Sample records for a-mode ultrasound devices

  1. Towards Wearable A-Mode Ultrasound Sensing for Real-Time Finger Motion Recognition.

    PubMed

    Yang, Xingchen; Sun, Xueli; Zhou, Dalin; Li, Yuefeng; Liu, Honghai

    2018-06-01

    It is evident that surface electromyography (sEMG) based human-machine interfaces (HMI) have inherent difficulty in predicting dexterous musculoskeletal movements such as finger motions. This paper is an attempt to investigate a plausible alternative to sEMG, ultrasound-driven HMI, for dexterous motion recognition due to its characteristic of detecting morphological changes of deep muscles and tendons. A multi-channel A-mode ultrasound lightweight device is adopted to evaluate the performance of finger motion recognition; an experiment is designed for both widely acceptable offline and online algorithms with eight able-bodied subjects employed. The experiment result presents that the offline recognition accuracy is up to 98.83% ± 0.79%. The real-time motion completion rate is 95.4% ± 8.7% and online motion selection time is 0.243 ± 0.127 s. The outcomes confirm the feasibility of A-mode ultrasound based wearable HMI and its prosperous applications in prosthetic devices, virtual reality, and remote manipulation.

  2. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  3. MR compatible positioning device for guiding a focused ultrasound system for the treatment of brain deseases.

    PubMed

    Mylonas, N; Damianou, C

    2014-03-01

    A prototype magnetic resonance imaging (MRI)-compatible positioning device that navigates a high intensity focused ultrasound (HIFU) transducer is presented. The positioning device has three user-controlled degrees of freedom that allow access to brain targets using a lateral coupling approach. The positioning device can be used for the treatment of brain cancer (thermal mode ultrasound) or ischemic stroke (mechanical mode ultrasound). The positioning device incorporates only MRI compatible materials such as piezoelectric motors, ABS plastic, brass screws, and brass rack and pinion. The robot has the ability to accurately move the transducer thus creating overlapping lesions in rabbit brain in vivo. The registration and repeatability of the system was evaluated using tissues in vitro and gel phantom and was also tested in vivo in the brain of a rabbit. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be placed on the table of the MRI scanner. This system can be used to treat in the future patients with brain cancer and ischemic stroke. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Comparison of the biometric values obtained by two different A-mode ultrasound devices (Eye Cubed vs. PalmScan): A Transversal, descriptive, and comparative study

    PubMed Central

    2010-01-01

    Background To assess the reliability of the measurements obtained with the PalmScan™, when compared with another standardized A-mode ultrasound device, and assess the consistency and correlation between the two methods. Methods Transversal, descriptive, and comparative study. We recorded the axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) obtained with two A-mode ultrasounds (PalmScan™ A2000 and Eye Cubed™) using an immersion technique. We compared the measurements with a two-sample t-test. Agreement between the two devices was assessed with Bland-Altman plots and 95% limits of agreement. Results 70 eyes of 70 patients were enrolled in this study. The measurements with the Eye Cubed™ of AL and ACD were shorter than the measurements taken by the PalmScan™. The differences were not statistically significant regarding AL (p < 0.4) but significant regarding ACD (p < 0.001). The highest agreement between the two devices was obtained during LT measurement. The PalmScan™ measurements were shorter, but not statistically significantly (p < 0.2). Conclusions The values of AL and LT, obtained with both devices are not identical, but within the limits of agreement. The agreement is not affected by the magnitude of the ocular dimensions (but only between range of 20 mm to 27 mm of AL and 3.5 mm to 5.7 mm of LT). A correction of about 0.5 D could be considered if an intraocular lens is being calculated. However due to the large variability of the results, the authors recommend discretion in using this conversion factor, and to adjust the power of the intraocular lenses based upon the personal experience of the surgeon. PMID:20334670

  5. Comparison of the biometric values obtained by two different A-mode ultrasound devices (Eye Cubed vs. PalmScan): a transversal, descriptive, and comparative study.

    PubMed

    Velez-Montoya, Raul; Shusterman, Eugene Mark; López-Miranda, Miriam Jessica; Mayorquin-Ruiz, Mariana; Salcedo-Villanueva, Guillermo; Quiroz-Mercado, Hugo; Morales-Cantón, Virgilio

    2010-03-24

    To assess the reliability of the measurements obtained with the PalmScan, when compared with another standardized A-mode ultrasound device, and assess the consistency and correlation between the two methods. Transversal, descriptive, and comparative study. We recorded the axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) obtained with two A-mode ultrasounds (PalmScan A2000 and Eye Cubed) using an immersion technique. We compared the measurements with a two-sample t-test. Agreement between the two devices was assessed with Bland-Altman plots and 95% limits of agreement. 70 eyes of 70 patients were enrolled in this study. The measurements with the Eye Cubed of AL and ACD were shorter than the measurements taken by the PalmScan. The differences were not statistically significant regarding AL (p < 0.4) but significant regarding ACD (p < 0.001). The highest agreement between the two devices was obtained during LT measurement. The PalmScan measurements were shorter, but not statistically significantly (p < 0.2). The values of AL and LT, obtained with both devices are not identical, but within the limits of agreement. The agreement is not affected by the magnitude of the ocular dimensions (but only between range of 20 mm to 27 mm of AL and 3.5 mm to 5.7 mm of LT). A correction of about 0.5 D could be considered if an intraocular lens is being calculated. However due to the large variability of the results, the authors recommend discretion in using this conversion factor, and to adjust the power of the intraocular lenses based upon the personal experience of the surgeon.

  6. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination.

    PubMed

    Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre

    2015-10-01

    Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.

  7. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Funke, Arik; Tanter, Mickaël; Aubry, Jean-François; Bossy, Emmanuel

    2012-06-01

    Photoacoustics has recently been proposed as a potential method to guide and/or monitor therapy based on high-intensity focused ultrasound (HIFU). We experimentally demonstrate the creation of a HIFU lesion at the location of an optical absorber, by use of photoacoustic signals emitted by the absorber detected on a dual mode transducer array. To do so, a dedicated ultrasound array intended to both detect photoacoustic waves and emit HIFU with the same elements was used. Such a dual-mode array provides automatically coregistered reference frames for photoacoustic detection and HIFU emission, a highly desired feature for methods involving guidance or monitoring of HIFU by use of photoacoustics. The prototype is first characterized in terms of both photoacoustic and HIFU performances. The probe is then used to perform an idealized scenario of photoacoustic-guided therapy, where photoacoustic signals generated by an absorbing thread embedded in a piece of chicken breast are used to automatically refocus a HIFU beam with a time-reversal mirror and necrose the tissue at the location of the absorber.

  8. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an

  9. Ultrasound detection of cavitation as a phenomenon common to intervention devices causing tissue ablation

    NASA Astrophysics Data System (ADS)

    Bach, David S.; Armstrong, William F.; Erbel, Raimund; Ellis, Stephen G.; Sousa, Joao; Rosenschein, Uri

    1992-08-01

    Cavitation previously has been observed in association with ultrasonic angioplasty and high- frequency rotational atherectomy. This study evaluates the production of cavitation accompanying the use of several catheter-based devices under development or in current use in the practice of interventional cardiology. Catheters were examined in an in vitro model, and cavitation was evaluated using standard ultrasound imaging equipment. Cavitation was detected with each of the devices that effects tissue ablation, but not tissue resection. Devices produced characteristic patterns of cavitation dependent on the mode of energy release of the device. The size, but not the intensity, of the cavitation effect was proportional to the energy output of the devices. The precise role of cavitation in the mechanism of tissue ablation remains uncertain.

  10. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  11. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract.

    PubMed

    Fakhry, Mohamed A; El Shazly, Malak I

    2011-01-01

    To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used.

  12. Automated localization and segmentation techniques for B-mode ultrasound images: A review.

    PubMed

    Meiburger, Kristen M; Acharya, U Rajendra; Molinari, Filippo

    2018-01-01

    B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of a simplified augmented reality device for ultrasound-guided vascular access in a vascular phantom.

    PubMed

    Jeon, Yunseok; Choi, Seungpyo; Kim, Heechan

    2014-09-01

    To investigate whether a novel ultrasound device may be used with a simplified augmented reality technique, and to compare this device with conventional techniques during vascular access using a vascular phantom. Prospective, randomized study. Anesthesiology and Pain Medicine departments of a university-affiliated hospital. 20 physicians with no experience with ultrasound-guided techniques. All participants performed the vascular access technique on the vascular phantom model using both a conventional device and the new ultrasound device. Time and the number of redirections of the needle until aspiration of dye into a vessel of the vascular phantom were measured. The median/interquartile range of time was 39.5/41.7 seconds versus 18.6/10.0 seconds (P < 0.001) and number of redirections was 3/3.5 versus 1/0 (P < 0.001) for the conventional and novel ultrasound devices, respectively. During vascular access in a vascular phantom model, the novel device decreased the time and the number of redirections significantly. The device successfully improved the efficiency of the ultrasound-guided vascular access technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract

    PubMed Central

    Fakhry, Mohamed A; Shazly, Malak I El

    2011-01-01

    Purpose To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Settings Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Methodology Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Results Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Conclusion Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used. PMID

  15. Correlates of mammographic density in B-mode ultrasound and real time elastography.

    PubMed

    Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R

    2012-07-01

    The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.

  16. Efficiency of quantitative echogenicity for investigating supraspinatus tendinopathy by the gray-level histogram of two ultrasound devices.

    PubMed

    Hsu, Jiun-Cheng; Chen, Po-Han; Huang, Kuo-Chin; Tsai, Yao-Hung; Hsu, Wei-Hsiu

    2017-10-01

    The gray-level histogram of ultrasound is a promising tool for scanning the hypoechogenic appearance of supraspinatus tendinopathy, and the aim of this study was to test the hypothesis that the gray-level value of the supraspinatus tendon in the painful shoulder has a lower value on B-mode images even though in different ultrasound devices. Sixty-seven patients who had unilateral shoulder pain with rotator cuff tendinopathy underwent bilateral shoulder ultrasonography, and we compared the mean gray-level values of painful shoulders and contralateral shoulders without any pain in each patient using two ultrasound devices. The echogenicity ratio (symptomatic/asymptomatic side) of two ultrasound devices was compared. A significant difference existed between the symptomatic shoulder and contralateral asymptomatic shoulder (p < 0.001) on the mean gray-level value measurements of each device. The symptomatic-to-asymptomatic tendon echogenicity ratio of device A was 0.919 ± 0.090 in the transverse plane and 0.937 ± 0.081 in the longitudinal plane, and the echogenicity ratio of device B was 0.899 ± 0.113 in the transverse plane and 0.940 ± 0.113 in the longitudinal plane. The decline of the mean gray-level value and the echogenicity ratio of the supraspinatus tendon in the painful shoulder may be utilized as a useful sonographic reference of unilateral rotator cuff lesions. Diagnostic level III.

  17. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the

  18. Review of MRI positioning devices for guiding focused ultrasound systems.

    PubMed

    Yiallouras, C; Damianou, C

    2015-06-01

    This article contains a review of positioning devices that are currently used in the area of magnetic resonance imaging (MRI) guided focused ultrasound surgery (MRgFUS). The paper includes an extensive review of literature published since the first prototype system was invented in 1991. The technology has grown into a fast developing area with application to any organ accessible to ultrasound. The initial design operated using hydraulic principles, while the latest technology incorporates piezoelectric motors. Although, in the beginning there were fears regarding MRI safety, during recent years, the deployment of MR-safe positioning devices in FUS has become routine. Many of these positioning devices are now undergoing testing in clinical trials. Existing MRgFUS systems have been utilized mostly in oncology (fibroids, brain, liver, kidney, bone, pancreas, eye, thyroid, and prostate). It is anticipated that, in the near future, there will be a positioning device for every organ that is accessible by focused ultrasound. Copyright © 2014 John Wiley & Sons, Ltd.

  19. A flexible ultrasound transducer array with micro-machined bulk PZT.

    PubMed

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-23

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  20. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  1. Ultrasound appearances of Implanon implanted contraceptive devices.

    PubMed

    McNeill, G; Ward, E; Halpenny, D; Snow, A; Torreggiani, W

    2009-01-01

    Subdermal contraceptive devices represent a popular choice of contraception. Whilst often removed without the use of imaging, circumstances exist where imaging is required. Ultrasound is the modality of choice. The optimal technique and typical sonographic appearances are detailed in this article.

  2. Dual-mode transducers for ultrasound imaging and thermal therapy.

    PubMed

    Owen, N R; Chapelon, J Y; Bouchoux, G; Berriet, R; Fleury, G; Lafon, C

    2010-02-01

    Medical imaging is a vital component of high intensity focused ultrasound (HIFU) therapy, which is gaining clinical acceptance for tissue ablation and cancer therapy. Imaging is necessary to plan and guide the application of therapeutic ultrasound, and to monitor the effects it induces in tissue. Because they can transmit high intensity continuous wave ultrasound for treatment and pulsed ultrasound for imaging, dual-mode transducers aim to improve the guidance and monitoring stages. Their primary advantage is implicit registration between the imaging and treatment axes, and so they can help ensure before treatment that the therapeutic beam is correctly aligned with the planned treatment volume. During treatment, imaging signals can be processed in real-time to assess acoustic properties of the tissue that are related to thermal ablation. Piezocomposite materials are favorable for dual-mode transducers because of their improved bandwidth, which in turn improves imaging performance while maintaining high efficiency for treatment. Here we present our experiences with three dual-mode transducers for interstitial applications. The first was an 11-MHz monoelement designed for use in the bile duct. It had a 25x7.5 mm(2) aperture that was cylindrically focused to 10mm. The applicator motion was step-wise rotational for imaging and therapy over a 360 degrees, or smaller, sector. The second transducer had 5-elements, each measuring 3.0x3.8 mm(2) for a total aperture of 3.0x20 mm(2). It operated at 5.6 MHz, was cylindrically focused to 14 mm, and was integrated with a servo-controlled oscillating probe designed for sector imaging and directive therapy in the liver. The last transducer was a 5-MHz, 64-element linear array designed for beam-formed imaging and therapy. The aperture was 3.0x18 mm(2) with a pitch of 0.280 mm. Characterization results included conversion efficiencies above 50%, pulse-echo bandwidths above 50%, surface intensities up to 30 W/cm(2), and axial imaging

  3. B-Mode ultrasound pose recovery via surgical fiducial segmentation and tracking

    NASA Astrophysics Data System (ADS)

    Asoni, Alessandro; Ketcha, Michael; Kuo, Nathanael; Chen, Lei; Boctor, Emad; Coon, Devin; Prince, Jerry L.

    2015-03-01

    Ultrasound Doppler imaging may be used to detect blood clots after surgery, a common problem. However, this requires consistent probe positioning over multiple time instances and therefore significant sonographic expertise. Analysis of ultrasound B-mode images of a fiducial implanted at the surgical site offers a landmark to guide a user to the same location repeatedly. We demonstrate that such an implanted fiducial may be successfully detected and tracked to calculate pose and guide a clinician consistently to the site of surgery, potentially reducing the ultrasound experience required for point of care monitoring.

  4. Large Area MEMS Based Ultrasound Device for Cancer Detection.

    PubMed

    Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-21

    We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  5. Large area MEMS based ultrasound device for cancer detection

    NASA Astrophysics Data System (ADS)

    Wodnicki, Robert; Thomenius, Kai; Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L.; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-01

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 μm and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  6. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  7. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W [Morgan Hill, CA; Carrender, Curtis Lee [Morgan Hill, CA; Anderson, Gordon A [Benton City, WA; Steele, Kerry D [Kennewick, WA

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  9. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  10. Dual-modality imaging with a ultrasound-gamma device for oncology

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  11. Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound with Gas Body Contrast Agent

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.

    2009-01-01

    Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967

  12. Real-time implementation of a dual-mode ultrasound array system: in vivo results.

    PubMed

    Casper, Andrew J; Liu, Dalong; Ballard, John R; Ebbini, Emad S

    2013-10-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.

  13. Modes of elastic plates and shells in water driven by modulated radiation pressure of focused ultrasound

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars

    2015-11-01

    The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.

  14. Texture analysis of B-mode ultrasound images to stage hepatic lipidosis in the dairy cow: A methodological study.

    PubMed

    Banzato, Tommaso; Fiore, Enrico; Morgante, Massimo; Manuali, Elisabetta; Zotti, Alessandro

    2016-10-01

    Hepatic lipidosis is the most diffused hepatic disease in the lactating cow. A new methodology to estimate the degree of fatty infiltration of the liver in lactating cows by means of texture analysis of B-mode ultrasound images is proposed. B-mode ultrasonography of the liver was performed in 48 Holstein Friesian cows using standardized ultrasound parameters. Liver biopsies to determine the triacylglycerol content of the liver (TAGqa) were obtained from each animal. A large number of texture parameters were calculated on the ultrasound images by means of a free software. Based on the TAGqa content of the liver, 29 samples were classified as mild (TAGqa<50mg/g), 6 as moderate (50mg/g100mg/g) and 13 as severe (TAG>100mg/g) in steatosis. Stepwise linear regression analysis was performed to predict the TAGqa content of the liver (TAGpred) from the texture parameters calculated on the ultrasound images. A five-variable model was used to predict the TAG content from the ultrasound images. The regression model explained 83.4% of the variance. An area under the curve (AUC) of 0.949 was calculated for <50mg/g vs >50mg/g of TAGqa; using an optimal cut-off value of 72mg/g TAGpred had a sensitivity of 86.2% and a specificity of 84.2%. An AUC of 0.978 for <100mg/g vs >100mg/g of TAGqa was calculated; using an optimal cut-off value of 89mg/g, TAGpred sensitivity was 92.3% and specificity was 88.6%. Texture analysis of B-mode ultrasound images may therefore be used to accurately predict the TAG content of the liver in lactating cows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction.

    PubMed

    Jaeger, Michael; Frenz, Martin

    2015-09-01

    Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck. Copyright © 2015. Published by Elsevier B.V.

  16. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: a Meta-analysis.

    PubMed

    Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele

    2016-01-01

    To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes.

  17. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: a Meta-analysis

    PubMed Central

    Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele

    2016-01-01

    AIM To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. RESULTS The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). CONCLUSION The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes. PMID:27366694

  18. Plate equations for piezoelectrically actuated flexural mode ultrasound transducers.

    PubMed

    Perçin, Gökhan

    2003-01-01

    This paper considers variational methods to derive two-dimensional plate equations for piezoelectrically actuated flexural mode ultrasound transducers. In the absence of analytical expressions for the equivalent circuit parameters of a flexural mode transducer, it is difficult to calculate its optimal parameters and dimensions, and to choose suitable materials. The influence of coupling between flexural and extensional deformation, and coupling between the structure and the acoustic volume on the dynamic response of piezoelectrically actuated flexural mode transducer is analyzed using variational methods. Variational methods are applied to derive two-dimensional plate equations for the transducer, and to calculate the coupled electromechanical field variables. In these methods, the variations across the thickness direction vanish by using the stress resultants. Thus, two-dimensional plate equations for a stepwise laminated circular plate are obtained.

  19. Survey of the prevalence and methodology of quality assurance for B-mode ultrasound image quality among veterinary sonographers.

    PubMed

    Hoscheit, Larry P; Heng, Hock Gan; Lim, Chee Kin; Weng, Hsin-Yi

    2018-05-01

    Image quality in B-mode ultrasound is important as it reflects the diagnostic accuracy and diagnostic information provided during clinical scanning. Quality assurance programs for B-mode ultrasound systems/components are comprised of initial quality acceptance testing and subsequent regularly scheduled quality control testing. The importance of quality assurance programs for B-mode ultrasound image quality using ultrasound phantoms is well documented in the human medical and medical physics literature. The purpose of this prospective, cross-sectional, survey study was to determine the prevalence and methodology of quality acceptance testing and quality control testing of image quality for ultrasound system/components among veterinary sonographers. An online electronic survey was sent to 1497 members of veterinary imaging organizations: the American College of Veterinary Radiology, the Veterinary Ultrasound Society, and the European Association of Veterinary Diagnostic Imaging, and a total of 167 responses were received. The results showed that the percentages of veterinary sonographers performing quality acceptance testing and quality control testing are 42% (64/151; 95% confidence interval 34-52%) and 26% (40/156: 95% confidence interval 19-33%) respectively. Of the respondents who claimed to have quality acceptance testing or quality control testing of image quality in place for their ultrasound system/components, 0% have performed quality acceptance testing or quality control testing correctly (quality acceptance testing 95% confidence interval: 0-6%, quality control testing 95% confidence interval: 0-11%). Further education and guidelines are recommended for veterinary sonographers in the area of quality acceptance testing and quality control testing for B-mode ultrasound equipment/components. © 2018 American College of Veterinary Radiology.

  20. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes.

    PubMed

    Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie

    2012-07-01

    Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1

  1. Are Ultrasound-Guided Ophthalmic Blocks Injurious to the Eye? A Comparative Rabbit Model Study of Two Ultrasound Devices Evaluating Intraorbital Thermal and Structural Changes

    PubMed Central

    Palte, Howard D.; Gayer, Steven; Arrieta, Esdras; Shaw, Eric Scot; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L.; Dubovy, Sander; Birnbach, David J.; Parel, Jean-Marie

    2012-01-01

    Background Since Atkinson’s original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The United States Food and Drug Administration have defined guidelines for safe use of ultrasound for ophthalmic examination but most ultrasound devices used by anesthesiologists are not Food and Drug Administration-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examination can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Methods Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital and non-orbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from two devices: 1) the Sonosite Micromaxx (non-orbital-rated) and 2) the Sonomed VuMax (orbital-rated) machines. In Phase I temperatures were continuously monitored via thermocouples implanted within specific eye structures (n=4). In Phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n=4). All eyes underwent light microscopy examinations followed, at different intervals, by histology evaluations conducted by an ophthalmic pathologist. Results Temperature changes were monitored in the eyes of four rabbits. The non-orbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases> 1.50C ) in the lens of three rabbits (at 5

  2. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    PubMed

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis. Copyright © 2016 World Federation for

  3. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. © 2012 IEEE

  4. Stone-Mode Ultrasound for Determining Renal Stone Size.

    PubMed

    May, Philip C; Haider, Yasser; Dunmire, Barbrina; Cunitz, Bryan W; Thiel, Jeff; Liu, Ziyue; Bruce, Matthew; Bailey, Michael R; Sorensen, Mathew D; Harper, Jonathan D

    2016-09-01

    The purpose of this study was to measure the accuracy of stone-specific algorithms (S-mode) and the posterior acoustic shadow for determining kidney stone size with ultrasound (US) in vivo. Thirty-four subjects with 115 renal stones were prospectively recruited and scanned with S-mode on a research US system. S-mode is gray-scale US adjusted to enhanced stone contrast and resolution by minimizing compression and averaging, and increasing line density and frequency. Stone and shadow width were compared with a recent CT scan and, in 5 subjects with 18 stones, S-mode was compared with a clinical US system. Overall, 84% of stones identified on CT were detected on S-mode and 66% of these shadowed. Seventy-three percent of the stone measurements and 85% of the shadow measurements were within 2 mm of the size on CT. A posterior acoustic shadow was present in 89% of stones over 5 mm versus 53% of stones under 5 mm. S-mode visualized 78% of stones, versus 61% for the clinical system. S-mode stone and shadow measurements differed from CT by 1.6 ± 1.0 mm and 0.8 ± 0.6 mm, respectively, compared with 2.0 ± 1.5 mm and 1.6 ± 1.0 mm for the clinical system. S-mode offers improved visualization and sizing of renal stones. With S-mode, sizing of the stone itself and the posterior acoustic shadow were similarly accurate. Stones that do not shadow are most likely <5 mm and small enough to pass spontaneously.

  5. Refining enamel thickness measurements from B-mode ultrasound images.

    PubMed

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  6. The Use of B-Mode Ultrasound for Measuring Subcutaneous Fat Thickness on the Upper Arms.

    ERIC Educational Resources Information Center

    Weiss, Lawrence W.; Clark, Frank C.

    1985-01-01

    A study was carried out to investigate the potential use of B-mode ultrasound for measuring subcutaneous fat thickness at two arm sites. B-mode sonograms and skinfold measurements were found to be highly correlated for both men and women. (Author/MT)

  7. Wireless communication of real-time ultrasound data and control

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (<30ms) so that the ultrasound operator can see what is at the probe at that moment, instead of where the probe was a short period earlier. By keeping the latency less than 30ms, the operator will feel like the data he sees on the wireless connected devices is running in real-time with the operator. The second parameter is the management of bandwidth. At minimum we need to be able to see 20 frames-per- second. It is possible to achieve ultrasound in triplex mode at >20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  8. Optoelectronic Devices with Complex Failure Modes

    NASA Technical Reports Server (NTRS)

    Johnston, A.

    2000-01-01

    This part of the NSREC-2000 Short Course discusses radiation effects in basic photonic devices along with effects in more complex optoelectronic devices where the overall radiation response depends on several factors, with the possibility of multiple failure modes.

  9. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging

    PubMed Central

    Haworth, Kevin J.; Raymond, Jason L.; Radhakrishnan, Kirthi; Moody, Melanie R.; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E.; Kim, Hyunggun; Mcpherson, David D.; Holland, Christy K.

    2015-01-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis. PMID:26547633

  10. High-Frequency Ultrasound M-mode Imaging for Identifying Lesion and Bubble Activity during High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-01-01

    Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600 – 6100 W/cm2) was applied to ex-vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radiofrequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during, and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, as compared to macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies. PMID:22341055

  11. A 100-200 MHz ultrasound biomicroscope.

    PubMed

    Knspik, D A; Starkoski, B; Pavlin, C J; Foster, F S

    2000-01-01

    The development of higher frequency ultrasound imaging systems affords a unique opportunity to visualize living tissue at the microscopic level. This work was undertaken to assess the potential of ultrasound imaging in vivo using the 100-200 MHz range. Spherically focused lithium niobate transducers were fabricated. The properties of a 200 MHz center frequency device are described in detail. This transducer showed good sensitivity with an insertion loss of 18 dB at 200 MHz. Resolution of 14 /spl mu/m in the lateral direction and 12 /spl mu/m in the axial direction was achieved with f/1.14 focusing. A linear mechanical scan system and a scan converter were used to generate B-scan images at a frame rate up to 12 frames per second. System performance in B-mode imaging is limited by frequency dependent attenuation in tissues. An alternative technique, zone-focus image collection, was investigated to extend depth of field. Images of coronary arteries, the eye, and skin are presented along with some preliminary correlations with histology. These results demonstrate the feasibility of ultrasound biomicroscopy In the 100-200 MHz range. Further development of ultrasound backscatter imaging at frequencies up to and above 200 MHz will contribute valuable information about tissue microstructure.

  12. Research interface on a programmable ultrasound scanner.

    PubMed

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  13. 76 FR 43119 - Medical Devices; General and Plastic Surgery Devices; Classification of the Focused Ultrasound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... and it is identified as a device using focused ultrasound to produce localized, mechanical motion... labeling includes warnings related to patient reaction in terms of pain and information to user in terms of observable skin reactions that are known to be precursors to the potential thermal adverse effects...

  14. Multimode fiber devices with single-mode performance

    NASA Astrophysics Data System (ADS)

    Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.

    2005-10-01

    A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.

  15. Corneal endothelial morphology and function after torsional and longitudinal ultrasound mode phacoemulsification.

    PubMed

    Módis, László Jr; Szalai, Eszter; Flaskó, Zsuzsa; Németh, Gábor

    2016-01-01

    To study the endothelial cell morphology and corneal thickness changes after phacoemulsification by using the OZil torsional and longitudinal ultrasound techniques (Infiniti Vision System, Alcon Laboratories). Department of Ophthalmology, Clinical Center, University of Debrecen, Debrecen, Hungary. 52 patients with cataract were randomly assigned to longitudinal ultrasound and torsional mode group. All surgeries were performed through a 2.2 mm clear corneal incision, the method employed being divide and conquer. The endothelial morphometry such as cell density (ECD), mean cell area, coefficient of variation of cell area, and central corneal thickness were examined with specular microscopy (EM-1000, Tomey) preoperatively and 4, 8 weeks postoperatively. ECD values decreased significantly in both surgical groups (P < .001, repeated- mesures ANOVA), the postoperative endothelial cell loss was higher in the longitudinal ultrasound mode group (3.5% and 6.5%, at 4 and 8 weeks after surgery) than in the torsional group (3.3% and 5.5%, at 4 and 8 weeks after surgery), the difference not being significant between the two groups (P = .164 and P = .479, at 4 and 8 weeks after surgery, Mann-Whitney test). There was no statistically significant difference in any of the assessed parameters between the two surgical groups (P > .05). No significant correlation was found between the endothelial cell loss and the nucleus density. Both phacoemulsification techniques were safe and effective. The torsional handpiece performs oscillatory movements and delivers less energy into the eye than the longitudinal ultrasound technique, therefore providing more favorable energy and thermal safety profile.

  16. Corneal endothelial morphology and function after torsional and longitudinal ultrasound mode phacoemulsification

    PubMed Central

    Módis, László Jr.; Szalai, Eszter; Flaskó, Zsuzsa; Németh, Gábor

    2016-01-01

    Purpose. To study the endothelial cell morphology and corneal thickness changes after phacoemulsification by using the OZil torsional and longitudinal ultrasound techniques (Infiniti Vision System, Alcon Laboratories). Setting. Department of Ophthalmology, Clinical Center, University of Debrecen, Debrecen, Hungary. Methods. 52 patients with cataract were randomly assigned to longitudinal ultrasound and torsional mode group. All surgeries were performed through a 2.2 mm clear corneal incision, the method employed being divide and conquer. The endothelial morphometry such as cell density (ECD), mean cell area, coefficient of variation of cell area, and central corneal thickness were examined with specular microscopy (EM-1000, Tomey) preoperatively and 4, 8 weeks postoperatively. Results. ECD values decreased significantly in both surgical groups (P < .001, repeated- mesures ANOVA), the postoperative endothelial cell loss was higher in the longitudinal ultrasound mode group (3.5% and 6.5%, at 4 and 8 weeks after surgery) than in the torsional group (3.3% and 5.5%, at 4 and 8 weeks after surgery), the difference not being significant between the two groups (P = .164 and P = .479, at 4 and 8 weeks after surgery, Mann-Whitney test). There was no statistically significant difference in any of the assessed parameters between the two surgical groups (P > .05). No significant correlation was found between the endothelial cell loss and the nucleus density. Conclusions. Both phacoemulsification techniques were safe and effective. The torsional handpiece performs oscillatory movements and delivers less energy into the eye than the longitudinal ultrasound technique, therefore providing more favorable energy and thermal safety profile. PMID:29450332

  17. Practical application to composite materials of a portable digital ultrasound device controlled by a microprocessor

    NASA Astrophysics Data System (ADS)

    Castel, J. G.; Husarek, V.

    1987-06-01

    The usefulness of a portable microprocessor-controlled ultrasound device for the periodic assessment of aircraft parts made of composite materials is shown. The performance of the device is demonstrated with the examples of a metallic honeycomb with a carbon-fiber skin, a phenolic honeycomb with a carbon skin, and a phenolic honeycomb with a Kevlar skin. Also considered are assessments of homogeneous carbon-fiber parts, including the study of artificial defects consisting of 1-2 mm diameter holes, and the assessment of the behavior of a carbon-titanium interface with separated zones. Advantages of the device include ease of adjustment, automated evaluation of the depth of defects, and the nearly-absolute reproducibility of adjustments.

  18. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    PubMed

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  19. A New Feature-Enhanced Speckle Reduction Method Based on Multiscale Analysis for Ultrasound B-Mode Imaging.

    PubMed

    Kang, Jinbum; Lee, Jae Young; Yoo, Yangmo

    2016-06-01

    Effective speckle reduction in ultrasound B-mode imaging is important for enhancing the image quality and improving the accuracy in image analysis and interpretation. In this paper, a new feature-enhanced speckle reduction (FESR) method based on multiscale analysis and feature enhancement filtering is proposed for ultrasound B-mode imaging. In FESR, clinical features (e.g., boundaries and borders of lesions) are selectively emphasized by edge, coherence, and contrast enhancement filtering from fine to coarse scales while simultaneously suppressing speckle development via robust diffusion filtering. In the simulation study, the proposed FESR method showed statistically significant improvements in edge preservation, mean structure similarity, speckle signal-to-noise ratio, and contrast-to-noise ratio (CNR) compared with other speckle reduction methods, e.g., oriented speckle reducing anisotropic diffusion (OSRAD), nonlinear multiscale wavelet diffusion (NMWD), the Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), and the Bayesian nonlocal means filter (OBNLM). Similarly, the FESR method outperformed the OSRAD, NMWD, LPNDSF, and OBNLM methods in terms of CNR, i.e., 10.70 ± 0.06 versus 9.00 ± 0.06, 9.78 ± 0.06, 8.67 ± 0.04, and 9.22 ± 0.06 in the phantom study, respectively. Reconstructed B-mode images that were developed using the five speckle reduction methods were reviewed by three radiologists for evaluation based on each radiologist's diagnostic preferences. All three radiologists showed a significant preference for the abdominal liver images obtained using the FESR methods in terms of conspicuity, margin sharpness, artificiality, and contrast, p<0.0001. For the kidney and thyroid images, the FESR method showed similar improvement over other methods. However, the FESR method did not show statistically significant improvement compared with the OBNLM method in margin sharpness for the kidney and thyroid images. These results demonstrate

  20. Does the Addition of M-Mode to B-Mode Ultrasound Increase the Accuracy of Identification of Lung Sliding in Traumatic Pneumothoraces?

