injury and hepatic fibrosis in mice treated with alpha-naphthylisothiocyanate and in rats treated with dimethylnitrosamine. Moreover, the deleted form of HGF normalized the results of the bromosulphalein-clearance test and ameliorated jaundice in rats with periportal cholangiolitic hepatopathy induced by alpha-naphthylisothiocyanate. The deleted form of HGF also reversed the coagulopathy in rats with hepatic disorder induced by dimethylnitrosamine or by 70% resection of cirrhotic liver (induced by carbon tetrachloride). In Long Evans cinnamon rats receiving vehicle, 20 out of 21 animals died within 4 days after the onset of jaundice. After infusion of the deleted form of HGF for 4 days, 7 out of 20 Long-Evans cinnamon rats survived. These results indicate that the deleted form of HGF could have therapeutic potency in patients with severe hepatic failure.

  17. Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis.

    PubMed

    Dugan, Christine M; Fullerton, Aaron M; Roth, Robert A; Ganey, Patricia E

    2011-04-01

    Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000-30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G-treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity.

  18. Natural Killer Cells Mediate Severe Liver Injury in a Murine Model of Halothane Hepatitis

    PubMed Central

    Dugan, Christine M.; Fullerton, Aaron M.; Roth, Robert A.; Ganey, Patricia E.

    2011-01-01

    Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000–30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G–treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity. PMID:21245496

  19. Toxin-Induced Autoimmune Hepatitis Caused by Raw Cashew Nuts.

    PubMed

    Crismale, James F; Stueck, Ashley; Bansal, Meena

    2016-08-01

    A 64-year-old man with no past medical history presented with abnormally elevated liver enzymes 1 year after developing a diffuse rash thought to be related to eating large quantities of raw cashew nuts. Liver biopsy was performed, which revealed features concerning for drug- or toxin-induced autoimmune hepatitis. The patient began treatment with azathioprine and prednisone, and liver enzymes normalized. We describe a unique case of a toxin-induced autoimmune hepatitis precipitated not by a drug or dietary supplement but by a food product.

  20. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Antoine, Daniel J.; Shaw, Patrick J.

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1{beta} (IL-1{beta}), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1{beta} is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300 mg/kg APAP for 24more » h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1{beta} and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.« less

  1. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; College of Food Safety, Guizhou Medical University, Guiyang 550025; Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes thatmore » are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.« less

  2. Parvovirus B19 induced hepatic failure in an adult requiring liver transplantation

    PubMed Central

    Krygier, Darin S; Steinbrecher, Urs P; Petric, Martin; Erb, Siegfried R; Chung, Stephen W; Scudamore, Charles H; Buczkowski, Andrzej K; Yoshida, Eric M

    2009-01-01

    Parvovirus B19 induced acute hepatitis and hepatic failure have been previously reported, mainly in children. Very few cases of parvovirus induced hepatic failure have been reported in adults and fewer still have required liver transplantation. We report the case of a 55-year-old immunocompetent woman who developed fulminant hepatic failure after acute infection with Parvovirus B19 who subsequently underwent orthotopic liver transplantation. This is believed to be the first reported case in the literature in which an adult patient with fulminant hepatic failure associated with acute parvovirus B19 infection and without hematologic abnormalities has been identified prior to undergoing liver transplantation. This case suggests that Parvovirus B19 induced liver disease can affect adults, can occur in the absence of hematologic abnormalities and can be severe enough to require liver transplantation. PMID:19705505

  3. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    PubMed

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  4. Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats.

    PubMed

    Díaz-Rúa, Rubén; Keijer, Jaap; Palou, Andreu; van Schothorst, Evert M; Oliver, Paula

    2017-08-01

    Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acid-base maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acid-base equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice.

    PubMed

    Luo, Qingqiong; Ding, Jieying; Zhu, Liping; Chen, Fuxiang; Xu, Lili

    2018-05-08

    Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.

  6. Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats

    PubMed Central

    Shaqura, Mohammed; Mohamed, Doaa M.; Aboryag, Noureddin B.; Bedewi, Lama; Dehe, Lukas; Treskatsch, Sascha; Shakibaei, Mehdi; Schäfer, Michael

    2017-01-01

    Heart failure has emerged as a disease with significant public health implications. Following progression of heart failure, heart and liver dysfunction are frequently combined in hospitalized patients leading to increased morbidity and mortality. Here, we investigated the underlying pathological alterations in liver injury following heart failure. Heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. Sham operated and ACF rats were compared for their morphometric and hemodynamic data, for histopathological and ultrastructural changes in the liver as well as differences in the expression of apoptotic factors. ACF-induced heart failure is associated with light microscopic signs of apparent congestion of blood vessels, increased apoptosis and breakdown of hepatocytes and inflammatory cell inifltration were observed. The glycogen content depletion associated with the increased hepatic fibrosis, lipid globule formation was observed in ACF rats. Moreover, cytoplasmic organelles are no longer distinguishable in many ACF hepatocytes with degenerated fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm vacuolization. ACF is associated with the upregulation of the hepatic TUNEL-positive cells and proapoptotic factor Bax protein concomitant with the mitochondrial leakage of cytochrome C into the cell cytoplasm and the transfer of activated caspase 3 from the cytoplasm into the nucleus indicating intrinsic apoptotic events. Taken together, the results demonstrate that ACF-induced congestive heart failure causes liver injury which results in hepatocellular apoptotic cell death mediated by the intrinsic pathway of mitochondrial cytochrome C leakage and subsequent transfer of activated caspase 3 into to the nucleus to initiate overt DNA fragmentation and cell death. PMID:28934226

  7. Effects of Melatonin on Liver Injuries and Diseases

    PubMed Central

    Zhang, Jiao-Jiao; Meng, Xiao; Li, Ya; Zhou, Yue; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2017-01-01

    Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action. PMID:28333073

  8. Intestinal and Hepatic Expression of Cytochrome P450s and mdr1a in Rats with Indomethacin-Induced Small Intestinal Ulcers

    PubMed Central

    Kawauchi, Shoji; Nakamura, Tsutomu; Yasui, Hiroyuki; Nishikawa, Chikako; Miki, Ikuya; Inoue, Jun; Horibe, Sayo; Hamaguchi, Tsuneo; Tanahashi, Toshihito; Mizuno, Shigeto

    2014-01-01

    Background: Non-steroidal anti-inflammatory drugs induce the serious side effect of small intestinal ulcerations (SIUs), but little information is available regarding the consequences to drug metabolism and absorption. Aim: We examined the existence of secondary hepatic inflammation in rats with indomethacin (INM)-induced SIUs and assessed its relationship to the cytochrome P450 (CYP) and P-glycoprotein (mdr1a), the major drug-metabolizing factors in the small intestine and the liver. Methods: Gene expression of the CYP family of enzymes and mdr1a was measured with quantitative real-time polymerase chain reaction (qPCR). Vancomycin (VCM), a poorly absorbed drug, was administered intraduodenally to rats with SIUs. Results: INM induced SIUs predominantly in the lower region of the small intestine with high expression of inflammatory markers. Liver dysfunction was also observed, which suggested a secondary inflammatory response in rats with SIUs. In the liver of rats with SIUs, the expression of CYP2C11, CYP2E1, and CYP3A1 was significantly decreased, and loss of CYP3A protein was observed. Although previous studies have shown a direct effect of INM on CYP3A activity, we could not confirm any change in hepatic CY3A4 expression (major isoform of human CYP3A) in vitro. The plasma VCM concentration was increased in rats with SIUs due to partial absorption from the mucosal injury, but not in normal mucosa. Conclusions: INM-induced SIUs had a subtle effect on intestinal CYP expression, but had an apparent action on hepatic CYP, which was influenced, at least in part, by the secondary inflammation. Furthermore, drug absorption was increased in rats with SIUs. PMID:25317066

  9. Differential effects of traumatic brain injury on the cytochrome p450 system: a perspective into hepatic and renal drug metabolism.

    PubMed

    Kalsotra, Auinash; Turman, Cheri M; Dash, Pramod K; Strobel, Henry W

    2003-12-01

    Traumatic brain injury is known to cause several secondary effects, one of which is altered drug clearance. Given the fact that patients who sustain TBI are subsequently treated with a variety of pharmacological agents for the purpose of either neuroprotection or physiological support, it is imperative to clarify changes in expression and/or activities of enzymes involved in clearing drugs. The mixed function oxidase system, which consists of cytochrome P450 and cytochrome P450 reductase, plays a vital role in phase I drug metabolism. This paper addresses the issue as to what extent TBI affects the levels and activity of various rat CYP450 subfamilies. Our results show that TBI induces tissue-specific and time-dependent alterations. Total hepatic CYP450 content showed a biphasic response with a decrease seen at 24 h followed by an increase at 2 weeks. CYP450 reductase, in contrast, showed an opposite temporal profile. Immunoblot analyses and marker substrate metabolism demonstrated a clear decrease in hepatic CYP1A levels while a significant increase in kidney was seen at both 24 h and 2 weeks. A dramatic induction of CYP3A was evident at 2 weeks in liver, while no changes were noticed in CYP2B or CYP2D subfamilies. CYP4F subfamily showed induction in kidney only. Collectively, the data reveal the differential effects of TBI on hepatic and renal drug metabolism.

  10. NOD2: a potential target for regulating liver injury.

    PubMed

    Body-Malapel, Mathilde; Dharancy, Sébastien; Berrebi, Dominique; Louvet, Alexandre; Hugot, Jean-Pierre; Philpott, Dana J; Giovannini, Marco; Chareyre, Fabrice; Pages, Gilles; Gantier, Emilie; Girardin, Stephen E; Garcia, Irène; Hudault, Sylvie; Conti, Filoména; Sansonetti, Philippe J; Chamaillard, Mathias; Desreumaux, Pierre; Dubuquoy, Laurent; Mathurin, Philippe

    2008-03-01

    The recent discovery of bacterial receptors such as NOD2 that contribute to crosstalk between innate and adaptive immune systems in the digestive tract constitutes an important challenge in our understanding of liver injury mechanisms. The present study focuses on NOD2 functions during liver injury. NOD2, TNF-alpha and IFN-gamma mRNA were quantified using real-time PCR in liver samples from patients and mice with liver injury. We evaluated the susceptibility of concanavalin A (ConA) challenge in NOD2-deficient mice (Nod2-/-) compared to wild-type littermates. We tested the effect of muramyl dipeptide (MDP), the specific activator of NOD2, on ConA-induced liver injury in C57BL/6 mice. We studied the cellular distribution and the role of NOD2 in immune cells and hepatocytes. We demonstrated that NOD2, TNF-alpha and IFN-gamma were upregulated during liver injury in mice and humans. Nod2-/- mice were resistant to ConA-induced hepatitis compared to their wild-type littermates, through reduced IFN-gamma production by immune cells. Conversely, administration of MDP exacerbated ConA-induced liver injury. MDP was a strong inducer of IFN-gamma in freshly isolated human PBMC, splenocytes and hepatocytes. Our study supports the hypothesis that NOD2 contributes to liver injury via a regulatory mechanism affecting immune cells infiltrating the liver and hepatocytes. Taken together, our results indicate that NOD2 may represent a new therapeutic target in liver diseases.