    PubMed

    Avila, Jacob; Smith, Ben; Mead, Therese; Jurma, Duane; Dawson, Matthew; Mallin, Michael; Dugan, Adam

    2018-04-24

    It is unknown whether the addition of M-mode to B-mode ultrasound (US) has any effect on the overall accuracy of interpretation of lung sliding in the evaluation of a pneumothorax by emergency physicians. This study aimed to determine what effect, if any, this addition has on US interpretation by emergency physicians of varying training levels. One hundred forty emergency physicians were randomized via online software to receive a quiz with B-mode clips alone or B-mode with corresponding M-mode images and asked to identify the presence or absence of lung sliding. The sensitivity, specificity, and accuracy of the diagnosis of lung sliding with and without M-mode US were compared. Overall, the sensitivities, specificities, and accuracies of B-mode + M-mode US versus B-mode US alone were 93.1% and 93.2% (P = .8), 96.0% and 89.8% (P < .0001), and 91.5% and 94.5% (P = .0091), respectively. A subgroup analysis showed that in those providers with fewer than 250 total US scans done previously, M-mode US increased accuracy from 88.2% (95% confidence interval, 86.2%-90.2%) to 94.4% (92.8%-96.0%; P = .001) and increased the specificity from 87.0% (84.5%-89.5%) to 97.2% (95.4%-99.0%; P < .0001) compared with B-mode US alone. There was no statistically significant difference observed in the sensitivity, specificity, and accuracy of B-mode + M-mode US compared with B-mode US alone in those with more than 250 scans. The addition of M-mode images to B-mode clips aids in the accurate diagnosis of lung sliding by emergency physicians. The subgroup analysis showed that the benefit of M-mode US disappears after emergency physicians have performed more than 250 US examinations. © 2018 by the American Institute of Ultrasound in Medicine.

  1. Carotid artery B-mode ultrasound image segmentation based on morphology, geometry and gradient direction

    NASA Astrophysics Data System (ADS)

    Sunarya, I. Made Gede; Yuniarno, Eko Mulyanto; Purnomo, Mauridhi Hery; Sardjono, Tri Arief; Sunu, Ismoyo; Purnama, I. Ketut Eddy

    2017-06-01

    Carotid Artery (CA) is one of the vital organs in the human body. CA features that can be used are position, size and volume. Position feature can used to determine the preliminary initialization of the tracking. Examination of the CA features can use Ultrasound. Ultrasound imaging can be operated dependently by an skilled operator, hence there could be some differences in the images result obtained by two or more different operators. This can affect the process of determining of CA. To reduce the level of subjectivity among operators, it can determine the position of the CA automatically. In this study, the proposed method is to segment CA in B-Mode Ultrasound Image based on morphology, geometry and gradient direction. This study consists of three steps, the data collection, preprocessing and artery segmentation. The data used in this study were taken directly by the researchers and taken from the Brno university's signal processing lab database. Each data set contains 100 carotid artery B-Mode ultrasound image. Artery is modeled using ellipse with center c, major axis a and minor axis b. The proposed method has a high value on each data set, 97% (data set 1), 73 % (data set 2), 87% (data set 3). This segmentation results will then be used in the process of tracking the CA.

  2. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  3. Real-time Implementation of a Dual-Mode Ultrasound Array System: In Vivo Results

    PubMed Central

    Casper, Andrew J.; Liu, Dalong; Ballard, John R.; Ebbini, Emad S.

    2013-01-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array and modular multi-channel transmitter/receiver. It is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays (FPGA) and graphical processing units (GPU) is used to enable real-time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small and large animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA’s ability to form anatomically-correct images with sufficient contrast in an extended field of view (FOV) around its geometric center. In addition, high frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during HIFU exposures with 45 – 50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its fnumber and bandwidth with well behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound. PMID:23708766

  4. A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images.

    PubMed

    Gemignani, Vincenzo; Faita, Francesco; Ghiadoni, Lorenzo; Poggianti, Elisa; Demi, Marcello

    2007-03-01

    The measurement of the brachial artery diameter is frequently used in clinical studies for evaluating the flow-mediated dilation and, in conjunction with the blood pressure value, for assessing arterial stiffness. This paper presents a system for computing the brachial artery diameter in real-time by analyzing B-mode ultrasound images. The method is based on a robust edge detection algorithm which is used to automatically locate the two walls of the vessel. The measure of the diameter is obtained with subpixel precision and with a temporal resolution of 25 samples/s, so that the small dilations induced by the cardiac cycle can also be retrieved. The algorithm is implemented on a standalone video processing board which acquires the analog video signal from the ultrasound equipment. Results are shown in real-time on a graphical user interface. The system was tested both on synthetic ultrasound images and in clinical studies of flow-mediated dilation. Accuracy, robustness, and intra/inter observer variability of the method were evaluated.

  5. Waveguiding and bending modes in a plasma photonic crystal bandgap device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B., E-mail: bwang17@stanford.edu; Cappelli, M. A.

    2016-06-15

    Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE) mode waveguiding and bending modes.

  6. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  7. Game theory-based mode cooperative selection mechanism for device-to-device visible light communication

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng

    2016-03-01

    Various patterns of device-to-device (D2D) communication, from Bluetooth to Wi-Fi Direct, are emerging due to the increasing requirements of information sharing between mobile terminals. This paper presents an innovative pattern named device-to-device visible light communication (D2D-VLC) to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in D2D-VLC. This paper proposes a game theory-based solution in which the best-response dynamics and best-response strategies are used to realize a mode-cooperative selection mechanism. This mechanism uses system capacity as the utility function to optimize system performance and selects the optimal communication mode for each active user from three candidate modes. Moreover, the simulation and experimental results show that the mechanism can attain a significant improvement in terms of effectiveness and energy saving compared with the cases where the users communicate via only the fixed transceivers (light-emitting diode and photo diode) or via only D2D.

  8. Switching of liquid crystal devices between reflective and transmissive modes

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Chi; Wang, Chih-Hung

    Transflective liquid crystal displays (LCD) are commonly known that each pixel is divided into reflective (R) and transmissive (T) subpixels. The R mode uses ambient light, while the T mode utilizes a backlight to display images. However, the division of the pixel decreases the light efficiency and the resolution. This study demonstrates a gelator-doped liquid crystal (LC) devices, that is switchable between R and T modes, without sub-pixel division. The R and T modes are designed to have bend configurations with phase retardation of π/2 and π, respectively. The phase retardation of a LC device can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. It is believed that the proposed device is a potential candidate for portable information systems.

  9. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    NASA Astrophysics Data System (ADS)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  10. Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham

    2006-05-01

    Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with

  11. Modes of targets in water excited and identified using radiation pressure of modulated focused ultrasound

    NASA Astrophysics Data System (ADS)

    Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip

    2016-11-01

    The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.

  12. Research on respiratory motion correction method based on liver contrast-enhanced ultrasound images of single mode

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong

    2015-03-01

    To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.

  13. Standard B-Mode Ultrasound Measures Local Carotid Artery Characteristics as Reliably as Radiofrequency Phase Tracking in Symptomatic Carotid Artery Patients.

    PubMed

    Steinbuch, Jeire; Hoeks, Arnold P G; Hermeling, Evelien; Truijman, Martine T B; Schreuder, Floris H B M; Mess, Werner H

    2016-02-01

    Local arterial stiffness can be assessed with high accuracy and precision by measuring arterial distension on the basis of phase tracking of radiofrequency ultrasound signals acquired at a high frame rate. However, in clinical practice, B-mode ultrasound registrations are made at a low frame rate (20-50 Hz). We compared the accuracy and intra-subject precision of edge tracking and phase tracking distension in symptomatic carotid artery patients. B-mode ultrasound recordings (40 mm, 37 fps) and radiofrequency recordings (31 lines covering 29 mm, 300 fps) were acquired from the left common carotid artery of 30 patients (aged 45-88 y) with recent cerebrovascular events. To extract the distension, semi-automatic echo edge and phase tracking algorithms were applied to B-mode and radiofrequency recordings, respectively. Both methods exhibited a similar intra-subject precision for distension (standard deviation = 44 μm and 47 μm, p = 0.66) and mean distension (difference: -6 ± 69 μm, p = 0.67). Intra-subject distension inhomogeneity tends to be larger for edge tracking (difference: 15 ± 35 μm, p = 0.04). Standard B-mode scanners are suitable for measuring local artery characteristics in symptomatic carotid artery patients with good precision and accuracy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Determination of lesion size by ultrasound during radiofrequency catheter ablation.

    PubMed

    Awad, S; Eick, O

    2003-01-01

    The catheter tip temperature that is used to control the radiofrequency generator output poorly correlates to lesion size. We, therefore, evaluated lesions created in vitro using a B-mode ultrasound imaging device as a potential means to assess lesion generation during RF applications non-invasively. Porcine ventricular tissue was immersed in saline solution at 37 degrees C. The catheter was fixed in a holder and positioned in a parallel orientation to the tissue with an array transducer (7.5 MHz) app. 3 cm above the tissue. Lesions were produced either in a temperature controlled mode with a 4-mm tip catheter with different target temperatures (50, 60, 70 and 80 degrees C, 80 W maximum output) or in a power controlled mode (25, 50 and 75 W, 20 ml/min irrigation flow) using an irrigated tip catheter. Different contact forces (0.5 N, 1.0 N) were tested, and RF was delivered for 60 s. A total of 138 lesions was produced. Out of these, 128 could be identified on the ultrasound image. The lesion depth and volume was on average 4.1 +/- 1.6 mm and 52 +/- 53 mm3 as determined by ultrasound and 3.9 +/- 1.7 mm and 52 +/- 55 mm3 as measured thereafter, respectively. A linear correlation between the lesion size determined by ultrasound and that measured thereafter was demonstrated with a correlation coefficient of r = 0.87 for lesion depth and r = 0.93 for lesion volume. We conclude that lesions can be assessed by B-mode ultrasound imaging.

  15. M-Mode Ultrasound Reveals Earlier Gluteus Minimus Activity in Individuals With Chronic Hip Pain During a Step-down Task.

    PubMed

    Dieterich, Angela V; Deshon, Louise; Strauss, Geoffrey R; McKay, Jan; Pickard, Christine M

    2016-04-01

    Controlled laboratory study. The hip abductor muscles are important hip joint stabilizers. Hip joint pain may alter muscle recruitment. Motion-mode (M-mode) ultrasound enables noninvasive measurements of the onset of deep and superficial muscle motion, which is associated with activation onset. To compare (1) the onset of superficial and deep gluteus medius and gluteus minimus muscle motion relative to the instant of peak ground reaction force and (2) the level of swing-phase muscle motion during step-down between subjects with chronic hip pain and controls using M-mode ultrasound. Thirty-five subjects with anterior, nontraumatic hip pain for more than 6 months (mean ± SD age, 54 ± 9 years) and 35 controls (age, 57 ± 7 years) were scanned on the lateral hip of the leading leg during frontal step-down onto a force platform using M-mode ultrasound. Computerized motion detection with the Teager-Kaiser energy operator was applied on the gluteus minimus and the deep and superficial gluteus medius to determine the time lag between muscle motion onset and instant of peak ground reaction force and the level of gluteus minimus motion during the swing phase. Time lags and motion levels were averaged per subject, and t tests were used to determine between-group differences. In participants with hip pain, gluteus minimus motion onset was 103 milliseconds earlier (P = .002) and superficial gluteus medius motion was 70 milliseconds earlier (P = .047) than those in healthy control participants. The level of gluteus minimus swing-phase motion was higher with pain (P = .006). Increased gluteus minimus motion during the swing phase and earlier gluteus minimus and superficial gluteus medius motion in individuals with hip pain suggest an overall increase of muscle activity, possibly a protective behavior.

  16. Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study.

    PubMed

    Aptel, Florent; Charrel, Thomas; Lafon, Cyril; Romano, Fabrice; Chapelon, Jean-Yves; Blumen-Ohana, Esther; Nordmann, Jean-Philippe; Denis, Philippe

    2011-11-11

    To evaluate the relative safety and potential efficacy of high-intensity focused ultrasound cyclocoagulation by a miniaturized annular device containing six piezoceramic transducers in patients with refractory glaucoma. This was a three-center prospective interventional pilot study. Twelve eyes of 12 patients with refractory glaucoma were insonified using a ring-shaped probe containing six miniaturized high-frequency transducers operating at 21 MHz. Ultrasound biomicroscopy (UBM) and a complete ophthalmic examination were performed before the procedure and at 1 day, 1 week, 1 month, and 3 months after the procedure. Additional visits were performed 6 and 12 months after the procedure. Intraocular pressure was significantly reduced (P < 0.01) from a mean preoperative value of 37.9 ± 10.7 mm Hg to a mean postoperative value of 27.3 ± 12.4, 25.2 ± 11.3, 25.2 ± 7.7, 24.8 ± 9.8, and 26.3 ± 5.1 mm Hg at 1 day, 1 week, 1 month, 3 months, and 6 months, respectively, and to a mean value of 24.7 ± 8.5 at the last follow-up visit. No major intraoperative or postoperative complications occurred. Minor postoperative corneal complications developed in four patients with previous corneal abnormalities: superficial punctate keratitis (n = 3) and central superficial corneal ulceration (n = 1). UBM showed cystic involution of the ciliary body in 9 of the 12 eyes and a suprachoroidal fluid space in 8 of the 12 eyes. Ultrasonic circular cyclocoagulation using high-intensity focused ultrasound delivered by a circular miniaturized device containing six piezoceramic transducers seems to be an effective and well-tolerated method to reduce intraocular pressure in patients with refractory glaucoma.

  17. B-mode Ultrasound Versus Color Doppler Twinkling Artifact in Detecting Kidney Stones

    PubMed Central

    Harper, Jonathan D.; Hsi, Ryan S.; Shah, Anup R.; Dighe, Manjiri K.; Carter, Stephen J.; Moshiri, Mariam; Paun, Marla; Lu, Wei; Bailey, Michael R.

    2013-01-01

    Abstract Purpose To compare color Doppler twinkling artifact and B-mode ultrasonography in detecting kidney stones. Patients and Methods Nine patients with recent CT scans prospectively underwent B-mode and twinkling artifact color Doppler ultrasonography on a commercial ultrasound machine. Video segments of the upper pole, interpolar area, and lower pole were created, randomized, and independently reviewed by three radiologists. Receiver operator characteristics were determined. Results There were 32 stones in 18 kidneys with a mean stone size of 8.9±7.5 mm. B-mode ultrasonography had 71% sensitivity, 48% specificity, 52% positive predictive value, and 68% negative predictive value, while twinkling artifact Doppler ultrasonography had 56% sensitivity, 74% specificity, 62% positive predictive value, and 68% negative predictive value. Conclusions When used alone, B-mode is more sensitive, but twinkling artifact is more specific in detecting kidney stones. This information may help users employ twinkling and B-mode to identify stones and developers to improve signal processing to harness the fundamental acoustic differences to ultimately improve stone detection. PMID:23067207

  18. [Validation of a new hand-carried ultrasound device equipped with directional color power Doppler and continuous wave Doppler].

    PubMed

    Kawai, Junichi; Tanabe, Kazuaki; Matsuzaki, Masashi; Yamaguchi, Kazuto; Yagi, Toshikazu; Fujii, Yoko; Konda, Toshiko; Ui, Kazuyo; Sumida, Toshiaki; Okada, Midori; Tani, Tomoko; Morioka, Shigefumi

    2003-10-01

    This study evaluated the accuracy of the directional color power Doppler (DCPD) and continuous wave Doppler (CWD) methods incorporated in the new hand-carried SonoSite 180PLUS ultrasound device. The hand-held ultrasound system with 2.5 MHz transducer and SONOS 5500 was used as a standard ultrasound system with a 2 to 4 MHz wideband transducer. The experimental study used a Doppler wire phantom to evaluate the influence of target wire speed and angle of transducer on DCPD imaging. The clinical study included 48 consecutive patients. DCPD assessment of valvular regurgitation measured the distances of DCPD signals of mitral, aortic and tricuspid valve regurgitation using the apical four-chamber view for comparison with standard echocardiography. CWD assessment measured the peak velocities of the aortic flow and tricuspid valve regurgitant flow for comparison with standard echocardiography. In the experimental study, DCPD signals were not influenced by target wire speed changes and transducer incident angles. In the clinical study, agreements for mitral, aortic and tricuspid regurgitation between the two methods were 89.6%, 81.8% and 78.7%, respectively. The distances of DCPD valve regurgitant signals by the hand-carried ultrasound device showed good correlation (mitral regurgitation: y = 0.84x + 0.55; r = 0.93, aortic regurgitation: y = 0.95x + 0.27; r = 0.94, tricuspid regurgitation: y = 0.86x + 0.61; r = 0.90) with those by standard echocardiography. Evaluation of CWD velocity measurements showed good agreement for the lower flow velocities (< 2.0 m/sec). However, underestimation occurred for the high flow velocities (> 2.0 m/sec) compared with those by standard echocardiography (aortic flow: y = 0.80x + 0.11; r = 0.95, tricuspid regurgitation: y = 1.00x - 0.23; r = 0.90). The new hand-carried ultrasound device (SonoSite 180PLUS equipped with DCPD and CWD) is clinically useful for evaluating valvular regurgitations and flow velocities. Further studies are needed to

  19. Sonoporation of adherent cells under regulated ultrasound cavitation conditions.

    PubMed

    Muleki Seya, Pauline; Fouqueray, Manuela; Ngo, Jacqueline; Poizat, Adrien; Inserra, Claude; Béra, Jean-Christophe

    2015-04-01

    A sonoporation device dedicated to the adherent cell monolayer has been implemented with a regulation process allowing the real-time monitoring and control of inertial cavitation activity. Use of the cavitation-regulated device revealed first that adherent cell sonoporation efficiency is related to inertial cavitation activity, without inducing additional cell mortality. Reproducibility is enhanced for the highest sonoporation rates (up to 17%); sonoporation efficiency can reach 26% when advantage is taken of the standing wave acoustic configuration by applying a frequency sweep with ultrasound frequency tuned to the modal acoustic modes of the cavity. This device allows sonoporation of adherent and suspended cells, and the use of regulation allows some environmental parameters such as the temperature of the medium to be overcome, resulting in the possibility of cell sonoporation even at ambient temperature. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    PubMed

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  1. Adaptive lesion formation using dual mode ultrasound array system

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  2. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    NASA Astrophysics Data System (ADS)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  3. Mode-converting coupler for silicon-on-sapphire devices

    NASA Astrophysics Data System (ADS)

    Zlatanovic, S.; Offord, B. W.; Owen, M.; Shimabukuro, R.; Jacobs, E. W.

    2015-02-01

    Silicon-on-sapphire devices are attractive for the mid-infrared optical applications up to 5 microns due to the low loss of both silicon and sapphire in this wavelength band. Designing efficient couplers for silicon-on-sapphire devices presents a challenge due to a highly confined mode in silicon and large values of refractive index of both silicon and sapphire. Here, we present design, fabrication, and measurements of a mode-converting coupler for silicon-on-sapphire waveguides. We utilize a mode converter layout that consists of a large waveguide that is overlays a silicon inverse tapered waveguide. While this geometry was previously utilized for silicon-on-oxide devices, the novelty is in using materials that are compatible with the silicon-on-sapphire platform. In the current coupler the overlaying waveguide is made of silicon nitride. Silicon nitride is the material of choice because of the large index of refraction and low absorption from near-infrared to mid-infrared. The couplers were fabricated using a 0.25 micron silicon-on-sapphire process. The measured coupling loss from tapered lensed silica fibers to the silicon was 4.8dB/coupler. We will describe some challenges in fabrication process and discuss ways to overcome them.

  4. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, T; Bamber, J; Harris, E

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation templatemore » matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory

  5. Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements.

    PubMed

    Diessel, E; Fuerst, T; Njeh, C F; Hans, D; Cheng, S; Genant, H K

    2000-01-01

    The purpose of this study was to evaluate a new imaging ultrasound scanner for the heel, the DTU-one (Osteometer MediTech, Denmark), by comparing quantitative ultrasound (QUS) results with bone mineral density (BMD) of the heel and femur from dual X-ray absorptiometry (DXA), and by comparing the DTU-one with another QUS device, the UBA 575+. The regions of interest in the DXA heel scan were matched with the regions evaluated by the two QUS devices. 134 healthy and 16 osteoporotic women aged 30-84 years old were enrolled in the study. In vivo short-term precision of the DTU-one for broadband ultrasound attenuation (BUA) and speed of sound (SOS) was 2.9% and 0.1%, respectively, and long-term precision was 3.8% and 0.2%, respectively. Highest correlations (r) between QUS and BMD measurements were achieved when comparing DTU-one results with BMD in matched regions of the DXA heel scan. Correlation coefficients (r) were 0.81 for BUA and SOS. Highest correlations with the UBA 575+ were 0.68 and 0.72, respectively. The comparison of BMD in different femoral sites with BUA and SOS (DTU-one) varied from 0.62 to 0.69 when including the entire study population. The correlation between BMD values within different sites of the femur tended to be higher (from r = 0.81 to 0.93). When comparing BUA with BUA and SOS with SOS on the two QUS devices, the absolute QUS values differed significantly. However, correlations were relatively high, with 0.76 for BUA and 0.82 for SOS. In conclusion, the results of the new quantitative ultrasound device, the DTU-one, are highly correlated (r = 0.8) with results obtained using the UBA 575+ and with BMD in the heel. The precision of the DTU-one is comparable to other QUS devices for BUA and is high for SOS.

  6. A Disposable Microfluidic Device for Controlled Drug Release from Thermal-Sensitive Liposomes by High Intensity Focused Ultrasound.

    PubMed

    Meng, Long; Deng, Zhiting; Niu, Lili; Li, Fei; Yan, Fei; Wu, Junru; Cai, Feiyan; Zheng, Hairong

    2015-01-01

    The drug release triggered thermally by high intensity focused ultrasound (HIFU) has been considered a promising drug delivery strategy due to its localized energy and non-invasive characters. However, the mechanism underlying the HIFU-mediated drug delivery remains unclear due to its complexity at the cellular level. In this paper, micro-HIFU (MHIFU) generated by a microfluidic device is introduced which is able to control the drug release from temperature-sensitive liposomes (TSL) and evaluate the thermal and mechanical effects of ultrasound on the cellular drug uptake and apoptosis. By simply adjusting the input electrical signal to the device, the temperature of sample can be maintained at 37 °C, 42 °C and 50 °C with the deviation of ± 0.3 °C as desired. The flow cytometry results show that the drug delivery under MHIFU sonication leads to a significant increase in apoptosis compared to the drug release by incubation alone at elevated temperature of 42 °C. Furthermore, increased squamous and protruding structures on the surface membrane of cells were detected by atomic force microscopy (AFM) after MHIFU irradiation of TSL. We demonstrate that compared to the routine HIFU treatment, MHIFU enables monitoring of in situ interactions between the ultrasound and cell in real time. Furthermore, it can quantitatively analyze and characterize the alterations of the cell membrane as a function of the treatment time.

  7. Fluid dynamics, cavitation, and tip-to-tissue interaction of longitudinal and torsional ultrasound modes during phacoemulsification.

    PubMed

    Zacharias, Jaime; Ohl, Claus-Dieter

    2013-04-01

    To describe the fluidic events that occur in a test chamber during phacoemulsification with longitudinal and torsional ultrasound (US) modalities. Pasteur Ophthalmic Clinic Phacodynamics Laboratory, Santiago, Chile, and Nanyang Technological University, Singapore. Experimental study. Ultra-high-speed videos of a phacoemulsifying tip were recorded while the tip operated in longitudinal and torsional US modalities using variable US power. Two high-speed video cameras were used to record videos up to 625,000 frames per second. A high-intensity spotlight source was used for illumination to engage shadowgraphy techniques. Particle image velocimetry was used to evaluate fluidic patterns while a hyperbaric environmental system allowed the evaluation of cavitation effects. Tip-to-tissue interaction at high speed was evaluated using human cataract fragments. Particle imaging velocimetry showed the following flow patterns for longitudinal and torsional modes at high US powers: forward-directed streaming with longitudinal mode and backward-directed streaming with torsional mode. The ultrasound power threshold for the appearance of cavitation was 60% for longitudinal mode and 80% for torsional mode. Cavitation was suppressed with pressure of 1.0 bar for longitudinal mode and 0.3 bar for torsional mode. Generation of previously unseen stable gaseous microbubbles was noted. Tip-to-tissue interaction analysis showed the presence of cavitation bubbles close to the site of fragmentation with no apparent effect on cutting. High-speed imaging and particle image velocimetry yielded a better understanding and differentiated the fluidic pattern behavior between longitudinal and torsional US during phacoemulsification. These recordings also showed more detailed aspects of cavitation that clarified its role in lens material cutting for both modalities. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Multi-segment detector array for hybrid reflection-mode ultrasound and optoacoustic tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Merčep, Elena; Burton, Neal C.; Deán-Ben, Xosé Luís.; Razansky, Daniel

    2017-02-01

    The complementary contrast of the optoacoustic (OA) and pulse-echo ultrasound (US) modalities makes the combined usage of these imaging technologies highly advantageous. Due to the different physical contrast mechanisms development of a detector array optimally suited for both modalities is one of the challenges to efficient implementation of a single OA-US imaging device. We demonstrate imaging performance of the first hybrid detector array whose novel design, incorporating array segments of linear and concave geometry, optimally supports image acquisition in both reflection-mode ultrasonography and optoacoustic tomography modes. Hybrid detector array has a total number of 256 elements and three segments of different geometry and variable pitch size: a central 128-element linear segment with pitch of 0.25mm, ideally suited for pulse-echo US imaging, and two external 64-elements segments with concave geometry and 0.6mm pitch optimized for OA image acquisition. Interleaved OA and US image acquisition with up to 25 fps is facilitated through a custom-made multiplexer unit. Spatial resolution of the transducer was characterized in numerical simulations and validated in phantom experiments and comprises 230 and 300 μm in the respective OA and US imaging modes. Imaging performance of the multi-segment detector array was experimentally shown in a series of imaging sessions with healthy volunteers. Employing mixed array geometries allows at the same time achieving excellent OA contrast with a large field of view, and US contrast for complementary structural features with reduced side-lobes and improved resolution. The newly designed hybrid detector array that comprises segments of linear and concave geometries optimally fulfills requirements for efficient US and OA imaging and may expand the applicability of the developed hybrid OPUS imaging technology and accelerate its clinical translation.

  9. The efficacy of a combination non-thermal focused ultrasound and radiofrequency device for noninvasive body contouring in Asians.

    PubMed

    Shek, Samantha Y N; Yeung, Chi K; Chan, Johnny C Y; Chan, Henry H L

    2016-02-01

    Several studies have been published on the first generation non-thermal focused ultrasound with an average improvement of 0-3.95 cm reported. We aim to investigate the efficacy of the second-generation non-thermal focused ultrasound device with a combined radiofrequency hand piece. With the addition of radiofrequency energy, the temperature of the adipose tissue is raised before focused ultrasound is applied. This facilitates the mechanical disruption of fat cells by focused ultrasound. Twenty subjects were recruited and underwent three treatments biweekly. Caliper reading, abdominal circumference, and standardized photographs were taken with the Vectra(®) system at all visits. We aim to have the subjects stand and hold the same position and the photograph taken after exhalation. Caliper and circumference measurements carry uncertainty. It is impossible to eliminate all uncertainties but can be improved by having the same trained physician assistant perform the measurement at the same site and taking an average of three readings. Pain score and satisfaction were recorded by means of the visual analogue scale. The efficacy is defined by a statistically significant improvement in circumferential improvement based on intention-to-treat analysis. Seventeen subjects completed the treatment schedule. Abdominal circumference showed statistically significant improvement at 2 weeks post-second treatment (P = 0.023) and almost all subsequent follow-ups. Caliper readings were statistically significant at 2 weeks post-second treatment (P = 0.013) and almost all follow-ups. The mean pain score reported was 2.3 on the visual analog scale and 6% were unsatisfied with the overall treatments. Six incidents of wheal formation appeared immediately after treatment all of which subsided spontaneously within several hours. The combination non-thermal focused ultrasound and radiofrequency device is effective for improving body contour in Asians. © 2015 Wiley Periodicals, Inc.

  10. AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: basic concepts and new technology.

    PubMed

    Hangiandreou, Nicholas J

    2003-01-01

    Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon. Copyright RSNA, 2003

  11. Influence of ultrasound determination of fetal head position on mode of delivery: a pragmatic randomized trial.

    PubMed

    Popowski, T; Porcher, R; Fort, J; Javoise, S; Rozenberg, P

    2015-11-01

    To evaluate the influence of ultrasound determination of fetal head position on mode of delivery. This was a pragmatic open-label randomized controlled trial that included women with a singleton pregnancy in the vertex presentation at ≥ 37 weeks' gestation, cervical dilation ≥ 8 cm and who received epidural anesthesia. Women were assigned randomly to undergo either digital vaginal examination (VE group) or both digital vaginal and ultrasound examinations (VE+US group) to determine fetal head position. When the ultrasound and digital vaginal findings were inconsistent in the VE+US group, the ultrasound result was used for clinical management. The primary outcome assessed was operative delivery (Cesarean or instrumental vaginal delivery), and maternal and fetal morbidity were also assessed. The VE and VE+US groups included 959 and 944 women, respectively. The overall rate of operative delivery was significantly higher in the VE+US group than in the VE group: 33.7% vs 27.1%, respectively (relative risk (RR), 1.24 (95% CI, 1.08-1.43)), as was the rate of Cesarean delivery: 7.8% vs 4.9%, respectively (RR, 1.60 (95% CI, 1.12-2.28)). The rate of instrumental vaginal delivery was also higher, albeit not significantly: 25.8% in the VE+US group vs 22.2% in the VE group (RR, 1.16 (95% CI, 0.99-1.37)). Neonatal outcomes did not differ between the two groups. When analysis was restricted to instrumental vaginal deliveries only, maternal and neonatal morbidity outcomes were similar in both groups. Correction of fetal occiput position, determined initially by digital vaginal examination, using systematic ultrasound examination did not improve management of labor and increased the rate of operative delivery without decreasing maternal and neonatal morbidity. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  12. A novel transcutaneous, non-focused ultrasound energy delivering device is able to induce subcutaneous adipose tissue destruction in an animal model.

    PubMed

    Levi, Assi; Amitai, Dan Ben; Lapidoth, Moshe

    2017-01-01

    The understanding that adipocytes are greatly influenced by thermal changes combined with the advancement of non-invasive ultrasound technologies have led to the application of ultrasound as an energy source to induce thermal fat destruction. While application of high intensity focused, ultrasound energy have been widely explored, there is far less information regarding the effects of non-focused ultrasound on adipose tissue. The purpose of this study was to characterize the effects of a novel transcutaneous, multi-elements, non-focused ultrasound energy regimen in an animal model, as a proof-of-concept of its potential to treat non-invasive subcutaneous benign tumors. The non-invasive transcutaneous ultrasound system prototype (LUMENIS, Ltd., Yoqneam, Israel) was applied to thermally induce adipocytes' death. During treatment, the ultrasound energy was transmitted into the subcutaneous adipose tissue (SAT) of 12 domestic adult female pigs. Two modes of operation (long and short), which differ in both the acoustic energy applied to the tissue and in their time durations (i.e., differ in their power settings), were used in this study. Efficacy and safety assessments included: Temperature measurement of skin and subcutaneous adipose tissue (SAT) visual inspection and ultrasound imaging of the thermally affected areas, histopathological assessment of tissue samples using hematoxylin & eosin, and Masson's trichrome stains and in situ cell death detection kit for apoptosis assessment. The long and short treatment modes led to a 13.2°C and 17.8°C rise from baseline, respectively, in the SAT, whereas skin surface temperature was practically unaffected. Visual, ultrasonographic, and histopathological evaluation of the treated area showed SAT ablation. No treatment-related changes were observed in the epidermis, dermis subcutaneous muscle and nerves, or in livers and kidneys of treated animals. Additionally, no significant changes from baseline in blood- and urine

  13. Italian chapter of the International Society of cardiovascular ultrasound expert consensus document on training requirements for noncardiologists using hand-carried ultrasound devices.

    PubMed

    Pelliccia, Francesco; Palmiero, Pasquale; Maiello, Maria; Losi, Maria-Angela

    2012-07-01

    Hand-carried ultrasound devices (HCDs), also named personal use echo, are pocket-size, compact, and battery-equipped echocardiographic systems. They have limited technical capabilities but offer some advantages compared with standard echocardiographic devices due to their simplicity of use, immediate availability at the patient's bedside, transportability, and relatively low cost. Current HCDs are considered as screening tools and are used to complement the physical examination by cardiologists. Many noncardiologic subspecialists, however, have adopted this technologic advancement rapidly raising the concern of an inappropriate use of HCD by health professionals who do not have any specific training. In keeping with the mission of the International Society of Cardiovascular Ultrasound to advance the science and art of cardiovascular ultrasound and encourage the knowledge of this subject, the purpose of this Expert Consensus document is to focus on the training for all health care professionals considering the use of HCD. Accordingly, this paper summarizes general aspects of HCD, such as technical characteristics and clinical indications, and then details the specific training requirements for noncardiologists (i.e., training program, minimum case load, duration, and certification of competence). © 2012, Wiley Periodicals, Inc.

  14. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  15. Carotid Doppler ultrasound findings in patients with left ventricular assist devices.

    PubMed

    Cervini, Patrick; Park, Soon J; Shah, Dipesh K; Penev, Irina E; Lewis, Bradley D

    2010-12-01

    Left ventricular assist devices (LVADs) have been used to treat advanced heart failure refractory to medical management, as bridge therapy to myocardial recovery, as bridge therapy to cardiac transplantation, or as destination therapy for patients with unfavorable transplant candidacy. Neurologic complications are some of the most common and devastating complications in these patients. Preoperative carotid ultrasound is, therefore, a standard evaluation in patients at risk for cerebrovascular disease. Postoperative carotid artery Doppler sonography is performed in those patients with neurologic symptoms. It is likely, therefore, that sonographers, radiologists, and other physicians working in a center where LVADs are implanted will likely encounter a carotid artery Doppler study in this patient group. To our knowledge, the carotid Doppler findings in these patients have never been published. We review the Doppler ultrasound findings in 6 patients after LVAD insertion.

  16. Programmable controlled mode-locked fiber laser using a digital micromirror device.

    PubMed

    Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-05-15

    A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.

  17. Contrast-enhanced transcranial two-dimensional ultrasound imaging using shear-mode conversion at low frequency.

    PubMed

    Lucht, Benjamin; Hubbell, Austin; Hynynen, Kullervo

    2013-02-01

    The distortion and attenuation of transcranial ultrasound (US) signals are significant problems in US imaging of the brain. Of the variety of proposed solutions, shear-mode transmission through the skull is one of the more recent options and has been shown to reduce distortion of the US beam. This study examined the effects of transcranial shear-mode transmission on the images of a contrast-agent-filled polytetrafluoroethylene tube produced by a 32-element 750 kHz linear phased array transducer through an ex vivo human skull section. Although the tube was successfully imaged using shear-mode transmission with subharmonic imaging in 6 of 9 cases, the tube was visible in only 1 of 9 cases for both the fundamental and the second harmonic frequencies. Some improvement in the location of the axial image was seen at the fundamental frequency using shear mode. No improvement was seen at the other two frequencies, but this may be due to low transducer sensitivity. As well, neither the presence of the skull nor the incident angle changed the distance at which signals from the two tubes could be resolved. With this transducer, these distances were found to be 5 mm laterally and 3 mm axially for the fundamental and second harmonic images, and 10 mm and 5 mm for the subharmonic images. The results show that the subharmonic signal was the most successful of the three examined in penetrating a thick skull but that the success comes at the cost of image resolution. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  19. Combined Use of Ultrasound Elastography and B-Mode Sonography for Differentiation of Benign and Malignant Circumscribed Breast Masses.

    PubMed

    Kim, Soo-Yeon; Park, Jeong Seon; Koo, Hye Ryoung

    2015-11-01

    To evaluate the diagnostic performance of combined B-mode sonography and ultrasound elastography for differentiation between benign and malignant breast masses with circumscribed margins. We analyzed 109 pathologically proven circumscribed breast masses. Two radiologists retrospectively reviewed B-mode sonograms and elastograms in consensus. Based on the American College of Radiology Breast Imaging Reporting and Data System, we determined categories of the masses on B-mode sonography. Elastographic scores were assessed by a 3-point scale (negative, 0; equivocal, 1; and positive, 2). When the elastographic score for a lesion was 0 or 2, we downgraded or upgraded the B-mode category, respectively; thus, the reclassified Breast Imaging Reporting and Data System category was defined as the "reclassification category." Mean category values for benign and malignant lesions were compared by a Student t test. The diagnostic performance of B-mode, elastographic, and reclassification assessments was compared by receiver operating characteristic curve analysis. The mean B-mode category (2.5 versus 1.7), elastographic score (1.7 versus 0.8), and reclassification category (3.2 versus 1.6) were significantly higher in malignant than benign lesions (P < .001). The area under the curve for reclassification assessment was significantly higher than that for B-mode sonography (0.916 versus 0.795; P < .05). With a cutoff value between 1 and 2, the specificity was increased from 26.5% to 42.9% after reclassification. For differentiation between benign and malignant circumscribed breast masses, combined use of B-mode sonography and elastography could provide a better diagnostic performance than B-mode sonography alone. © 2015 by the American Institute of Ultrasound in Medicine.

  20. Fast Track ultrasound protocol to detect acute complications after totally implantable venous access device placement.

    PubMed

    Wu, Chun-Yu; Lin, Feng-Sheng; Wang, Yi-Chia; Chou, Wei-Han; Lin, Wen-Ying; Sun, Wei-Zen; Lin, Chih-Peng

    2015-01-01

    The role of ultrasound examination in detection of postprocedure complications from totally implantable venous access devices (TIVAD) placement is still uncertain. In a cohort of 665 cancer outpatients, we assessed a quick ultrasound examination protocol in early detection of mechanical complications of catheterization. Immediately after TIVAD placement, an ultrasound examination and chest radiography were performed to detect hemothorax, pneumothorax, and catheter malposition. The two methods were compared. Of the 668 catheters inserted, 628 were placed into axillary veins and 40 into internal jugular veins. The ultrasound examination took 2.5 ± 1.1 min. No hemothorax was detected, and neither pneumothorax nor catheter malposition was evident among the 40 internal jugular vein cannulations. Ultrasound and chest radiography examinations of the 628 axillary vein cannulations detected five and four instances of pneumothorax, respectively. Ultrasound detected all six catheter malpositions into the internal jugular vein. However, ultrasound failed to detect two out of three malpositions in the contralateral brachiocephalic vein and one kinking inside the superior vena cava. Without revision surgery, the operating time was 34.1 ± 15.6 min. With revision surgery, the operating time was shorter when ultrasound detected catheter malposition than when chest radiography was used (96.8 ± 12.9 vs. 188.8 ± 10.3 min, p < 0.001). Postprocedure ultrasound examination is a quick and sensitive method to detect TIVAD-related pneumothorax. It also precisely detects catheter malposition to internal jugular vein thus reduces time needed for revision surgery while chest radiography remains necessary to confirm catheter final position.

  1. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user. Copyright © 2014

  2. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  3. Assessment of pelvic floor by three-dimensional-ultrasound in primiparous women according to delivery mode: initial experience from a single reference service in Brazil.

    PubMed

    Araujo Júnior, Edward; de Freitas, Rogério Caixeta Moraes; Di Bella, Zsuzsanna Ilona Katalin de Jármy; Alexandre, Sandra Maria; Nakamura, Mary Uchiyama; Nardozza, Luciano Marcondes Machado; Moron, Antonio Fernandes

    2013-03-01

    To evaluate changes to the pelvic floor of primiparous women with different delivery modes, using three-dimensional ultrasound. A prospective cross-sectional study on 35 primiparae divided into groups according to the delivery mode: elective cesarean delivery (n=10), vaginal delivery (n=16), and forceps delivery (n=9). Three-dimensional ultrasound on the pelvic floor was performed on the second postpartum day with the patient in a resting position. A convex volumetric transducer (RAB4-8L) was used, in contact with the large labia, with the patient in the gynecological position. Biometric measurements of the urogenital hiatus were taken in the axial plane on images in the rendering mode, in order to assess the area, anteroposterior and transverse diameters, average thickness, and avulsion of the levator ani muscle. Differences between groups were evaluated by determining the mean differences and their respective 95% confidence intervals. The proportions of levator ani muscle avulsion were compared between elective cesarean section and vaginal birth using Fisher's exact test. The mean areas of the urogenital hiatus in the cases of vaginal and forceps deliveries were 17.0 and 20.1 cm(2), respectively, versus 12.4 cm(2) in the Control Group (elective cesarean). Avulsion of the levator ani muscle was observed in women who underwent vaginal delivery (3/25), however there was no statistically significant difference between cesarean section and vaginal delivery groups (p=0.5). Transperineal three-dimensional ultrasound was useful for assessing the pelvic floor of primiparous women, by allowing pelvic morphological changes to be differentiated according to the delivery mode.

  4. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    PubMed

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  5. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  6. A scanned focused ultrasound device for hyperthermia: numerical simulation and prototype implementation

    NASA Astrophysics Data System (ADS)

    Meaney, Paul M.; Raynolds, Timothy; Geimer, Shireen D.; Potwin, Lincoln; Paulsen, Keith D.

    2004-07-01

    We are developing a scanned focused ultrasound system for hyperthermia treatment of breast cancer. Focused ultrasound has significant potential as a therapy delivery device because it can focus sufficient heating energy below the skin surface with minimal damage to intervening tissue. However, as a practical therapy system, the focal zone is generally quite small and requires either electronic (in the case of a phased array system) or mechanical steering (for a fixed bowl transducer) to cover a therapeutically useful area. We have devised a simple automated steering system consisting of a focused bowl transducer supported by three vertically movable rods which are connected to computer controlled linear actuators. This scheme is particularly attractive for breast cancer hyperthermia where the support rods can be fed through the base of a liquid coupling tank to treat tumors within the breast while coupled to our noninvasive microwave thermal imaging system. A MATLAB routine has been developed for controlling the rod motion such that the beam focal point scans a horizontal spiral and the subsequent heating zone is cylindrical. In coordination with this effort, a 3D finite element thermal model has been developed to evaluate the temperature distributions from the scanned focused heating. In this way, scanning protocols can be optimized to deliver the most uniform temperature rise to the desired location.

  7. Ultrasound microscope: the new field in ultrasound diagnostics

    NASA Astrophysics Data System (ADS)

    Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    A device which is a new stage in the development of medical equipment has been developed. The device works as an ultrasound microscope in vivo and provides 4 up to 32 colored histological image. It gives possibility to estimate tissue acoustic density with the help of 4 up to 32 gradation coloring different tissues and enables tissue microcirculation visualization. With the help of the device a doctor can objectify fatty hepatitis and cirrhosis, edema of different organs and tissues as well as microcirculation in organs and tissues (e.g. muscles, myocard and bone system). New promising applications of ultrasound systems in diagnostics and for choosing individual treatment tactics, with pathogenesis being taken into account, may be developed with the help of the device.

  8. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    NASA Technical Reports Server (NTRS)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

  9. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    NASA Astrophysics Data System (ADS)

    Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi

    2011-06-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).

  10. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  11. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  12. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  13. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  14. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  15. Closed-Loop Noninvasive Ultrasound Glucose Sensing and Insulin Delivery

    DTIC Science & Technology

    2007-09-01

    glucose sensing using the low-profile cymbal. Center of Excellence in Piezoelectric Materials and Devices, Penn Stater Conference Center Hotel, University...ultrasound patch” uses the cymbal, which is a flextensional transducer made of a circular piezoelectric ceramic sand- wiched between two metal end caps.14–17...PZT ceramic contained a shallow cavity beneath its inner surface. The fundamental mode of vibration is the flexing of the end caps caused by the

  16. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids.

    PubMed

    Held, Robert Thomas; Zderic, Vesna; Nguyen, Thuc Nghi; Vaezy, Shahram

    2006-02-01

    An ultrasound (US), image-guided high-intensity focused ultrasound (HIFU) device was developed for noninvasive ablation of uterine fibroids. The HIFU device was an annular phased array, with a focal depth range of 30-60 mm, a natural focus of 50 mm, and a resonant frequency of 3 MHz. The in-house control software was developed to operate the HIFU electronics drive system for inducing tissue coagulation at different distances from the array. A novel imaging algorithm was developed to minimize the HIFU-induced noise in the US images. The device was able to produce lesions in bovine serum albumin-embedded polyacrylamide gels and excised pig liver. The lesions could be seen on the US images as hyperechoic regions. Depths ranging from 30 to 60 mm were sonicated at acoustic intensities of 4100 and 6100 W/cm2 for 15 s each, with the latter producing average lesion volumes at least 63% larger than the former. Tissue sonication patterns that began distal to the transducer produced longer lesions than those that began proximally. The variation in lesion dimensions indicates the possible development of HIFU protocols that increase HIFU throughput and shorten tumor treatment times.

  17. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    PubMed

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multi-device studies of pedestal physics and confinement in the I-mode regime

    DOE PAGES

    Hubbard, A. E.; Osborne, T.; Ryter, F.; ...

    2016-07-05

    This paper describes joint ITPA studies of the I-mode regime, which features an edge thermal barrier together with L-mode-like particle and impurity transport and no Edge Localized Modes (ELMs). The regime has been demonstrated on the Alcator C-Mod, ASDEX Upgrade and DIII-D tokamaks, over a wide range of device parameters and pedestal conditions. Dimensionless parameters at the pedestal show overlap across devices and extend to low collisionality. When they are matched, pedestal temperature profiles are also similar. Pedestals are stable to peeling ballooning modes, consistent with lack of ELMs. Access to Imode is independent of heating method (neutral beam injection,more » Ion Cyclotron and/or Electron Cyclotron Resonance Heating). Normalized energy confinement H 98,y2 ≥ 1 has been achieved for a range of 3 ≤ q 95 ≤ 4.9 and scales favourably with power. Changes in turbulence in the pedestal region accompany the transition from L-mode to I-mode. The L-I threshold increases with plasma density and current, and with device size, but has a weak dependence on toroidal magnetic field B T. The upper limit of power for I-modes, which is set by I-H transitions, increases with B T and the power range is largest on Alcator C-Mod at B > 5 T. Finally, issues for extrapolation to ITER and other future fusion devices are discussed.« less

  19. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  20. Magnetic Control of Locked Modes in Present Devices and ITER

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Sabbagh, S.; Sweeney, R.; Hender, T.; Kirk, A.; La Haye, R. J.; Strait, E. J.; Ding, Y. H.; Rao, B.; Fietz, S.; Maraschek, M.; Frassinetti, L.; in, Y.; Jeon, Y.; Sakakihara, S.

    2014-10-01

    The toroidal phase of non-rotating (``locked'') neoclassical tearing modes was controlled in several devices by means of applied magnetic perturbations. Evidence is presented from various tokamaks (ASDEX Upgrade, DIII-D, JET, J-TEXT, KSTAR), spherical tori (MAST, NSTX) and a reversed field pinch (EXTRAP-T2R). Furthermore, the phase of interchange modes was controlled in the LHD helical device. These results share a common interpretation in terms of torques acting on the mode. Based on this interpretation, it is predicted that control-coil currents will be sufficient to control the phase of locking in ITER. This will be possible both with the internal coils and with the external error-field-correction coils, and might have promising consequences for disruption avoidance (by aiding the electron cyclotron current drive stabilization of locked modes), as well as for spatially distributing heat loads during disruptions. This work was supported in part by the US Department of Energy under DE-SC0008520, DE-FC-02-04ER54698 and DE-AC02-09CH11466.

  1. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  2. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    L are considered an indication for urinary retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. The Technology Being Reviewed Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. Review Strategy To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Summary of Findings Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One

  3. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    PubMed Central

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-01-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608

  4. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    NASA Astrophysics Data System (ADS)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  5. Contrast-enhanced ultrasonography vs B-mode ultrasound for visualization of intima-media thickness and detection of plaques in human carotid arteries.

    PubMed

    Shah, Benoy N; Chahal, Navtej S; Kooner, Jaspal S; Senior, Roxy

    2017-05-01

    Carotid intima-media thickness (IMT) and plaque are recognized markers of increased risk for cerebrovascular events. Accurate visualization of the IMT and plaques is dependent upon image quality. Ultrasound contrast agents improve image quality during echocardiography-this study assessed whether contrast-enhanced ultrasound (CEUS) improves carotid IMT visualization and plaque detection in an asymptomatic population. Individuals free from known cardiovascular disease, enrolled in a community study, underwent B-mode and CEUS carotid imaging. Each carotid artery was divided into 10 segments (far and near walls of the proximal, mid and distal segments of the common carotid artery, the carotid bulb, and internal carotid artery). Visualization of the IMT complex and plaque assessments was made during both B-mode and CEUS imaging for all enrolled subjects, a total of 175 individuals (mean age 65±9 years). Visualization of the IMT was significantly improved during CEUS compared with B-mode imaging, in both near and far walls of the carotid arteries (% IMT visualization during B-mode vs CEUS imaging: 61% vs 94% and 66% vs 95% for right and left carotid arteries, respectively, P<.001 for both). Additionally, a greater number of plaques were detected during CEUS imaging compared with B-mode imaging (367 plaques vs 350 plaques, P=.02). Contrast-enhanced ultrasound improves visualization of the intima-media complex, in both near and far walls, of the common and internal carotid arteries and permits greater detection of carotid plaques. Further studies are required to determine whether there is incremental clinical and prognostic benefit related to superior plaque detection by CEUS. © 2017, Wiley Periodicals, Inc.

  6. Photoacoustic image reconstruction from ultrasound post-beamformed B-mode image

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.

    2016-03-01

    A requirement to reconstruct photoacoustic (PA) image is to have a synchronized channel data acquisition with laser firing. Unfortunately, most clinical ultrasound (US) systems don't offer an interface to obtain synchronized channel data. To broaden the impact of clinical PA imaging, we propose a PA image reconstruction algorithm utilizing US B-mode image, which is readily available from clinical scanners. US B-mode image involves a series of signal processing including beamforming, followed by envelope detection, and end with log compression. Yet, it will be defocused when PA signals are input due to incorrect delay function. Our approach is to reverse the order of image processing steps and recover the original US post-beamformed radio-frequency (RF) data, in which a synthetic aperture based PA rebeamforming algorithm can be further applied. Taking B-mode image as the input, we firstly recovered US postbeamformed RF data by applying log decompression and convoluting an acoustic impulse response to combine carrier frequency information. Then, the US post-beamformed RF data is utilized as pre-beamformed RF data for the adaptive PA beamforming algorithm, and the new delay function is applied by taking into account that the focus depth in US beamforming is at the half depth of the PA case. The feasibility of the proposed method was validated through simulation, and was experimentally demonstrated using an acoustic point source. The point source was successfully beamformed from a US B-mode image, and the full with at the half maximum of the point improved 3.97 times. Comparing this result to the ground-truth reconstruction using channel data, the FWHM was slightly degraded with 1.28 times caused by information loss during envelope detection and convolution of the RF information.

  7. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.

    PubMed

    Tadayon, Mohammad Amin; Ashkenazi, Shai

    2013-09-01

    The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.

  8. Reliability tests and guidelines for B-mode ultrasound assessment of central adiposity.

    PubMed

    Stoner, Lee; Chinn, Victoria; Cornwall, Jon; Meikle, Grant; Page, Rachel; Lambrick, Danielle; Faulkner, James

    2015-11-01

    Ultrasound represents a validated and relatively inexpensive diagnostic device for assessing central adiposity; however, widespread adoption has been impeded by the lack of reliable standard operating procedures. To examine the reliability of, and describe guidelines for, ultrasound-derived recording of intra-abdominal fat thickness (IAT) and maximal preperitoneal fat thickness (PFT). Ultrasound scans were obtained from 20 adults (50% female, 26 ± 7 years, 24·5 kg/m(2) ) on three different mornings. IAT was assessed 2 cm above the umbilicus (transverse plane) measuring from linea alba to: (i) anterior aorta, (ii) posterior aorta and (iii) anterior aspect of the vertebral column. PFT was measured from linea alba to visceral peritoneum in (i) sagittal and (ii) transverse planes, immediately over and inferior to the xiphi-sternum, respectively. For IAT, the criterion intraclass correlation coefficient (ICC) of 0·75 was exceeded for measurements to anterior aorta (0·95), posterior aorta (0·94) and vertebra (0·96). The reliability coefficient expressed as a percentage of the mean (RC%) was lowest (better) for measurement to vertebrae (9·8%). For PFT, mean thickness was comparable for sagittal (1·74 cm) and transverse (1·76 cm) planes; ICC values were also comparable for both planes (0·98 vs. 0·98, respectively), as were RC% (7·5% vs. 7·1%, respectively). IAT assessments to the vertebra were marginally more reliable than those to other structures. While PFT assessments were equally reliable for both measurements planes, precise probe placement was easier for the sagittal plane. Based on these findings, guidelines for the reliable measurement of central adiposity using ultrasound are presented. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Photoacoustics and speed-of-sound dual mode imaging with a long depth-of-field by using annular ultrasound array.

    PubMed

    Ding, Qiuning; Tao, Chao; Liu, Xiaojun

    2017-03-20

    Speed-of-sound and optical absorption reflect the structure and function of tissues from different aspects. A dual-mode microscopy system based on a concentric annular ultrasound array is proposed to simultaneously acquire the long depth-of-field images of speed-of-sound and optical absorption of inhomogeneous samples. First, speed-of-sound is decoded from the signal delay between each element of the annular array. The measured speed-of-sound could not only be used as an image contrast, but also improve the resolution and accuracy of spatial location of photoacoustic image in inhomogeneous acoustic media. Secondly, benefitting from dynamic focusing of annular array and the measured speed-of-sound, it is achieved an advanced acoustic-resolution photoacoustic microscopy with a precise position and a long depth-of-field. The performance of the dual-mode imaging system has been experimentally examined by using a custom-made annular array. The proposed dual-mode microscopy might have the significances in monitoring the biological physiological and pathological processes.

  10. Endobronchial Ultrasound-guided Transbronchial Needle Aspiration With a 19-G Needle Device.

    PubMed

    Tremblay, Alain; McFadden, Seamus; Bonifazi, Martina; Luzzi, Valentina; Kemp, Samuel V; Gasparini, Stefano; Chee, Alex; MacEachern, Paul; Dumoulin, Elaine; A Hergott, Christopher; Shah, Pallav L

    2018-05-16

    Endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration is a well-established first-line minimally invasive modality for mediastinal lymph node sampling. Although results are excellent overall, the technique underperforms in certain situations. We aimed to describe our results using a new 19-G EBUS-guided transbronchial needle aspiration device to determine safety and feasibility of this approach. We completed a retrospective chart review of all cases performed to the time of data analysis at each of 3 study sites. A total of 165 procedures were performed with a total of 297 individual lymph nodes or lesions sampled with the 19-G device by 10 bronchoscopists. Relatively large targets were selected for sampling with the device (mean lymph node size: 20.4 mm; lung lesions: 33.5 mm). A specific diagnosis was obtained in 77.3% of cases with an additional 13.6% of cases with benign lymphocytes, for a procedural adequacy rate of 90.9%. Procedure sample adequacy was 88.6% in suspected malignant cases, 91.0% in suspected sarcoidosis/lymphadenopathy cases, and 85.7% of cases with suspected lymphoma. On a per-node basis, a specific diagnosis was noted in 191/280 (68.2%) of samples, with an additional 61 showing benign lymphocytes for a per-node sample adequacy rate of 90%. One case (0.6%) of intraprocedure bleeding was noted. A new flexible 19-G EBUS needle was successfully and safely applied in a large patient cohort for sampling of lung and enlarged mediastinal lesions with high diagnostic rates across clinical indications.

  11. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    PubMed

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also

  12. Comparison of Two Devices for Intraoperative Portal Venous Flow Measurement in Living-Donor Liver Transplantation: Transit Time Ultrasound and Conventional Doppler Ultrasound.

    PubMed

    Wang, H-K; Chen, C-Y; Lin, N-C; Liu, C-S; Loong, C-C; Lin, Y-H; Lai, Y-C; Chiou, H-J

    2018-05-01

    Intraoperative portal venous flow measurement provides surgeons with instant guidance for portal flow modulation during living-donor liver transplantation (LDLT). In this study, we compared the agreement of portal flow measurement obtained by 2 devices: transit time ultrasound (TTU) and conventional Doppler ultrasound (CDU). Fifty-four recipients of LDLT underwent intraoperative measurement of portal flow after completion of vascular anastomosis of the implanted partial liver graft. Both TTU and CDU were used concurrently. Agreement of TTU and CDU was assessed by intraclass correlation coefficient using a model of 2-way random effects, absolute agreement, and single measurement. A Bland-Altman plot was applied to assess the variability between the 2 devices. The mean, median, and range of portal venous flow was 1456, 1418, and 117 to 2776 mL/min according to TTU; and 1564, 1566, and 119 to 3216 mL/min according to CDU. The intraclass correlation coefficient of portal venous flow between TTU and CDU was 0.68 (95% confidence interval, 0.51-0.80). The Bland-Altman plots revealed an average variation of 4.8% between TTU and CDU but with a rather wide 95% confidence interval of variation ranging from -57.7% to 67.4%. Intraoperative TTU and CDU showed moderate agreement in portal flow measurement. However, a relatively wide range of variation exists between TTU and CDU, indicating that data obtained from the 2 devices may not be interchangeable. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry

    NASA Astrophysics Data System (ADS)

    Huber, Thomas M.; Fatemi, Mostafa; Kinnick, Randall R.; Greenleaf, James F.

    2004-05-01

    The goal of this experiment was to excite and measure, in a noncontact manner, the vibrational modes of the reed from a reed organ pipe. To perform ultrasound stimulated excitation, two ultrasound beams in air of different frequencies were directed at the reed; the audio-range beat frequency between these ultrasound beams induced vibrations. The resulting vibrational deflection shapes were measured with a scanning vibrometer. The modes of any relatively small object can be studied in air using this technique. For a 36 mm by 7 mm clamped brass reed cantilever, displacements and velocites of 5 μ and 4 mm/s could be imparted at the fundamental frequency of 145 Hz. Using the same ultrasound transducer, excitation across the entire range of audio frequencies was obtained, which was not possible using audio excitation with a speaker. Since the beam was focused on the reed, ultrasound stimulated excitation eliminated background effects observed during mechanical shaker excitation, such as vibrations of clamps and supports. We will discuss the results obtained using single, dual, and confocal ultrasound transducers in AM and unmodulated CW modes, along with results obtained using a mechanical shaker and audio excitation using a speaker.

  14. Aesthetic ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Barthe, Peter G.; Slayton, Michael H.

    2012-10-01

    Ultrasound provides key benefits in aesthetic surgery compared to laser and RF based energy sources. We present results of research, development, pre-clinical and clinical studies, regulatory clearance and commercialization of a revolutionary non-invasive aesthetic ultrasound imaging and therapy system. Clinical applications for this platform include non-invasive face-lifts, brow-lifts, and neck-lifts achieved through fractionated treatment of the superficial musculoaponeurotic system (SMAS) and subcutaneous tissue. Treatment consists of placing a grid of micro-coagulative lesions on the order of 1 mm3 at depths in skin of 1 to 6 mm, source energy levels of 0.1 to 3 J, and spacing on the order of 1.5 mm, from 4 to 10 MHz dual-mode image/treat transducers. System details are described, as well as a regulatory pathway consisting of acoustic and bioheat simulations, source characterization (hydrophone, radiation force, and Schlieren), pre-clinical studies (porcine skin ex vivo, in vivo, and human cadaver), human safety studies (treat and resect) and efficacy trials which culminated in FDA clearance (2009) under a new device classification and world-wide usage. Clinical before and after photographs are presented which validate the clinical approach.

  15. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.

    PubMed

    Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob

    2017-12-11

    We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).

  16. Experimental validation of A-mode ultrasound acquisition system for computer assisted orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo

    2009-02-01

    Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).

  17. Feasibility of Using Lateral Mode Coupling Method for a Large Scale Ultrasound Phased Array for Noninvasive Transcranial Therapy

    PubMed Central

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    A hemispherical-focused, ultrasound phased array was designed and fabricated using 1372 cylindrical piezoelectric transducers that utilize lateral coupling for noninvasive transcranial therapy. The cylindrical transducers allowed the electrical impedance to be reduced by at least an order of magnitude, such that effective operation could be achieved without electronic matching circuits. In addition, the transducer elements generated the maximum acoustic average surface intensity of 27 W/cm2. The array, driven at the low (306 kHz) or high frequency (840 kHz), achieved excellent focusing through an ex vivo human skull and an adequate beam steering range for clinical brain treatments. It could electronically steer the ultrasound beam over cylindrical volumes of 100 mm in diameter and 60 mm in height at 306 kHz, and 30-mm in diameter and 30-mm in height at 840 kHz. A scanning laser vibrometer was used to investigate the radial and length mode vibrations of the element. The maximum pressure amplitudes through the skull at the geometric focus were predicted to be 5.5 MPa at 306 kHz and 3.7 MPa at 840 kHz for RF power of 1 W on each element. This is the first study demonstrating the feasibility of using cylindrical transducer elements and lateral coupling in construction of ultrasound phased arrays. PMID:19695987

  18. Pocket ultrasound device as a complement to physical examination for ascites evaluation and guided paracentesis.

    PubMed

    Keil-Ríos, Daniel; Terrazas-Solís, Hiram; González-Garay, Alejandro; Sánchez-Ávila, Juan Francisco; García-Juárez, Ignacio

    2016-04-01

    The pocket ultrasound device (PUD) is a new tool that may be of use in the early detection of ascites. Abdominal ultrasound-guided paracentesis has been reported to decrease the rate of complications due to the procedure, but must be performed in a healthcare setting; this new tool may be a useful on an ambulatory basis. The aim of this study was to determine the diagnostic usefulness of the PUD in the diagnosis of ascites and the safety of guided paracentesis. We conducted a retrospective study that included adult patients suspected of having ascites and in whom an evaluation was performed with the PUD to identify it. Concordance with abdominal ultrasound (AUS) was determined with the Kappa coefficient. Sensitivity (Se), specificity (Sp) and likelihood ratios (LR) were determined and compared with physical examination, AUS, computed tomography and procurement of fluid by paracentesis. Complications resulting from the guided paracentesis were analyzed. 89 participants were included and 40 underwent a paracentesis. The PUD for ascites detection had 95.8 % Se, 81.8 % Sp, 5.27 +LR and 0.05 -LR. It had a concordance with AUS of 0.781 (p < 0.001). Technical problems during the guided paracentesis were present in only two participants (5 %) and three patients (7.5 %) developed minor complications that required no further intervention. There were no severe complications or deaths. This study suggests that the PUD is a reliable tool for ascites detection as a complement to physical examination and appears to be a safe method to perform guided paracentesis.

  19. Transcranial power M-mode Doppler ultrasound for diagnosis of patent foramen ovale

    NASA Astrophysics Data System (ADS)

    Moehring, Mark; Spencer, Merrill

    2005-04-01

    Patent foramen ovale (PFO) is a right-to-left shunt (RLS) which communicates blood from the right to left atrium of the heart. PFO has been associated with stroke and, more recently, with migraine headache. Diagnosis of RLS can be accomplished effectively with transcranial power M-mode Doppler ultrasound (PMD). PMD is a modality which can be performed without the sedation required by the more invasive diagnostic technique using transesophageal echocardiography. PMD for this application consists of 2 MHz pulse Doppler ultrasound with placement of sample gates at 2 mm intervals along the single-transducer beam axis, and 8 kHz pulse repetition rate (PMD100M, Spencer Technologies). Doppler power versus depth is constructed every 4ms, using 33 sample gates. Bubble microemboli injected in the venous system and moving across a PFO present as high intensity tracks on a PMD image, as emboli transit from the heart to the brain and through the observed cerebral vasculature. Use of PMD in this context has been reported in the clinical literature [M. P. Spencer, M. A. Moehring, J. Jesurum et al, J. Neuroimaging 14, 342-349 (2004)]. This talk surveys the basic technical features of PMD for sensing PFO-related showers of bubble microemboli, and how these features provide clues to the severity of PFO.

  20. Deviations of frequency and the mode of vibration of commercially available whole-body vibration training devices.

    PubMed

    Kaeding, T S

    2015-06-01

    Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.

  1. Comparison of sound speed measurements on two different ultrasound tomography devices

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-03-01

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data

  2. Automatic segmentation and measurements of gestational sac using static B-mode ultrasound images

    NASA Astrophysics Data System (ADS)

    Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Farren, Jessica; Al-karawi, Dhurgham; Bourne, Tom; Jassim, Sabah

    2016-05-01

    Ultrasound imagery has been widely used for medical diagnoses. Ultrasound scanning is safe and non-invasive, and hence used throughout pregnancy for monitoring growth. In the first trimester, an important measurement is that of the Gestation Sac (GS). The task of measuring the GS size from an ultrasound image is done manually by a Gynecologist. This paper presents a new approach to automatically segment a GS from a static B-mode image by exploiting its geometric features for early identification of miscarriage cases. To accurately locate the GS in the image, the proposed solution uses wavelet transform to suppress the speckle noise by eliminating the high-frequency sub-bands and prepare an enhanced image. This is followed by a segmentation step that isolates the GS through the several stages. First, the mean value is used as a threshold to binarise the image, followed by filtering unwanted objects based on their circularity, size and mean of greyscale. The mean value of each object is then used to further select candidate objects. A Region Growing technique is applied as a post-processing to finally identify the GS. We evaluated the effectiveness of the proposed solution by firstly comparing the automatic size measurements of the segmented GS against the manual measurements, and then integrating the proposed segmentation solution into a classification framework for identifying miscarriage cases and pregnancy of unknown viability (PUV). Both test results demonstrate that the proposed method is effective in segmentation the GS and classifying the outcomes with high level accuracy (sensitivity (miscarriage) of 100% and specificity (PUV) of 99.87%).