  11. Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver

    PubMed Central

    Zaulet, Mihaela; Kevorkian, Steliana Elvira Maria; Dinescu, Sorina; Cotoraci, Coralia; Suciu, Maria; Herman, Hildegard; Buburuzan, Laura; Badulescu, Liliana; Ardelean, Aurel; Hermenean, Anca

    2017-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical released into the environment, with severe consequences for human health, including metabolic syndrome and associated pathological conditions. Due to limited information on BPA-induced hepatotoxicity, the present study focused on investigating the association between BPA-induced toxicity and inflammatory markers in the liver, and how these injuries may be alleviated using the natural agent silymarin, a flavonoid with antioxidant properties obtained from Silybum marianum. Administration of BPA to male CD-1 mice for 10 days caused a significant increase in the number of cells immunopositive for interleukin 6 and tumor necrosis factor-α, pro-inflammatory cytokines that mediate the hepatic inflammatory response. Treatment with 200 mg/kg of silymarin concurrently with BPA for 10 days resulted in a diminished level of pro-inflammatory cytokines and in significantly reduced ultrastructural injuries. Additionally, silymarin was able to restore the significantly decreased glycogen deposits observed following BPA exposure to normal levels, thus favoring hepatic glycogenesis. This study represents the first report of silymarin ability to reduce hepatic lesions and to counteract inflammation caused by BPA in mice. A dose of 200 mg/kg silymarin was sufficient to induce a protective effect against structural and ultrastructural injuries induced by BPA and to lower the levels of pro-inflammatory cytokines observed in murine liver tissue following exposure to BPA. PMID:28450905

  12. DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease.

    PubMed

    Chen, Hanqing; Shen, Feng; Sherban, Alex; Nocon, Allison; Li, Yu; Wang, Hua; Xu, Ming-Jiang; Rui, Xianliang; Han, Jinyan; Jiang, Bingbing; Lee, Donghwan; Li, Na; Keyhani-Nejad, Farnaz; Fan, Jian-Gao; Liu, Feng; Kamat, Amrita; Musi, Nicolas; Guarente, Leonard; Pacher, Pal; Gao, Bin; Zang, Mengwei

    2018-02-19

    Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice. The dysregulation of SIRT1

  13. A review of drug-induced liver injury databases.

    PubMed

    Luo, Guangwen; Shen, Yiting; Yang, Lizhu; Lu, Aiping; Xiang, Zheng

    2017-09-01

    Drug-induced liver injuries have been a major focus of current research in drug development, and are also one of the major reasons for the failure and withdrawal of drugs in development. Drug-induced liver injuries have been systematically recorded in many public databases, which have become valuable resources in this field. In this study, we provide an overview of these databases, including the liver injury-specific databases LiverTox, LTKB, Open TG-GATEs, LTMap and Hepatox, and the general databases, T3DB, DrugBank, DITOP, DART, CTD and HSDB. The features and limitations of these databases are summarized and discussed in detail. Apart from their powerful functions, we believe that these databases can be improved in several ways: by providing the data about the molecular targets involved in liver toxicity, by incorporating information regarding liver injuries caused by drug interactions, and by regularly updating the data.

  14. Interleukin-32γ attenuates ethanol-induced liver injury by the inhibition of cytochrome P450 2E1 expression and inflammatory responses.

    PubMed

    Lee, Dong Hun; Kim, Dae Hwan; Hwang, Chul Ju; Song, Sukgil; Han, Sang Bae; Kim, Youngsoo; Yoo, Hwan Soo; Jung, Young Suk; Kim, Soo Hyun; Yoon, Do Young; Hong, Jin Tae

    2015-05-01

    Alcohol abuse and alcoholism lead to alcoholic liver disease (ALD), which is a major type of chronic liver disease worldwide. Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. However, the role of IL-32 in chronic liver disease has not been reported. In the present paper, we tested the effect of IL-32γ on ethanol-induced liver injury in IL-32γ-overexpressing transgenic mice (IL-32γ mice) after chronic ethanol feeding. Male C57BL/6 and IL-32γ mice (10-12 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 6 weeks. IL-32γ-transfected HepG2 and Huh7 cells, as well as primary hepatocytes from IL-32γ mice, were treated with or without ethanol. The hepatic steatosis and damage induced by ethanol administration were attenuated in IL-32γ mice. Ethanol-induced cytochrome P450 2E1 expression and hydrogen peroxide levels were decreased in the livers of IL-32γ mice, primary hepatocytes from IL-32γ mice and IL-32γ-overexpressing human hepatic cells. The ethanol-induced expression levels of cyclo-oxygenase-2 (COX-2) and IL-6 were reduced in the livers of IL-32γ mice. Because nuclear transcription factor κB (NF-κB) is a key redox transcription factor of inflammatory responses, we examined NF-κB activity. Ethanol-induced NF-κB activities were significantly lower in the livers of IL-32γ mice than in wild-type (WT) mice. Furthermore, reduced infiltration of natural killer cells, cytotoxic T-cells and macrophages in the liver after ethanol administration was observed in IL-32γ mice. These data suggest that IL-32γ prevents ethanol-induced hepatic injury via the inhibition of oxidative damage and inflammatory responses.

  15. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    PubMed

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the

  16. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung

    PubMed Central

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L.

    2014-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation. PMID:25449036

  17. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  18. Hepatic Enzyme Decline after Pediatric Blunt Trauma: A Tool for Timing Child Abuse?

    ERIC Educational Resources Information Center

    Baxter, Amy L.; Lindberg, Daniel M.; Burke, Bonnie L.; Shults, Justine; Holmes, James F.

    2008-01-01

    Objectives: Previous research in adult patients with blunt hepatic injuries has suggested a pattern of serum hepatic transaminase concentration decline. Evaluating this decline after pediatric blunt hepatic trauma could establish parameters for estimating the time of inflicted injuries. Deviation from a consistent transaminase resolution pattern…

  19. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice

    PubMed Central

    Lee, Eun-Hee; Oh, Jung-Hwa; Selvaraj, Saravanakumar; Park, Se-Myo; Choi, Mi-Sun; Spanel, Reinhard

    2016-01-01

    Diclofenac is a non-steroidal anti-inflammatory drug and its use can be associated with severe adverse reactions, notably myocardial infarction, stroke and drug-induced liver injury (DILI). In pursue of immune-mediated DILI mechanisms an immunogenomic study was carried out. Diclofenac treatment of mice at 30 mg/kg for 3 days caused significant serum ALT and AST elevations, hepatomegaly and degenerative changes including hepatic glycogen depletion, hydropic swelling, cholesterolosis and eosinophilic hepatocytes with one animal presenting subsegmental infarction due to portal vein thrombosis. Furthermore, portal/periportal induction of the rate limiting enzyme in ammonia detoxification, i.e. carbamoyl phosphate synthetase 1 was observed. The performed microarray studies informed on > 600 differential expressed genes of which 35, 37 and 50 coded for inflammation, 51, 44 and 61 for immune and 116, 129 and 169 for stress response, respectively after single and repeated dosing for 3 and 14 days. Bioinformatic analysis defined molecular circuits of hepatic inflammation with the growth hormone (Ghr)− and leptin receptor, the protein-tyrosine-phosphatase, selectin and the suppressor-of-cytokine-signaling (Socs) to function as key nodes in gene regulatory networks. Western blotting confirmed induction of fibronectin and M-CSF to hallmark tissue repair and differentiation of monocytes and macrophages. Transcript expression of the macrophage receptor with collagenous structure increased > 7-fold and immunohistochemistry of CD68 evidenced activation of tissue-resident macrophages. Importantly, diclofenac treatment prompted strong expression of phosphorylated Stat3 amongst individual animals and the associated 8- and 4-fold Soc3 and Il-6 induction reinforced Ghr degradation as evidenced by immunoblotting. Moreover, immunohistochemistry confirmed regulation of master regulatory proteins of diclofenac treated mice to suggest complex pro-and anti-inflammatory reactions in immune

  20. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  1. Tolvaptan rescue contrast-induced acute kidney injury: A case report.

    PubMed

    Lee, Wei-Chieh; Fang, Hsiu-Yu; Fang, Chih-Yuan

    2018-04-01

    Contrast-induced acute kidney injury is one of the most serious adverse effects of contrast media and is related to three distinct but interacting mechanisms: medullary ischemia, formation of reactive oxygen species and direct tubular cell toxicity, especially in the patients with chronic kidney disease. The strategies of treatment, including stabilization of hemodynamic parameters and maintenance of normal fluid and electrolyte balance, were similar to the management of other types of acute kidney injury. A 58-year-old woman experienced acute oligouria after complex percutaneous coronary intervention for multiple vessel coronary artery disease. Chest radiography showed pulmonary congestion and hyponatremia was noted after fluid hydration for suspicious contrast-induced nephropathy. Oral tolvaptan, at 15mg per day, was used for three days. Urine output increased gradually and symptoms relieved one day later after using tolvaptan. Serum creatinine also improved to baseline level one week later after this event. Here, we reported an interesting case about contrast-induced acute kidney injury and hypervolemic hyponatremia, where tolvaptan was used to rescue the oliguric phase. Tolvaptan could be considered to use for contrast-induced acute kidney injury and had possibility of prevention from hemodialysis. Larger studies are still needed to investigate the role of tolvaptan in rescuing the oliguric phase in contrast-induced acute kidney injury.

  2. Kupffer Cell p38 MAPK Signaling Drives Post Burn Hepatic Damage and Pulmonary Inflammation when Alcohol Intoxication Precedes Burn Injury

    PubMed Central

    Chen, Michael M.; O’Halloran, Eileen B.; Ippolito, Jill A.; Kovacs, Elizabeth J.

    2016-01-01

    Objective Clinical and animal studies demonstrate that alcohol intoxication at the time of injury worsens post-burn outcome. The purpose of this study was to determine the role and mechanism of Kupffer cell derangement in exacerbating post-burn end organ damage in alcohol exposed mice. Design Interventional study. Setting Research Institute. Subjects Male C57BL/6 mice. Interventions Alcohol administered 30 minutes before a 15% scald burn injury. Antecedent Kupffer cell depletion with clodronate liposomes (0.5 mg/kg). p38 mitogen-activated protein kinase (MAPK) inhibition via SB203580 (10 mg/kg). Measurements and Main Results Kupffer cells were isolated 24 hours after injury and analyzed for p38 activity and IL-6 production. Intoxicated burned mice demonstrated a 2-fold (p<0.05) elevation of Kupffer cell p38 activation relative to either insult alone and this corresponded to a 43% (p<0.05) increase in IL-6 production. Depletion of Kupffer cells attenuated hepatic damage as seen by decreases of 53% (p<0.05) in serum ALT and 74% (p<0.05) in hepatic triglycerides, as well as a 77% reduction (p<0.05) in serum IL-6 levels compared to matched controls. This mitigation of hepatic damage was associated with a 54% decrease (p<0.05) in pulmonary neutrophil infiltration and reduced alveolar wall thickening by 45% (p<0.05). In vivo p38 inhibition conferred nearly identical hepatic and pulmonary protection after the combined injury as mice depleted of Kupffer cells. Conclusions Intoxication exacerbates post-burn hepatic damage through p38-dependent IL-6 production in Kupffer cells. PMID:27322363

  3. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury.

    PubMed

    Hochhauser, Edith; Lahat, Eylon; Sultan, Maya; Pappo, Orit; Waldman, Maayan; Sarne, Yosef; Shainberg, Asher; Gutman, Mordechai; Safran, Michal; Ben Ari, Ziv

    2015-01-01

    Ischemia/reperfusion (I/R) injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC), a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg) in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. C57Bl Mice were studied in in vivo model of hepatic segmental (70%) ischemia for 60min followed by reperfusion for 6 hours. THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway), the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation). This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL) after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma. © 2015 S. Karger AG, Basel.

  4. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  5. [Analysis of clinical prognosis and the correlation between bile duct injury after transcatheter arterial chemoembolization and the level of hepatic arterial embolization in patients with hepatocellular carcinoma].