  3. A new approach for the screening of carotid lesions: a 'fast-track' method with the use of new generation hand-held ultrasound devices.

    PubMed

    Aboyans, V; Lacroix, P; Jeannicot, A; Guilloux, J; Bertin, F; Laskar, M

    2004-09-01

    We assessed the usefulness of fast-track neck sonography with a new-generation hand-held ultrasound scanner in the detection of > or =60% carotid stenosis. Patients with a past history of atherosclerotic disease or presence of risk factors were enrolled. All had fast-track carotid screening with a hand-held ultrasound scanner. Initial assessment was performed with our quick imaging protocol. A second examiner performed a conventional complete carotid duplex as gold-standard. We enrolled 197 consecutive patients with a mean age of 67 years (range 35-94). A carotid stenosis >60% was detected in 13 cases (6%). The sensitivity, specificity, positive and negative predictive value of fast-track sonography was 100%, 64%, 17% and 100%, respectively. Concomitant power Doppler imaging during the fast-track method did not improve accuracy. The use of a fast-track method with a hand-held ultrasound device can reduce the number of unnecessary carotid Duplex and enhance the screening efficiency without missing significant carotid stenoses.

  4. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.

    PubMed

    Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav

    2012-12-01

    Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.

  5. Compact single mode tunable laser using a digital micromirror device.

    PubMed

    Havermeyer, Frank; Ho, Lawrence; Moser, Christophe

    2011-07-18

    The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.

  6. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    PubMed Central

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201

  7. Comparison of Two Different Ultrasound Devices Using Strain Elastography Technology in the Diagnosis of Breast Lesions Related to the Histologic Results.

    PubMed

    Farrokh, André; Schaefer, Fritz; Degenhardt, Friedrich; Maass, Nicolai

    2018-05-01

    This study was conducted to provide evidence that elastograms of two different devices and different manufacturers using the same technical approach provide the same diagnoses. A total of 110 breast lesions were prospectively analysed by two experts in ultrasound, using the strain elastography function from two different manufacturers (Hitachi HI-RTE, Hitachi Medical Systems, Wiesbaden, Germany; and Siemens eSie Touch, Siemens Medical Systems, Erlangen, Germany). Results were compared with the histopathologic results. Applying the Bowker test of symmetry, no statistically significant difference between the two elastography functions of these two devices was found (p = 0.120). The Cohen's kappa of k = 0.591 showed moderate strength of agreement between the two elastograms. The two examiners yielded moderate strength of agreement analysing the elastograms (Hitachi HI-RTE, k = 0.478; Siemens eSie Touch, k = 0.441). In conclusion, evidence is provided that elastograms of the same lesion generated by two different ultrasound devices equipped with a strain elastography function do not significantly differ. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  8. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies

    PubMed Central

    Radziemski, Leon; Makin, Inder Raj S.

    2015-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10 – 15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5 hours of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. PMID:26243566

  9. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    PubMed

    Pelz, Johann Otto; Weinreich, Anna; Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard imaging

  10. Optical Micromachined Ultrasound Transducers (OMUT)-- A New Approach for High Frequency Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays, however, in scaling the technology to sizes required for high frequency operation (> 20 MHz), it encounters substantial difficulties in fabrication and signal transduction efficiency. These limitations particularly affect the design of intravascular ultrasound (IVUS) imaging probes whose operating frequency can approach 60 MHz. Optical technology has been proposed and investigated for several decades as an alternative approach for high frequency ultrasound transducers. However, to apply this promising technology in guiding clinical operations such as in interventional cardiology, brain surgery, and laparoscopic surgery further raise in the sensitivity is required. Here, in order to achieve the required sensitivity for an intravascular ultrasound imaging probe, we introduce design changes making use of alternative receiver mechanisms. First, we present an air cavity detector that makes use of a polymer membrane for increased mechanical deflection. We have also significantly raised the thin film detector sensitivity by improving its optical characteristics. This can be achieved by inducing a refractive index feature inside the Fabry-Perot resonator that simply creates a waveguide between the two mirrors. This approach eliminates the loss in energy due to diffraction in the cavity, and therefore the Q-factor is only limited by mirror loss and absorption. To demonstrate this optical improvements, a waveguide Fabry-Perot resonator has been fabricated consisting of two dielectric Bragg reflectors with a layer of photosensitive polymer between them. The measured finesse of the fabricated resonator was 692, and the Q-factor was 55000. The fabrication process of this device has been modified to fabricate an ultrasonically testable waveguide Fabry-Perot resonator. By applying this method, we have achieved a noise equivalent pressure of 178 Pa over a bandwidth of 28 MHz or 0.03 Pa/Hz1/2 which

  11. Microscale Characterization of the Viscoelastic Properties of Hydrogel Biomaterials using Dual-Mode Ultrasound Elastography

    PubMed Central

    Hong, Xiaowei; Stegemann, Jan P.; Deng, Cheri X.

    2016-01-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger’s viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. PMID:26928595

  12. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.

    PubMed

    Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X

    2016-05-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    NASA Astrophysics Data System (ADS)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  14. Randomized sham-controlled trial to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for noninvasive body sculpting.

    PubMed

    Jewell, Mark L; Baxter, Richard A; Cox, Sue Ellen; Donofrio, Lisa M; Dover, Jeffrey S; Glogau, Richard G; Kane, Michael A; Weiss, Robert A; Martin, Patrick; Schlessinger, Joel

    2011-07-01

    High-intensity focused ultrasound presents a noninvasive approach to body sculpting for nonobese patients. The purpose of this study was to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for sculpting of the abdomen and flanks. Adults (aged 18 to 65 years) with subcutaneous abdominal fat greater than or equal to 2.5 cm thick who met screening criteria were randomized to receive high-intensity focused ultrasound treatment of the anterior abdomen and flanks at energy levels (a total of three passes each) of 47 J/cm (141 J/cm total), 59 J/cm (177 J/cm), or 0 J/cm (no energy applied, sham control). The primary endpoint was change from baseline waist circumference at the iliac crest level at posttreatment week 12. Subjective aesthetic assessments included the Global Aesthetic Improvement Scale and a patient satisfaction questionnaire. Safety assessments included adverse events, laboratory values, and physical examinations. For the primary endpoint, in the intent-to-treat population, statistical significance versus sham was achieved for the 59-J/cm (-2.44; p = 0.01) but not the 47-J/cm treatment group (-2.06 cm; p = 0.13). In a per-protocol population, statistical significance versus sham was achieved for both the 59-J/cm (-2.52 cm; p = 0.002) and the 47-J/cm treatment groups (-2.10 cm; p = 0.04). Investigator subjective measures of global aesthetic improvement and patient satisfaction also favored each active treatment versus sham. Adverse events included mild to moderate discomfort, bruising, and edema. Laboratory values and physical examinations were unremarkable. Treatment with this high-intensity focused ultrasound device reduced waist circumference and was generally well tolerated for noninvasive body sculpting. Reduction in waist circumference was statistically significant with both active treatments (per protocol). Therapeutic, II.(Figure is included in full-text article.).

  15. Rodent wearable ultrasound system for wireless neural recording.

    PubMed

    Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M

    2017-07-01

    Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.

  16. Minimally-invasive Ultrasound Devices for Treating Low Back Pain

    NASA Astrophysics Data System (ADS)

    Nau, William; Diederich, C.; Shu, R.; Kinsey, A.; Lotz, J.; Ferrier, W.; Sutton, J.; Pellegrino, R.

    2006-05-01

    demonstrated with both applicator design configurations. Results from these studies demonstrated the capability to control temperature distributions within targeted regions of the disc using interstitial ultrasound with greater thermal penetration than can be achieved with the RF heating devices currently in clinical use. Thus interstitial ultrasound offers a potential alternative heating modality for the clinical management of low back pain.

  17. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focussing on the diagnostic reliability.

    PubMed

    Bruyn, George A W; Hanova, Petra; Iagnocco, Annamaria; d'Agostino, Maria-Antonietta; Möller, Ingrid; Terslev, Lene; Backhaus, Marina; Balint, Peter V; Filippucci, Emilio; Baudoin, Paul; van Vugt, Richard; Pineda, Carlos; Wakefield, Richard; Garrido, Jesus; Pecha, Ondrej; Naredo, Esperanza

    2014-11-01

    To develop the first ultrasound scoring system of tendon damage in rheumatoid arthritis (RA) and assess its intraobserver and interobserver reliability. We conducted a Delphi study on ultrasound-defined tendon damage and ultrasound scoring system of tendon damage in RA among 35 international rheumatologists with experience in musculoskeletal ultrasound. Twelve patients with RA were included and assessed twice by 12 rheumatologists-sonographers. Ultrasound examination for tendon damage in B mode of five wrist extensor compartments (extensor carpi radialis brevis and longus; extensor pollicis longus; extensor digitorum communis; extensor digiti minimi; extensor carpi ulnaris) and one ankle tendon (tibialis posterior) was performed blindly, independently and bilaterally in each patient. Intraobserver and interobserver reliability were calculated by κ coefficients. A three-grade semiquantitative scoring system was agreed for scoring tendon damage in B mode. The mean intraobserver reliability for tendon damage scoring was excellent (κ value 0.91). The mean interobserver reliability assessment showed good κ values (κ value 0.75). The most reliable were the extensor digiti minimi, the extensor carpi ulnaris, and the tibialis posterior tendons. An ultrasound reference image atlas of tenosynovitis and tendon damage was also developed. Ultrasound is a reproducible tool for evaluating tendon damage in RA. This study strongly supports a new reliable ultrasound scoring system for tendon damage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation.

    PubMed

    Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X

    2012-08-01

    The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.

  19. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea.

    PubMed

    Sforza, Alfonso; Mancusi, Costantino; Carlino, Maria Viviana; Buonauro, Agostino; Barozzi, Marco; Romano, Giuseppe; Serra, Sossio; de Simone, Giovanni

    2017-06-19

    The availability of ultra-miniaturized pocket ultrasound devices (PUD) adds diagnostic power to the clinical examination. Information on accuracy of ultrasound with handheld units in immediate differential diagnosis in emergency department (ED) is poor. The aim of this study is to test the usefulness and accuracy of lung ultrasound (LUS) alone or combined with ultrasound of the heart and inferior vena cava (IVC) using a PUD for the differential diagnosis of acute dyspnea (AD). We included 68 patients presenting to the ED of "Maurizio Bufalini" Hospital in Cesena (Italy) for AD. All patients underwent integrated ultrasound examination (IUE) of lung-heart-IVC, using PUD. The series was divided into patients with dyspnea of cardiac or non-cardiac origin. We used 2 × 2 contingency tables to analyze sensitivity, specificity, positive predictive value and negative predictive value of the three ultrasonic methods and their various combinations for the diagnosis of cardiogenic dyspnea (CD), comparing with the final diagnosis made by an independent emergency physician. LUS alone exhibited a good sensitivity (92.6%) and specificity (80.5%). The highest accuracy (90%) for the diagnosis of CD was obtained with the combination of LUS and one of the other two methods (heart or IVC). The IUE with PUD is a useful extension of the clinical examination, can be readily available at the bedside or in ambulance, requires few minutes and has a reliable diagnostic discriminant ability in the setting of AD.

  20. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs

    PubMed Central

    Stukel, Jessica; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca; Exner, Agata A.

    2015-01-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90± 2.58*10−5 a.u. compared to non-fiber forming intensity at 2.74± 0.36*10−5 a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5 ± 0.8*10−5 a.u. in 1 day live cells compared to 2.26 ± 0.39*10−5 a.u. in fixed cells at a concentration of 1*106 cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing cell density. Results demonstrate the

  1. Ultrasound skin tightening.

    PubMed

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Design evolution enhances patient compliance for low-intensity pulsed ultrasound device usage

    PubMed Central

    Pounder, Neill M; Jones, John T; Tanis, Kevin J

    2016-01-01

    Poor patient compliance or nonadherence with prescribed treatments can have a significant unfavorable impact on medical costs and clinical outcomes. In the current study, voice-of-the-customer research was conducted to aid in the development of a next-generation low-intensity pulsed ultrasound (LIPUS) bone healing product. An opportunity to improve patient compliance reporting was identified, resulting in the incorporation into the next-generation device of a visual calendar that provides direct feedback to the patient, indicating days for which they successfully completed treatment. Further investigation was done on whether inclusion of the visual calendar improved patient adherence to the prescribed therapy (20 minutes of daily treatment) over a 6-month period. Thus, 12,984 data files were analyzed from patients prescribed either the earlier- or the next-generation LIPUS device. Over the 6-month period, overall patient compliance was 83.8% with the next-generation LIPUS device, compared with 74.2% for the previous version (p<0.0001). Incorporation of the calendar feature resulted in compliance never decreasing below 76% over the analysis period, whereas compliance with the earlier-generation product fell to 51%. A literature review on the LIPUS device shows a correlation between clinical effectiveness and compliance rates more than 70%. Incorporation of stakeholder feedback throughout the design and innovation process of a next-generation LIPUS device resulted in a measurable improvement in patient adherence, which may help to optimize clinical outcomes. PMID:27942237

  3. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. From a formal training program in musculoskeletal ultrasound (MSUS) to a high reproducibility for Doppler ultrasound in rheumatoid arthritis.

    PubMed

    Villota, Orlando; Diaz, Mario; Ceron, Carmen; Moller, Ingrid; Naredo, Esperanza; Saaibi, Diego Luis

    2017-07-28

    To assess the intra- and inter-observer reliability of ultrasound (US) in scoring B-mode, Doppler synovitis and combined B-mode and Doppler synovitis scores in different peripheral joints of rheumatoid arthritis (RA) patients. Four rheumatologists with a formal training in musculoskeletal US (MSKUS) particularly focus on definitions and scoring synovitis on B-mode and Doppler mode participated in a patient-based reliability exercise on 16 active RA patients. The four rheumatologists independently and consecutively performed a B-mode and power Doppler (PD) US assessment of 7 joints of each patient in two rounds in a blinded fashion. Each joint was semi quantitatively scored from 0 to 3 for B-mode synovitis (BS), Doppler synovitis (DS), and combined B-mode/Doppler synovitis (CS). Intraobserver reliability was assessed by Cohen's κ. Interobserver reliability was assessed by unweight Light's κ. The mean prevalence of synovitis on B-mode was 83% of joints; scores ranging from grade 1 in 18% of joints, to grade 3 in 33%. In 55% of joints synovial PD signal was detected and the distribution of scores range from 14% of joints for grade 3, to 26% for grade 2. After a total of 448 joints scanned with 896 adquired images our intraobserver and interobserver reliability was good to excellent for most of the joints. Formal, structured and continuous training in musculoskeletal ultrasound would bring a good to excellent reproducibility in rheumatological hands with a high reliability in real time acquisition BS, DS and CS modalities for scoring synovitis in patients with active rheumatoid arthritis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    PubMed Central

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  6. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber.

    PubMed

    Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji

    2012-10-22

    We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.

  7. Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments.

    PubMed

    Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H

    2006-12-01

    To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (p<0.01) and 0.328 (p<0.05), respectively. The ultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.

  8. Development of a Mechanical Scanning Device With High-Frequency Ultrasound Transducer for Ultrasonic Capsule Endoscopy.

    PubMed

    Wang, Xingying; Seetohul, Vipin; Chen, Ruimin; Zhang, Zhiqiang; Qian, Ming; Shi, Zhehao; Yang, Ge; Mu, Peitian; Wang, Congzhi; Huang, Zhihong; Zhou, Qifa; Zheng, Hairong; Cochran, Sandy; Qiu, Weibao

    2017-09-01

    Wireless capsule endoscopy has opened a new era by enabling remote diagnostic assessment of the gastrointestinal tract in a painless procedure. Video capsule endoscopy is currently commercially available worldwide. However, it is limited to visualization of superficial tissue. Ultrasound (US) imaging is a complementary solution as it is capable of acquiring transmural information from the tissue wall. This paper presents a mechanical scanning device incorporating a high-frequency transducer specifically as a proof of concept for US capsule endoscopy (USCE), providing information that may usefully assist future research. A rotary solenoid-coil-based motor was employed to rotate the US transducer with sectional electronic control. A set of gears was used to convert the sectional rotation to circular rotation. A single-element focused US transducer with 39-MHz center frequency was used for high-resolution US imaging, connected to an imaging platform for pulse generation and image processing. Key parameters of US imaging for USCE applications were evaluated. Wire phantom imaging and tissue phantom imaging have been conducted to evaluate the performance of the proposed method. A porcine small intestine specimen was also used for imaging evaluation in vitro. Test results demonstrate that the proposed device and rotation mechanism are able to offer good image resolution ( [Formula: see text]) of the lumen wall, and they, therefore, offer a viable basis for the fabrication of a USCE device.

  9. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    PubMed

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p < 0.01). This study revealed that the complete peripheral necrosis barrier within the target tissues can defined using linear-scanned HIFU in an isolated porcine liver perfusion model. Additionally, the flow rate in the major hepatic vessels may play an important role in the use of the peripheral ablation mode, and this novel mode of ablation may enhance the therapeutic efficacy and tolerability of the

  10. An Energy-Efficient Sleep Mode in IEEE 802.15.4 by Considering Sensor Device Mobility

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Lee, Jun; Hong, Choong Seon; Lee, Sungwon

    The current version of IEEE 802.15.4 MAC protocol does not support energy-efficient mobility for the low-power device. In this paper, we propose an energy-efficient sleep mode as part of the IEEE 802.15.4 that can conserve energy by considering mobility of mobile sensor devices. The proposed energy-efficient sleep mode dynamically extends the sleep interval if there is no data to transmit from the device or receive from corresponding nodes.

  11. Feasibility of remote real-time guidance of a cardiac examination performed by novices using a pocket-sized ultrasound device.

    PubMed

    Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J

    2013-01-01

    Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  12. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  13. Fast Conformal Thermal Ablation in the Prostate with Transurethral Multi-Sectored Ultrasound Devices and MR Guidance

    NASA Astrophysics Data System (ADS)

    Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Pauly, Kim Butts; Rieke, Viola; Sommer, Graham

    2007-05-01

    Transurethral ultrasound applicators incorporating an array of multisectored tubular transducers were evaluated in theoretical simulations and in vivo canine prostates under MR guidance as a method for fast, conformal thermal therapy of the prostate. Comprehensive simulations with a biothermal model investigated the effect on lesion creation of sector size, perfusion, treatment time, rectal cooling, prostate target dimensions, and feedback controller parameters (maximum temperature, pilot points at boundary, update times). In vivo canine prostates (n = 4) were treated with trisectored ultrasound transducers (3 mm OD) under MR temperature monitoring to contour the ablation zone (>52 C for 1-2 min) to the boundary of the prostate. Contiguous thermal lesions extended 2 cm in radius from the urethra in less than 15 min and independent sector control simultaneously allowed for conformal treatment in the angular dimension. Experiments investigated sequential translation of the transducer assembly within the catheter for tailoring heat treatments to different partitions in the prostate (base, apex) without changing the initial setup. This treatment method offered greater lesion shape control in three dimensions and slightly lengthened the overall treatment time. The MR temperature images correlated with post-treatment histology and accurately controlled the heating to the target boundary. MR-based control of transurethral ultrasound devices appeared more practical with multisectored transducers compared to rotating curvilinear and planar applicators due to less stringent requirements on spatial and temporal MR parameters. This study demonstrated the applicability of these devices in the prostate for anterior-lateral BPH treatment, and whole gland or quadrant target volumes for cancer treatment.

  14. Physics and instrumentation of ultrasound.

    PubMed

    Lawrence, John P

    2007-08-01

    A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.

  15. A liver cirrhosis classification on B-mode ultrasound images by the use of higher order local autocorrelation features

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-02-01

    In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.

  16. Prostate thermal therapy with catheter-based ultrasound devices and MR thermal monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, Will H.; Kinsey, Adam; Ross, Tony; Wootton, Jeff; Juang, Titania; Butts-Pauly, Kim; Ricke, Viola; Liu, Erin H.; Chen, Jing; Bouley, Donna M.; Van den Bosch, Maurice; Sommer, Graham

    2007-02-01

    Four types of transurethral applicators were devised for thermal ablation of prostate combined with MR thermal monitoring: sectored tubular transducer devices with directional heating patterns; planar and curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with directional or dynamic angular control. In vivo experiments in canine prostate under MR temperature imaging were used to evaluate the heating technology and develop treatment control strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature and thermal dose in multiple slices through the target volume. Sectored tubular, planar, and curvilinear transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. Sequential rotation and modulated dwell time can conform thermal ablation to selected regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. The MR derived 52 °C and lethal thermal dose contours (t 43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  17. Portable ultrasound in disaster triage: a focused review.

    PubMed

    Wydo, S M; Seamon, M J; Melanson, S W; Thomas, P; Bahner, D P; Stawicki, S P

    2016-04-01

    Ultrasound technology has become ubiquitous in modern medicine. Its applications span the assessment of life-threatening trauma or hemodynamic conditions, to elective procedures such as image-guided peripheral nerve blocks. Sonographers have utilized ultrasound techniques in the pre-hospital setting, emergency departments, operating rooms, intensive care units, outpatient clinics, as well as during mass casualty and disaster management. Currently available ultrasound devices are more affordable, portable, and feature user-friendly interfaces, making them well suited for use in the demanding situation of a mass casualty incident (MCI) or disaster triage. We have reviewed the existing literature regarding the application of sonology in MCI and disaster scenarios, focusing on the most promising and practical ultrasound-based paradigms applicable in these settings.

  18. Is it Time to Replace Physical Examination with a Hand-Held Ultrasound Device?

    PubMed Central

    Kaul, Sanjiv

    2014-01-01

    Attempts at using physical examination (PE) go back centuries, with inspection, palpation, and percussion being the mainstay of this approach until 2 centuries ago when the stethoscope was invented and auscultation became probably the most important element of PE for patients with known or suspected cardiovascular disease (CVD). Despite its several limitations, PE is still used, sometimes as the only means, of evaluating and following patients with CVD. In this paper I shall argue for the substitution of this inaccurate and archaic approach by direct visualization of the heart using a hand-held ultrasound (HHU) device. I am not in any way suggesting the substitution of a comprehensive echocardiographic examination by an expert sonographer/echocardiographer by HHU in patients with significant CVD. Instead, I am arguing for the replacement of PE for evaluation of the heart at the point of care as well as at the bedside, simply because HHU is more accurate and provides more meaningful information. PMID:28465916

  19. Is it Time to Replace Physical Examination with a Hand-Held Ultrasound Device?

    PubMed

    Kaul, Sanjiv

    2014-01-01

    Attempts at using physical examination (PE) go back centuries, with inspection, palpation, and percussion being the mainstay of this approach until 2 centuries ago when the stethoscope was invented and auscultation became probably the most important element of PE for patients with known or suspected cardiovascular disease (CVD). Despite its several limitations, PE is still used, sometimes as the only means, of evaluating and following patients with CVD. In this paper I shall argue for the substitution of this inaccurate and archaic approach by direct visualization of the heart using a hand-held ultrasound (HHU) device. I am not in any way suggesting the substitution of a comprehensive echocardiographic examination by an expert sonographer/echocardiographer by HHU in patients with significant CVD. Instead, I am arguing for the replacement of PE for evaluation of the heart at the point of care as well as at the bedside, simply because HHU is more accurate and provides more meaningful information.

  20. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-01

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  1. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment.

    PubMed

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-27

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  2. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    PubMed

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  3. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry.

    PubMed

    Huber, Thomas M; Fatemi, Mostafa; Kinnick, Randy; Greenleaf, James

    2006-04-01

    The goal of this study was to excite and measure, in a noncontact manner, the vibrational modes of the reed from a reed organ pipe. To perform ultrasound stimulated excitation, the audio-range difference frequency between a pair of ultrasound beams produced a radiation force that induced vibrations. The resulting vibrational deflection shapes were measured with a scanning laser vibrometer. The resonances of any relatively small object can be studied in air using this technique. For a 36 mm x 6 mm brass reed, displacements and velocities in excess of 5 microm and 4 mm/s could be imparted at the fundamental frequency of 145 Hz. Using the same ultrasound transducer, excitation across the entire range of audio frequencies was obtained. Since the beam was focused on the reed, ultrasound stimulated excitation eliminated background effects observed during mechanical shaker excitation, such as vibrations of clamps and supports. The results obtained using single, dual and confocal ultrasound transducers in AM and two-beam modes, along with results obtained using a mechanical shaker and audio excitation using a speaker are discussed.

  4. Modeling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications to device design, feedback control, and treatment planning

    PubMed Central

    Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.

    2014-01-01

    Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697

  5. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  6. [Ultrasound findings in rhabdomyolysis].

    PubMed

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Hybrid finite element/waveguide mode analysis of passive RF devices

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  8. Onset in abdominal muscles recorded simultaneously by ultrasound imaging and intramuscular electromyography.

    PubMed

    Vasseljen, Ottar; Fladmark, Anne M; Westad, Christian; Torp, Hans G

    2009-04-01

    Delayed onset of muscle activity in abdominal muscles has been related to low back pain. To investigate this in larger clinical trials it would be beneficial if non-invasive and less cumbersome alternatives to intramuscular electromyography (EMG) were available. This study was designed to compare onset of muscle activity recorded by intramuscular EMG to onset of muscle deformations by ultrasound imaging. Muscle deformations were recorded by two ultrasound imaging modes at high time resolution (m-mode and tissue velocity) in separate sessions and compared to simultaneously recorded intramuscular EMG in three abdominal muscles. Tissue velocity imaging was converted to strain rate which measures deformation velocity gradients within small regions, giving information about the rate of local tissue shortening or lengthening along the beam axis. Onsets in transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) were recorded during rapid arm flexions in ten healthy subjects. During ultrasound m-mode recordings, the results showed that mean onsets by EMG were detected 7 ms (95% CI of mean difference; +/-4 ms) and 2 ms (95% CI of mean difference; +/-6 ms) before concurrent ultrasound m-mode detected onsets in TrA and OI, respectively. In contrast, OE onset was recorded 54 ms (95% CI of bias; +/-16 ms) later by EMG compared to ultrasound m-mode. The discrepancy of ultrasound m-mode to accurately record onset in OE was practically corrected in the ultrasound-based strain rate recordings. However, this could only be applied on half of the subjects due to the angle dependency between the ultrasound beam and the direction of the contraction in strain rate recordings. The angle dependency needs to be further explored.

  9. Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2010-01-01

    Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.

  10. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  11. Mode-selective vibrational modulation of charge transport in organic electronic devices

    PubMed Central

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials. PMID:26246039

  12. Mode-selective vibrational modulation of charge transport in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-08-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm-1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

  13. Investigation of the piezoelectric thimble tactile device operating modes.

    PubMed

    Bansevicius, Ramutis; Dragasius, Egidijus; Grigas, Vytautas; Jurenas, Vytautas; Mazeika, Darius; Zvironas, Arunas

    2014-01-01

    A multifunctional device to transfer graphical or text information for blind or visually impaired is presented. The prototype using tactile perception has been designed where information displayed on the screen of electronic device (mobile phone, PC) is transferred by oscillating needle, touching the fingertip. Having the aim to define optimal parameters of the fingertip excitation by needle, the computational analysis of different excitation modes has been carried out. A 3D solid computational finite element model of the skin segment, comprising four main fingertip skin layers (stratum corneum, epidermis, dermis and hypodermis) was built by using ANSYS Workbench FEA software. Harmonic analysis of its stress-strain state under excitation with different frequency (up to 10000 Hz) and harmonic force (0.01 N), acting outer stratum corneum layer in normal direction at one, two or three points has been performed. The influence of the mode of dynamic loading of skin was evaluated (in terms of the tactile signal level) on the basis of the normal and shear elastic strain in dermis, where mechanoreceptors are placed. It is shown that the tactile perception of information, delivered by three vibrating pins, may be influenced by configuration of excitation points (their number and phase of loading) and the frequency of excitation.

  14. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement

    PubMed Central

    Darby, John; Costen, Nicholas; Loram, Ian D.

    2012-01-01

    To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. PMID:22033532

  15. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  16. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2005-07-01

    dual-mode array is ing high-intensity focused ultrasound ( HIFU ) exhibit non- is used), perhaps a result of rectified diffusion. linear behavior that...applications using high-intensity focused ultrasound ( HIFU ). We tems. Once the real-time imaging capability is available for have shown that this dual-mode...INTRODUCTION two effects lead to echo time-shift that can be estimated High intensity focused ultrasound ( HIFU ) is a and have been shown to be related local

  17. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    PubMed

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Portable bladder ultrasound: an evidence-based analysis.

    PubMed

    2006-01-01

    retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One study reported that the device underestimated catheterized bladder volume In patients with urology problems, 2 of

  19. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs.

    PubMed

    Stukel, Jessica M; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca Kuntz; Exner, Agata A

    2016-03-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90 ± 2.58 × 10(-5) a.u. compared to non-fiber forming intensity at 2.74 ± 0.36 × 10(-5) a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5.00 ± 0.80 × 10(-5) a.u. in 1 day live cells compared to 2.26 ± 0.39 × 10(-5) a.u.in fixed cells at a concentration of 1 × 10(6) cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing

  20. Limited angle breast ultrasound tomography with a priori information and artifact removal

    NASA Astrophysics Data System (ADS)

    Jintamethasawat, Rungroj; Zhu, Yunhao; Kripfgans, Oliver D.; Yuan, Jie; Goodsitt, Mitchell M.; Carson, Paul L.

    2017-03-01

    In B-mode images from dual-sided ultrasound, it has been shown that by delineating structures suspected of being relatively homogeneous, one can enhance limited angle tomography to produce speed of sound images in the same view as X-ray Digital Breast Tomography (DBT). This could allow better breast cancer detection and discrimination, as well as improved registration of the ultrasound and X-ray images, because of the similarity of SOS and X-ray contrast in the breast. However, this speed of sound reconstruction method relies strongly on B-mode or other reflection mode segmentation. If that information is limited or incorrect, artifacts will appear in the reconstructed images. Therefore, the iterative speed of sound reconstruction algorithm has been modified in a manner of simultaneously utilizing the image segmentations and removing most artifacts. The first step of incorporating a priori information is solved by any nonlinearnonconvex optimization method while artifact removal is accomplished by employing the fast split Bregman method to perform total-variation (TV) regularization for image denoising. The proposed method was demonstrated in simplified simulations of our dual-sided ultrasound scanner. To speed these computations two opposed 40-element ultrasound linear arrays with 0.5 MHz center frequency were simulated for imaging objects in a uniform background. The proposed speed of sound reconstruction method worked well with both bent-ray and full-wave inversion methods. This is also the first demonstration of successful full-wave medical ultrasound tomography in the limited angle geometry. Presented results lend credibility to a possible translation of this method to clinical breast imaging.

  1. Novel ultrasound method to reposition kidney stones

    PubMed Central

    Shah, Anup; Owen, Neil R.; Lu, Wei; Cunitz, Bryan W.; Kaczkowski, Peter J.; Harper, Jonathan D.; Bailey, Michael R.; Crum, Lawrence A.

    2011-01-01

    The success of surgical management of lower pole stones is principally dependent on stone fragmentation and residual stone clearance. Choice of surgical method depends on stone size, yet all methods are subject to post-surgical complications resulting from residual stone fragments. Here we present a novel method and device to reposition kidney stones using ultrasound radiation force delivered by focused ultrasound and guided by ultrasound imaging. The device couples a commercial imaging array with a focused annular array transducer. Feasibility of repositioning stones was investigated by implanting artificial and human stones into a kidney-mimicking phantom that simulated a lower pole and collecting system. During experiment, stones were located by ultrasound imaging and repositioned by delivering short bursts of focused ultrasound. Stone motion was concurrently monitored by fluoroscopy, ultrasound imaging, and video photography, from which displacement and velocity were estimated. Stones were seen to move immediately after delivering focused ultrasound and successfully repositioned from the lower pole to the collecting system. Estimated velocities were on the order of 1 cm/s. This in vitro study demonstrates a promising modality to facilitate spontaneous clearance of kidney stones and increased clearance of residual stone fragments after surgical management. PMID:20967437

  2. Catheter-based high-intensity ultrasound for epicardial ablation of the left ventricle: device design and in vivo feasiblity

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Nazer, Babak; Jones, Peter D.; Tanaka, Yasuaki; Martin, Alastair; Ng, Bennett; Duggirala, Srikant; Diederich, Chris J.; Gerstenfeld, Edward P.

    2015-03-01

    The development and in vivo testing of a high-intensity ultrasound thermal ablation catheter for epicardial ablation of the left ventricle (LV) is presented. Scar tissue can occur in the mid-myocardial and epicardial space in patients with nonischemic cardiomyopathy and lead to ventricular tachycardia. Current ablation technology uses radiofrequency energy, which is limited epicardially by the presence of coronary vessels, phrenic nerves, and fat. Ultrasound energy can be precisely directed to deliver targeted deep epicardial ablation while sparing intervening epicardial nerve and vessels. The proof-of-concept ultrasound applicators were designed for sub-xyphoid access to the pericardial space through a steerable 14-Fr sheath. The catheter consists of two rectangular planar transducers, for therapy (6.4 MHz) and imaging (5 MHz), mounted at the tip of a 3.5-mm flexible nylon catheter coupled and encapsulated within a custom-shaped balloon for cooling. Thermal lesions were created in the LV in a swine (n = 10) model in vivo. The ultrasound applicator was positioned fluoroscopically. Its orientation and contact with the LV were verified using A-mode imaging and a radio-opaque marker. Ablations employed 60-s exposures at 15 - 30 W (electrical power). Histology indicated thermal coagulation and ablative lesions penetrating 8 - 12 mm into the left ventricle on lateral and anterior walls and along the left anterior descending artery. The transducer design enabled successful sparing from the epicardial surface to 2 - 4 mm of intervening ventricle tissue and epicardial fat. The feasibility of targeted epicardial ablation with catheter-based ultrasound was demonstrated.

  3. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.

    PubMed

    Ho, Hung-Jung; Chen, Tien-Chi

    2009-11-01

    Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.

  4. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily.

  5. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses a small hand-held device (transducer), ... neurologic-disorders/neurologic-tests-and-procedures/other-neurologic-imaging-studies. Accessed Oct. 18, 2016. ... . Mayo Clinic Footer Legal ...

  6. Robust, low-noise, polarization-maintaining mode-locked Er-fiber laser with a planar lightwave circuit (PLC) device as a multi-functional element.

    PubMed

    Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2017-04-15

    We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.

  7. Analysis of coiled stator ultrasound motor: Fundamental study on analysis of wave propagation on acoustic waveguide for coiled stator

    NASA Astrophysics Data System (ADS)

    Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi

    2018-07-01

    In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.

  8. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  9. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  10. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  11. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical

  12. Multiple switching modes and multiple level states in memristive devices

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2011-03-01

    As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.

  13. From Grey Scale B-Mode to Elastosonography: Multimodal Ultrasound Imaging in Meningioma Surgery-Pictorial Essay and Literature Review.

    PubMed

    Prada, Francesco; Del Bene, Massimiliano; Moiraghi, Alessandro; Casali, Cecilia; Legnani, Federico Giuseppe; Saladino, Andrea; Perin, Alessandro; Vetrano, Ignazio Gaspare; Mattei, Luca; Richetta, Carla; Saini, Marco; DiMeco, Francesco

    2015-01-01

    The main goal in meningioma surgery is to achieve complete tumor removal, when possible, while improving or preserving patient neurological functions. Intraoperative imaging guidance is one fundamental tool for such achievement. In this regard, intra-operative ultrasound (ioUS) is a reliable solution to obtain real-time information during surgery and it has been applied in many different aspect of neurosurgery. In the last years, different ioUS modalities have been described: B-mode, Fusion Imaging with pre-operative acquired MRI, Doppler, contrast enhanced ultrasound (CEUS), and elastosonography. In this paper, we present our US based multimodal approach in meningioma surgery. We describe all the most relevant ioUS modalities and their intraoperative application to obtain precise and specific information regarding the lesion for a tailored approach in meningioma surgery. For each modality, we perform a review of the literature accompanied by a pictorial essay based on our routinely use of ioUS for meningioma resection.

  14. Hand ultrasound: a high-fidelity simulation of lung sliding.

    PubMed

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  15. Ultrasound assisted dialysis of semi-permeable membrane devices for the simultaneous analysis of a wide number of persistent organic pollutants.

    PubMed

    Bustamante, Julen; Navarro, Patricia; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel

    2013-09-30

    A new procedure based on ultrasound assisted dialysis (UAD) for the simultaneous and quantitative extraction of a wide number of persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) or some other organochlorinated pesticides (OCPs) contained in semi-permeable membrane devices (SPMDs) has been developed. This extraction technique combines the advantages of the organic solvent dialysis (OSD) and the speed of the ultrasound assisted extraction. The extraction was performed in an ultrasound bath for 32 min placing the SPMD in a glass flask covered with 80 mL of hexane. This set-up is able to extract simultaneously up to 8 samples. The proposed method entails good repeatabilities (RSD 2-13%) and recoveries (around 100% for almost every analyte). Limits of detection were at ng SPMD(-1) level and enough for the determination of the target analytes in a slightly polluted aquatic environment, as it was tested by successfully comparing the OSD to the proposed methodology. Therefore, the results obtained show that the UAD can be a good alternative for the extraction of POPs in SPMDs as it requires short extraction times and solvent volumes, and provides a cleaner extract for the subsequent clean-up step. Moreover, it fits better than the OSD to the general requirements of Green Chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Application of Ultrasound Energy as a New Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Tachibana, Katsuro; Tachibana, Shunro

    1999-05-01

    Ultrasound has been in use for the last three decades as amodality for diagnostic imaging in medicine. Recently, there have beennumerous reports on the application of nonthermal ultrasound energyfor targeting or controlling drug release. This new concept oftherapeutic ultrasound combined with drugs has led to much excitementin various medical fields. Ultrasound energy can enhance the effectsof thrombolytic agents such as urokinase. Therapeutic ultrasoundcatheters are currently being developed for treatment ofcardiovascular diseases. Devices with ultrasound transducers implantedin transdermal drug patches are also being evaluated for possibledelivery of insulin through the skin. Chemical activation of drugs byultrasound energy for treatment of cancers is another new fieldrecently termed “Sonodynamic Therapy”. Various examples of ultrasoundapplication are under investigation which could lead to revolutionarydrug delivery systems in the future.

  17. Dual-mode Intracranial Catheter Integrating 3D Ultrasound Imaging & Hyperthermia for Neuro-oncology: Feasibility Study

    PubMed Central

    Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin F.; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Smith, Stephen W.

    2010-01-01

    In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm × 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom electrical impedance matching circuits to achieve a temperature rise over 4°C in excised pork muscle, and second by designing and constructing a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm × 2.3 mm. This array achieved a 3.5°C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating. PMID:19630251

  18. System for robot-assisted real-time laparoscopic ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.

    2012-02-01

    Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.

  19. Emerging Non-Cancer Applications of Therapeutic Ultrasound

    PubMed Central

    O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer, clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programs that have great potential to impact patient care. PMID:25792225

  20. Needle tip visualization by bevel-point ultrasound generator and prototype photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Irisawa, Kaku; Murakoshi, Dai; Hashimoto, Atsushi; Yamamoto, Katsuya; Hayakawa, Toshiro

    2017-03-01

    Visualization of the tip of medical devices like needles or catheters under ultrasound imaging has been a continuous topic since the early 1980's. In this study, a needle tip visualization system utilizing photoacoustic effects is proposed. In order to visualize the needle tip, an optical fiber was inserted into a needle. The optical fiber tip is placed on the needle bevel and affixed with black glue. The pulsed laser light from laser diode was transferred to the optical fiber and converted to ultrasound due to laser light absorption of the black glue and the subsequent photoacoustic effect. The ultrasound is detected by transducer array and reconstructed into photoacoustic images in the ultrasound unit. The photoacoustic image is displayed with a superposed ultrasound B-mode image. As a system evaluation, the needle is punctured into bovine meat and the needle tip is observed with commercialized conventional linear transducers or convex transducers. The needle tip is visualized clearly at 7 and 12 cm depths with linear and convex probes, respectively, even with a steep needle puncture angle of around 90 degrees. Laser and acoustic outputs, and thermal rise at the needle tip, were measured and were well below the limits of the safety standards. Compared with existing needle tip visualization technologies, the photoacoustic needle tip visualization system has potential distinguishable features for clinical procedures related with needle puncture and injection.

  1. A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.

    PubMed

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius

    2017-06-01

    The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.

  2. 21 CFR 878.4590 - Focused ultrasound stimulator system for aesthetic use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Focused ultrasound stimulator system for aesthetic....4590 Focused ultrasound stimulator system for aesthetic use. (a) Identification. A Focused Ultrasound Stimulator System for Aesthetic Use is a device using focused ultrasound to produce localized, mechanical...

  3. 21 CFR 878.4590 - Focused ultrasound stimulator system for aesthetic use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Focused ultrasound stimulator system for aesthetic....4590 Focused ultrasound stimulator system for aesthetic use. (a) Identification. A Focused Ultrasound Stimulator System for Aesthetic Use is a device using focused ultrasound to produce localized, mechanical...

  4. 21 CFR 878.4590 - Focused ultrasound stimulator system for aesthetic use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Focused ultrasound stimulator system for aesthetic....4590 Focused ultrasound stimulator system for aesthetic use. (a) Identification. A Focused Ultrasound Stimulator System for Aesthetic Use is a device using focused ultrasound to produce localized, mechanical...

  5. Ultrasound-guided venous access for pacemakers and defibrillators.

    PubMed

    Seto, Arnold H; Jolly, Aaron; Salcedo, Jonathan

    2013-03-01

    Ultrasound guidance is widely recommended to reduce the risk of complications during central venous catheter placement. However, ultrasound guidance is not commonly utilized for implanting leads for cardiac rhythm management devices. We describe our technique of ultrasound-guided pacemaker implantation, including a novel pull-through technique that allows percutaneous guidewire insertion prior to the first incision. We review the literature and recent advances in ultrasound imaging technology that may facilitate the adoption of ultrasound guidance. Ultrasound guidance provides a safe and rapid technique for extrathoracic subclavian or axillary venous lead placement. © 2012 Wiley Periodicals, Inc.

  6. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    PubMed

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  7. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  8. Ultrasound Improves Cricothyrotomy Success in Cadavers with Poorly Defined Neck Anatomy: A Randomized Control Trial.

    PubMed

    Siddiqui, Naveed; Arzola, Cristian; Friedman, Zeev; Guerina, Laarni; You-Ten, Kong Eric

    2015-11-01

    Misidentification of the cricothyroid membrane in a "cannot intubate-cannot oxygenate" situation can lead to failures and serious complications. The authors hypothesized that preprocedure ultrasound-guided identification of the cricothyroid membrane would reduce complications associated with cricothyrotomy. A group of 47 trainees were randomized to digital palpation (n = 23) and ultrasound (n = 24) groups. Cricothyrotomy was performed on human cadavers by using the Portex device (Smiths Medical, USA). Anatomical landmarks of cadavers were graded as follows: grade 1-easy = visual landmarks; 2-moderate = requires light palpation of landmarks; 3-difficult = requires deep palpation of landmarks; and 4-impossible = landmarks not palpable. Primary outcome was the complication rate as measured by the severity of injuries. Secondary outcomes were correct device placement, failure to cannulate, and insertion time. Ultrasound guidance significantly decreased the incidence of injuries to the larynx and trachea (digital palpation: 17 of 23 = 74% vs. ultrasound: 6 of 24 = 25%; relative risk, 2.88; 95% CI, 1.39 to 5.94; P = 0.001) and increased the probability of correct insertion by 5.6 times (P = 0.043) in cadavers with difficult and impossible landmark palpation (digital palpation 8.3% vs. ultrasound 46.7%). Injuries were found in 100% of the grades 3 to 4 (difficult-impossible landmark palpation) cadavers by digital palpation compared with only 33% by ultrasound (P < 0.001). The mean (SD) insertion time was significantly longer with ultrasound than with digital palpation (196.1 s [60.6 s] vs. 110.5 s [46.9 s]; P < 0.001). Preprocedure ultrasound guidance in cadavers with poorly defined neck anatomy significantly reduces complications and improves correct insertion of the airway device in the cricothyroid membrane.

  9. An electrochemically-driven dual-mode display device with both reflective and emissive modes using poly(p-phenylenevinylene) derivatives

    NASA Astrophysics Data System (ADS)

    Tsuneyasu, Shota; Jin, Lu; Nakamura, Kazuki; Kobayashi, Norihisa

    2016-04-01

    We demonstrate a novel electrochemical dual-mode displaying (DMD) device, which enables control of both coloration and light emission using an electrochemical reaction. The coloration control of the DMD device was based on an electrochromic (EC) reaction, whereas the light emission of the device was caused by an electrochemiluminescence (ECL) mechanism. This novel DMD device consisted of a pair of facing conductive polymer-modified electrodes: comb-shaped interdigitated Au electrodes modified with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layers and poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrene sulfonate) (PEDOT/PSS) film-modified indium tin oxide (ITO) electrodes. When a bias voltage was applied between the PEDOT/PSS film-modified ITO electrode and the comb-shaped electrodes, a color change of the device was observed by the EC reaction of the MEH-PPV and PEDOT/PSS. On the other hand, an emission was obtained when the bias voltage was applied between two comb-shaped interdigitated electrodes. The orange emission was ascribed to the ECL reaction of the MEH-PPV layer, which resulted from the formation of a p-i-n junction in this layer.

  10. Vibration mode imaging.

    PubMed

    Zhang, Xiaoming; Zeraati, Mohammad; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa

    2007-06-01

    A new method for imaging the vibration mode of an object is investigated. The radiation force of ultrasound is used to scan the object at a resonant frequency of the object. The vibration of the object is measured by laser and the resulting acoustic emission from the object is measured by a hydrophone. It is shown that the measured signal is proportional to the value of the mode shape at the focal point of the ultrasound beam. Experimental studies are carried out on a mechanical heart valve and arterial phantoms. The mode images on the valve are made by the hydrophone measurement and confirmed by finite-element method simulations. Compared with conventional B-scan imaging on arterial phantoms, the mode imaging can show not only the interface of the artery and the gelatin, but also the vibration modes of the artery. The images taken on the phantom surface suggest that an image of an interior artery can be made by vibration measurements on the surface of the body. However, the image of the artery can be improved if the vibration of the artery is measured directly. Imaging of the structure in the gelatin or tissue can be enhanced by small bubbles and contrast agents.

  11. Interest of the attenuation coefficient in multiparametric high frequency ultrasound investigation of whole blood coagulation process.

    PubMed

    Callé, Rachel; Plag, Camille; Patat, Frédéric; Ossant, Frédéric

    2009-01-01

    Previous studies [R. Libgot, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, Proc.-IEEE Utrason. Symp. 4, 2259-2262 (2005); R. Libgot-Calle, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, Ultrasound Med. Biol. 34, 252-264 (2008); F. Ossant, R. Libgot, P. Coupe, P. Lermusiaux, and F. Patat, Proc.-IEEE Ultrason. Symp. 2, 846-849 (2004)] showed the potential of an in vitro high frequency ultrasound (beyond 20 MHz) device to describe the blood clotting process. The parameters were simultaneously estimated in double transmission (DT) with the calculation of the velocity of longitudinal waves and in backscattering (BS) modes with the estimation of the integrated BS coefficient and the effective scatterer size. The aim of the present study was to show how the integrated attenuation coefficient (IAC) assessed in DT mode could provide additional information on this process, especially regarding the fibrin polymerization which is an important part of the coagulation process. A characteristic time t(a) of the variations in IAC that could be linked to fibrin formation was identified.

  12. Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction.

    PubMed

    Crawford, D C; Bell, D S; Bamber, J C

    1993-01-01

    A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.

  13. Locked modes in two reversed-field pinch devices of different size and shell system

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.; Yagi, Y.; Koguchi, H.

    2000-10-01

    The behavior of locked modes in two reversed-field pinch devices, the Toroidal Pinch Experiment (TPE-RX) [Y. Yagi et al., Plasma Phys. Control. Fusion 41, 2552 (1999)] and Extrap T2 [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996, Montreal (International Atomic Energy Agency, Vienna, 1996), Vol. 2, p. 193] is analyzed and compared. The main characteristics of the locked mode are qualitatively similar. The toroidal distribution of the mode locking shows that field errors play a role in both devices. The probability of phase locking is found to increase with increasing magnetic fluctuation levels in both machines. Furthermore, the probability of phase locking increases with plasma current in TPE-RX despite the fact that the magnetic fluctuation levels decrease. A comparison with computations using a theoretical model estimating the critical mode amplitude for locking [R. Fitzpatrick et al., Phys. Plasmas 6, 3878 (1999)] shows a good correlation with experimental results in TPE-RX. In Extrap T2, the magnetic fluctuations scale weakly with both plasma current and electron densities. This is also reflected in the weak scaling of the magnetic fluctuation levels with the Lundquist number (˜S-0.06). In TPE-RX, the corresponding scaling is ˜S-0.18.

  14. In Vitro and In Vivo Investigation of High-Intensity Focused Ultrasound (HIFU) Hat-Type Ablation Mode

    PubMed Central

    Dai, Hongya; Chen, Fei; Yan, Sijing; Ding, Xiaoya; Ma, Dazhao; Wen, Jing; Xu, Die; Zou, Jianzhong

    2017-01-01

    Background The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. Material/Methods HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. Results Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. Conclusions Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency. PMID:28699626

  15. In Vitro and In Vivo Investigation of High-Intensity Focused Ultrasound (HIFU) Hat-Type Ablation Mode.

    PubMed

    Dai, Hongya; Chen, Fei; Yan, Sijing; Ding, Xiaoya; Ma, Dazhao; Wen, Jing; Xu, Die; Zou, Jianzhong

    2017-07-12

    BACKGROUND The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. MATERIAL AND METHODS HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. RESULTS Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. CONCLUSIONS Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency.

  16. Mechanism study of multimode ultrasound pretreatment on the enzymolysis of wheat gluten.

    PubMed

    Zhang, Yanyan; Li, Jing; Li, Suyun; Ma, Haile; Zhang, Hua

    2018-03-01

    Ultrasound pretreatment could improve the angiotensin-I converting enzyme (ACE) inhibitory activity of hydrolysates of wheat gluten (WG). The working mode of ultrasound has an important effect on the enzymatic hydrolysis of protein. The results showed that the optimum working mode of ultrasound was alternate dual-frequency mode (20/35 kHz), substrate concentration was 30 g L -1 , initial temperature of the suspension was 30 °C, ultrasound pretreatment time was 10 min and power density was 150 W L -1 . Under optimised conditions, ACE inhibitory activity of WG hydrolysates reached to its maximum value in advance. The surface hydrophobicity (H 0 ) of WG and the content of small peptides at the beginning of the enzymolysis were improved by the ultrasound pretreatment. The structure of WG was destroyed by the ultrasound pretreatment. The enzymatic residue of ultrasound pretreated WG were damaged greater than control. It was concluded that alternate dual-frequency ultrasound pretreatment improved the ACE inhibitory activity. Ultrasonic pretreatment may loosen the tissue of WG aggregate, and help the enzyme alcalase to attack the interior of WG aggregate easily, which resulted in the release of low molecular weight peptides from WG aggregate. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. New heights in ultrasound: first report of spinal ultrasound from the international space station.

    PubMed

    Marshburn, Thomas H; Hadfield, Chris A; Sargsyan, Ashot E; Garcia, Kathleen; Ebert, Douglas; Dulchavsky, Scott A

    2014-01-01

    Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Human Factors Engineering and testing for a wearable, long duration ultrasound system self-applied by an end user.

    PubMed

    Taggart, Rebecca; Langer, Matthew D; Lewis, George K

    2014-01-01

    One of the major challenges in the design of a new class of medical device is ensuring that the device will have a safe and effective user interface for the intended users. Human Factors Engineering addresses these concerns through direct study of how a user interacts with newly designed devices with unique features. In this study, a novel long duration, low intensity therapeutic ultrasound device is tested by 20 end users representative of the intended user population. Over 90% of users were able to operate the device successfully. The therapeutic ultrasound device was found to be reasonably safe and effective for the intended users, uses, and use environments.

  19. Micro-device for coupling, multiplexing and demultiplexing using elliptical-core two-mode fiber

    NASA Technical Reports Server (NTRS)

    Wang, A.; Murphy, K. A.; Wang, G. Z.; Vengsarkar, A. M.; Claus, R. O.

    1990-01-01

    We propose and demonstrate experimentally a fiber optic micro-device that is capable of tunably splitting, multiplexing, and demultiplexing optical signals using elliptical-core two-mode optical fiber. A crosstalk of 15 dB with an insertion loss of 1.2 dB was obtained.

  20. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  1. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.

    PubMed

    Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.

  2. Dual-mode intracranial catheter integrating 3D ultrasound imaging and hyperthermia for neuro-oncology: feasibility study.

    PubMed

    Herickhoff, Carl D; Light, Edward D; Bing, Kristin F; Mukundan, Srinivasan; Grant, Gerald A; Wolf, Patrick D; Smith, Stephen W

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  3. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  4. Design of an ergonomic ultrasound system: accommodation of user anthropometrics.

    PubMed

    Park, Sung; Yim, Jinho; Lee, Goeun

    2012-01-01

    Long-term use of medical imaging devices requires significant improvements to the user experience. One factor that impact upon such experience is whether the device is ergonomically built, ecologically designed, and leverages the current medical practice. In this research, we took a holistic and systematic approach to design an effective and biomechanically-fit ultrasound system. Research methods from behavior science (e.g., contextual inquiry, pseudo experiments) had been adopted to involve the users (sonographers) early in the design process. The end results - product design guideline for a cart type ultrasound system and control panel layout - were reviewed by the users and adjusted so that the design is within the range of an acceptable learning curve while maintaining innovativeness, a differentiated value over competitor's ultrasound devices.

  5. Imaging of idle breast implants with ultrasound-strain elastography- A first experimental study to establish criteria for accurate imaging of idle implants via ultrasound-strain elastography.

    PubMed

    Kuehlmann, Britta; Prantl, Lukas; Michael Jung, Ernst

    2016-01-01

    To investigate whether there are fundamental sonographic and elastographic criteria to precisely assess different surfaces and fillings of idle breast implants and to determine their most distinctive parameters. This was a comparative study of different unused breast implant materials, neighter in animals nor in humans. This knowledge should be transferred in vivo to develop an objective measurement tool. Nine idle breast implants-silicone and polyurethane (PU)-were examined in an experimental study by using ultrasound B-mode with tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-4), cross-beam (CB, low, medium, high), photopic and the colour coded ultrasound-strain elastography with a multifrequency probe (9-15 MHz).Using a standardised protocol the implants' centre as well as the edge were analysed by one experienced examiner. Two independent readers performed analysis and evaluation. For image interpretation a score was created (score 0:inadequate image, score 5:best image quality). The highest score result for the centre was achieved by using ultrasound with B-mode in addition with CB level medium, SRI level 2, THI and photopic (mean:3.22±SD:1.56), but without any statistic significant difference (t-value = 0.71). With elastography the implants' edge in general was represented without disruptive artefacts (3.89±0.60) with statistic significant difference (t-value = 5.29). Implants filled with inner cohesive silicone gel II° showed best imaging conditions for their centre via ultrasound (5±0) as well as for their edge via elastography (4.50±0.71). Ultrasound-strain elastography and high resolution ultrasound represent a valuable measurement tool to evaluate different properties of idle breast implants. These modified ultrasound examinations could be an additional help for clinical investigations and be correlated with Baker's Classification.

  6. Development of a reversible vas deferens occlusive device. VI. Long-term evaluation of flexible prosthetic devices.

    PubMed

    Brueschke, E E; Zaneveld, L J; Kaleckas, R A; Wingfield, J R

    1979-05-01

    Fifty-three dogs received implants of several types of flexible devices containing valving mechanisms. These devices were constructed entirely of silicone rubber with the exception of the valve stem, which was made of stainless steel. Generally, the devices were (1) implanted in the open mode and left this way for 27 to 44 months, (2) implanted in the closed mode and kept this way for 11 to 12 months before the valves were reopened, (3) implanted in either the closed or open mode and cycled to the opposite mode every 3 months (four or five cycles), or (4) implanted in either the closed or open mode and cycled to the opposite mode every 6 months (two or three cycles). Different implant methods were also evaluated. Semen analyses were regularly performed on all of the dogs, and a number of the animals were bred during the experiments. It can be concluded that (1) the devices can be opened and closed successfully over long periods, respectively allowing and preventing sperm transport; (2) the breeding ability of the animals is not impaired while the devices are in the open mode, independent of the type of device; (3) the devices do not result in an enhanced incidence of congenital abnormalities in the offspring; and (4) the success rate of device performance does not depend on the method of implanatation used. Thus, the results clearly indicate that the basic mechanism of a soft, reversible valve is a feasible approach to conception control.

  7. Simulation of ultrasound propagation in bone

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.

    2004-10-01

    Ultrasound has been proposed as a means to noninvasively assess bone and, particularly, bone strength and fracture risk, as for example in osteoporosis. Because strength is a function of both mineral density and architecture, ultrasound has the potential to provide more accurate measurement of bone integrity than, for example, with x-ray absorptiometric methods. Although some of this potential has already been realized-a number of clinical devices are presently available-there is still much that is unknown regarding the interaction of ultrasound with bone. Because of the inherent complexity of the propagation medium, few analytic solutions exist with practical application. For this reason, ultrasound simulation techniques have been developed and applied to a number of different problems of interest in ultrasonic bone assessment. Both 2D and 3D simulation results will be presented, including the effects of architecture and density on the received waveform, propagation effects of both cortical and trabecular bone, and the relative contributions of scattering and absorption to attenuation in trabecular bone. The results of these simulation studies should lead to improved understanding and ultimately to more effective clinical devices for ultrasound bone assessment. [This work was supported by The Carroll and Milton Petrie Foundation and by SBIR Grant No. 1R43RR16750 from the National Center for Research Resources of the NIH.

  8. Dual-frequency ultrasound focal therapy for MRI-guided transurethral treatment of the prostate: Study in gel phantom

    NASA Astrophysics Data System (ADS)

    N'Djin, W. Apoutou; Mougenot, Charles; Kobelevskiy, Ilya; Ramsay, Elizabeth; Bronskill, Michael; Chopra, Rajiv

    2012-11-01

    Ultrasound thermal therapy of localized prostate cancer offers a minimally-invasive non-ionizing alternative [1-3] to surgery and radiotherapy. MRI-controlled transurethral ultrasound prostate therapy [4-6] has previously been investigated in a pilot human feasibility study [7], by treating a small sub-volume of prostate tissue. In this study, the feasibility of transurethral dual-frequency ultrasound focal therapy has been investigated in gel phantom. A database of pelvic anatomical models of human prostate cancer patients have been created using MR clinical images. The largest prostate boundary (47 cm3) was used to fabricate an anatomical gel phantom which included various MR characteristics to mimic prostate tissues, 4 localized tumors and surrounding prostate tissues. A 9-element transurethral ultrasound applicator working in dual-frequency mode (f = 4.6/14.5 MHz) was evaluated to heat: (i) the entire prostate volume (Full prostate treatment strategy), (ii) a prostate region restricted to tumors (Focal therapy). Acoustic power of each element and rotation rate of the device were adjusted in realtime based on MR-thermometry feedback control (nine thermal slices updated every 6.2s). Experiments have been performed using dual-frequency ultrasound exposures (surface Pmax: 20W.cm-2). (i) For full prostate heating, 7 elements of the device were used to cover the entire prostate length. The heating process was completed within 35 min. Ultrasound exposures at the fundamental frequency allowed full heating of the largest prostate radii (>18 mm), while exposures at the 3rd harmonic ensured homogeneous treatment of the smallest radii. Undertreated and overtreated regions represented respectively 2% and 17% of the prostate volume. (ii) For focal therapy, the target region was optimized to maintain safe regions in the prostate and to cover all tumor-mimics. Only 5 ultrasound elements were used to treat successfully all tumor-mimics within 26 min. Undertreated and

  9. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  10. Applicator for in-vitro ultrasound-activated targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Gerold, B.; Gourevich, D.; Volovick, A.; Xu, D.; Arditti, F.; Prentice, P.; Cochran, S.; Gnaim, J.; Medan, Y.; Wang, L.; Melzer, A.

    2012-10-01

    Reducing toxicity and improving uptake of cancer drugs in tumors are important goals of targeted drug delivery (TDD). Ultrasonic drug release from various encapsulants has been a focus of many research groups. However, a single standard ultrasonic device, viable for use by biologists, is not currently present in the market. The device reported here is designed to allow investigation of the impact of ultrasound on cellular uptake and cell viability in-vitro. In it, single-element transducers with different operating frequencies are mounted below a standard 96-well plate. The plate is moved above the transducers, such that each line of wells can be sonicated at a different frequency. To assess the device, 96-well plates were seeded with cells and sonicated using different ultrasonic parameters, with and without doxorubicin. Cell viability was measured by colorimetric MTT assay and the uptake of doxorubicin by cells was also determined. The device proved to be highly viable in preliminary tests; it demonstrated that change in ultrasonic parameters produces different effect on cells. For example, increase in uptake of doxorubicin was demonstrated following ultrasound application. The growing interest in ultrasound-activated TDD emphasizes the need for standardization of the ultrasound device and the one reported here may offer some indications of how that may be achieved. It is planned to further improve the prototype by increasing the number of ultrasonic frequencies and degrees of freedom for each transducer.

  11. Efficient Segmentation of a Breast in B-Mode Ultrasound Tomography Using Three-Dimensional GrabCut (GC3D)

    PubMed Central

    Wu, Shibin; Zhuang, Ling; Wei, Xinhua; Sak, Mark; Neb, Duric; Hu, Jiani; Xie, Yaoqin

    2017-01-01

    As an emerging modality for whole breast imaging, ultrasound tomography (UST), has been adopted for diagnostic purposes. Efficient segmentation of an entire breast in UST images plays an important role in quantitative tissue analysis and cancer diagnosis, while major existing methods suffer from considerable time consumption and intensive user interaction. This paper explores three-dimensional GrabCut (GC3D) for breast isolation in thirty reflection (B-mode) UST volumetric images. The algorithm can be conveniently initialized by localizing points to form a polygon, which covers the potential breast region. Moreover, two other variations of GrabCut and an active contour method were compared. Algorithm performance was evaluated from volume overlap ratios (TO, target overlap; MO, mean overlap; FP, false positive; FN, false negative) and time consumption. Experimental results indicate that GC3D considerably reduced the work load and achieved good performance (TO = 0.84; MO = 0.91; FP = 0.006; FN = 0.16) within an average of 1.2 min per volume. Furthermore, GC3D is not only user friendly, but also robust to various inputs, suggesting its great potential to facilitate clinical applications during whole-breast UST imaging. In the near future, the implemented GC3D can be easily automated to tackle B-mode UST volumetric images acquired from the updated imaging system. PMID:28786946

  12. Manual B-mode versus automated radio-frequency carotid intima-media thickness measurements.

    PubMed

    Dogan, Soner; Plantinga, Yvonne; Dijk, Joke M; van der Graaf, Yolanda; Grobbee, Diederick E; Bots, Michiel L

    2009-10-01

    Carotid intima-media thickness (CIMT) serves as an indicator of atherosclerosis and cardiovascular risk. Manual measurements of B-mode ultrasound images are the most applied method. Automated measurements with radiofrequency (RF) ultrasound have been suggested as an alternative. The aim of this study was to compare these methods in terms of risk-factor relations and associations with future events. Data from participants of the Second Manifestations of Arterial Disease (SMART) study were used. Far wall common CIMT was measured online with manual B-mode and automated RF ultrasound. Measurements were performed by a group of 6 sonographers. Risk-factor information was obtained. All participants were followed for the occurrence of vascular events (mean follow-up, 2.1 years). CIMT was related to risk factors with linear regression models and to future events with Cox proportional-hazards models. Data were available for 2,146 participants. Agreement between the methods was modest (intraclass correlation coefficient = 0.34). Risk-factor relations with age and systolic blood pressure were stronger for B-mode than for RF ultrasound. Association with future events was better for B-mode than for RF ultrasound (vascular death, 1.27 vs 1.00; ischemic stroke, 1.45 vs 1.03). In participants with CIMT < 0.9 mm (without plaque), the intraclass correlation between the measures was 0.50. In addition, in that subgroup, RF ultrasound showed a stronger association with future events than B-mode ultrasound (all events, 1.59 vs 1.09; vascular death, 1.72 vs 0.93; coronary ischemic events, 1.65 vs 1.05). The preference for either B-mode or RF measurements may be driven by the type of study population, the expected presence of local atherosclerotic abnormalities, and the main aim of the study (assessing risk factors or events). However, in this study, as in many others, the B-mode approach was shown to be robust in risk-factor relations and the prediction of events.

  13. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A

    2016-05-01

    Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Biological effects of low frequency high intensity ultrasound application on ex vivo human adipose tissue.