    PubMed

    Xu, H Y; Yu, X P; Feng, R; Hu, H J; Xiao, W W

    2017-05-23

    Objective: To evaluate the correlation between bile duct injury after transcatheter arterial chemoembolization and the level of hepatic arterial embolization, and to analyze the clinical prognosis of hepatocellular carcinoma patients. Methods: From January18, 2012 to December18, 2014, 21 patients underwent TACE for HCC were retrospectively reviewed, including patients' clinical and pathological data. The clinical outcome and relevant factors for bile duct injury were analyzed. Results: A total of 21 patients were identified with bile duct injury at our single institution. All patients received 48 TACE treatments, including proper hepatic artery (14), left hepatic artery (3), the right hepatic artery (10), left and right hepatic artery (9) and tumor artery branches (12). Thirty-five bile duct injury occurred in 21 patients: 7 cases was close to the tumor, 2 distant to the tumor, 7 at right liver, 2 left liver, 11 both lobes of liver and 6 hepatic hilar. After medical conservative treatment and biliary tract inside and outside drainage, liver function of 10 cases were improved. In four patients with hepatic bile duct stricture and biloma, the effect of drainage was not obvious, which subsequently caused biliary complications such as infection, gallbladder and common bile duct stones. Three patients with liver cirrhosis at decompensation stage developed complications, and one of them died of hepatic encephalopathy. Four patients experienced tumor recurrence during the follow-up period. Conclusions: The location of bile duct injury after transcatheter arterial chemoembolization is quite consistent with the level of hepatic arterial embolization. There may be some blood vessels mainly involved in blood supply of biliary duct. Complete embolism of these vessels may lead to bile duct injuries. Biliary drainage is ineffective in patients with hilar bile duct stricture, and can lead to complications of biliary tract later on.

  6. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    PubMed

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  7. Ferret hepatitis E virus infection induces acute hepatitis and persistent infection in ferrets.

    PubMed

    Li, Tian-Cheng; Yang, Tingting; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Ishii, Koji; Kishida, Noriko; Shirakura, Masayuki; Asanuma, Hideki; Takeda, Naokazu; Wakita, Takaji

    2016-02-01

    Ferret hepatitis E virus (HEV), a novel hepatitis E virus, has been identified in ferrets. However, the pathogenicity of ferret HEV remains unclear. In the present study, we compared the HEV RNA-positivity rates and alanine aminotransferase (ALT) levels of 63 ferrets between before and after import from the US to Japan. We found that the ferret HEV-RNA positivity rates were increased from 12.7% (8/63) to 60.3% (38/63), and ALT elevation was observed in 65.8% (25/38) of the ferret HEV RNA-positive ferrets, indicating that ferret HEV infection is responsible for liver damage. From long term-monitoring of ferret HEV infection we determined that this infection in ferrets exhibits three patterns: sub-clinical infection, acute hepatitis, and persistent infection. The ALT elevation was also observed in ferret HEV-infected ferrets in a primary infection experiment. These results indicate that the ferret HEV infection induced acute hepatitis and persistent infection in ferrets, suggesting that the ferrets are a candidate animal model for immunological as well as pathological studies of hepatitis E. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Acute lethal toxicity, hyperkalemia associated with renal injury and hepatic damage after intravenous administration of cadmium nitrate in rats.

    PubMed

    Dote, Emi; Dote, Tomotaro; Shimizu, Hiroyasu; Shimbo, Yukari; Fujihara, Michiko; Kono, Koichi

    2007-01-01

    Cadmium nitrate Cd(NO(3))(2) (CdN) is commonly used in Ni-Cd battery factories. The possibility of accidental exposure to CdN is great. CdN is very soluble in water compared to other Cd compounds. Therefore, acute toxicity would be expected to be quick due to rapid absorption after exposure. However, the mechanisms of CdN toxicity have not been fully elucidated. We investigated the acute lethal toxicity and harmful systemic effects of acute exposure to large doses of CdN. The lethal dose and dose-response study of the liver and kidney were determined after intravenous administration of CdN in rats. The LD(50) of CdN was determined to be 5.5 mg/kg. Doses of 2.1, 4.2, 6.3 mg/kg were selected for the dose-response study. Liver injury was induced at doses greater than 4.2 mg/kg. Severe hepatic injury occurred in the 6.3 mg/kg group, which would have been caused by acute exposure to the high concentration of Cd that exceeded the critical concentration in hepatic tissue. A remarkable decrease in urine volume in the 6.3 mg/kg group indicated acute renal failure. A decrease in creatinine clearance suggested acute glomerular dysfunction at doses greater than 4.2 mg/kg. Increases in urinary N-acetyl-beta-D-glucosaminidase/creatinine, beta(2)-microglobulin and glucose in the 6.3 mg/kg group indicated proximal tubular injury. Secretion of K ion was also severely affected by proximal tubular injury and severe decreases in urine volume, and an increase in serum K ion was identified at doses greater than 4.2 mg/kg. Thus severe hyperkalemia might be associated with the cardiac-derived lethal toxicity of CdN.

  9. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    PubMed

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Triaging and Treatment of Cold-Induced Injuries.

    PubMed

    Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole

    2015-10-30

    In Central Europe, cold-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because cold-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing cold injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and cold-induced trauma are part of the treatment spectrum in burn centers. The treatment of cold-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of cold-induced injury, the patient should be slowly warmed to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with warming of the body's core temperature and with the bathing of the affected body parts in warm water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of cold-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.

  11. The Hepatic Response to Thermal Injury: Is the Liver Important for Postburn Outcomes?

    PubMed Central

    Jeschke, Marc G

    2009-01-01

    Thermal injury produces a profound hypermetabolic and hypercatabolic stress response characterized by increased endogenous glucose production via gluconeogenesis and glycogenolysis, lipolysis, and proteolysis. The liver is the central body organ involved in these metabolic responses. It is suggested that the liver, with its metabolic, inflammatory, immune, and acute phase functions, plays a pivotal role in patient survival and recovery by modulating multiple pathways following thermal injury. Studies have evaluated the role and function of the liver during the postburn response and showed that liver integrity and function are essential for survival, and that hepatic acute phase proteins are strong predictors for postburn survival. This review discusses these studies and delineates the pivotal role of the liver in patients following severe thermal injury. PMID:19603107

  12. Morin Hydrate Mitigates Cisplatin-Induced Renal and Hepatic Injury by Impeding Oxidative/Nitrosative Stress and Inflammation in Mice.

    PubMed

    K V, Athira; Madhana, Rajaram Mohanrao; Kasala, Eshvendar Reddy; Samudrala, Pavan Kumar; Lahkar, Mangala; Gogoi, Ranadeep

    2016-12-01

    Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti-inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin-induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin-induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin-induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin. © 2016 Wiley Periodicals, Inc.

  13. Antioxidative Role of Hatikana (Leea macrophylla Roxb.) Partially Improves the Hepatic Damage Induced by CCl4 in Wistar Albino Rats

    PubMed Central

    Akhter, Samina; Rahman, Md. Atiar; Aklima, Jannatul; Hasan, Md. Rakibul; Hasan Chowdhury, J. M. Kamirul

    2015-01-01

    This research investigated the protective role of Leea macrophylla extract on CCl4-induced acute liver injury in rats. Different fractions of Leea macrophylla (Roxb.) crude extract were subjected to analysis for antioxidative effects. Rats were randomly divided into four groups as normal control, hepatic control, and reference control (silymarin) group and treatment group. Evaluations were made for the effects of the fractions on serum enzymes and biochemical parameters of CCl4-induced albino rat. Histopathological screening was also performed to evaluate the changes of liver tissue before and after treatment. Different fractions of Leea macrophylla showed very potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, FeCl3 reducing effect, superoxide scavenging effect, and iron chelating effect. Carbon tetrachloride induction increased the level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and other biochemical parameters such as lipid profiles, total protein, and CK-MB. In contrast, treatment of Leea macrophylla reduced the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities as well as biochemical parameters activities. L. macrophylla partially restored the lipid profiles, total protein, and CK-MB. Histopathology showed the treated liver towards restoration. Results evidenced that L. macrophylla can be prospective source of hepatic management in liver injury. PMID:26221590

  14. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency.

    PubMed

    Tryndyak, Volodymyr P; Marrone, April K; Latendresse, John R; Muskhelishvili, Levan; Beland, Frederick A; Pogribny, Igor P

    2016-02-01

    Dietary deficiency in methyl-group donors and cofactors induces liver injury that resembles many pathophysiological and histopathological features of human nonalcoholic fatty liver disease (NAFLD), including an altered expression of microRNAs (miRNAs). We evaluated the consequences of a choline- and folate-deficient (CFD) diet on the expression of miRNAs in the livers of male A/J and WSB/EiJ mice. The results demonstrate that NAFLD-like liver injury induced by the CFD diet in A/J and WSB/EiJ mice was associated with marked alterations in hepatic miRNAome profiles, with the magnitude of miRNA expression changes being greater in WSB/EiJ mice, the strain characterized by the greatest severity of liver injury. Specifically, WSB/EiJ mice exhibited more prominent changes in the expression of common miRNAs as compared to A/J mice and distinct miRNA alterations, including the overexpression of miR-134, miR-409-3p, miR-410 and miR-495 miRNAs that were accompanied by an activation of hepatic progenitor cells and fibrogenesis. This in vivo finding was further confirmed by in vitro experiments showing an overexpression of these miRNAs in undifferentiated progenitor hepatic HepaRG cells compared to in fully differentiated HepaRG cells. Additionally, a marked elevation of miR-134, miR-409-3p, miR-410 and miR-495 was found in plasma of WSB/EiJ mice fed the CFD diet, while none of the miRNAs was changed in plasma of A/J mice. These findings suggest that miRNAs may be crucial regulators responsible for the progression of NAFLD and may be useful as noninvasive diagnostic indicators of the severity and progression of NAFLD. Published by Elsevier Inc.

  15. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism

    PubMed Central

    Peterson, Jonathan M.; Seldin, Marcus M.; Wei, Zhikui; Aja, Susan

    2013-01-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis. PMID:23744740

  16. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress

    PubMed Central

    Lu, Yongke; Leung, Tung Ming; Ward, Stephen C.

    2012-01-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the l-citrulline/nitric oxide (NO·) salvage pathway to continually supply l-arginine from l-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/− mice (Ass−/− mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/− mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/− compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration. PMID:22052013

  17. Operative management and outcomes in 103 AAST-OIS grades IV and V complex hepatic injuries: trauma surgeons still need to operate, but angioembolization helps.

    PubMed

    Asensio, Juan A; Roldán, Gustavo; Petrone, Patrizio; Rojo, Esther; Tillou, Areti; Kuncir, Eric; Demetriades, Demetrios; Velmahos, George; Murray, James; Shoemaker, William C; Berne, Thomas V; Chan, Linda

    2003-04-01

    American Association for the Surgery of Trauma (AAST) Organ Injury Scale (OIS) grades IV and V complex hepatic injuries are highly lethal. Our objectives were to review experience and identify predictors of outcome and to evaluate the role of angioembolization in decreasing mortality. This was a retrospective 8-year study of all patients sustaining AAST-OIS grades IV and V hepatic injuries managed operatively. Statistical analysis was performed using univariate and multivariate logistic regression. The main outcome measure was survival. The study included 103 patients, with a mean Revised Trauma Score of 5.61 +/- 2.55 and a mean Injury Severity Score of 33 +/- 9.5. Mechanism of injury was penetrating in 80 (79%) and blunt in 23 (21%). Emergency department thoracotomy was performed in 21 (25%). AAST grade IV injuries occurred in 51 (47%) and grade V injuries occurred in 52 (53%). Mean estimated blood loss was 9,414 mL. Overall survival was 43%. Adjusted overall survival rate after emergency department thoracotomy patients were excluded was 58%. Results stratified to AAST-OIS injury grade were as follows: grade IV, 32 of 51 (63%); grade V, 12 of 52 (23%); grade IV versus grade V (p < 0.001) odds ratio, 2.06; 95% confidence interval, 2.72 (1.40-3.04). Logistic regression analysis identified as independent predictors of outcome Revised Trauma Score (adjusted p < 0.0002), angioembolization (adjusted p < 0.0177), direct approach to hepatic veins (adjusted p < 0.0096), and packing (adjusted p < 0.0013). Improvements in mortality can be achieved with an appropriate operative approach. Angioembolization as an adjunct procedure decreases mortality in AAST-OIS grades IV and V hepatic injuries.

  18. Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl4-Induced Liver Injury in Sprague-Dawley Rats.