    PubMed

    Palumbo, P; Cinque, B; Miconi, G; La Torre, C; Zoccali, G; Vrentzos, N; Vitale, A R; Leocata, P; Lombardi, D; Lorenzo, C; D'Angelo, B; Macchiarelli, G; Cimini, A; Cifone, M G; Giuliani, M

    2011-01-01

    In the present work the effects of a new low frequency, high intensity ultrasound technology on human adipose tissue ex vivo were studied. In particular, we investigated the effects of both external and surgical ultrasound-irradiation (10 min) by evaluating, other than sample weight loss and fat release, also histological architecture alteration as well apoptosis induction. The influence of saline buffer tissue-infiltration on the effects of ultrasound irradiation was also examined. The results suggest that, in our experimental conditions, both transcutaneous and surgical ultrasound exposure caused a significant weight loss and fat release. This effect was more relevant when the ultrasound intensity was set at 100 % (~2.5 W/cm², for external device; ~19-21 W/cm2, for surgical device) compared to 70 % (~1.8 W/cm² for external device; ~13-14 W/cm2 for surgical device). Of note, the effectiveness of ultrasound was much higher when the tissue samples were previously infiltrated with saline buffer, in accordance with the knowledge that ultrasonic waves in aqueous solution better propagate with a consequently more efficient cavitation process. Moreover, the overall effects of ultrasound irradiation did not appear immediately after treatment but persisted over time, being significantly more relevant at 18 h from the end of ultrasound irradiation. Evaluation of histological characteristics of ultrasound-irradiated samples showed a clear alteration of adipose tissue architecture as well a prominent destruction of collagen fibers which were dependent on ultrasound intensity and most relevant in saline buffer-infiltrated samples. The structural changes of collagen bundles present between the lobules of fat cells were confirmed through scanning electron microscopy (SEM) which clearly demonstrated how ultrasound exposure induced a drastic reduction in the compactness of the adipose connective tissue and an irregular arrangement of the fibers with a consequent alteration in

  15. Fiber-based three-dimensional multi-mode interference device as efficient power divider and vector curvature sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin

    2018-03-01

    Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.

  16. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  17. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    NASA Astrophysics Data System (ADS)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for

  18. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    1998-09-01

    ultrasound imaging in discriminating benign from malignant known masses . Preliminary data analyses were completed on new trials and contributions were made...specificity of ultrasound imaging in discriminating benign from malignant known masses . Increasingly we and others will look toward expanded roles in...evaluate which Doppler signals might provide discrimination of breast cancer from benign masses and to compare 2D and 3D ultrasound display modes.

  19. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.

    PubMed

    Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C

    2018-02-01

    Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.

  20. Benzophenone-3 ultrasound degradation in a multifrequency reactor: Response surface methodology approach.

    PubMed

    Vega-Garzon, Lina Patricia; Gomez-Miranda, Ingry Natalia; Peñuela, Gustavo A

    2018-05-01

    Response Surface Methodology was used for optimizing operating variables for a multi-frequency ultrasound reactor using BP-3 as a model compound. The response variable was the Triclosan degradation percent after 10 sonication min. Frequency at levels from 574, 856 and 1134 kHz were used. Power density, pulse time (PT), silent time (ST) and PT/ST ratio effects were also analyzed. 2 2 and 2 3 experimental designs were used for screening purposes and a central composite design was used for optimization. An optimum value of 79.2% was obtained for a frequency of 574 kHz, a power density of 200 W/L, and a PT/ST ratio of 10. Significant variables were frequency and power level, the first having an optimum value after which degradation decreases while power density level had a strong positive effect on the whole operational range. PT, ST, and PT/ST ratio were not significant variables although it was shown that pulsed mode ultrasound has better degradation rates than continuous mode ultrasound; the effect less significant at higher power levels. Copyright © 2017. Published by Elsevier B.V.

  1. Ultrasound: biological effects and industrial hygiene concerns.

    PubMed

    Wiernicki, C; Karoly, W J

    1985-09-01

    Due to the increased use of high intensity ultrasonic devices, there is now a greater risk of worker exposure to ultrasonic radiation than there was in the past. Exposure to high power ultrasound may produce adverse biological effects. High power ultrasound, characterized by high intensity outputs at frequencies of 20-100 kHz, has a wide range of applications throughout industry. Future applications may involve equipment with higher energy outputs. Contact ultrasound, i.e., no airspace between the energy source and the biological tissue, is significantly more hazardous than exposure to airborne ultrasound because air transmits less than one percent of the energy. This paper discusses biological effects associated with overexposure to ultrasound, exposure standards proposed for airborne and contact ultrasound, industrial hygiene controls that can be employed to minimize exposure, and the instrumentation that is required for evaluating exposures.

  2. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent.

    PubMed

    Unger, E C; McCreery, T P; Sweitzer, R H; Caldwell, V E; Wu, Y

    1998-12-01

    Paclitaxel-carrying lipospheres (MRX-552) were developed and evaluated as a new ultrasound contrast agent for chemotherapeutic drug delivery. Paclitaxel was suspended in soybean oil and added to an aqueous suspension of phospholipids in vials. The headspace of the vials was replaced with perfluorobutane gas; the vials were sealed, and they were agitated at 4200 rpm on a shaking device. The resulting lipospheres containing paclitaxel were studied for concentration, size, acute toxicity in mice, and acoustic activity and drug release with ultrasound. Lipospheres containing sudan black dye were produced to demonstrate the acoustically active liposphere (AAL)-ultrasound release concept. Acoustically active lipospheres containing paclitaxel had a mean particle count of approximately 1 x 10(9) particles per mL and a mean size of 2.9 microns. Acute toxicity studies in mice showed a 10-fold reduction in toxicity for paclitaxel in AALs compared with free paclitaxel. The AALs reflected ultrasound as a contrast agent. Increasing amounts of ultrasound energy selectively ruptured the AALs and released the paclitaxel. Acoustically active lipospheres represent a new class of acoustically active drug delivery vehicles. Future studies will assess efficacy of AALs for ultrasound-mediated drug delivery.

  3. Holistic ultrasound in trauma: An update.

    PubMed

    Saranteas, Theodosios; Mavrogenis, Andreas F

    2016-10-01

    Holistic ultrasound is a total body examination using an ultrasound device aiming to achieve immediate patient care and decision making. In the setting of trauma, it is one of the most fundamental components of care of the injured patients. Ground-breaking imaging software allows physicians to examine various organs thoroughly, recognize imaging signs early, and potentially foresee the onset or the possible outcome of certain types of injuries. Holistic ultrasound can be performed on a routine basis at the bedside of the patients, at admission and during the perioperative period. Trauma care physicians should be aware of the diagnostic and guidance benefits of ultrasound and should receive appropriate training for the optimal management of their patients. In this paper, the findings of holistic ultrasound in trauma patients are presented, with emphasis on the lungs, heart, cerebral circulation, abdomen, and airway. Additionally, the benefits of ultrasound imaging in interventional anaesthesia techniques such as ultrasound-guided peripheral nerve blocks and central vein catheterization are described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of

  5. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    PubMed

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  6. Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.

    2017-05-01

    Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.

  7. An easy-to-build, low-budget point-of-care ultrasound simulator: from Linux to a web-based solution.

    PubMed

    Damjanovic, Domagoj; Goebel, Ulrich; Fischer, Benedikt; Huth, Martin; Breger, Hartmut; Buerkle, Hartmut; Schmutz, Axel

    2017-12-01

    Hands-on training in point-of-care ultrasound (POC-US) should ideally comprise bedside teaching, as well as simulated clinical scenarios. High-fidelity phantoms and portable ultrasound simulation systems are commercially available, however, at considerable costs. This limits their suitability for medical schools. A Linux-based software for Emergency Department Ultrasound Simulation (edus2TM) was developed by Kulyk and Olszynski in 2011. Its feasibility for POC-US education has been well-documented, and shows good acceptance. An important limitation to an even more widespread use of edus2, however, may be due to the need for a virtual machine for WINDOWS ® systems. Our aim was to adapt the original software toward an HTML-based solution, thus making it affordable and applicable in any simulation setting. We created an HTML browser-based ultrasound simulation application, which reads the input of different sensors, triggering an ultrasound video to be displayed on a respective device. RFID tags, NFC tags, and QR Codes™ have been integrated into training phantoms or were attached to standardized patients. The RFID antenna was hidden in a mock ultrasound probe. The application is independent from the respective device. Our application was used successfully with different trigger/scanner combinations and mounted readily into simulated training scenarios. The application runs independently from operating systems or electronic devices. This low-cost, browser-based ultrasound simulator is easy-to-build, very adaptive, and independent from operating systems. It has the potential to facilitate POC-US training throughout the world, especially in resource-limited areas.

  8. Development of an ultra-portable echo device connected to USB port.

    PubMed

    Saijo, Yoshifumi; Nitta, Shin-ichi; Kobayashi, Kazuto; Arai, Hitoshi; Nemoto, Yukiko

    2004-04-01

    In practical cardiology, a stethoscope based auscultation has been used to reveal the patient's clinical status. Recently, several hand-held echo devices are going on market and they are expected to play a role as "visible" auscultation instead of stethoscope. We have developed a portable and inexpensive echo device which can be used for screening of cardiac function. Two single element transducers were attached 180 degrees apart to a rotor with 14-mm diameter. The mechanical scanner, integrated circuits for transmitting and receiving ultrasonic signals and an A/D converter were encapsulated in a 150 x 40 mm probe weighing 200 g. The scan was started and the image was displayed on a Windows based personal computer (PC) as soon as the probe was connected to USB 2.0 port of the PC. The central frequency was available between 2.5 and 7.5 MHz, the image depth was 15 cm and the frame rate was 30/s. The estimated price of this ultra-portable ultrasound is about 3000 US dollars with software. For 69 cardiac patients with informed consent, image quality was compared with those obtained with basic range diagnostic echo machines. Left ventricular ejection fraction (EF) derived from normal M-mode image of standard machines (EFm) were compared with visual EF of the ultra-portable ultrasound device (EFv). The image quality was comparable to the basic range diagnostic echo machines although short axis view of aortic root was not clearly visualized because the probe was too large for intercostal approach. EFv agreed well with EFm. The ultra-portable ultrasound may provide useful information on screening and health care.

  9. Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: application summary and recent examples

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Yoon, Jae Woong; Amin, Mohammad Shyiq; Khaleque, Tanzina; Uddin, Mohammad Jalal

    2014-03-01

    For selected device concepts that are members of an evolving class of photonic devices enabled by guided-mode resonance (GMR) effects, we review physics of operation, design, fabrication, and characterization. We summarize the application potential of this field and provide new and emerging aspects. Our chosen examples include resonance elements with extremely wide reflection bands. Thus, in a multilevel structure with conformal germanium (Ge) films, reflectance exceeds 99% for spectral widths approaching 1100 nm. A simpler design, incorporating a partially etched single Ge layer on a glass substrate, exhibits a high-reflectance bandwidth close to 900 nm. We present a couple of interesting new device concepts enabled by GMRs coexisting with the Rayleigh anomaly. Our example Rayleigh reflector exhibits a wideband high-efficiency flattop spectrum and extremely rapid angular transitions. Moreover, we show that it is possible to fashion transmission filters by excitation of leaky resonant modes at the Rayleigh anomaly in a subwavelength nanograting. A unique transmission spectrum results, which is tightly delimited in angle and wavelength as experimentally demonstrated. We update our application list with new developments including GMR-based coherent perfect absorbers, multiparametric biosensors, and omnidirectional wideband absorbers.

  10. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  11. Prospective Evaluation of Acoustic Radiation Force Impulse (ARFI) Elastography and High-Frequency B-Mode Ultrasound in Compensated Patients for the Diagnosis of Liver Fibrosis/Cirrhosis in Comparison to Mini-Laparoscopic Biopsy.

    PubMed

    Pfeifer, L; Zopf, S; Siebler, J; Schwitulla, J; Wildner, D; Wachter, D; Neurath, M F; Strobel, D

    2015-12-01

    Ultrasound is a well-established noninvasive test for assessing patients with liver disease. This study aims to prospectively compare ultrasound to the new technique elastography (ARFI) for the assessment of liver fibrosis/cirrhosis. High-frequency B-mode ultrasound (liver surface/vein irregularity, liver homogeneity, spleen size), ARFI quantification, mini-laparoscopic liver evaluation including biopsy were prospectively obtained in compensated patients scheduled for liver biopsy. For the diagnosis of cirrhosis, a combined gold standard (cirrhosis at histology and/or at macroscopic liver evaluation) was used. Out of 157 patients, 35 patients were diagnosed cirrhotic. Ultrasound (combination of liver vein and/or surface irregularity) showed no significant difference compared to ARFI quantification for the diagnosis of significant liver fibrosis (Ishak> = 3) and cirrhosis. Diagnosis of cirrhosis had a sensitivity/specificity/PPV/NPV of 83 %(± 12) / 82 %(± 7) / 57 %(± 14) / 94 %(± 4), respectively, with ultrasound and 86 %(± 12) / 81 %(± 7) / 57 %(± 13) / 95 %(± 4), respectively, with ARFI quantification. The sensitivity/specificity/PPV/NPV for the detection of significant fibrosis were 68 %(± 13) / 86 %(± 7) / 71 %(± 13) / 84 %(± 7), respectively, for ultrasound and 70 %(± 12) / 84 %(± 7) / 69 %(± 12) / 84 %(± 7), respectively, for ARFI quantification. ARFI elastography and high-frequency B-mode ultrasound show similar and good results for the diagnosis of compensated liver cirrhosis and high-grade fibrosis. A key benefit of both methods is the high NPV suggesting them as noninvasive exclusion tests. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  13. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  14. Modelling and characterisation of a ultrasound-actuated needle for improved visibility in ultrasound-guided regional anaesthesia and tissue biopsy.

    PubMed

    Kuang, Y; Hilgers, A; Sadiq, M; Cochran, S; Corner, G; Huang, Z

    2016-07-01

    Clear needle visualisation is recognised as an unmet need for ultrasound guided percutaneous needle procedures including regional anaesthesia and tissue biopsy. With inadequate needle visibility, these procedures may result in serious complications or a failed operation. This paper reports analysis of the modal behaviour of a previously proposed ultrasound-actuated needle configuration, which may overcome this problem by improving needle visibility in colour Doppler imaging. It uses a piezoelectric transducer to actuate longitudinal resonant modes in needles (outer diameter 0.8-1.2mm, length>65mm). The factors that affect the needle's vibration mode are identified, including the needle length, the transducer's resonance frequency and the gripping position. Their effects are investigated using finite element modelling, with the conclusions validated experimentally. The actuated needle was inserted into porcine tissue up to 30mm depth and its visibility was observed under colour Doppler imaging. The piezoelectric transducer is able to generate longitudinal vibration with peak-to-peak amplitude up to 4μm at the needle tip with an actuating voltage of 20Vpp. Actuated in longitudinal vibration modes (distal mode at 27.6kHz and transducer mode at 42.2kHz) with a drive amplitude of 12-14Vpp, a 120mm needle is delineated as a coloured line in colour Doppler images, with both needle tip and shaft visualised. The improved needle visibility is maintained while the needle is advanced into the tissue, thus allowing tracking of the needle position in real time. Moreover, the needle tip is highlighted by strong coloured artefacts around the actuated needle generated by its flexural vibration. A limitation of the technique is that the transducer mode requires needles of specific lengths so that the needle's resonance frequency matches the transducer. This may restrict the choice of needle lengths in clinical applications. Copyright © 2016 The Authors. Published by Elsevier B

  15. Ultrasound imaging using all-optical power and signal transfer in catheters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pekar, Martin; van der Mark, Martin B.

    2017-02-01

    Smart medical catheters face a connectivity challenge. An example is found in ultrasound imaging where the supply of power at the distal end and the signal transmission requires many thin and fragile wires in order to keep the catheter thin and flexible and this leads to a relatively high cost of production. We have built a fully functional benchtop demonstrator that is immediately scalable to catheter dimensions, in which all electrical wires are replaced by just two optical fibers. We show signal transfer of synthetic aperture ultrasound images as well as photovoltaic conversion to supply all electronics. The absence of conductors provides excellent galvanic isolation as well as RF and MRI compatibility and the simple design utilizing off the shelf components holds a promise of cost effectiveness all of which may help translation of these advanced devices into the clinic. We show photovoltaic conversion of 405 nm light to 45 V and 1.8 V by two blue LEDs as well as 200 MHz broad-band signal transfer using modulated 850 nm VCSEL light. Synthetic aperture ultrasound images are acquired at a frequency of 12 MHz with a collapse-mode capacitive-micromachined ultrasonic transducer. Bandwidth, noise level and dynamic range are nearly identical as shown in comparison of the images acquired with the optical link and its electrical equivalent. In conclusion, we have successfully demonstrated low-cost and scalable optical signal and power transmission for an ultrasound imaging system enjoying intrinsic RF / MRI compatibility and galvanic isolation.

  16. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  17. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  18. Initial Experience with a Wireless Ultrasound-Guided Vacuum-Assisted Breast Biopsy Device

    PubMed Central

    Choi, E-Ryung; Han, Boo-Kyung; Ko, Eun Sook; Ko, Eun Young; Choi, Ji Soo; Cho, Eun Yoon; Nam, Seok Jin

    2015-01-01

    Objective To determine the imaging characteristic of frequent target lesions of wireless ultrasound (US)-guided, vacuum-assisted breast biopsy (Wi-UVAB) and to evaluate diagnostic yield, accuracy and complication of the device in indeterminate breast lesions. Materials and Methods From March 2013 to October 2014, 114 women (age range, 29–76 years; mean age, 50.0 years) underwent Wi-UVAB using a 13-gauge needle (Mammotome Elite®; Devicor Medical Products, Cincinnati, OH, USA). In 103 lesions of 96 women with surgical (n = 81) or follow-up (n = 22) data, complications, biopsy procedure, imaging findings of biopsy targets and histologic results were reviewed. Results Mean number of biopsy cores was 10 (range 4–25). Nine patients developed moderate bleeding. All lesions were suspicious on US, and included non-mass lesions (67.0%) and mass lesions (33.0%). Visible calcifications on US were evident in 57.3% of the target lesions. Most of the lesions (93.2%) were nonpalpable. Sixty-six (64.1%) were malignant [ductal carcinoma in situ (DCIS) rate, 61%] and 12 were high-risk lesions (11.7%). Histologic underestimation was identified in 11 of 40 (27.5%). DCIS cases and in 3 of 9 (33.3%) high-risk lesions necessitating surgery. There was no false-negative case. Conclusion Wi-UVAB is very handy and advantageous for US-unapparent non-mass lesions to diagnose DCIS, especially for calcification cases. Histologic underestimation is unavoidable; still, Wi-UVAB is safe and accurate to diagnose a malignancy. PMID:26630136

  19. Effects of fast ions on interchange modes in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Pinon, Jonhathan; Todo, Yasushi; Wang, Hao

    2018-07-01

    Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.

  20. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    NASA Astrophysics Data System (ADS)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  1. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.

    PubMed

    Lewis, George K; Olbricht, William L

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 ohms) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 V(pp) (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  2. Survey of current practice in clinical transvaginal ultrasound scanning in the UK

    PubMed Central

    Shaw, Adam; Lees, Christoph

    2015-01-01

    During transvaginal ultrasound scanning, the fetus and other sensitive tissues are placed close to the transducer. Heating of these tissues occurs by direct conduction from the transducer and by absorption of ultrasound in the tissue. The extent of any heating will depend on the equipment and settings used, the duration of the scan, imaging modes and other aspects of scanning practice. To ensure that scans are performed with minimum risk, staff should have an appropriate knowledge of safety and follow guidelines issued by professional bodies. An online survey aiming to document current practice in transvaginal ultrasound in the UK was created and distributed to individuals performing this type of scanning. The survey posed questions about the respondents, the departments where scans were performed, the equipment used, knowledge of ultrasound safety, scanning practice and the frequency, duration and mode of transvaginal ultrasound scans for gynaecology, obstetrics and fertility applications. In all, 294 responses were obtained, mostly from sonographers (94%). From the analysis of the responses, it was clear that there was a good understanding of the general meaning of thermal and mechanical index and high awareness of guidelines issued by professional bodies. However, 40% of respondents stated that they rarely or never monitor Thermal or Mechanical indices during scanning. Scanning practice was consistent in terms of the duration of scans, scan protocols followed and use of imaging modes. The results highlight the importance of continued ultrasound safety training and promotion of safety guidelines to users. PMID:27433250

  3. Disparity between ultrasound and clinical findings in psoriatic arthritis.

    PubMed

    Husic, Rusmir; Gretler, Judith; Felber, Anja; Graninger, Winfried B; Duftner, Christina; Hermann, Josef; Dejaco, Christian

    2014-08-01

    To investigate the association between psoriatic arthritis (PsA)-specific clinical composite scores and ultrasound-verified pathology as well as comparison of clinical and ultrasound definitions of remission. We performed a prospective study on 70 consecutive PsA patients. Clinical assessments included components of Disease Activity Index for Psoriatic Arthritis (DAPSA) and the Composite Psoriatic Disease Activity Index (CPDAI). Minimal disease activity (MDA) and the following remission criteria were applied: CPDAI joint, entheses and dactylitis domains (CPDAI-JED)=0, DAPSA≤3.3, Boolean's remission definition and physician-judged remission (rem-phys). B-mode and power Doppler (PD-) ultrasound findings were semiquantitatively scored at 68 joints (evaluating synovia, peritendinous tissue, tendons and bony changes) and 14 entheses. Ultrasound remission and minimal ultrasound disease activity (MUDA) were defined as PD-score=0 and PD-score ≤1, respectively, at joints, peritendinous tissue, tendons and entheses. DAPSA but not CPDAI correlated with B-mode and PD-synovitis. Ultrasound signs of enthesitis, dactylitis, tenosynovitis and perisynovitis were not linked with clinical composites. Clinical remission or MDA was observed in 15.7% to 47.1% of PsA patients. Ultrasound remission and MUDA were present in 4.3% and 20.0% of patients, respectively. Joint and tendon-related PD-scores were higher in patients with active versus inactive disease according to CPDAI-JED, DAPSA, Boolean's and rem-phys, whereas no difference was observed regarding enthesitis and perisynovitis. DAPSA≤3.3 (OR 3.9, p=0.049) and Boolean's definition (OR 4.6, p=0.03) were more useful to predict MUDA than other remission criteria. PsA-specific composite scores partially reflect ultrasound findings. DAPSA and Boolean's remission definitions better identify MUDA patients than other clinical criteria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted

  4. 3-D ultrasound volume reconstruction using the direct frame interpolation method.

    PubMed

    Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin

    2010-11-01

    A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce

  5. Simultaneous ultrasound and photoacoustics based flow cytometry

    NASA Astrophysics Data System (ADS)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  6. A pulsed mode electrolytic drug delivery device

    NASA Astrophysics Data System (ADS)

    Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.

    2015-10-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power.

  7. Dual-mode photoacoustic and ultrasound system for real-time in-vivo ovarian cancer imaging

    NASA Astrophysics Data System (ADS)

    Mostafa, Atahar; Nandy, Sreyankar; Amidi, Eghbal; Zhu, Quing

    2018-02-01

    More than 80% of the ovarian cancers are diagnosed at late stages and the survival rate is less than 50%. Currently, there is no effective screening technique available and transvaginal US can only tell if the ovaries are enlarged or not. We have developed a new real-time co-registered US and photoacoustic system for in vivo imaging and characterization of ovaries. US is used to localize ovaries and photoacoustic imaging provides functional information about ovarian tissue angiogenesis and oxygenation saturation. The system consists of a tunable laser and a commercial US system from Alpinion Inc. The Alpinion system is cable of providing channel data for both US pulse-echo and photoacoustic imaging and can be programmed as a computer terminal for display US and photoacoustic images side by side or in coregistered mode. A transvaginal ultrasound probe of 6-MHz center frequency and bandwidth of 3-10 MHz is coupled with four optical fibers surrounded the US probe to deliver the light to tissue. The light from optical fibers is homogenized to ensure the power delivered to the tissue surface is below the FDA required limit. Physicians can easily navigate the probe and use US to look for ovaries and then turn on photoacoustic mode to provide real-time tumor vasculature and So2 saturation maps. With the optimized system, we have successfully imaged first group of 7 patients of malignant, abnormal and benign ovaries. The results have shown that both photoacoustic signal strength and spatial distribution are different between malignant and abnormal and benign ovaries.

  8. High intensity focused ultrasound (HIFU).

    PubMed

    Barkin, Jack

    2011-04-01

    Curative treatments for localized prostate cancer, from least invasive to most invasive, include brachytherapy, cryosurgery, three-dimensional conformal radiation therapy, external beam radiation therapy, and radical prostatectomy. A patient with localized, low risk or intermediate risk prostate cancer who is diagnosed at an early age and receives one of these treatments has only an approximately 50% chance of maintaining an undetectable prostate-specific antigen (PSA) level, good spontaneous erections, and total continence by 5 years after treatment. This article discusses transrectal high intensity focused ultrasound (HIFU) treatment of localized prostate cancer using the Sonablate 500 (Focus Surgery, Indianapolis, IN, USA) device, which the author has adopted in favor of the Ablatherm (EDAP, TMS S. A., Lyons, France) device, the other HIFU device approved for use in Canada. Characteristics of the ideal prostate cancer include stage T1-T2b, less than 40 cc in size, and with an anterior-posterior dimension of up to 35 mm high. The anterior zone of the prostate is treated before the posterior zone. The procedure involves 2 to 3 second bursts of ultrasound energy, followed by 3 second cooling cycles. In each treatment lesion, the physician achieves a temperature of 100 C at the focal point. The device allows for real-time visualization of tissue response following the delivery of ultrasound energy. HIFU is a minimally invasive, outpatient treatment for localized prostate cancer that provides similar short term and medium term cure rates and considerably less morbidity and side effects than other treatments. Although the effectiveness of HIFU has not yet been demonstrated in large, long term studies, this treatment option should be discussed with patients who have just been diagnosed with low risk or intermediate risk prostate cancer and desire aggressive, noninvasive, curative therapy, with potentially a lower incidence of side effects compared to conventional

  9. A tele-operated mobile ultrasound scanner using a light-weight robot.

    PubMed

    Delgorge, Cécile; Courrèges, Fabien; Al Bassit, Lama; Novales, Cyril; Rosenberger, Christophe; Smith-Guerin, Natalie; Brù, Concepció; Gilabert, Rosa; Vannoni, Maurizio; Poisson, Gérard; Vieyres, Pierre

    2005-03-01

    This paper presents a new tele-operated robotic chain for real-time ultrasound image acquisition and medical diagnosis. This system has been developed in the frame of the Mobile Tele-Echography Using an Ultralight Robot European Project. A light-weight six degrees-of-freedom serial robot, with a remote center of motion, has been specially designed for this application. It holds and moves a real probe on a distant patient according to the expert gesture and permits an image acquisition using a standard ultrasound device. The combination of mechanical structure choice for the robot and dedicated control law, particularly nearby the singular configuration allows a good path following and a robotized gesture accuracy. The choice of compression techniques for image transmission enables a compromise between flow and quality. These combined approaches, for robotics and image processing, enable the medical specialist to better control the remote ultrasound probe holder system and to receive stable and good quality ultrasound images to make a diagnosis via any type of communication link from terrestrial to satellite. Clinical tests have been performed since April 2003. They used both satellite or Integrated Services Digital Network lines with a theoretical bandwidth of 384 Kb/s. They showed the tele-echography system helped to identify 66% of lesions and 83% of symptomatic pathologies.

  10. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  11. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  12. Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery

    NASA Astrophysics Data System (ADS)

    Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.

  13. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  14. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Hossack, James (Inventor); Owen, Neil (Inventor); Bailey, Michael R. (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  15. Application of the strongly coupled-mode theory to integrated optical devices

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A theory for strongly coupled waveguides is discussed and applied to two- and three-waveguide couplers and optical wavelength filters. This theory makes use of an exact analytical relation governing the coupling coefficients and the overlap integrals. It removes almost all of the constraints imposed by a simpler and approximate coupled-mode theory by Marcatili (1986). It also satisfies the energy conservation and the reciprocity theorem self-consistently. Very good numerical results with the overlap integral as large as 49 percent are shown. The applications to electrooptical modulators, power dividers, power transfer devices, and optical filters are all presented with numerical results.

  16. Ultrasound liquid crystal lens

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2018-04-01

    A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.

  17. Impact of ultrasound video transfer on the practice of ultrasound

    NASA Astrophysics Data System (ADS)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.

  18. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.

    PubMed

    Kawahara, Akito Y; Barber, Jesse R

    2015-05-19

    The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack.

  19. Ultrasound-Guided Transesophageal High-Intensity Focused Ultrasound Cardiac Ablation in a Beating Heart: A Pilot Feasibility Study in Pigs.

    PubMed

    Bessiere, Francis; N'djin, W Apoutou; Colas, Elodie Constanciel; Chavrier, Françoise; Greillier, Paul; Chapelon, Jean Yves; Chevalier, Philippe; Lafon, Cyril

    2016-08-01

    Catheter ablation for the treatment of arrhythmia is associated with significant complications and often-repeated procedures. Consequently, a less invasive and more efficient technique is required. Because high-intensity focused ultrasound (HIFU) enables the generation of precise thermal ablations in deep-seated tissues without harming the tissues in the propagation path, it has the potential to be used as a new ablation technique. A system capable of delivering HIFU into the heart by a transesophageal route using ultrasound (US) imaging guidance was developed and tested in vivo in six male pigs. HIFU exposures were performed on atria and ventricles. At the time of autopsy, visual inspection identified thermal lesions in the targeted areas in three of the animals. These lesions were confirmed by histologic analysis (mean size: 5.5 mm(2) × 11 mm(2)). No esophageal thermal injury was observed. One animal presented with bradycardia due to an atrio-ventricular block, which provides real-time confirmation of an interaction between HIFU and the electrical circuits of the heart. Thus, US-guided HIFU has the potential to minimally invasively create myocardial lesions without an intra-cardiac device. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Electronic frequency tuning of the acousto-optic mode-locking device of a laser

    NASA Astrophysics Data System (ADS)

    Magdich, L. N.; Balakshy, V. I.; Mantsevich, S. N.

    2017-11-01

    The effect of the electronic tuning of the acoustic resonances in an acousto-optic mode-locking device of a laser is investigated theoretically and experimentally. The problem of the excitation of a Fabry-Perot acoustic resonator by a plate-like piezoelectric transducer (PET) is solved in the approximation of plane acoustic waves taking into consideration the actual parameters of an RF generator and the elements for matching the PET to the generator. Resonances are tuned by changing the matching inductance that was connected in parallel to the transducer of the acousto-optic cell. The cell used in the experiment was manufactured from fused silica and included a lithium niobate PET. Changes in the matching inductance in the range of 0.025 to 0.2 μH provided the acoustic-resonance frequency tuning by 0.19 MHz, which exceeds the acoustic- resonance half-width.

  1. High power phased array prototype for clinical high intensity focused ultrasound : applications to transcostal and transcranial therapy.

    PubMed

    Pernot, M; Aubry, J -F; Tanter, M; Marquet, F; Montaldo, G; Boch, A -L; Kujas, M; Seilhean, D; Fink, M

    2007-01-01

    Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound became during the last decade a noninvasive option for treating cancer from breast to prostate or uterine fibroid. However, many challenges remain to be addressed. First, the corrections of distortions induced on the ultrasonic therapy beam during its propagation through defocusing obstacles like skull bone or ribs remain today a technological performance that still need to be validated clinically. Secondly, the problem of motion artifacts particularly important for the treatment of abdominal parts becomes today an important research topic. Finally, the problem of the treatment monitoring is a wide subject of interest in the growing HIFU community. For all these issues, the potential of new ultrasonic therapy devices able to work both in Transmit and Receive modes will be emphasized. A review of the work under achievement at L.O.A. using this new generation of HIFU prototypes on the monitoring, motion correction and aberrations corrections will be presented.

  2. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2004-07-01

    applications using high-intensity focused ultrasound ( HIFU ). We tems, Once the real-time imaging capability is available for have shown that this dual-mode...Arrays Emad S. Ebbini, PI Introduction High-intensity focus ultrasound ( HIFU ) is gaining wider acceptance in noninvasive or minimally invasive targeting of...Methods in Ultrasound Imaging, ISBI 2004, Arlington, VA, April 2004. III. Yao and Ebbini, "Real-Time Monitoring of the Transients of HIFU -Induced Lesions

  3. Characterization of Ultrasound Energy Diffusion Due to Small-Size Damage on an Aluminum Plate Using Piezoceramic Transducers

    PubMed Central

    Lu, Guangtao; Feng, Qian; Li, Yourong; Wang, Hao; Song, Gangbing

    2017-01-01

    During the propagation of ultrasonic waves in structures, there is usually energy loss due to ultrasound energy diffusion and dissipation. The aim of this research is to characterize the ultrasound energy diffusion that occurs due to small-size damage on an aluminum plate using piezoceramic transducers, for the future purpose of developing a damage detection algorithm. The ultrasonic energy diffusion coefficient is related to the damage distributed in the medium. Meanwhile, the ultrasonic energy dissipation coefficient is related to the inhomogeneity of the medium. Both are usually employed to describe the characteristics of ultrasound energy diffusion. The existence of multimodes of Lamb waves in metallic plate structures results in the asynchronous energy transport of different modes. The mode of Lamb waves has a great influence on ultrasound energy diffusion as a result, and thus has to be chosen appropriately. In order to study the characteristics of ultrasound energy diffusion in metallic plate structures, an experimental setup of an aluminum plate with a through-hole, whose diameter varies from 0.6 mm to 1.2 mm, is used as the test specimen with the help of piezoceramic transducers. The experimental results of two categories of damages at different locations reveal that the existence of damage changes the energy transport between the actuator and the sensor. Also, when there is only one dominate mode of Lamb wave excited in the structure, the ultrasound energy diffusion coefficient decreases approximately linearly with the diameter of the simulated damage. Meanwhile, the ultrasonic energy dissipation coefficient increases approximately linearly with the diameter of the simulated damage. However, when two or more modes of Lamb waves are excited, due to the existence of different group velocities between the different modes, the energy transport of the different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear with the size of

  4. [Prenatal diagnosis of isolated otocefalia. Usefulness of three-dimensional ultrasound].

    PubMed

    Escribano Abad, David; Arbués Gabarre, Juan; Gómez Montes, Enery; Puente Agueda, José Manuel; Herraiz García, Ignacio; Galindo Izquierdo, Alberto

    2011-08-01

    Otocephaly is a rare and lethal congenital malformation characterized by the presence of agnathia, microstomia, aglossia and synotia. Despite its frequent association with severe malformations, diagnosis in the few published cases is usually made at III trimester. In this case, three-dimensional ultrasound scan was performed in a Chinese primigravida with no remarkable personal nor familiar history since mandible was difficulty visualized with two-dimensional sonography at 21 weeks of gestation. Multiplanar and rendering mode showed the typical cervicofacial features of otocephaly without associated malformations. After parental counselling, they opted for termination of pregnancy and necropsy confirmed our prenatal findings. Our case shows the usefulness of three-dimensional ultrasound in assessing fetal cervicofacial pathology. Volumetric capture allows a delayed study of fetal anatomy and multiplanar mode offers the reconstruction of views whose achivement is difficult with conventional 2D ultrasound. Surface rendering provides excellent spatial vision and enables parents to understand the severity of the malformation thus helping with their decisions.

  5. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    NASA Astrophysics Data System (ADS)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  6. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies

    PubMed Central

    Arvanitis, Costas D.; McDannold, Nathan

    2013-01-01

    Purpose: Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. Methods: The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30–110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. Results: When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was −3.4 ± 2.1 mm and −0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small

  7. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    PubMed

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  8. Measurements of undoped accumulation-mode SiGe quantum dot devices

    NASA Astrophysics Data System (ADS)

    Eng, Kevin; Borselli, Mathew; Holabird, Kevin; Milosavljevic, Ivan; Schmitz, Adele; Deelman, Peter; Huang, Biqin; Sokolich, Marko; Warren, Leslie; Hazard, Thomas; Kiselev, Andrey; Ross, Richard; Gyure, Mark; Hunter, Andrew

    2012-02-01

    We report transport measurements of undoped single-well accumulation-mode SiGe quantum dot devices with an integrated dot charge sensor. The device is designed so that individual forward-biased circular gates have dominant control of dot charge occupancy, and separate intervening gates have dominant control of tunnel rates and exchange coupling. We have demonstrated controlled loading of the first electron in single and double quantum dots. We used magneto-spectroscopy to measure singlet-triplet splittings in our quantum dots: values are typically ˜0.1 meV. Tunnel rates of single electrons to the baths can be controlled from less than 1 Hz to greater than 10 MHz. We are able to control the (0,2) to (1,1) coupling in a double quantum dot from under-coupled (tc < kT˜ 5μeV) to over-coupled (tc ˜ 0.1 meV) with a bias control of one exchange gate. Sponsored by the United States Department of Defense. Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  9. A Comparison of Real-time Feedback and Tissue Response to Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Ablation using Scanned Track Exposure Regimes

    NASA Astrophysics Data System (ADS)

    Gray, Robert H. R.; Leslie, Thomas A.; Civale, John; Kennedy, James E.; ter Haar, Gail

    2007-05-01

    Real time ultrasound monitoring of tissue ablation in clinical HIFU treatments currently depends on the observation of the appearance of new hyperechoic regions within the target volume, allowing visually directed treatment. These grey-scale changes are attributed to the formation of gas or vapour bubbles. In this study, scanned track lesions have been formed in ex vivo bovine liver samples at a range of ablative intensities (free field spatial peak intensities 7 - 47 kW cm-2), and tracking speeds (1-2 mms-1). Their appearance on conventional B-mode ultrasound images has been assessed using digital imaging techniques over the first 60 seconds following HIFU exposure. The size of the lesion as seen on the ultrasound scan is compared to the macroscopic size of the lesion at dissection. It is seen that the lesion size is highly dependent on the intensity and scanning speed of the transducer. Reliable lesions can be created using scanned tracks at the lowest powers, with increased numbers of cycles, and grey-scale changes correlated strongly with the histological findings. Although not a highly sensitive indication of ablated area, ultrasound monitoring of treatment is highly specific thus confirming its clinical utility.

  10. Economical Sponge Phantom for Teaching, Understanding, and Researching A- and B-Line Reverberation Artifacts in Lung Ultrasound.

    PubMed

    Blüthgen, Christian; Sanabria, Sergio; Frauenfelder, Thomas; Klingmüller, Volker; Rominger, Marga

    2017-10-01

    This project evaluated a low-cost sponge phantom setup for its capability to teach and study A- and B-line reverberation artifacts known from lung ultrasound and to numerically simulate sound wave interaction with the phantom using a finite-difference time-domain (FDTD) model. Both A- and B-line artifacts were reproducible on B-mode ultrasound imaging as well as in the FDTD-based simulation. The phantom was found to be an easy-to-set up and economical tool for understanding, teaching, and researching A- and B-line artifacts occurring in lung ultrasound. The FDTD method-based simulation was able to reproduce the artifacts and provides intuitive insight into the underlying physics. © 2017 by the American Institute of Ultrasound in Medicine.

  11. A History of the Sonocare CST-100: The First FDA-approved HIFU Device

    NASA Astrophysics Data System (ADS)

    Muratore, Robert

    2006-05-01

    The Sonocare CST-100 Therapeutic Ultrasound System, designed for the treatment of glaucoma, was developed in the 1980s and became the first high intensity focused ultrasound (HIFU) device to receive Food and Drug Administration approval. The system arose from studies done by F.L. Lizzi, Eng.Sc.D., of Riverside Research Institute and D.J. Coleman, M.D., of Cornell Medical Center/New York Hospital on the safety of ultrasound diagnosis of the eye. As safety limits were probed, therapeutic regimes were discovered. Optimization of operational parameters, clinical experience, and engineering design came together through a spin-off company, Sonocare, Inc., formed to produce and market the ophthalmic device. Various precedents were set during the approval process, including the acceptance by the FDA of radiation momentum imparted to an absorber as a measure of acoustic power. Many devices were sold, but the laser industry, grandfathered into the therapeutic field, eventually out-marketed Sonocare. The CST-100 remains as a model of elegant industrial design, and existing units are used daily in HIFU laboratory experiments.

  12. Enhanced Lesion Visualization in Image-Guided Noninvasive Surgery With Ultrasound Phased Arrays

    DTIC Science & Technology

    2001-10-25

    81, 1995. [4] N. Sanghvi et al., “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound ,” IEEE Trans. UFFC, vol. 43, no. 6, pp...ENHANCED LESION VISUALIZATION IN IMAGE-GUIDED NONINVASIVE SURGERY WITH ULTRASOUND PHASED ARRAYS Hui Yao, Pornchai Phukpattaranont and Emad S. Ebbini...Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 Abstract- We describe dual-mode ultrasound phased

  13. Acoustic bubble sorting for ultrasound contrast agent enrichment.

    PubMed

    Segers, Tim; Versluis, Michel

    2014-05-21

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.

  14. A hand‐carried cardiac ultrasound device in the outpatient cardiology clinic reduces the need for standard echocardiography

    PubMed Central

    Trambaiolo, P; Papetti, F; Posteraro, A; Amici, E; Piccoli, M; Cerquetani, E; Pastena, G; Gambelli, G; Salustri, A

    2007-01-01

    Objective To assess the potential value and cost‐effectiveness of a hand‐carried ultrasound (HCU) device in an outpatient cardiology clinic. Methods 222 consecutive patients were prospectively enrolled in the study. When standard echocardiography (SE) was specifically indicated on the basis of clinical history, electrocardiogram and physical examination, the same cardiologist (level‐2 or level‐3 trained) immediately performed an HCU examination. The cardiologist then reassessed the clinical situation to confirm or cancel the SE request according to the information provided by HCU. The SE examination was performed by a sonographer and examined in a blinded fashion by a cardiologist expert in echocardiography. Findings from the two examinations were compared. Results HCU was performed in 108/222 patients, and a definite diagnosis was established in 34 of them (31%), making SE examination potentially avoidable. In the 74 patients with inconclusive HCU results and for whom SE was still indicated, the decision was mainly dictated by the lack of spectral Doppler modality in the HCU system. The overall agreement between HCU and SE for diagnosis of normal/abnormal echocardiograms was 73% (κ = 0.4). On the basis of the potentially avoided SE examinations and the obviated need for a second cardiac consultation, a total cost saving of €2142 per 100 patients referred for echocardiography was estimated. Conclusions The use of a simple HCU device in the outpatient cardiology clinic allowed reliable diagnosis in one third of the patients referred for echocardiography, which translates into cost and time saving benefits. PMID:16940393

  15. Finite element analysis of a percussion device for pulmonary diagnostics

    NASA Astrophysics Data System (ADS)

    Dhar, Aneesh

    A pneumothorax is a medical condition where one or both lungs are unable to remain expanded due to air in the pleural space. Finite Element Analysis simulations were conducted on a Percussion Device, which is able to diagnose a pneumothorax using an automated percussion technique. The simulations helped determine the natural modes of vibration of the Percussion Device. These modes were then compared to the motion experimentally measured by an accelerometer on the Percussion Device. It was observed that the modes of the percussion head occurred in the range of 0 to 100 Hz, while the sensor membrane modes occurred in the range of 600 to 900 Hz. Most of these modes were found to match with peaks in the experimental spectra. The simulations performed are reliable and provide an understanding of the contribution of the normal modes to the complex signals measured using the Percussion Device.

  16. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    PubMed

    Kimura, Bruce J

    2017-07-01

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. How to set up a low cost tele-ultrasound capable videoconferencing system with wide applicability

    PubMed Central

    2012-01-01

    Background Worldwide ultrasound equipment accessibility is at an all-time high, as technology improves and costs decrease. Ensuring that patients benefit from more accurate resuscitation and diagnoses from a user-dependent technology, such as ultrasound, requires accurate examination, typically entailing significant training. Remote tele-mentored ultrasound (RTUS) examination is, however, a technique pioneered in space medicine that has increased applicability on earth. We, thus, sought to create and demonstrate a cost-minimal approach and system with potentially global applicability. Methods The cost-minimal RTUS system was constructed by utilizing a standard off-the-shelf laptop computer that connected to the internet through an internal wireless receiver and/or was tethered through a smartphone. A number of portable hand-held ultrasound devices were digitally streamed into the laptop utilizing a video converter. Both the ultrasound video and the output of a head-mounted video camera were transmitted over freely available Voice Over Internet Protocol (VOIP) software to remote experts who could receive and communicate using any mobile device (computer, tablet, or smartphone) that could access secure VOIP transmissions from the internet. Results The RTUS system allowed real-time mentored tele-ultrasound to be conducted from a variety of settings that were inside buildings, outside on mountainsides, and even within aircraft in flight all unified by the simple capability of receiving and transmitting VOIP transmissions. . Numerous types of ultrasound examinations were conducted such as abdominal and thoracic examinations with a variety of users mentored who had previous skills ranging from none to expert. Internet connectivity was rarely a limiting factor, with competing logistical and scheduling demands of the participants predominating. Conclusions RTUS examinations can educate and guide point of care clinical providers to enhance their use of ultrasound. The scope

  18. An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.

    PubMed

    Gilbertson, Matthew W; Anthony, Brian W

    2013-01-01

    An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.

  19. Theoretical analysis of a novel ultrasound generator on an optical fiber tip

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Guthy, Charles; Wang, Xingwei

    2010-04-01

    A novel ultrasound generator consisting of a single mode optical fiber with a layer of gold nanoparticles on its tip has been designed. The generator utilizes the optical and photo-acoustic properties of gold nanoparticles. When heated by laser pulses, a thin absorption layer made up of these nanoparticles at the cleaved surface of a single mode fiber generates a mechanical shock wave caused by thermal expansion. Mie's theory was applied in a MATLAB simulation to determine the relationship between the absorption efficiency and the optical resonance wavelengths of a layer of gold nanospheres. Results showed that the absorption efficiency and related resonance wavelengths of gold nanospheres varied based on the size of the gold nanosphere particles. In order to obtain the bandwidths associated with ultrasound, another MATLAB simulation was run to study the relationship between the power of the laser being used, the size of the gold nanosphere, and the energy decay time. The results of this and the previous simulation showed that the energy decay time is picoseconds in length.

  20. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    NASA Astrophysics Data System (ADS)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  1. Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Youichi; Rozhin, Aleksey G.; Kataura, Hiromichi; Achiba, Yohji; Tokumoto, Madoka

    2005-04-01

    We fabricated single-wall carbon nanotube (SWNT)/poly(vinylalcohol) (PVA) nanocomposite freestanding films and examined their application in devices in which the saturable absorption of SWNTs at near-infrared optical telecommunication wavelengths can be utilized. In a passively mode-locked fiber laser, we integrated a 30-μm-thick SWNT/PVA film into a fiber connection adaptor with the film sandwiched by a pair of fiber ferrules. A ring fiber laser with a SWNT/PVA saturable absorber was operated very easily in the mode-locked short-pulse mode with a pulse width of about 500 fs. Reproducible stable device performance was confirmed. In examining noise suppression for optical amplifiers, mixed light of semiconductor amplified spontaneous emission (ASE) source and 370 fs laser pulses was passed through a 100-μm-thick SWNT/PVA film. The transmission loss of the femtosecond pulse light was smaller than that of the ASE light. This proved that the SWNT/PVA film has the ability to suppress ASE noise.

  2. Assessment of carotid stiffness and intima-media thickness from ultrasound data: comparison between two methods.

    PubMed

    Bianchini, Elisabetta; Bozec, Erwan; Gemignani, Vincenzo; Faita, Francesco; Giannarelli, Chiara; Ghiadoni, Lorenzo; Demi, Marcello; Boutouyrie, Pierre; Laurent, Stéphane

    2010-08-01

    Increased arterial stiffness and carotid intima-media thickness (IMT) are considered independent predictors of cardiovascular events. The aim of this study was to compare a system recently developed in our laboratory for automatic assessment of these parameters from ultrasound image sequences to a reference radio frequency (RF) echo-tracking system. Common carotid artery scans of 21 patients with cardiovascular risk factors and 12 healthy volunteers were analyzed by both devices for the assessment of diameter (D), IMT, and distension (DeltaD). In the healthy volunteers, analyses were repeated twice to evaluate intraobserver variability. Agreement was evaluated by Bland-Altman analysis, whereas reproducibility was expressed as a coefficient of variation (CV). Regarding the agreement between the two systems, bias values +/- SD were 0.060 +/- 0.110 mm for D, -0.006 +/- 0.039 mm for IMT, and -0.016 +/- 0.039 mm for DeltaD. Intraobserver CVs were 2% +/- 2% for D, 5% +/- 5% for IMT, and 6% +/- 6% for DeltaD with the RF echo-tracking system and 2% +/- 1% for D, 6% +/- 6% for IMT, and 8% +/- 6% for DeltaD with our automated system. Although B-mode-based devices are less precise than RF-based ones, our automated system has good agreement with the reference method and comparable reproducibility, at least when high-quality images are analyzed. Hence, this study suggests that the presented system based on image processing from standard ultrasound scans is a suitable device for measuring IMT and local arterial stiffness parameters in clinical studies.

  3. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    PubMed

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  4. 3-D ultrasound guidance of surgical robotics: a feasibility study.

    PubMed

    Pua, Eric C; Fronheiser, Matthew P; Noble, Joanna R; Light, Edward D; Wolf, Patrick D; von Allmen, Daniel; Smith, Stephen W

    2006-11-01

    Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.

  5. An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones.

    PubMed

    Protopappas, Vasilios C; Baga, Dina A; Fotiadis, Dimitrios I; Likas, Aristidis C; Papachristos, Athanasios A; Malizos, Konstantinos N

    2005-09-01

    An ultrasound wearable system for remote monitoring and acceleration of the healing process in fractured long bones is presented. The so-called USBone system consists of a pair of ultrasound transducers, implanted into the fracture region, a wearable device and a centralized unit. The wearable device is responsible to carry out ultrasound measurements using the axial-transmission technique and initiate therapy sessions of low-intensity pulsed ultrasound. The acquired measurements and other data are wirelessly transferred from the patient-site to the centralized unit, which is located in a clinical setting. The evaluation of the system on an animal tibial osteotomy model is also presented. A dataset was constructed for monitoring purposes consisting of serial ultrasound measurements, follow-up radiographs, quantitative computed tomography-based densitometry and biomechanical data. The animal study demonstrated the ability of the system to collect ultrasound measurements in an effective and reliable fashion and participating orthopaedic surgeons accepted the system for future clinical application. Analysis of the acquired measurements showed that the pattern of evolution of the ultrasound velocity through healing bones over the postoperative period monitors a dynamic healing process. Furthermore, the ultrasound velocity of radiographically healed bones returns to 80% of the intact bone value, whereas the correlation coefficient of the velocity with the material and mechanical properties of the healing bone ranges from 0.699 to 0.814. The USBone system constitutes the first telemedicine system for the out-hospital management of patients sustained open fractures and treated with external fixation devices.

  6. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    NASA Astrophysics Data System (ADS)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  7. [Occupational risk caused by ultrasound in medicine].

    PubMed

    Magnavita, N; Fileni, A

    1994-01-01

    Ultrasound (US) is extensively used in the medical field for its therapeutic and diagnostic applications. US units are commonly found in hospitals and clinics of all sizes, and a growing number of medical staff such as doctors and nurses are exposed to hand-transmitted ultrasound waves in their work-place. This review discusses the available information on the occupational risk of the operators using diagnostic and therapeutic ultrasound devices. The new occupational groups of medical workers who use ultrasound (diagnostic, surgical, sterilization, and physiotherapeutic) equipment are exposed to contact ultrasound waves. Contact ultrasound -- i.e., no airspace between the energy source and the biological tissue -- is much more hazardous than exposure to airborne ultrasound because air transmits less than one percent of this kind of energy. In spite of being a non-ionizing radiation with an excellent safety record, US is likely to induce some changes in the exposed organ. Recent Russian studies indicate that the hospital workers who have been long exposed to ultrasound at work may develop neurovascular dose-dependent disorders of the peripheral nervous system in the form of the angiodystonic syndrome of vegetative polyneuritis of the hands. In some Scandinavian studies, female physiotherapists (exposed to ultrasound and short waves) exhibit increased rate of spontaneous abortions and congenital malformations, but no definite conclusion can be drawn on the basis of these results alone. Trends in exposure for diagnostic ultrasound equipment over the last two decades show a continuous increase. While there is no reason for alarm, there is a growing need for avoiding unnecessary exposure to medical workers.

  8. Application of empirical mode decomposition in removing fidgeting interference in doppler radar life signs monitoring devices.

    PubMed

    Mostafanezhad, Isar; Boric-Lubecke, Olga; Lubecke, Victor; Mandic, Danilo P

    2009-01-01

    Empirical Mode Decomposition has been shown effective in the analysis of non-stationary and non-linear signals. As an application in wireless life signs monitoring in this paper we use this method in conditioning the signals obtained from the Doppler device. Random physical movements, fidgeting, of the human subject during a measurement can fall on the same frequency of the heart or respiration rate and interfere with the measurement. It will be shown how Empirical Mode Decomposition can break the radar signal down into its components and help separate and remove the fidgeting interference.

  9. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    PubMed Central

    Sherwood, Victoria; Rivens, Ian; Collins, David J.; Leach, Martin O.; ter Haar, Gail R.

    2014-01-01

    A system which allows magnetic resonance (MR) and ultrasound (US) image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR) as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle. PMID:25177702

  10. Micromolded thick PZT sol gel composite structures for ultrasound transducer devices operating at high frequencies

    NASA Astrophysics Data System (ADS)

    Pang, Guofeng

    The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.

  11. Simplified stereo-optical ultrasound plane calibration

    NASA Astrophysics Data System (ADS)

    Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan

    2013-03-01

    Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke

  12. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  13. Temperature Changes During Therapeutic Ultrasound in the Precooled Human Gastrocnemius Muscle

    PubMed Central

    Rimington, Stephanie J.; Draper, David O.; Durrant, Earlene; Fellingham, Gilbert

    1994-01-01

    Therapeutic ultrasound is frequently employed as a deep heating rehabilitation modality. It is administered in one of three ways: a) ultrasound with no preceding treatment, b) ultrasound on preheated tissues, or c) ultrasound on precooled tissues. The purpose of this study was to investigate the effect of ultrasound treatments on the tissue temperature rise of precooled human gastrocnemius muscle. Sixteen male subjects had a 23-gauge hypodermic needle microprobe inserted 3 cm deep into the medial aspect of their anesthetized gastrocnemius muscles. Data were gathered on each subject for one of two randomly assigned treatments: a) ultrasound treatment on precooled tissue, or b) ultrasound with no preceding treatment. Each treatment consisted of ultrasound delivered topically at 1.5 watts/cm2 in a continuous mode for 10 minutes. Ultrasound was applied in an overlapping longitudinal motion at 4 cm/s, with temperature readings recorded at 30-second intervals. We discovered a difference between the two treatment methods [t(14) = 16.26, p < .0001]. Ultrasound alone increased tissue temperature an average of 2°C, whereas ultrasound preceded by 15 minutes of ice did not increase tissue temperature even to the original baseline level. We concluded that, at a depth of 3 cm, ultrasound alone provided a greater heating effect than ultrasound preceded by an ice treatment. PMID:16558295

  14. Split-mode ultrasonic transducer.

    PubMed

    Ostrovskii, Igor; Cremaldi, Lucien

    2013-08-01

    A split-mode ultrasonic transducer is investigated in both theory and experiment. This transducer is a two-dimensional structure of periodically poled domains in a ferroelectric wafer with free surfaces. The acoustic vibrations are excited by a radio frequency electric current applied along the length of the wafer, which allows the basal-plane surfaces to be free of metal coatings and thus ready for further biomedical applications. A specific physical property of this transducer consists of the multiple acousto-electric resonances, which occur due to an acoustic mode split when the acoustic half-wavelength is equal to the domain length. Possible applications include ultrasonic generation and detection at the micro-scale, intravascular sonification and visualization, ultrasound therapy of localized small areas such as the eye, biomedical applications for cell cultures, and traditional nondestructive testing including bones and tissues. A potential use of a non-metallized wafer is a therapeutic application with double action that is both ultrasound itself and an electric field over the wafer. The experimental measurements and theoretical calculations are in good agreement.

  15. A Further Comparison of Manual Signing, Picture Exchange, and Speech-Generating Devices as Communication Modes for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    van der Meer, Larah; Sutherland, Dean; O'Reilly, Mark F.; Lancioni, Giulio E.; Sigafoos, Jeff

    2012-01-01

    We compared acquisition of, and preference for, manual signing (MS), picture exchange (PE), and speech-generating devices (SGDs) in four children with autism spectrum disorders (ASD). Intervention was introduced across participants in a non-concurrent multiple-baseline design and acquisition of the three communication modes was compared in an…

  16. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    PubMed

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  17. Sensitivity and specificity of diagnostic ultrasound in the diagnosis of phrenic neuropathy.

    PubMed

    Boon, Andrea J; Sekiguchi, Hiroshi; Harper, Caitlin J; Strommen, Jeffrey A; Ghahfarokhi, Leili S; Watson, James C; Sorenson, Eric J

    2014-09-30

    To determine the sensitivity and specificity of B-mode ultrasound in the diagnosis of neuromuscular diaphragmatic dysfunction, including phrenic neuropathy. A prospective study of patients with dyspnea referred to the EMG laboratory over a 2-year time frame for evaluation of neuromuscular respiratory failure who were recruited consecutively and examined with ultrasound for possible diaphragm dysfunction. Sonographic outcome measures were absolute thickness of the diaphragm and degree of increased thickness with maximal inspiration. The comparison standard for diagnosis of diaphragm dysfunction was the final clinical diagnosis of clinicians blinded to the diaphragm ultrasound results, but taking into account other diagnostic workup, including chest radiographs, fluoroscopy, phrenic nerve conduction studies, diaphragm EMG, and/or pulmonary function tests. Of 82 patients recruited over a 2-year period, 66 were enrolled in the study. Sixteen patients were excluded because of inconclusive or insufficient reference testing. One hemidiaphragm could not be adequately visualized; therefore, hemidiaphragm assessment was conducted in a total of 131 hemidiaphragms in 66 patients. Of the 82 abnormal hemidiaphragms, 76 had abnormal sonographic findings (atrophy or decreased contractility). Of the 49 normal hemidiaphragms, none had a false-positive ultrasound. Diaphragmatic ultrasound was 93% sensitive and 100% specific for the diagnosis of neuromuscular diaphragmatic dysfunction. B-mode ultrasound imaging of the diaphragm is a highly sensitive and specific tool for diagnosis of neuromuscular diaphragm dysfunction. This study provides Class II evidence that diaphragmatic ultrasound performed by well-trained individuals accurately identifies patients with neuromuscular diaphragmatic respiratory failure (sensitivity 93%; specificity 100%). © 2014 American Academy of Neurology.

  18. Ultrasonographic diagnosis of early pregnancy in cattle using different ultrasound systems.

    PubMed

    Racewicz, Przemysław; Sickinger, Marlene; Włodarek, Jan; Jaśkowski, Jędrzej M

    2016-06-16

    To evaluate the efficiency of different ultrasound devices in achieving an early diagnosis of pregnancy in dairy herds. A total of 1976 Holstein Friesian cows and heifers were artificially inseminated (AI) according to the herd manager's regime. Pregnancy diagnostics were performed between day 26 and 35 after AI using six different types of ultrasound systems (linear vs. sector scanners). Manual rectal palpation between day 45 and 60 after AI was used as the gold standard for pregnancy diagnostics. Sensitivity (SENS), specificity (SPEC), positive (PPV) and negative predictive value (NPV) and diagnostic accuracy (ACC) of the diagnostic measures were determined. Average SENS was 82% (range 67.7-95.2%) with a mean SPEC of 73% (range 50.0-81.0%). ACC was 78.2% with a minimum of 64.6% and a maximum of 89.4%, depending on the ultrasound system. The PPV (ratio of the number of pregnant cows with a positive examination result to the number of cows actually pregnant) was 80.8% (range 59.1-88.1%), whereas the NPV (defined as the ratio of the number of cows correctly diagnosed negative to the number of cows actually open) was 74.4% (72.3-91.9%). Significant differences for these parameters were found depending on the ultrasound system used (p ≤ 0.01; Cramer's V. = 0.14). Regardless of the ultrasound device used, early pregnancy diagnostics between day 26 and 35 show a moderate diagnostic efficiency. Comparing the accuracy of the different devices, there may be a significant influence of type and technical parameters. Even though ultrasound systems with mechanical sector probes are not as convenient to use as systems with linear probes, according to this study, sector scanners are a reasonable alternative.

  19. Application of a Sub-set of Skinfold Sites for Ultrasound Measurement of Subcutaneous Adiposity and Percentage Body Fat Estimation in Athletes.

    PubMed

    O'Neill, D C; Cronin, O; O'Neill, S B; Woods, T; Keohane, D M; Molloy, M G; Falvey, E C

    2016-05-01

    Body composition assessment is an integral feature of elite sport as optimization facilitates successful performance. This study aims to refine the use of B-mode ultrasound in the assessment of athlete body composition by determining suitable sites for measurement. 67 elite athletes recruited from the Human Performance Laboratory, University College Cork, Ireland, underwent dual measurement of body composition. Subcutaneous adipose tissue thickness at 7 anatomical sites were measured using ultrasound and compared to percentage body fat values determined using Dual-Energy X-ray Absorptiometry. Multiple linear regressions were performed and an equation to predict percentage body fat was derived. The present study found subcutaneous adipose tissue depths at the triceps, biceps, anterior thigh and supraspinale sites correlated significantly with percentage body fat by X-ray absorptiometry (all p<0.05). Summation of the depths at these locations correlated strongly with percentage body fat by Dual-Energy X-ray Absorptiometry (R²=0.879). The triceps, biceps, anterior thigh and supraspinale sites are suitable anatomical landmarks for the estimation of %BF using B-mode ultrasound. Use of B-mode ultrasound in the assessment of athlete body composition confers many benefits including lack of ionising radiation and its potential to be used as a portable field tool. © Georg Thieme Verlag KG Stuttgart · New York.

  20. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanter, M.

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with

  1. Ocular examination for trauma; clinical ultrasound aboard the International Space Station.

    PubMed

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E; Melton, Shannon; Hamilton, Douglas R; McFarlin, Kellie; Dulchavsky, Scott A

    2005-05-01

    Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using

  2. Ocular examination for trauma; clinical ultrasound aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager

  3. Rapid Diagnosis of an Ulnar Fracture with Portable Hand-Held Ultrasound

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Brown, Ross; Diebel, Lawrence N.; Nicolaou, Savvas; Marshburn, Tom; Dulchavsky, Scott A.

    2002-01-01

    Orthopedic fractures are a common injury in operational activities, injuries that often occur in isolated or hostile environments. Clinical ultrasound devices have become more user friendly and lighter allowing them to be easily transported with forward medical teams. The bone-soft tissue interface has a very large acoustic impedance, with a high reflectance that can be used to visualize breaks in contour including fractures. Herein reported is a case of an ulnar fracture that was quickly visualized in the early phase of a multi-system trauma resuscitation with a hand-held ultrasound device. The implications for operational medicine are discussed.

  4. The potential of ultrasound in cardiac pacing and rhythm modulation.

    PubMed

    Kohut, Andrew R; Vecchio, Christopher; Adam, Dan; Lewin, Peter A

    2016-09-01

    This review examines the potential for ultrasound to induce or otherwise influence cardiac pacing and rhythm modulation. Of particular interest is the possibility of developing new, truly non-invasive, nonpharmacological, acute and chronic, ultrasound-based arrhythmia treatments. Such approaches would not depend upon implanted or indwelling devices of any kind and would use ultrasound at diagnostic exposure levels (so as not to harm the heart or surrounding tissues). It is known that ultrasound can cause cardiomyocyte depolarization and a variety of underlying mechanisms have been proposed. Expert commentary: Questions still remain regarding the effect of exposure parameters and work will also be necessary to identify the optimal target regions within the heart if ultrasound energy is to be used to induce safe and reliable pacing in a clinical setting.

  5. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  6. Updates on ultrasound research in implant dentistry: a systematic review of potential clinical indications.

    PubMed

    Bhaskar, Vaishnavi; Chan, Hsun-Liang; MacEachern, Mark; Kripfgans, Oliver D

    2018-05-23

    Ultrasonography has shown promising diagnostic value in dental implant imaging research; however, exactly how ultrasound was used and at what stage of implant therapy it can be applied has not been systematically evaluated. Therefore, the aim of this review is to investigate potential indications of ultrasound use in the three implant treatment phases, namely planning, intraoperative and postoperative phase. Eligible manuscripts were searched in major databases with a combination of key words related to the use of ultrasound imaging in implant therapy. An initial search yielded 414 articles, after further review, 28 articles were finally included for this systematic review. Ultrasound was found valuable, though at various development stages, for evaluating (1) soft tissues, (2) hard tissues (3) vital structures and (4) implant stability. B-mode, the main function to image anatomical structures of interest, has been evaluated in pre-clinical and clinical studies. Quantitative ultrasound parameters, e.g. sound speed and amplitude, are being developed to evaluate implant-bone stability, mainly in simulation and pre-clinical studies. Ultrasound could be potentially useful in all 3 treatment phases. In the planning phase, ultrasound could evaluate vital structures, tissue biotype, ridge width/density, and cortical bone thickness. During surgery, it can provide feedback by identifying vital structures and bone boundary. At follow-up visits, it could evaluate marginal bone level and implant stability. Understanding the current status of ultrasound imaging research for implant therapy would be extremely beneficial for accelerating translational research and its use in dental clinics.

  7. An ergonomic handheld ultrasound probe providing contact forces and pose information.

    PubMed

    Yohan Noh; Housden, R James; Gomez, Alberto; Knight, Caroline; Garcia, Francesca; Hongbin Liu; Razavi, Reza; Rhode, Kawal; Althoefer, Kaspar

    2015-08-01

    This paper presents a handheld ultrasound probe which is integrated with sensors to measure force and pose (position/orientation) information. Using an integrated probe like this, one can relate ultrasound images to spatial location and create 3D ultrasound maps. The handheld device can be used by sonographers and also easily be integrated with robot arms for automated sonography. The handheld device is ergonomically designed; rapid attachment and removal of the ultrasound transducer itself is possible using easy-to-operate clip mechanisms. A cable locking mechanism reduces the impact that gravitational and other external forces have (originating from data and power supply cables connected to the probe) on our measurements. Gravitational errors introduced by the housing of the probe are compensated for using knowledge of the housing geometry and the integrated pose sensor that provides us with accurate orientation information. In this paper, we describe the handheld probe with its integrated force/pose sensors and our approach to gravity compensation. We carried out a set of experiments to verify the feasibility of our approach to obtain accurate spatial information of the handheld probe.