    PubMed

    Byun, Jae-Hyuk; Kim, Jun; Choung, Se-Young

    2018-03-01

    The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride (CCl 4 )-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of CCl 4 (1.5 ml/kg, twice a week for 14 days). The administration of CCl 4 exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to CCl 4 induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in CCl 4 induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by CCl 4 via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.

  19. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model.

    PubMed

    Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet-Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru; Miyajima, Atsushi

    2018-06-01

    Tribbles pseudokinase 1 ( Trib1 ) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1 -deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl 4 -induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases ( Mmp ) 8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1 . These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1 -deficient liver. Consistently, transplantation of Trib1 -deficient bone marrow cells into wild-type mice alleviated CCl 4 -induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 ( Cxcl1 ) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl 4 -induced fibrosis; infusion of wild-type neutrophils in CCl 4 -treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl 4 -induced fibrosis. Conclusion : While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. ( Hepatology Communications 2018;2:703-717).

  20. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Traumatic brain injury caused by laser-induced shock wave in rats: a novel laboratory model for studying blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Hatano, Ben; Matsumoto, Yoshihisa; Otani, Naoki; Saitoh, Daizoh; Tokuno, Shinichi; Satoh, Yasushi; Nawashiro, Hiroshi; Matsushita, Yoshitaro; Sato, Shunichi

    2011-03-01

    The detailed mechanism of blast-induced traumatic brain injury (bTBI) has not been revealed yet. Thus, reliable laboratory animal models for bTBI are needed to investigate the possible diagnosis and treatment for bTBI. In this study, we used laser-induced shock wave (LISW) to induce TBI in rats and investigated the histopathological similarities to actual bTBI. After craniotomy, the rat brain was exposed to a single shot of LISW with a diameter of 3 mm at various laser fluences. At 24 h after LISW exposure, perfusion fixation was performed and the extracted brain was sectioned; the sections were stained with hematoxylin-eosin. Evans blue (EB) staining was also used to evaluate disruption of the blood brain barrier. At certain laser fluence levels, neural cell injury and hemorrhagic lesions were observed in the cortex and subcortical region. However, injury was limited in the tissue region that interacted with the LISW. The severity of injury increased with increasing laser fluence and hence peak pressure of the LISW. Fluorescence originating from EB was diffusively observed in the injuries at high fluence levels. Due to the grade and spatial controllability of injuries and the histological observations similar to those in actual bTBI, brain injuries caused by LISWs would be useful models to study bTBI.

  2. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways.

    PubMed

    El-Sherbeeny, Nagla A; Nader, Manar A; Attia, Ghalia M; Ateyya, Hayam

    2016-12-01

    Tobacco smoking with its various forms is a global problem with proved hazardous effects to human health. The present work was planned to study the defending role of agmatine (AGM) on hepatic oxidative stress and damage induced by nicotine in rats. Thirty-two rats divided into four groups were employed: control group, nicotine-only group, AGM group, and AGM-nicotine group. Measurements of serum hepatic biochemical markers, lipid profile, and vascular cell adhesion molecule-1 were done. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) activity, and nitrate/nitrite (NOx) levels were estimated in the liver homogenates. Immunohistochemistry for Bax and transforming growth factor beta (TGF-β1) and histopathology of the liver were also included. Data of the study demonstrated that nicotine administration exhibited marked liver deterioration, an increase in liver enzymes, changes in lipid profile, and an elevation in MDA with a decline in levels of SOD, GSH, and NOx (nitrate/nitrite). Also, levels of proapoptotic Bax and profibrotic TGF-β1 showed marked elevation in the liver. AGM treatment to rats in nicotine-only group ameliorated all the previous changes. These findings indicate that AGM could successfully overcome the nicotine-evoked hepatic oxidative stress and tissue injury, apoptosis, and fibrosis.

  3. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not alteredmore » in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.« less

  4. S-1-induced lung injury combined with pneumocystis pneumonia

    PubMed Central

    Yano, Shuichi

    2013-01-01

    Pulmonary injuries due to S-1 have been reported, and these reports have shown an increase in lung cancer following the increased usage of S-1 in treating lung cancer. We report the first case of lung injury due to S-1 in combination with pneumocystis pneumonia (PCP), because the radiological findings and clinical courses were compatible with S-1-induced lung injury combined with PCP. We should consider that S-1 might induce lung injuries which might occur with PCP, especially with a history of drug-induced or radiation-induced lung injuries. PMID:23386491

  5. Improvement of Carbon Tetrachloride-Induced Acute Hepatic Failure by Transplantation of Induced Pluripotent Stem Cells without Reprogramming Factor c-Myc

    PubMed Central

    Chang, Hua-Ming; Liao, Yi-Wen; Chiang, Chih-Hung; Chen, Yi-Jen; Lai, Ying-Hsiu; Chang, Yuh-Lih; Chen, Hen-Li; Jeng, Shaw-Yeu; Hsieh, Jung-Hung; Peng, Chi-Hsien; Li, Hsin-Yang; Chien, Yueh; Chen, Szu-Yu; Chen, Liang-Kung; Huo, Teh-Ia

    2012-01-01

    The only curative treatment for hepatic failure is liver transplantation. Unfortunately, this treatment has several major limitations, as for example donor organ shortage. A previous report demonstrated that transplantation of induced pluripotent stem cells without reprogramming factor c-Myc (3-genes iPSCs) attenuates thioacetamide-induced hepatic failure with minimal incidence of tumorigenicity. In this study, we investigated whether 3-genes iPSC transplantation is capable of rescuing carbon tetrachloride (CCl4)-induced fulminant hepatic failure and hepatic encephalopathy in mice. Firstly, we demonstrated that 3-genes iPSCs possess the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that exhibit biological functions and express various hepatic specific markers. 3-genes iPSCs also exhibited several antioxidant enzymes that prevented CCl4-induced reactive oxygen species production and cell death. Intraperitoneal transplantation of either 3-genes iPSCs or 3-genes iPSC-Heps significantly reduced hepatic necrotic areas, improved hepatic functions, and survival rate in CCl4-treated mice. CCl4-induced hepatic encephalopathy was also improved by 3-genes iPSC transplantation. Hoechst staining confirmed the successful engraftment of both 3-genes iPSCs and 3-genes iPSC-Heps, indicating the homing properties of these cells. The most pronounced hepatoprotective effect of iPSCs appeared to originate from the highest antioxidant activity of 3-gene iPSCs among all transplanted cells. In summary, our findings demonstrated that 3-genes iPSCs serve as an available cell source for the treatment of an experimental model of acute liver diseases. PMID:22489170

  6. Cystathionine beta-synthase deficiency alters hepatic phospholipid and choline metabolism: Post-translational repression of phosphatidylethanolamine N-methyltransferase is a consequence rather than a cause of liver injury in homocystinuria.

    PubMed

    Jacobs, René L; Jiang, Hua; Kennelly, John P; Orlicky, David J; Allen, Robert H; Stabler, Sally P; Maclean, Kenneth N

    2017-04-01

    Classical homocystinuria (HCU) due to inactivating mutation of cystathionine β-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ji-Young; Kim, Mi-Hyoung; Kim, Hyung-Doo

    2010-02-01

    The aim of the present study was to evaluate immunomodulator ginsan, a polysaccharide extracted from Panax ginseng, on carbon tetrachloride (CCl{sub 4})-induced liver injury. BALB/c mice were injected i.p. with ginsan 24 h prior to CCl{sub 4} administration. Serum liver enzyme levels, histology, expression of antioxidant enzymes, and several cytokines/chemokines were subsequently evaluated. Ginsan treatment markedly suppressed the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic histological necrosis increased by CCl{sub 4} treatment. Ginsan inhibited CCl{sub 4} induced lipid peroxidation through the cytochrome P450 2E1 (CYP2E1) downregulation. The hepatoprotective effect of ginsan was attributed to induction ofmore » anti-oxidant protein contents, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) as well as restoration of the hepatic glutathione (GSH) concentration. The marked increase of proinflammatory cytokines (IL-1beta, IFN-gamma) and chemokines (MCP-1, MIP-2beta, KC) in CCl{sub 4} treated mice was additionally attenuated by ginsan, thereby preventing leukocyte infiltration and local inflammation. Our results suggest that ginsan effectively prevent liver injury, mainly through downregulation of oxidative stress and inflammatory response.« less

  8. IP-10 protects while MIP-2 promotes experimental anesthetic hapten - induced hepatitis

    PubMed Central

    Njoku, Dolores B.; Li, Zhaoxia; Mellerson, Jenelle L; Sharma, Rajni; Talor, Monica V.; Barat, Nicole; Rose, Noel R.

    2009-01-01

    MIP-2 and IFN-γ inducible protein-10 (IP-10) and their respective receptors, CXCR2 and CXCR3, modulate tissue inflammation by recruiting neutrophils or T cells from the spleen or bone marrow. Yet, how these chemokines modulate diseases such as immune-mediated drug-induced liver injury (DILI) is essentially unknown. To investigate how chemokines modulate experimental DILI in our model we used susceptible BALB/c (WT) and IL-4−/− (KO) mice that develop significantly reduced hepatitis and splenic T cell priming to anesthetic haptens and self proteins following TFA-S100 immunizations. We detected CXCR2+ splenic granulocytes in all mice two weeks following immunizations; by 3 weeks, MIP-2 levels (p<0.001) and GR1+ cells were elevated in WT livers, suggesting MIP-2-recruited granulocytes. Elevated splenic CXCR3+ CD4+T cells were identified after 2 weeks in KO mice indicating elevated IP-10 levels which were confirmed during T cell priming. This result suggested that IP-10 reduced T cell priming to critical DILI antigens. Increased T cell proliferation following co-culture of TFA-S100-primed WT splenocytes with anti-IP-10 (p<0.05) confirmed that IP-10 reduced T cell priming to CYP2E1 and TFA. We propose that MIP-2 promotes and IP-10 protects against the development of hepatitis and T cell priming in this murine model. PMID:19131211

  9. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    PubMed

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    PubMed

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  11. Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells.

    PubMed

    Kumar, Pradeep; Smith, Tekla; Raeman, Reben; Chopyk, Daniel M; Brink, Hannah; Liu, Yunshan; Sulchek, Todd; Anania, Frank A

    2018-06-25

    Liver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a non-structural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis. Hepatic fibrosis in periostin -/- mice was attenuated as evidenced by significantly reduced collagen fibril density and liver stiffness compared with those in WT controls. A single dose of carbon tetrachloride caused similar acute liver injury in periostin -/- and WT littermates, and we did not detect significant differences in transaminases and major fibrosis-related hepatic gene expression between these two genotypes. Activated hepatic stellate cells (HSCs) are the major periostin-producing liver cell type. We found that in primary rat HSCs in vitro, periostin significantly increases the expression levels and activities of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) isoforms 1-3. Periostin also induced expression of intra- and extracellular collagen type 1 and fibronectin in HSCs. Interestingly, periostin stimulated phosphorylation of SMAD2/3, which was sustained despite sh-RNA mediated knockdown of transforming growth factor β (TGFβ) receptor I and II, indicating that periostin periostin-mediated SMAD2/3 phosphorylation is independent of TGFβ receptors. Moreover, periostin induced the phosphorylation of focal adhesion kinase (FAK) and AKT in HSCs. Notably, si-RNA mediated FAK knockdown failed to block periostin-induced SMAD2/3 phosphorylation. These results suggest that periostin promotes enhanced matrix stiffness in chronic liver disease by activating LOX and LOXL, independently of TGFβ receptors. Hence, targeting periostin may be of therapeutic benefit in combating hepatic fibrosis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient.

    PubMed

    Ates, İhsan; Kaplan, Mustafa; Yilmaz, Nisbet; Çiftçi, Filiz

    2015-01-01

    Acute hepatitis is a disorder that goes with liver cell necrosis and liver inflammation. Among the causes of acute hepatitis, the most common reasons are viral hepatitis. About 95% of the acute hepatitis generate because of hepatotropic viruses. Epstein-barr virus (EBV) and cytomegalovirus (CMV) are from the family of herpes viruses and rare causes of acute hepatitis. In this case report, acute hepatitis due to EBV and CMV coinfection will be described. Ates İ, Kaplan M, Yilmaz N, Çiftçi F. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient. Euroasian J Hepato-Gastroenterol 2015;5(1):60-61.

  13. LKM3 autoantibodies in hepatitis C cirrhosis: a further phenomenon of the HCV-induced autoimmunity.

    PubMed

    Csepregi, A; Nemesánszky, E; Luettig, B; Obermayer-Straub, P; Manns, M P

    2001-03-01

    Chronic hepatitis C is frequently associated with laboratory markers-including LKM1 autoantibodies--of autoimmunity. A 62-yr-old woman with hepatitis C cirrhosis presented autoantibodies against liver and kidney microsomal proteins. By further evaluation of autoantibodies using ELISA and immunoblotting LKM1 and LKM3 autoantibodies could be revealed. The target antigen of LKM3 autoantibodies proved to be UGT-1.1 isoenzyme. In the absence of chronic hepatitis D infection or autoimmune hepatitis type 2, this is the first case that reports the occurrence of LKM3 autoantibodies in HCV-induced chronic liver disease.

  14. Low-ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways

    PubMed Central

    Reyes-Gordillo, Karina; Shah, Ruchi; Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.

    2016-01-01

    Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways. PMID:28074114

  15. Hepatitis E-induced severe myositis.

    PubMed

    Mengel, Annerose M; Stenzel, Werner; Meisel, Andreas; Büning, Carsten

    2016-02-01

    Hepatitis E virus (HEV) is endemic in Asian and African countries but is rarely reported in Western countries. Although there are some prominent neurological manifestations, HEV is rarely recognized by neurologists. This is a case report of myositis induced by HEV. We report the life-threatening case of a 57-year-old man with flaccid tetraparesis due to myositis, acute hepatitis, and renal failure caused by HEV infection. Muscle biopsy revealed scattered myofiber necrosis with a diffuse, mild lymphomonocytic infiltrate in the endomysium and perimysium. Because the patient suffered from an acute HEV infection with a rapidly progressive course of severe myopathy, we started ribavirin treatment. He recovered partially within 3 weeks and recovered fully within 6 months. This case highlights a neurological manifestation of endemic HEV infection with severe myositis in a patient with alcoholic chronic liver disease. Ribavirin treatment is effective in severe HEV infection and may also lead to rapid neurological recovery. © 2015 Wiley Periodicals, Inc.

  16. Aneuploidy as a mechanism for stress-induced liver adaptation

    PubMed Central

    Duncan, Andrew W.; Hanlon Newell, Amy E.; Bi, Weimin; Finegold, Milton J.; Olson, Susan B.; Beaudet, Arthur L.; Grompe, Markus

    2012-01-01

    Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16–specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation. PMID:22863619

  17. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver.

    PubMed

    Shimada, Shingo; Wakayama, Kenji; Fukai, Moto; Shimamura, Tsuyoshi; Ishikawa, Takahisa; Fukumori, Daisuke; Shibata, Maki; Yamashita, Kenichiro; Kimura, Taichi; Todo, Satoru; Ohsawa, Ikuroh; Taketomi, Akinobu

    2016-12-01

    Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H 2 (+) and H 2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H 2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H 2 (+) group, these harmful changes were significantly suppressed [vs. H 2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Activation of CD11b+ Kupffer Cells/Macrophages as a Common Cause for Exacerbation of TNF/Fas-Ligand-Dependent Hepatitis in Hypercholesterolemic Mice

    PubMed Central

    Nakashima, Hiroyuki; Ogawa, Yoshiko; Shono, Satoshi; Kinoshita, Manabu; Nakashima, Masahiro; Sato, Atsushi; Ikarashi, Masami; Seki, Shuhji

    2013-01-01

    We have reported that the mouse hepatic injury induced by either α-galactosylceramide (α-GalCer) or bacterial DNA motifs (CpG-ODN) is mediated by the TNF/NKT cell/Fas-ligand (FasL) pathway. In addition, F4/80+ Kupffer cells can be subclassified into CD68+ subset with a phagocytosing capacity and CD11b+ subset with a TNF-producing capacity. CD11b+ subset increase if mice are fed high-fat and cholesterol diet (HFCD). The present study examined how a HFCD affects the function of NKT cells and F4/80+ CD11b+ subset and these hepatitis models. After the C57BL/6 mice received a HFCD, high-cholesterol diet (HCD), high-fat diet (HFD) and control diet (CD) for four weeks, the HFCD mice increased surface CD1d and intracellular TLR-9 expression by the CD11b+ population compared to CD mice. Hepatic injury induced either by α-GalCer or CpG-ODN was more severe in HCD and HFCD mice compared to CD mice, which was in proportion to the serum TNF levels. In addition, liver cholesterol levels but not serum cholesterol levels nor liver triglyceride levels were involved in the aggravation of hepatitis. The FasL expression of NKT cells induced by both reagents was upregulated in HFCD mice. Furthermore, the liver mononuclear cells and purified F4/80+ CD11b+ subset from HFCD mice stimulated with either reagent in vitro produced a larger amount of TNF than did those from CD mice. Intracellular TNF production in F4/80+ CD11b+ cells was confirmed. The increased number of F4/80+ CD11b+ Kupffer cells/macrophages by HFCD and their enhanced TNF production thus play a pivotal role in TNF/NKT cell/FasL dependent hepatic injury. PMID:23372642

  19. Activation of CD11b+ Kupffer cells/macrophages as a common cause for exacerbation of TNF/Fas-ligand-dependent hepatitis in hypercholesterolemic mice.

    PubMed

    Nakashima, Hiroyuki; Ogawa, Yoshiko; Shono, Satoshi; Kinoshita, Manabu; Nakashima, Masahiro; Sato, Atsushi; Ikarashi, Masami; Seki, Shuhji

    2013-01-01

    We have reported that the mouse hepatic injury induced by either α-galactosylceramide (α-GalCer) or bacterial DNA motifs (CpG-ODN) is mediated by the TNF/NKT cell/Fas-ligand (FasL) pathway. In addition, F4/80(+) Kupffer cells can be subclassified into CD68(+) subset with a phagocytosing capacity and CD11b(+) subset with a TNF-producing capacity. CD11b(+) subset increase if mice are fed high-fat and cholesterol diet (HFCD). The present study examined how a HFCD affects the function of NKT cells and F4/80(+) CD11b(+) subset and these hepatitis models. After the C57BL/6 mice received a HFCD, high-cholesterol diet (HCD), high-fat diet (HFD) and control diet (CD) for four weeks, the HFCD mice increased surface CD1d and intracellular TLR-9 expression by the CD11b(+) population compared to CD mice. Hepatic injury induced either by α-GalCer or CpG-ODN was more severe in HCD and HFCD mice compared to CD mice, which was in proportion to the serum TNF levels. In addition, liver cholesterol levels but not serum cholesterol levels nor liver triglyceride levels were involved in the aggravation of hepatitis. The FasL expression of NKT cells induced by both reagents was upregulated in HFCD mice. Furthermore, the liver mononuclear cells and purified F4/80(+) CD11b(+) subset from HFCD mice stimulated with either reagent in vitro produced a larger amount of TNF than did those from CD mice. Intracellular TNF production in F4/80(+) CD11b(+) cells was confirmed. The increased number of F4/80(+) CD11b(+) Kupffer cells/macrophages by HFCD and their enhanced TNF production thus play a pivotal role in TNF/NKT cell/FasL dependent hepatic injury.

  20. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    PubMed Central

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  1. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    PubMed

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. A Western diet induced NAFLD in LDLR(-/)(-) mice is associated with reduced hepatic glutathione synthesis.

    PubMed

    Li, Ling; Zhang, Guo-Fang; Lee, Kwangwon; Lopez, Rocio; Previs, Stephen F; Willard, Belinda; McCullough, Arthur; Kasumov, Takhar

    2016-07-01

    Oxidative stress plays a key role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Glutathione is the major anti-oxidant involved in cellular oxidative defense, however there are currently no simple non-invasive methods for assessing hepatic glutathione metabolism in patients with NAFLD. As a primary source of plasma glutathione, liver plays an important role in interorgan glutathione homeostasis. In this study, we have tested the hypothesis that measurements of plasma glutathione turnover could be used to assess the hepatic glutathione metabolism in LDLR(-/)(-) mice, a mouse model of diet-induced NAFLD. Mice were fed a standard low fat diet (LFD) or a high fat diet containing cholesterol (a Western type diet (WD)). The kinetics of hepatic and plasma glutathione were quantified using the (2)H2O metabolic labeling approach. Our results show that a WD leads to reduced fractional synthesis rates (FSR) of hepatic (25%/h in LFD vs. 18%/h in WD, P<0.05) and plasma glutathione (43%/h in LFD vs. 21%/h in WD, P<0.05), without any significant effect on their absolute production rates (PRs). WD-induced concordant changes in both hepatic and plasma glutathione turnover suggest that the plasma glutathione turnover measurements could be used to assess hepatic glutathione metabolism. The safety, simplicity, and low cost of the (2)H2O-based glutathione turnover approach suggest that this method has the potential for non-invasive probing of hepatic glutathione metabolism in patients with NAFLD and other diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice.

    PubMed

    Bijnen, Mitchell; Josefs, Tatjana; Cuijpers, Ilona; Maalsen, Constantijn J; van de Gaar, José; Vroomen, Maria; Wijnands, Erwin; Rensen, Sander S; Greve, Jan Willem M; Hofker, Marten H; Biessen, Erik A L; Stehouwer, Coen D A; Schalkwijk, Casper G; Wouters, Kristiaan

    2017-10-26

    Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c + proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr -/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c + and CD11c - macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c + ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  4. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis.

    PubMed

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury.

    PubMed

    Lei, Xia; Basu, Debapriya; Li, Zhiqiang; Zhang, Maoxiang; Rudic, R Dan; Jiang, Xian-Cheng; Jin, Weijun

    2014-09-01

    Atherosclerosis is a complex disease, involving elevated LDL-c, lipid accumulation in the blood vessel wall, foam cell formation and vascular dysfunction. Lowering plasma LDL-c is the cornerstone of current management of cardiovascular disease. However, new approaches which reduce plasma LDL-c and lessen the pathological vascular remodeling occurring in the disease should also have therapeutic value. Previously, we found that overexpression of profurin, the 83-amino acid prodomain of the proprotein convertase furin, lowered plasma HDL levels in wild-type mice. The question that remained was whether it had effects on apolipoprotein B (ApoB)-containing lipoproteins. Adenovirus mediated overexpression of hepatic profurin in Ldlr(-/-)mice and wild-type mice were used to evaluate effects of profurin on ApoB-containing lipoproteins, atherosclerosis and vascular remodeling. Hepatic profurin overexpression resulted in a significant reduction in atherosclerotic lesion development in Ldlr(-/-)mice and a robust reduction in plasma LDL-c. Metabolic studies revealed lower secretion of ApoB and triglycerides in VLDL particles. Mechanistic studies showed that in the presence of profurin, hepatic ApoB, mainly ApoB100, was degraded by proteasomes. There was no effect on ApoB mRNA expression. Importantly, short-term hepatic profurin overexpression did not result in hepatic lipid accumulation. Blood vessel wall thickening caused by either wire-induced femoral artery injury or common carotid artery ligation was reduced. Profurin expression inhibited proliferation and migration in vascular smooth muscle cells in vitro. These results indicate that a profurin-based therapy has the potential to treat atherosclerosis by improving metabolic lipid profiles and reducing both atherosclerotic lesion development and pathological vascular remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Hepatic laceration as a life-threatening complication of umbilical venous catheterization.

    PubMed

    Gülcan, Hande; Hanta, Deniz; Törer, Birgin; Temiz, Adbülkerim; Demir, Senay

    2011-01-01

    Umbilical venous catheterization is an intravenous infusion route for maintenance fluids, medications, blood products, and parenteral nutrition in preterm neonates. However, this procedure may be associated with several complications, such as infection, thrombosis, vessel perforation, and cardiac and hepatic injuries. Hepatic laceration is a rare but life-threatening complication of umbilical venous catheterization that is a result of direct injury through the liver parenchyma. Here, we present a preterm newborn with hepatic laceration as a rare and serious complication of umbilical venous catheterization.

  7. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  8. Vinpocetine protects liver against ischemia-reperfusion injury.

    PubMed

    Zaki, Hala Fahmy; Abdelsalam, Rania Mohsen

    2013-12-01

    Hepatic ischemia-reperfusion (IR) injury is a clinical problem that leads to cellular damage and organ dysfunction mediated mainly via production of reactive oxygen species and inflammatory cytokines. Vinpocetine has long been used in cerebrovascular disorders. This study aimed to explore the protective effect of vinpocetine in IR injury to the liver. Ischemia was induced in rats by clamping the common hepatic artery and portal vein for 30 min followed by 30 min of reperfusion. Serum transaminases and liver lactate dehydrogenase (LDH) activities, liver inflammatory cytokines, oxidative stress biomarkers, and liver histopathology were assessed. IR resulted in marked histopathology changes in liver tissues coupled with elevations in serum transaminases and liver LDH activities. IR also increased the production of liver lipid peroxides, nitric oxide, and inflammatory cytokines interleukin-1β and interleukin-6, in parallel with a reduction in reduced glutathione and interleukin-10 in the liver. Pretreatment with vinpocetine protected against liver IR-induced injury, in a dose-dependent manner, as evidenced by the attenuation of oxidative stress as well as inflammatory and liver injury biomarkers. The effects of vinpocetine were comparable with that of curcumin, a natural antioxidant, and could be attributed to its antioxidant and anti-inflammatory properties.

  9. Fructokinase activity mediates dehydration-induced renal injury.

    PubMed

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  10. A microengineered model of RBC transfusion-induced pulmonary vascular injury.

    PubMed

    Seo, Jeongyun; Conegliano, David; Farrell, Megan; Cho, Minseon; Ding, Xueting; Seykora, Thomas; Qing, Danielle; Mangalmurti, Nilam S; Huh, Dongeun

    2017-06-13

    Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.

  11. Hepatic enzyme decline after pediatric blunt trauma: a tool for timing child abuse?

    PubMed

    Baxter, Amy L; Lindberg, Daniel M; Burke, Bonnie L; Shults, Justine; Holmes, James F

    2008-09-01

    Previous research in adult patients with blunt hepatic injuries has suggested a pattern of serum hepatic transaminase concentration decline. Evaluating this decline after pediatric blunt hepatic trauma could establish parameters for estimating the time of inflicted injuries. Deviation from a consistent transaminase resolution pattern could indicate a developing complication. Retrospective review of pediatric patients with injuries including blunt liver trauma admitted to one of four urban level 1 trauma centers from 1990 to 2000. Cases were excluded for shock, death within 48 h, complications, or inability to determine injury time. Transaminase concentration decline was modeled by individual patients, by injury grade, and as a ratio with regard to injury time. One hundred and seventy-six patients met inclusion criteria. The rate of aspartate aminotransferase (AST) clearance changed significantly over time. Alanine aminotransferase (ALT) fell more slowly. Of the 118 patients who had multiple measurements of AST, for 112 (95%) the first concentration obtained was the highest. When ALT was greater than AST, the injury was older than 12h (97% specificity (95% CI, 95-99%), sensitivity 42% (95% CI, 33-50%)). Patients with enzymes that rose after 14 h post-injury were more likely to develop complications (RR=24, 95% CI 10-58). Hepatic transaminases rise rapidly after uncomplicated blunt liver injury, then fall predictably. Persistently stable or increasing concentrations may indicate complications. ALT>AST indicates subacute injury.

  12. Extrahepatic duct injury in blunt trauma: two case reports and a literature review.

    PubMed

    Zago, Thiago Messias; Pereira, Bruno Monteiro Tavares; Calderan, Thiago Rodrigues Araujo; Hirano, Elcio Shiyoiti; Fraga, Gustavo Pereira

    2014-08-01

    Traumatic injuries of the extrahepatic biliary tract are rare. Associated injuries are usually responsible for immediate indication for surgical treatment, the time when an injury to the extrahepatic biliary ducts may be diagnosed. However, missed injuries are often common. The primary aim of this paper is to describe the clinical features, diagnosis, treatment, and outcome of two patients with left hepatic duct injury after blunt abdominal trauma. As a secondary objective, a literature review is presented. The two cases presented in this study are as follows: (1) A young male, involved in a motor vehicle crash, was admitted with blunt hepatic trauma in a general hospital. Endoscopic retrograde cholangiography was conducted 3 weeks later and revealed a large leakage at the left hepatic duct. Exploratory laparotomy was performed 26 days after the initial traumatic event and identified a complete section of the left hepatic duct, treated with anastomosis. (2) A male fell from a height. On exploratory laparotomy, a 30 % partial injury of the left hepatic duct was found in addition to hemoperitoneum, liver injury, gallbladder detachment together with cystic duct rupture, retroperitoneal hematoma to the right, and cecum hematoma. A high level of suspicion is necessary to identify injuries to the hepatic ducts. Early diagnosis that occurs during laparotomy due to associated injuries is important to reduce complications.

  13. Neutrophils alleviate fibrosis in the CCl4‐induced mouse chronic liver injury model

    PubMed Central

    Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet‐Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru

    2018-01-01

    Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2‐like macrophage reduction. Because M2 macrophages are anti‐inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1‐deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4‐induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1‐deficient liver. Consistently, transplantation of Trib1‐deficient bone marrow cells into wild‐type mice alleviated CCl4‐induced fibrosis. Furthermore, expression of chemokine (C‐X‐C motif) ligand 1 (Cxcl1) by adeno‐associated viral vector in the normal liver recruited neutrophils and suppressed CCl4‐induced fibrosis; infusion of wild‐type neutrophils in CCl4‐treated mice also ameliorated fibrosis. Using recombinant adeno‐associated virus‐mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4‐induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703‐717) PMID:29881822

  14. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction.

    PubMed

    Wang, Wei-Wei; Zhang, Yu; Huang, Xiao-Bing; You, Nan; Zheng, Lu; Li, Jing

    2017-10-14

    To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl 4 )-induced acute hepatic dysfunction. A rat model of HE was established with CCl 4 . Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was examined. FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating pro-inflammatory factors such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.

  15. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient

    PubMed Central

    Kaplan, Mustafa; Yilmaz, Nisbet; Çiftçi, Filiz

    2015-01-01

    Acute hepatitis is a disorder that goes with liver cell necrosis and liver inflammation. Among the causes of acute hepatitis, the most common reasons are viral hepatitis. About 95% of the acute hepatitis generate because of hepatotropic viruses. Epstein-barr virus (EBV) and cytomegalovirus (CMV) are from the family of herpes viruses and rare causes of acute hepatitis. In this case report, acute hepatitis due to EBV and CMV coinfection will be described. How to cite this article Ates İ, Kaplan M, Yilmaz N, Çiftçi F. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient. Euroasian J Hepato-Gastroenterol 2015;5(1):60-61. PMID:29201691

  16. Vildagliptin-induced acute lung injury: a case report.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Sato, Kazuhiro; Maruyama, Ryoko; Furukawa, Tomoyasu; Tanaka, Junta; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-08-12

    Dipeptidyl peptidase-4 inhibitors are a class of oral hypoglycemic drugs and are used widely to treat type 2 diabetes mellitus in many countries. Adverse effects include nasopharyngitis, headache, elevated serum pancreatic enzymes, and gastrointestinal symptoms. In addition, a few cases of interstitial pneumonia associated with their use have been reported in the Japanese literature. Here we describe a patient who developed drug-induced acute lung injury shortly after the administration of the dipeptidyl peptidase-4 inhibitor vildagliptin. A 38-year-old Japanese woman with diabetes mellitus developed acute respiratory failure 1 day after administration of vildagliptin. Chest computed tomography revealed nonsegmental ground-glass opacities in her lungs. There was no evidence of bacterial pneumonia or any other cause of her respiratory manifestations. After discontinuation of vildagliptin, she recovered fully from her respiratory disorder. She received insulin therapy for her diabetes mellitus, and her subsequent clinical course has been uneventful. The period of drug exposure in previously reported cases of patients with drug-induced interstitial pneumonia caused by dipeptidyl peptidase-4 inhibitor varied from several days to over 6 months. In the present case, our patient developed interstitial pneumonia only 1 day after the administration of vildagliptin. The precise mechanism of her vildagliptin-induced lung injury remains uncertain, but physicians should consider that dipeptidyl peptidase-4 inhibitor-induced lung injury, although rare, may appear acutely, even within days after administration of this drug.

  17. Mechanism for Prevention of Alcohol-Induced Liver Injury by Dietary Methyl Donors

    PubMed Central

    Powell, Christine L.; Bradford, Blair U.; Craig, Christopher Patrick; Tsuchiya, Masato; Uehara, Takeki; O’Connell, Thomas M.; Pogribny, Igor P.; Melnyk, Stepan; Koop, Dennis R.; Bleyle, Lisa; Threadgill, David W.; Rusyn, Ivan

    2010-01-01

    Alcohol-induced liver injury (ALI) has been associated with, among other molecular changes, abnormal hepatic methionine metabolism, resulting in decreased levels of S-adenosylmethionine (SAM). Dietary methyl donor supplements such as SAM and betaine mitigate ALI in animal models; however, the mechanisms of protection remain elusive. It has been suggested that methyl donors may act via attenuation of alcohol-induced oxidative stress. We hypothesized that the protective action of methyl donors is mediated by an effect on the oxidative metabolism of alcohol in the liver. Male C57BL/6J mice were administered a control high-fat diet or diet enriched in methyl donors with or without alcohol for 4 weeks using the enteral alcohol feeding model. As expected, attenuation of ALI and an increase in reduced glutathione:oxidized glutathione ratio were achieved with methyl donor supplementation. Interestingly, methyl donors led to a 35% increase in blood alcohol elimination rate, and while there was no effect on alcohol metabolism in the stomach, a profound effect on liver alcohol metabolism was observed. The catalase-dependent pathway of alcohol metabolism was induced, yet the increase in CYP2E1 activity by alcohol was blunted, which may be mitigating production of oxidants. Additional factors contributing to the protective effects of methyl donors in ALI were increased activity of low- and high-Km aldehyde dehydrogenases leading to lower hepatic acetaldehyde, maintenance of the efficient mitochondrial energy metabolism, and promotion of peroxisomal β-oxidation. Profound changes in alcohol metabolism represent additional important mechanism of the protective effect of methyl donors in ALI. PMID:20118189

  18. Critical roles of conventional dendritic cells in promoting T cell‐dependent hepatitis through regulating natural killer T cells

    PubMed Central

    Wang, J.; Cao, X.; Zhao, J.; Zhao, H.; Wei, J.; Li, Q.; Qi, X.; Yang, Z.; Wang, L.; Zhang, H.; Bai, L.; Wu, Z.; Zhao, L.; Hong, Z.

    2017-01-01

    Summary Dendritic cells (DCs) play critical roles in initiating and regulating innate immunity as well as adaptive immune responses. However, the role of conventional dendritic cells (cDCs) in concanavalin A (ConA)‐induced fulminant hepatitis is unknown. In this study, we demonstrated that depletion of cDCs using either CD11c‐diphtheria toxin receptor transgenic mice (DTR Tg) mice or anti‐CD11c antibody reduced the severity of liver injury significantly, indicating a detrimental role of cDCs in ConA‐induced hepatitis. We elucidated further the pathological role of cDCs as being the critical source of interleukin (IL)‐12, which induced the secretion of interferon (IFN)‐γ by natural killer (NK) T cells. Reconstitution of cDCs‐depleted mice with IL‐12 restored ConA‐induced hepatitis significantly. Furthermore, we determined that NK T cells were the target of DC‐derived IL‐12, and NK T cells contributed to liver inflammation and injury through production of IFN‐γ. In summary, our study demonstrated a novel function of cDCs in mediating ConA‐induced hepatitis through regulating IFN‐γ secretion of NK T cells in an IL‐12‐dependent fashion. Targeting cDCs might provide potentially therapeutic applications in treating autoimmune related liver diseases. PMID:27891589

  19. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury.

    PubMed

    Dai, Jie; Liu, Mingwei; Ai, Qing; Lin, Ling; Wu, Kunwei; Deng, Xinyu; Jing, Yuping; Jia, Mengying; Wan, Jingyuan; Zhang, Li

    2014-06-05

    Metformin is a commonly used anti-diabetic drug with AMP-activated protein kinase (AMPK)-dependent hypoglycemic activities. Recent studies have revealed its anti-inflammatory and anti-oxidative properties. In the present study, the anti-oxidative potential of metformin and its potential mechanisms were investigated in a mouse model with carbon tetrachloride (CCl₂)-induced severe oxidative liver injury. Our results showed that treatment with metformin significantly attenuated CCl₂-induced elevation of serum aminotransferases and hepatic histological abnormalities. The alleviated liver injury was associated with decreased hepatic contents of oxidized glutathione (GSSG) and malondialdehyde (MDA). In addition, metformin treatment dose-dependently enhanced the activities of catalase (CAT) and decreased CCl₄-induced elevation of hepatic H₂O₂ levels, but it had no obvious effects on the protein level of CAT. We also found that metformin increased the level of phosphorylated AMP-activated protein kinase (AMPK), but treatment with AMPK activator AICAR had no obvious effects on CAT activity. A molecular docking analysis indicated that metformin might interact with CAT via hydrogen bonds. These data suggested that metformin effectively alleviated CCl₄-induced oxidative liver injury in mice and these hepatoprotective effects might be associated with CAT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.

    PubMed

    Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian

    2008-09-01

    Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.

  1. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice.

    PubMed

    Han, Jihye; Bae, Joonbeom; Choi, Chang-Yong; Choi, Sang-Pil; Kang, Hyung-Sik; Jo, Eun-Kyeong; Park, Jongsun; Lee, Young Sik; Moon, Hyun-Seuk; Park, Chung-Gyu; Lee, Myung-Shik; Chun, Taehoon

    2016-12-01

    Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl -/- mice show more severe symptoms than do wild-type (Axl +/+ ) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl 4 ). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.

  2. Increased liver-specific proteins in circulating extracellular vesicles as potential biomarkers for drug- and alcohol-induced liver injury

    PubMed Central

    Cho, Young-Eun; Im, Eun-Ju; Moon, Pyong-Gon; Mezey, Esteban; Song, Byoung-Joon; Baek, Moon-Chang

    2017-01-01

    Drug- and alcohol-induced liver injury are a leading cause of liver failure and transplantation. Emerging evidence suggests that extracellular vesicles (EVs) are a source of biomarkers because they contain unique proteins reflecting the identity and tissue-specific origin of the EV proteins. This study aimed to determine whether potentially hepatotoxic agents, such as acetaminophen (APAP) and binge alcohol, can increase the amounts of circulating EVs and evaluate liver-specific EV proteins as potential biomarkers for liver injury. The circulating EVs, isolated from plasma of APAP-exposed, ethanol-fed mice, or alcoholic hepatitis patients versus normal control counterparts, were characterized by proteomics and biochemical methods. Liver specific EV proteins were analyzed by immunoblots and ELISA. The amounts of total and liver-specific proteins in circulating EVs from APAP-treated mice significantly increased in a dose- and time-dependent manner. Proteomic analysis of EVs from APAP-exposed mice revealed that the amounts of liver-specific and/or hepatotoxic proteins were increased compared to those of controls. Additionally, the increased protein amounts in EVs following APAP exposure returned to basal levels when mice were treated with N-acetylcysteine or glutathione. Similar results of increased amounts and liver-specific proteins in circulating EVs were also observed in mice exposed to hepatotoxic doses of thioacetamide or d-galactosamine but not by non-hepatotoxic penicillin or myotoxic bupivacaine. Additionally, binge ethanol exposure significantly elevated liver-specific proteins in circulating EVs from mice and alcoholics with alcoholic hepatitis, compared to control counterparts. These results indicate that circulating EVs in drug- and alcohol-mediated hepatic injury contain liver-specific proteins that could serve as specific biomarkers for hepatotoxicity. PMID:28225807

  3. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors.

    PubMed

    De Martin, Eleonora; Michot, Jean-Marie; Papouin, Barbara; Champiat, Stéphane; Mateus, Christine; Lambotte, Olivier; Roche, Bruno; Antonini, Teresa Maria; Coilly, Audrey; Laghouati, Salim; Robert, Caroline; Marabelle, Aurélien; Guettier, Catherine; Samuel, Didier

    2018-06-01

    Immunotherapy for metastatic cancer can be complicated by the onset of hepatic immune-related adverse events (IRAEs). This study compared hepatic IRAEs associated with anti-programmed cell death protein 1 (PD-1)/PD ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) monoclonal antibodies (mAbs). Among 536 patients treated with anti-PD-1/PD-L1 or CTLA-4 immunotherapies, 19 (3.5%) were referred to the liver unit for grade ≥3 hepatitis. Of these patients, nine had received anti-PD-1/PD-L1 and seven had received anti-CTLA-4 mAbs, in monotherapy or in combination with anti-PD-1. Liver investigations were undertaken in these 16 patients, including viral assays, autoimmune tests and liver biopsy, histological review, and immunostaining of liver specimens. In the 16 patients included in this study, median age was 63 (range 33-84) years, and nine (56%) were female. Time between therapy initiation and hepatitis was five (range, 1-49) weeks and median number of immunotherapy injections was two (range, 1-36). No patients developed hepatic failure. Histology related to anti-CTLA-4 mAbs demonstrated granulomatous hepatitis including fibrin ring granulomas and central vein endotheliitis. Histology related to anti-PD-1/PD-L1 mAbs was characterised by lobular hepatitis. The management of hepatic IRAEs was tailored according to the severity of both the biology and histology of liver injury: six patients improved spontaneously; seven received oral corticosteroids at 0.5-1 mg/kg/day; two were maintained on 0.2 mg/kg/day corticosteroids; and one patient required pulses and 2.5 mg/kg/day of corticosteroids, and the addition of a second immunosuppressive drug. In three patients, immunotherapy was reintroduced without recurrence of liver dysfunction. Acute hepatitis resulting from immunotherapy for metastatic cancer is rare (3.5%) and, in most cases, not severe. Histological assessment can distinguish between anti-PD-1/PD-L1 and anti-CTLA-4 mAb toxicity. The

  4. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032; Zhu, Bo

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid andmore » glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.« less

  5. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis

    PubMed Central

    Najt, Charles P.; Senthivinayagam, Subramanian; Aljazi, Mohammad B.; Fader, Kelly A.; Olenic, Sandra D.; Brock, Julienne R. L.; Lydic, Todd A.; Jones, A. Daniel

    2016-01-01

    Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy. PMID:26968211

  6. Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB-dependent mechanism.

    PubMed

    Contreras, Maya; Ansari, Bilal; Curley, Gerard; Higgins, Brendan D; Hassett, Patrick; O'Toole, Daniel; Laffey, John G

    2012-09-01

    Hypercapnic acidosis protects against ventilation-induced lung injury. We wished to determine whether the beneficial effects of hypercapnic acidosis in reducing stretch-induced injury were mediated via inhibition of nuclear factor-κB, a key transcriptional regulator in inflammation, injury, and repair. Prospective randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. In separate experimental series, the potential for hypercapnic acidosis to attenuate moderate and severe ventilation-induced lung injury was determined. In each series, following induction of anesthesia and tracheostomy, Sprague-Dawley rats were randomized to (normocapnia; FICO2 0.00) or (hypercapnic acidosis; FICO2 0.05), subjected to high stretch ventilation, and the severity of lung injury and indices of activation of the nuclear factor-κB pathway were assessed. Subsequent in vitro experiments examined the potential for hypercapnic acidosis to reduce pulmonary epithelial inflammation and injury induced by cyclic mechanical stretch. The role of the nuclear factor-κB pathway in hypercapnic acidosis-mediated protection from stretch injury was then determined. Hypercapnic acidosis attenuated moderate and severe ventilation-induced lung injury, as evidenced by improved oxygenation, compliance, and reduced histologic injury compared to normocapnic conditions. Hypercapnic acidosis reduced indices of inflammation such as interleukin-6 and bronchoalveolar lavage neutrophil infiltration. Hypercapnic acidosis reduced the decrement of the nuclear factor-κB inhibitor IκBα and reduced the generation of cytokine-induced neutrophil chemoattractant-1. Hypercapnic acidosis reduced cyclic mechanical stretch-induced nuclear factor-κB activation, reduced interleukin-8 production, and decreased epithelial injury and cell death compared to normocapnia. Hypercapnic acidosis attenuated ventilation-induced lung injury independent of injury severity and decreased mechanical stretch-induced

  7. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury.

    PubMed

    Jing, Jing; Teschke, Rolf

    2018-03-28

    Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.

  8. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury

    PubMed Central

    Jing, Jing; Teschke, Rolf

    2017-01-01

    Abstract Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded. PMID:29577033

  9. Effect of thalidomide on endotoxin-induced decreases in activity and expression of hepatic cytochrome P450 3A2.

    PubMed

    Ueyama, Jun; Nadai, Masayuki; Zhao, Ying Lan; Kanazawa, Hiroaki; Takagi, Kenji; Kondo, Takaaki; Takagi, Kenzo; Wakusawa, Shinya; Abe, Fumie; Saito, Hiroko; Miyamoto, Ken-Ichi; Hasegawa, Takaaki

    2008-08-01

    Thalidomide has been reported to inhibit the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) that are involved in the down-regulation of hepatic cytochrome P450 (CYP) induced by endotoxin. In the present study, we investigated the effects of thalidomide on endotoxin-induced decreases in the activity and expression of hepatic CYP3A2 in rats. Thalidomide (50 mg/kg) was administered orally 22 h and 2 h before intraperitoneal injection of endotoxin (1 mg/kg). Twenty-four hours after the injection of endotoxin, antipyrine clearance experiments were conducted, in which the rats were sacrificed and protein levels of hepatic CYP3A2 were measured. There were no significant differences in the histopathological changes in the liver between the endotoxin-treated and endotoxin plus thalidomide-treated rats. Thalidomide had no effect on the systemic clearance of antipyrine, which is a proper indicator for hepatic CYP3A2 activity, whereas it enhanced endotoxin-induced decrease in the systemic clearance of antipyrine. Western blot analysis revealed that thalidomide had no effect on the protein levels of hepatic CYP3A2, whereas it enhanced the down-regulation of hepatic CYP3A2 by endotoxin. However, there were no significant differences in the concentrations of TNF-alpha and NO in plasma between the endotoxin-treated and endotoxin plus thalidomide-treated rats. The present findings suggest that thalidomide enhances endotoxin-induced decreases in the activity and expression of hepatic CYP3A2.

  10. Neuronal CCL2 is upregulated during hepatic encephalopathy and contributes to microglia activation and neurological decline

    PubMed Central

    2014-01-01

    Background Acute liver failure leads to systemic complications with one of the most dangerous being a decline in neurological function, termed hepatic encephalopathy. Neurological dysfunction is exacerbated by an increase of toxic metabolites in the brain that lead to neuroinflammation. Following various liver diseases, hepatic and circulating chemokines, such as chemokine ligand 2 (CCL2), are elevated, though their effects on the brain following acute liver injury and subsequent hepatic encephalopathy are unknown. CCL2 is known to activate microglia in other neuropathies, leading to a proinflammatory response. However, the effects of CCL2 on microglia activation and the pathogenesis of hepatic encephalopathy following acute liver injury remain to be determined. Methods Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) in the presence or absence of INCB 3284 dimesylate (INCB), a chemokine receptor 2 inhibitor, or C 021 dihydrochloride (C021), a chemokine receptor 4 inhibitor. Mice were monitored for neurological decline and time to coma (loss of all reflexes) was recorded. Tissue was collected at coma and used for real-time PCR, immunoblots, ELISA, or immunostaining analyses to assess the activation of microglia and consequences on pro-inflammatory cytokine expression. Results Following AOM administration, microglia activation was significantly increased in AOM-treated mice compared to controls. Concentrations of CCL2 in the liver, serum, and cortex were significantly elevated in AOM-treated mice compared to controls. Systemic administration of INCB or C021 reduced liver damage as assessed by serum liver enzyme biochemistry. Administration of INCB or C021 significantly improved the neurological outcomes of AOM-treated mice, reduced microglia activation, reduced phosphorylation of ERK1/2, and alleviated AOM-induced cytokine upregulation. Conclusions These findings suggest that CCL2 is elevated systemically following acute liver injury

  11. Neuronal CCL2 is upregulated during hepatic encephalopathy and contributes to microglia activation and neurological decline.

    PubMed

    McMillin, Matthew; Frampton, Gabriel; Thompson, Michelle; Galindo, Cheryl; Standeford, Holly; Whittington, Eric; Alpini, Gianfranco; DeMorrow, Sharon

    2014-07-10

    Acute liver failure leads to systemic complications with one of the most dangerous being a decline in neurological function, termed hepatic encephalopathy. Neurological dysfunction is exacerbated by an increase of toxic metabolites in the brain that lead to neuroinflammation. Following various liver diseases, hepatic and circulating chemokines, such as chemokine ligand 2 (CCL2), are elevated, though their effects on the brain following acute liver injury and subsequent hepatic encephalopathy are unknown. CCL2 is known to activate microglia in other neuropathies, leading to a proinflammatory response. However, the effects of CCL2 on microglia activation and the pathogenesis of hepatic encephalopathy following acute liver injury remain to be determined. Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) in the presence or absence of INCB 3284 dimesylate (INCB), a chemokine receptor 2 inhibitor, or C 021 dihydrochloride (C021), a chemokine receptor 4 inhibitor. Mice were monitored for neurological decline and time to coma (loss of all reflexes) was recorded. Tissue was collected at coma and used for real-time PCR, immunoblots, ELISA, or immunostaining analyses to assess the activation of microglia and consequences on pro-inflammatory cytokine expression. Following AOM administration, microglia activation was significantly increased in AOM-treated mice compared to controls. Concentrations of CCL2 in the liver, serum, and cortex were significantly elevated in AOM-treated mice compared to controls. Systemic administration of INCB or C021 reduced liver damage as assessed by serum liver enzyme biochemistry. Administration of INCB or C021 significantly improved the neurological outcomes of AOM-treated mice, reduced microglia activation, reduced phosphorylation of ERK1/2, and alleviated AOM-induced cytokine upregulation. These findings suggest that CCL2 is elevated systemically following acute liver injury and that CCL2 is involved in both the

  12. Pharmacogenomics of drug-induced liver injury (DILI): Molecular biology to clinical applications.

    PubMed

    Kaliyaperumal, Kalaiyarasi; Grove, Jane I; Delahay, Robin M; Griffiths, William J H; Duckworth, Adam; Aithal, Guruprasad P

    2018-05-21

    was performed as a part of preparatory investigations and showed the patient carried the HLA haplotype HLA-DRB1∗15:02-DQB1∗06:01. Following orthotopic transplantation of a deceased donor graft her explant histology revealed severe ongoing hepatitis with multi-acinar necrosis (Fig. 1A and B). This case raised a number of important questions about the diagnosis of drug-induced liver injury and tools available for clinicians to make the best decisions for patient care: In this Grand Rounds article, we will explore these questions, describing the pathophysiology, diagnostic and prognostic biomarkers, and clinical management of drug-induced liver injury. We will also discuss ongoing areas of uncertainty. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Pro-Inflammatory Activated Kupffer Cells by Lipids Induce Hepatic NKT Cells Deficiency through Activation-Induced Cell Death

    PubMed Central

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Background Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. Aims The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Methods Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. Results High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. Conclusion High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD. PMID:24312613

  14. Decoy receptor 3 analogous supplement protects steatotic rat liver from ischemia-reperfusion injury.

    PubMed

    Li, Tzu-Hao; Liu, Chih-Wei; Lee, Pei-Chang; Huang, Chia-Chang; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Yang, Ying-Ying; Hsieh, Shie-Liang; Lin, Han-Chieh; Tsai, Chang-Youh

    2017-07-01

    For steatotic livers, pharmacological approaches to minimize the hepatic neutrophil and macrophage infiltration, and cytokine and chemokine release in ischemia-reperfusion (IR) injury are still limited. Tumor necrosis factor (TNF)-α superfamily-stimulated pathogenic cascades and M1 macrophage/Kupffer cells (KC) polarization from Th1 cytokines are important in the pathogenesis of IR liver injury with hepatic steatosis (HS). Conversely, anti-inflammatory M2 macrophages produce Th2 cytokine (interleukin-4), which reciprocally enhances M2 polarization. Toll-like receptor 4-activated KCs can release proinflammatory mediators, skew M1 polarization and escalate liver IR injury. Decoy receptor 3 (DcR 3 ) could be potential agents simultaneously blocking the IR liver injury-related pathogenic changes and extend the survival of steatotic graft. Rats were fed with methionine and choline-deficient high-fat diet (MCD HFD) for 6 weeks to induce HS. Preliminary experiments with HS group and IR group were conducted, and either immunoglobulin G Fc protein or DcR3 analogue was treated for 14 days in all groups to evaluate the severity. In the Zucker rat-focused experiments, various serum and hepatic substances, M1 polarization, and hepatic microcirculation were assessed. We found that serum/hepatic DcR 3 levels were lower in nonalcoholic fatty liver disease patients with HS. DcR 3 a protected Zucker rats with HS from IR liver injury. The beneficial effects of DcR 3 a supplement were mediated by inhibiting hepatic M1 polarization of KCs, decreasing serum/hepatic TNFα, nitric oxide, nitrotyrosine, soluble TNF-like cytokine 1A, Fas ligand, and interferon-γ levels, neutrophil infiltration, and improving hepatic microcirculatory failure among rats with IR-injured steatotic livers. Additionally, downregulated hepatic TNF-like cytokine 1A/Fas-ligand and toll-like receptor 4/nuclear factor-κB signals were found to mediate the DcR 3 a-related protective effects of steatotic livers from

  15. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    people worldwide, respectively. It has been suggested that a balance between protection and liver damage mediated by the host's immune response during the acute phase of infection would be determinant in hepatitis outcome. Thus, it appears crucial to identify the factors that predispose in exacerbating liver inflammation to limit hepatocyte injury. Liver sinusoidal endothelial cells (LSECs) can express both anti- and proinflammatory functions, but their role in acute viral hepatitis has never been investigated. Using mouse hepatitis virus (MHV) infections as animal models of viral hepatitis, we report for the first time that in vitro and in vivo infection of LSECs by the pathogenic MHV3 serotype leads to a reversion of their intrinsic anti-inflammatory phenotype toward a proinflammatory profile as well to as disorders in vascular factors, correlating with the severity of hepatitis. These results highlight a new virus-promoted mechanism of exacerbation of liver inflammatory response during acute hepatitis. PMID:27489277

  16. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis.

    PubMed

    Bleau, Christian; Filliol, Aveline; Samson, Michel; Lamontagne, Lucie

    2016-10-15

    , respectively. It has been suggested that a balance between protection and liver damage mediated by the host's immune response during the acute phase of infection would be determinant in hepatitis outcome. Thus, it appears crucial to identify the factors that predispose in exacerbating liver inflammation to limit hepatocyte injury. Liver sinusoidal endothelial cells (LSECs) can express both anti- and proinflammatory functions, but their role in acute viral hepatitis has never been investigated. Using mouse hepatitis virus (MHV) infections as animal models of viral hepatitis, we report for the first time that in vitro and in vivo infection of LSECs by the pathogenic MHV3 serotype leads to a reversion of their intrinsic anti-inflammatory phenotype toward a proinflammatory profile as well to as disorders in vascular factors, correlating with the severity of hepatitis. These results highlight a new virus-promoted mechanism of exacerbation of liver inflammatory response during acute hepatitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Protective Effect of Procyanidin B2 against CCl4-Induced Acute Liver Injury in Mice.

    PubMed

    Yang, Bing-Ya; Zhang, Xiang-Yu; Guan, Sheng-Wen; Hua, Zi-Chun

    2015-07-03

    Procyanidin B2 has demonstrated several health benefits and medical properties. However, its protective effects against CCl4-induced hepatotoxicity have not been clarified. The present study aimed to investigate the hepatoprotective effects of procyanidin B2 in CCl4-treated mice. Our data showed that procyanidin B2 significantly decreased the CCl4-induced elevation of serum alanine aminotransferase activities, as well as improved hepatic histopathological abnormalities. Procyanidin B2 also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD, CAT and GSH-Px. Further research demonstrated that procyanidin B2 decreased the expression of TNF-α, IL-1β, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibited the translocation of nuclear factor-kappa B (NF-κB) p65 from the cytosol to the nuclear fraction in mouse liver. Moreover, CCl4-induced apoptosis in mouse liver was measured by (terminal-deoxynucleotidyl transferase mediated nick end labeling) TUNEL assay and the cleaved caspase-3. Meanwhile, the expression of apoptosis-related proteins Bax and Bcl-xL was analyzed by Western blot. Results showed that procyanidin B2 significantly inhibited CCl4-induced hepatocyte apoptosis, markedly suppressed the upregulation of Bax expression and restored the downregulation of Bcl-xL expression. Overall, the findings indicated that procyanidin B2 exhibited a protective effect on CCl4-induced hepatic injury by elevating the antioxidative defense potential and consequently suppressing the inflammatory response and apoptosis of liver tissues.

  18. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver

    PubMed Central

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2014-01-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car +/+ mice. After being fed the DDC diet, Car +/+, but not Car−/− mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car +/+, but not Car−/− mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car +/+ mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma. PMID:21826054

  19. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    PubMed

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  20. A Challenge for Diagnosing Acute Liver Injury with Concomitant/Sequential Exposure to Multiple Drugs: Can Causality Assessment Scales Be Utilized to Identify the Offending Drug?

    PubMed Central

    Lim, Roxanne; Conner, Kim; Karnsakul, Wikrom

    2014-01-01

    Drug-induced hepatotoxicity most commonly manifests as an acute hepatitis syndrome and remains the leading cause of drug-induced death/mortality and the primary reason for withdrawal of drugs from the pharmaceutical market. We report a case of acute liver injury in a 12-year-old Hispanic boy, who received a series of five antibiotics (amoxicillin, ceftriaxone, vancomycin, ampicillin/sulbactam, and clindamycin) for cervical lymphadenitis/retropharyngeal cellulitis. Histopathology of the liver biopsy specimen revealed acute cholestatic hepatitis. All known causes of acute liver injury were appropriately excluded and (only) drug-induced liver injury was left as a cause of his cholestasis. Liver-specific causality assessment scales such as Council for the International Organization of Medical Sciences/Roussel Uclaf Causality Assessment Method scoring system (CIOMS/RUCAM), Maria and Victorino scale, and Digestive Disease Week-Japan were applied to seek the most likely offending drug. Although clindamycin is the most likely cause by clinical diagnosis, none of causality assessment scales aid in the diagnosis. PMID:25506455