  8. [Feasibility of device closure for multiple atrial septal defects using 3D printing and ultrasound-guided intervention technique].

    PubMed

    Qiu, X; Lü, B; Xu, N; Yan, C W; Ouyang, W B; Liu, Y; Zhang, F W; Yue, Z Q; Pang, K J; Pan, X B

    2017-04-25

    Objective: To investigate the feasibility of trans-catheter closure of multiple atrial septal defects (ASD) monitored by trans-thoracic echocardiography (TTE) under the guidance of 3D printing heart model. Methods: Between April and August 2016, a total of 21 patients (8 male and 13 female) with multiple ASD in Fuwai Hospital of Chinese Academy of Medical Sciences underwent CT scan and 3-dimensional echocardiography for heart disease model produced by 3D printing technique. The best occlusion program was determined through the simulation test on the model. Percutaneous device closure of multiple ASD was performed follow the predetermined program guided by TTE. Clinical follow-up including electrocardiogram and TTE was arranged at 1 month after the procedure. Results: The trans-catheter procedure was successful in all 21 patients using a single atrial septal occluder. Mild residual shunt was found in 5 patient in the immediate postoperative period, 3 of them were disappeared during postoperative follow-up. There was no death, vascular damage, arrhythmia, device migration, thromboembolism, valvular dysfunction during the follow-up period. Conclusion: The use of 3D printing heart model provides a useful reference for transcatheter device closure of multiple ASD achieving through ultrasound-guided intervention technique, which appears to be safe and feasible with good outcomes of short-term follow-up.

  9. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be

  10. Study and optimization of the ultrasound-enhanced cleaning of an ultrafiltration ceramic membrane through a combined experimental-statistical approach.

    PubMed

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2014-05-01

    Membrane fouling is one of the main drawbacks of ultrafiltration technology during the treatment of dye-containing effluents. Therefore, the optimization of the membrane cleaning procedure is essential to improve the overall efficiency. In this work, a study of the factors affecting the ultrasound-assisted cleaning of an ultrafiltration ceramic membrane fouled by dye particles was carried out. The effect of transmembrane pressure (0.5, 1.5, 2.5 bar), cross-flow velocity (1, 2, 3 ms(-1)), ultrasound power level (40%, 70%, 100%) and ultrasound frequency mode (37, 80 kHz and mixed wave) on the cleaning efficiency was evaluated. The lowest frequency showed better results, although the best cleaning performance was obtained using the mixed wave mode. A Box-Behnken Design was used to find the optimal conditions for the cleaning procedure through a response surface study. The optimal operating conditions leading to the maximum cleaning efficiency predicted (32.19%) were found to be 1.1 bar, 3 ms(-1) and 100% of power level. Finally, the optimized response was compared to the efficiency of a chemical cleaning with NaOH solution, with and without the use of ultrasound. By using NaOH, cleaning efficiency nearly triples, and it improves up to 25% by adding ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Assistive technology for ultrasound-guided central venous catheter placement.

    PubMed

    Ikhsan, Mohammad; Tan, Kok Kiong; Putra, Andi Sudjana

    2018-01-01

    This study evaluated the existing technology used to improve the safety and ease of ultrasound-guided central venous catheterization. Electronic database searches were conducted in Scopus, IEEE, Google Patents, and relevant conference databases (SPIE, MICCAI, and IEEE conferences) for related articles on assistive technology for ultrasound-guided central venous catheterization. A total of 89 articles were examined and pointed to several fields that are currently the focus of improvements to ultrasound-guided procedures. These include improving needle visualization, needle guides and localization technology, image processing algorithms to enhance and segment important features within the ultrasound image, robotic assistance using probe-mounted manipulators, and improving procedure ergonomics through in situ projections of important information. Probe-mounted robotic manipulators provide a promising avenue for assistive technology developed for freehand ultrasound-guided percutaneous procedures. However, there is currently a lack of clinical trials to validate the effectiveness of these devices.

  12. Assessing the application and downstream effects of pulsed mode ultrasound as a pre-treatment for alum coagulation.

    PubMed

    Al-Juboori, Raed A; Aravinthan, Vasantha; Yusaf, Talal; Bowtell, Leslie

    2016-07-01

    The application of pulsed mode ultrasound (PMU) as a pre-treatment for alum coagulation was investigated at various alum dosages and pH levels. The effects of the treatments on turbidity and dissolved organic carbon (DOC) removal and residual Al were evaluated. Response surface methodology (RSM) was utilized to optimize the operating conditions of the applied treatments. The results showed that PMU pre-treatment increased turbidity and DOC removal percentages from maximum of 96.6% and 43% to 98.8% and 52%, respectively. It also helped decrease the minimum residual Al from 0.100 to 0.094 ppm. The multiple response optimization was carried out using the desirability function. A desirability value of >0.97 estimated respective turbidity removal, DOC removal and Al residual of 89.24%, 45.66% and ∼ 0.1 ppm for coagulation (control) and 90.61%, >55% and ∼ 0 for coagulation preceded by PMU. These figures were validated via confirmatory experiments. PMU pre-treatment increased total coliform removal from 80% to >98% and decreased trihalomethane formation potential (THMFP) from 250 to 200 ppb CH3Cl. Additionally, PMU application prior to coagulation improved the settleability of sludge due to the degassing effects. The results of this study confirms that PMU pre-treatment can significantly improve coagulation performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-Intensity Focused Ultrasound (HIFU) Using Sonablate® Devices for the Treatment of Benign Prostatic Hyperplasia and Localized Prostate Cancer: 18-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki

    2011-09-01

    From 1993 to 2010, we have treated 156 patients benign prostatic hyperplasia (BPH) and 1,052 patients localized prostate cancer high-intensity focused ultrasound (HIFU). Four different HIFU devices, SonablateR-200, SonablateR-500, SonablateR-500 version 4 and Sonablate® TCM, have been used for this study. Clinical outcome of HIFU for BPH did not show any superior effects to transurethral resection of the prostate, laser surgery or transurethral vapolization of the prostate. However, HIFU appears to be a safe and minimally invasive therapy for patients with localized prostate cancer, especially low- and intermediate-risk patients. The rate of clinical outcome has significantly improved over the years due to technical improvements in the device.

  14. Is routine ultrasound guidance for central line placement beneficial? A prospective analysis.

    PubMed

    Martin, Matthew J; Husain, Farah A; Piesman, Michael; Mullenix, Philip S; Steele, Scott R; Andersen, Charles A; Giacoppe, George N

    2004-01-01

    Portable ultrasound devices have become more readily available in the intensive care unit setting, but their utility outside of controlled trials remains unproven. We sought to determine how the availability of ultrasound guidance affected the types and number of complications during central line placement. Review of a prospectively maintained database in a 20-bed combined intensive care unit. Procedure notes from all attempts at internal jugular vein access from 1996 to 2001 were recorded, and selected patient records were reviewed. Ultrasound guidance was available beginning in March 1998. From 1996 to 2001, there were 484 documented attempts at internal jugular central line placement. Most procedures (83%) were performed by first- or second-year residents. During this period, there were 47 complications for an overall complication rate of 10%. These included 1 pneumothorax (2%), 6 carotid punctures (13%), 2 hematomas (4%), and 34 unsuccessful attempts (72%). There was no significant difference in age, sex, body-mass index, or intubation status between those with and without complications or between the ultrasound and anatomic landmark groups. Ultrasound was used in 179 (37%) attempts. The overall complication rate with ultrasound was 11% versus 9% using anatomic landmarks (p = NS). The complication rate prior to the availability of ultrasound was 15 of 114 attempts (13%) versus 32 of 370 attempts (9%) after the introduction of ultrasound in our intensive care unit (p = NS). Analysis of the 370 procedures performed since ultrasound became available demonstrated a complication rate of 11% with ultrasound guidance versus 6% without (p = 0.09). There was no significant difference in complication rates by resident year group or department (surgery vs. other). However, procedures performed after-hours (1800 to 0800) were associated with a 15% complication rate versus 6% for procedures performed during the workday (p < 0.05). The availability and use of ultrasound

  15. Noise characterization of enhancement-mode AlGaN graded barrier MIS-HEMT devices

    NASA Astrophysics Data System (ADS)

    Mohanbabu, A.; Saravana Kumar, R.; Mohankumar, N.

    2017-12-01

    This paper reports a systematic theoretical study on the microwave noise performance of graded AlGaN/GaN metal-insulator semiconductor high-electron mobility transistors (MIS-HEMTs) built on an Al2O3 substrate. The HfAlOx/AlGaN/GaN MIS-HEMT devices designed for this study show an outstanding small signal analog/RF and noise performance. The results on 1 μm gate length device show an enhancement mode operation with threshold voltage, VT = + 5.3 V, low drain leakage current, Ids,LL in the order of 1 × 10-9 A/mm along with high current gain cut-off frequency, fT of 17 GHz and maximum oscillation frequency fmax of 47 GHz at Vds = 10 V. The device Isbnd V and low-frequency noise estimation of the gate and drain noise spectral density and their correlation are evaluated using a Green's function method under different biasing conditions. The devices show a minimum noise figure (NFmin) of 1.053 dB in combination with equivalent noise resistance (Rn) of 23 Ω at 17 GHz, at Vgs = 6 V and Vds = 5 V which is relatively low and is suitable for broad-band low-noise amplifiers. This study shows that the graded AlGaN MIS-HEMT with HfAlOX gate insulator is appropriate for application requiring high-power and low-noise.

  16. Ultrasound as Diagnostic Tool for Diaphragmatic Myoclonus

    PubMed Central

    Llaneza Ramos, Vesper Fe Marie; Considine, Elaine; Karp, Barbara I.; Lungu, Codrin; Alter, Katharine; Hallett, Mark

    2015-01-01

    Background Diaphragmatic myoclonus is a rare disorder of repetitive diaphragmatic contractions, acknowledged to be a spectrum that includes psychogenic features. Electromyography has been the diagnostic tool most commonly used in the literature. Methods To test if we could perform a noninvasive technique to delineate the diaphragm as the source of abnormal movements and demonstrate distractibility and entrainability, we used B-mode ultrasound in a patient with diaphragmatic myoclonus. Results Ultrasound imaging clearly delineated the diaphragm as the source of her abdominal movements. We were able to demonstrate entrainability of the diaphragm to hand tapping to a prescribed rhythm set by examiner. Conclusion We recommend the use of ultrasound as a noninvasive, convenient diagnostic tool for further studies of diaphragmatic myoclonus. We agree with previous findings that diaphragmatic myoclonus may be a functional movement disorder, as evidenced by distractibility and entrainability demonstrated on real-time video with ultrasonography. PMID:27430001

  17. Evaluation of a novel high-intensity focused ultrasound device: preclinical studies in a porcine model.

    PubMed

    Jewell, Mark L; Desilets, Charles; Smoller, Bruce R

    2011-05-01

    High-intensity focused ultrasound (HIFU) has been applied clinically for the noninvasive treatment of pathological conditions in various organs for over 50 years; however, there are little data describing the use of thermal HIFU to ablate fat for body contouring and treatment of collagen-rich layers. A novel device under clinical investigation (LipoSonix; Medicis Technologies Corporation, Bothell, Washington) uses HIFU to eliminate unwanted adipose tissue. The authors describe the results of HIFU treatment in a series of preclinical studies performed in a validated porcine model. Preclinical research included in vivo treatment of the abdominal subcutaneous adipose tissue of swine with transcutaneous HIFU therapy. Endpoint analyses included thermocouple temperature data, full-body necropsy, local pathology and histology studies, clinical hematology, urinalysis, and blood chemistry parameters, including lipid panels. The application of HIFU energy levels of 166 to 372 J/cm(2) generated tissue temperature approaching 70°C, which was restricted to the focal area (n = seven). Application of 68 and 86 J/cm(2) did not produce clinically-significant changes in serum liver function tests, free fatty acids, or cholesterol (n = eight). Gross examination of tissue from various organs showed no evidence of fat emboli or accumulation (n = two). Histology demonstrated well-preserved vasculature and intact nerve fibers within the HIFU focal area (n = three). Following treatment with 85.3 to 270 J/cm(2), normal healing response included the migration of macrophages into the damaged tissue and removal of disrupted cellular debris and lipids (n = 8). In a preclinical swine model, the controlled thermal effect of HIFU appears to provide a safe and effective means for ablating subcutaneous adipose tissue.

  18. Design and fabrication of a 1-DOF drive mode and 2-DOF sense mode micro-gyroscope using SU-8 based UV-LIGA process

    NASA Astrophysics Data System (ADS)

    Verma, Payal; Juneja, Sucheta; Savelyev, Dmitry A.; Khonina, Svetlana N.; Gopal, Ram

    2016-04-01

    This paper presents design and fabrication of a 1-DOF (degree-of-freedom) drive mode and 2-DOF sense mode micro-gyroscope. It is an inherently robust structure and offers a high sense frequency bandwidth. The proposed design utilizes resonance of the1-DOF drive mode oscillator and employs dynamic amplification concept in sense modes to increase the sensitivity while maintaining robustness. The 2-DOF in the sense direction renders the device immune to process imperfections and environmental effects. The design is simulated using FEA software (CoventorWare®). The device is designed considering process compatibility with SU-8 based UV-LIGA process, which is an economical fabrication technique. The complete fabrication process is presented along with SEM images of the fabricated device. The device has 9 µm thick Nickel as the key structural layer with an overall reduced key structure size of 2.2 mm by 2.1 mm.

  19. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes.

    PubMed

    Fujikake, T; Hart, R; Nosaka, Kazunori

    2009-04-01

    This study tested the hypothesis that infiltration of inflammatory cells in muscle fibers would increase echo intensity (image brightness) of B-mode ultrasound images. Bupivacaine hydrochloride (BPVC) or saline solution (SAL) was injected to the tibialis anterior (TA) muscles of 14- to 23-wk-old male Wistar rats. Ultrasound images were taken from the muscles before and at 0, 2, 4, 6, 9, 12, 24, 48, 72, 120, 168 and 336 h after the injection and analyzed for the echo intensity (echogenicity) expressed as the mean value of image pixel value of a region-of-interest. Changes in the echo intensity were compared between BPVC-injected and control or SAL-injected muscles. In the subsequent study, rats (n = 2 per time point) were sacrificed after taking ultrasound image at 0, 2, 6, 12, 24, 48 and 168 h after BPVC injection to the right TA and SAL injection to the left TA to observe histologic changes under a light microscope and the relationship between echo intensity and inflammatory cells was assessed. No significant changes in echo intensity were observed for the control, but BPVC induced significant (p < 0.05) increases in the echo intensity peaking 0 to 24 h postinjection. SAL also increased echo intensity immediately after injection but returned to the baseline by 24 h postinjection. The time course of changes in the echo intensity did not match with the time course of increases in inflammatory cells in the muscle. It is concluded that infiltration of inflammatory cells is not a direct cause of the increased echo intensity.

  20. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  1. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  2. Ozil IP torsional mode versus combined torsional/longitudinal microcoaxial phacoemulsification.

    PubMed

    Helvacioglu, Firat; Tunc, Zeki; Yeter, Celal; Oguzhan, Hasan; Sencan, Sadik

    2012-01-01

    To compare the safety and efficacy of microcoaxial phacoemulsification surgeries performed with the Ozil Intelligent Phaco (IP) torsional mode and combined torsional/longitudinal ultrasound (US) mode using the Infiniti Vision System (Alcon Laboratories). In this prospective randomized comparative study, 60 eyes were assigned to 2.2-mm microcoaxial phacoemulsification using the Ozil IP torsional mode (group 1) or combined torsional/longitudinal US mode (group 2). The primary outcome measures were US time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound amplitudes, mean operation time, mean volume of balanced salt solution (BSS) used, and surgical complications. Both groups included 30 eyes. Mean UST, CDE, and longitudinal and torsional ultrasound amplitudes in group 1 were 1 minute 15±34.33 seconds, 8.74±5.64, 0.43±0.74, and 25.56±8.56, respectively, and these parameters in group 2 were 1 minute 40±51.44 seconds, 9.28±5.99, 3.64±1.55, and 3.71±1.34, respectively. UST and longitudinal amplitudes were found to be significantly low in group 1 (p<0.001, p<0.001), whereas torsional amplitude was found to be significantly high in this group (p=0.001). Mean volumes of BSS used in groups 1 and 2 were 63.30±18.00 cc and 84.50±28.65 cc, respectively (p=0.001). The Ozil IP torsional mode may provide more effective lens removal than the combined torsional/longitudinal US mode with a lower UST and volume of BSS used.

  3. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to

  4. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  5. MR-guided focused ultrasound robot for performing experiments on large animals

    NASA Astrophysics Data System (ADS)

    Mylonas, N.; Damianou, C.

    2011-09-01

    Introduction: In this paper an experimental MRI-guided focused ultrasound robot for large animals is presented. Materials and methods: A single element spherically focused transducer of 4 cm diameter, focusing at 10 cm and operating at 1 MHz was used. A positioning device was developed in order to scan the ultrasound transducer for performing MR-guided focused ultrasound experiments in large animals such as pig, sheep and dog. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, Acrylonitrile Butadiene Styrene (ABS) plastic, brass screws, and brass pulleys. The system is manufactured automatically using a rapid prototyping system. Results: The system was tested successfully in a number of animals for various tasks (creation of single lesions, creation of overlapping lesions, and MR compatibility). Conclusions: A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can be via a lateral or superior-inferior approach. This system has the potential to be marketed as a cost effective solution for performing experiments in small and large animals.

  6. Wireless ultrasound-powered biotelemetry for implants.

    PubMed

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2009-01-01

    A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.

  7. Optical Detection of Ultrasound in Photoacoustic Imaging

    PubMed Central

    Dong, Biqin; Sun, Cheng; Zhang, Hao F.

    2017-01-01

    Objective Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz while their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in photoacoustic imaging. Methods We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. Results Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. Conclusion The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in photoacoustic imaging for biomedical study and clinical diagnosis. PMID:27608445

  8. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  9. 4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy

    PubMed Central

    Tomasovic, Sanja; Predojevic, Maja

    2011-01-01

    Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage. PMID:23407920

  10. Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors

    PubMed Central

    Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.

    2014-01-01

    Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical

  11. Training Program for Cardiology Residents to Perform Focused Cardiac Ultrasound Examination with Portable Device.

    PubMed

    Siqueira, Vicente N; Mancuso, Frederico J N; Campos, Orlando; De Paola, Angelo A; Carvalho, Antonio C; Moises, Valdir A

    2015-10-01

    Training requirements for general cardiologists without echocardiographic expertise to perform focused cardiac ultrasound (FCU) with portable devices have not yet been defined. The objective of this study was to evaluate a training program to instruct cardiology residents to perform FCU with a hand-carried device (HCD) in different clinical settings. Twelve cardiology residents were subjected to a 50-question test, 4 lectures on basic echocardiography and imaging interpretation, the supervised interpretation of 50 echocardiograms and performance of 30 exams using HCD. After this period, they repeated the written test and were administered a practical test comprising 30 exams each (360 patients) in different clinical settings. They reported on 15 parameters and a final diagnosis; their findings were compared to the HCD exam of a specialist in echocardiography. The proportion of correct answers on the theoretical test was higher after training (86%) than before (51%; P = 0.001). The agreement was substantial among the 15 parameters analyzed (kappa ranging from 0.615 to 0.891; P < 0.001). The percentage of correct interpretation was lower for abnormal (75%) than normal (95%) items, for valve abnormalities (85%) compared to other items (92%) and for graded scale (87%) than for dichotomous (95%) items (P < 0.0001, for all). For the final diagnoses, the kappa value was higher than 0.941 (P < 0.001; 95% CI [0.914, 0.955]). The training proposed enabled residents to perform FCU with HCD, and their findings were in good agreement with those of a cardiologist specialized in echocardiography. © 2015, Wiley Periodicals, Inc.

  12. Reduced clot debris size using standing waves formed via high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi

    2017-09-01

    The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.

  13. Comparison of the application of B-mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach.

    PubMed

    Liu, Tongtong; Ge, Xifeng; Yu, Jinhua; Guo, Yi; Wang, Yuanyuan; Wang, Wenping; Cui, Ligang

    2018-06-21

    B-mode ultrasound (B-US) and strain elastography ultrasound (SE-US) images have a potential to distinguish thyroid tumor with different lymph node (LN) status. The purpose of our study is to investigate whether the application of multi-modality images including B-US and SE-US can improve the discriminability of thyroid tumor with LN metastasis based on a radiomics approach. Ultrasound (US) images including B-US and SE-US images of 75 papillary thyroid carcinoma (PTC) cases were retrospectively collected. A radiomics approach was developed in this study to estimate LNs status of PTC patients. The approach included image segmentation, quantitative feature extraction, feature selection and classification. Three feature sets were extracted from B-US, SE-US, and multi-modality containing B-US and SE-US. They were used to evaluate the contribution of different modalities. A total of 684 radiomics features have been extracted in our study. We used sparse representation coefficient-based feature selection method with 10-bootstrap to reduce the dimension of feature sets. Support vector machine with leave-one-out cross-validation was used to build the model for estimating LN status. Using features extracted from both B-US and SE-US, the radiomics-based model produced an area under the receiver operating characteristic curve (AUC) [Formula: see text] 0.90, accuracy (ACC) [Formula: see text] 0.85, sensitivity (SENS) [Formula: see text] 0.77 and specificity (SPEC) [Formula: see text] 0.88, which was better than using features extracted from B-US or SE-US separately. Multi-modality images provided more information in radiomics study. Combining use of B-US and SE-US could improve the LN metastasis estimation accuracy for PTC patients.

  14. Incremental value of pocket-sized imaging device for bedside diagnosis of unilateral pleural effusions and ultrasound-guided thoracentesis

    PubMed Central

    Lisi, Matteo; Cameli, Matteo; Mondillo, Sergio; Luzzi, Luca; Zacà, Valerio; Cameli, Paolo; Gotti, Giuseppe; Galderisi, Maurizio

    2012-01-01

    OBJECTIVES The present study aimed to assess the additional value of a pocket-sized imaging device (PSID) as an adjunct to plain chest X-rays in the diagnosis of pleural effusion (PE), mainly for those requiring pleural thoracentesis. METHODS We performed a thoracic ultrasound examination using a PSID in 73 patients with an abnormal chest X-ray diagnostic for unilateral PE. Abundant PE was defined as an interpleural distance between the diaphragm and visceral pleura (VP) of ≥30 mm at the apex of the 50 mm bisector line of the costodiaphragmatic recess at end expiration. RESULTS According to PSID ultrasound evaluation, abundant PE was present in 46 patients (63%), while 27 (37%) patients showed the presence of mild PE or absence of PE. Thoracentesis was performed successfully and without procedure-induced complications in all 46 patients with abundant PE. Using the above-mentioned method, we obtained a high diagnostic accuracy (area under the curve = 0.99) and excellent sensitivity and specificity of 91.7 and 99.9%, respectively, to predict a PE >1000 ml, when VP was >6.3 cm. CONCLUSIONS PSID is a useful tool that may integrate and complete the physical examination, also providing additional information to chest X-ray in the clinical management of patients with suspected PE. PSID evaluation can also increase the effectiveness and safety of thoracentesis. PMID:22815326

  15. Teaching enthesis ultrasound: experience of an ultrasound training workshop.

    PubMed

    Miguel, Cláudia; De Miguel, Eugenio; Batlle-Gualda, Enrique; Rejón, Eduardo; Lojo, Leticia

    2012-12-01

    To evaluate a standardised enthesis ultrasound training method, a workshop was conducted to train rheumatologists on enthesis ultrasound. After a theoretical session about ultrasound elementary enthesis lesions (changes in tendon architecture/thickness, bone proliferation/erosion, bursitis or Doppler signal), a reading exercise of 28 entheses' ultrasonographic images (plantar fasciae, Achilles, origin and insertion of patellar tendon) was completed. Participants scored through an electronic multiple-choice device with six possible lesions in each enthesis. To assess the adequacy and efficacy of the workshop, we explored the following: (1) subjective outcomes: a 12-item structured satisfaction questionnaire (graded 1-5 using Likert scale) and (2) objective outcomes of reliability: sensitivity (Se), specificity (Sp) and percentage of correctly classified cases (CC). Forty-nine participants attended the workshop. The satisfaction questionnaire demonstrated a 4.7 mean global value. The inter-reader Kappa reliability coefficient was moderate for the plantar fascia (0.47), Achilles tendon (0.47), and distal patellar tendons (0.50) and good for the proximal patellar tendon (0.63). The whole group means comparing to teachers' consensus were as follows: (a) plantar fascia: Se, 73.2%; Sp, 87.7%; CC, 83.3%; (b) Achilles: Se, 66.9%; Sp, 85.0%; CC, 79.5%; (c) distal patellar tendon: Se, 74.6%; Sp, 85.3%; CC, 82.1%; and (d) proximal patellar tendon: Se, 82.2%; Sp, 90.6%; CC, 88%. The proposed learning method seemed to be simple, easily performed, effective and well accepted by the target audience.

  16. Minimal invasive complete excision of benign breast tumors using a three-dimensional ultrasound-guided mammotome vacuum device.

    PubMed

    Baez, E; Huber, A; Vetter, M; Hackelöer, B-J

    2003-03-01

    The aim of this study was to evaluate the use of three-dimensional (3D) ultrasonography in the complete excision of benign breast tumors using ultrasound-guided vacuum-assisted core-needle biopsy (Mammotome). A protocol for the management of benign breast tumors is proposed. Twenty consecutive patients with sonographically benign breast lesions underwent 3D ultrasound-guided mammotome biopsy under local anesthesia. The indication for surgical biopsy was a solid lesion with benign characteristics on both two-dimensional (2D) and 3D ultrasound imaging, increasing in size over time or causing pain or irritation. Preoperatively, the size of the lesion was assessed using 2D and 3D volumetry. During vacuum biopsy the needle was visualized sonographically in all three dimensions, including the coronal plane. Excisional biopsy was considered complete when no residual tumor tissue could be seen sonographically. Ultrasonographic follow-up examinations were performed on the following day and 3-6 months later to assess residual tissue and scarring. All lesions were histologically benign. Follow-up examinations revealed complete excision of all lesions of < 1.5 mL in volume as assessed by 3D volumetry. 3D ultrasonographic volume assessment was more accurate than 2D using the ellipsoid formula or assessment of the maximum diameter for the prediction of complete excision of the tumor. No bleeding or infections occurred postoperatively and no scarring was seen ultrasonographically on follow-up examinations. Ultrasound-guided vacuum-assisted biopsy allows complete excision of benign breast lesions that are a safe procedure with optimal compliance. 3D ultrasound offers the advantage of better preoperative demonstration of the lesions' margins, resulting in better assessment of volumetry, improved intraoperative needle location and perioperative

  17. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    NASA Astrophysics Data System (ADS)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  18. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  19. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  20. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    PubMed

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  1. Ultrasound as a Screening Tool for Central Venous Catheter Positioning and Exclusion of Pneumothorax.

    PubMed

    Amir, Rabia; Knio, Ziyad O; Mahmood, Feroze; Oren-Grinberg, Achikam; Leibowitz, Akiva; Bose, Ruma; Shaefi, Shahzad; Mitchell, John D; Ahmed, Muneeb; Bardia, Amit; Talmor, Daniel; Matyal, Robina

    2017-07-01

    Although real-time ultrasound guidance during central venous catheter insertion has become a standard of care, postinsertion chest radiograph remains the gold standard to confirm central venous catheter tip position and rule out associated lung complications like pneumothorax. We hypothesize that a combination of transthoracic echocardiography and lung ultrasound is noninferior to chest radiograph when used to accurately assess central venous catheter positioning and screen for pneumothorax. All operating rooms and surgical and trauma ICUs at the institution. Single-center, prospective noninferiority study. Patients receiving ultrasound-guided subclavian or internal jugular central venous catheters. During ultrasound-guided central venous catheter placement, correct positioning of central venous catheter was accomplished by real-time visualization of the guide wire and positive right atrial swirl sign using the subcostal four-chamber view. After insertion, pneumothorax was ruled out by the presence of lung sliding and seashore sign on M-mode. Data analysis was done for 137 patients. Chest radiograph ruled out pneumothorax in 137 of 137 patients (100%). Lung ultrasound was performed in 123 of 137 patients and successfully screened for pneumothorax in 123 of 123 (100%). Chest radiograph approximated accurate catheter tip position in 136 of 137 patients (99.3%). Adequate subcostal four-chamber views could not be obtained in 13 patients. Accurate positioning of central venous catheter with ultrasound was then confirmed in 121 of 124 patients (97.6%) as described previously. Transthoracic echocardiography and lung ultrasound are noninferior to chest x-ray for screening of pneumothorax and accurate central venous catheter positioning. Thus, the point of care use of ultrasound can reduce central venous catheter insertion to use time, exposure to radiation, and improve patient safety.

  2. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  3. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  4. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  5. Efficient multi-mode to single-mode coupling in a photonic lantern.

    PubMed

    Noordegraaf, Danny; Skovgaard, Peter M W; Nielsen, Martin D; Bland-Hawthorn, Joss

    2009-02-02

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch conditions into the MM fiber are ensured. The fabricated photonic lantern has a coupling loss for a MM to SM tapered transition of only 0.32 dB which proves the feasibility of the technology.

  6. Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study.

    PubMed

    Krieg, Marc-Antoine; Cornuz, Jacques; Ruffieux, Christiane; Van Melle, Guy; Büche, Daniel; Dambacher, Maximilian A; Hans, Didier; Hartl, Florian; Häuselmann, Hansjorg J; Kraenzlin, Marius; Lippuner, Kurt; Neff, Maurus; Pancaldi, Pierro; Rizzoli, Rene; Tanzi, Franco; Theiler, Robert; Tyndall, Alan; Wimpfheimer, Claus; Burckhardt, Peter

    2006-09-01

    To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). In this elderly women

  7. Two-mode division multiplexing in a silicon-on-insulator ring resonator.

    PubMed

    Dorin, Bryce A; Ye, Winnie N

    2014-02-24

    Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.

  8. Ultrasound ionization of biomolecules.

    PubMed

    Wu, Chen-I; Wang, Yi-Sheng; Chen, Nelson G; Wu, Chung-Yi; Chen, Chung-Hsuan

    2010-09-15

    To date, mass spectrometric analysis of biomolecules has been primarily performed with either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). In this work, ultrasound produced by a simple piezoelectric device is shown as an alternative method for soft ionization of biomolecules. Precursor ions of proteins, saccharides and fatty acids showed little fragmentation. Cavitation is considered as a primary mechanism for the ionization of biomolecules. Copyright 2010 John Wiley & Sons, Ltd.

  9. Tools to Improve the Accuracy of Kidney Stone Sizing with Ultrasound

    PubMed Central

    Dunmire, Barbrina; Hsi, Ryan S.; Cunitz, Bryan W.; Paun, Marla; Bailey, Michael R.; Sorensen, Mathew D.; Harper, Jonathan D.

    2015-01-01

    Abstract Purpose: Ultrasound (US) overestimates stone size when compared with CT. The purpose of this work was to evaluate the overestimation of stone size with US in an in vitro water bath model and investigate methods to reduce overestimation. Materials and Methods: Ten human stones (3–12 mm) were measured using B-mode (brightness mode) US by a sonographer blinded to the true stone size. Images were captured and compared using both a commercial US machine and software-based research US device. Image gain was adjusted between moderate and high stone intensities, and the transducer-to-stone depth was varied from 6 to 10 cm. A computerized stone-sizing program was developed to outline the stone width based on a grayscale intensity threshold. Results: Overestimation with the commercial device increased with both gain and depth. Average overestimation at moderate and high gain was 1.9±0.8 and 2.1±0.9 mm, respectively (p=0.6). Overestimation increased an average of 22% with an every 2-cm increase in depth (p=0.02). Overestimation using the research device was 1.5±0.9 mm and did not vary with depth (p=0.28). Overestimation could be reduced to 0.02±1.1 mm (p<0.001) with the computerized stone-sizing program. However, a standardized threshold consistent across depth, system, or system settings could not be resolved. Conclusion: Stone size is consistently overestimated with US. Overestimation increased with increasing depth and gain using the commercial machine. Overestimation was reduced and did not vary with depth, using the software-based US device. The computerized stone-sizing program shows the potential to reduce overestimation by implementing a grayscale intensity threshold for defining the stone size. More work is needed to standardize the approach, but if successful, such an approach could significantly improve stone-sizing accuracy and lead to automation of stone sizing. PMID:25105243

  10. Microfocused ultrasound for skin tightening.

    PubMed

    MacGregor, Jennifer L; Tanzi, Elizabeth L

    2013-03-01

    The demand for noninvasive skin tightening procedures is increasing as patients seek safe and effective alternatives to aesthetic surgical procedures of the face, neck, and body. Over the past decade, radiofrequency and infrared laser devices have been popularized owing to their ability to deliver controlled heat to the dermis, stimulate neocollagenesis, and effect modest tissue tightening with minimal recovery. However, these less invasive approaches are historically associated with inferior efficacy so that surgery still remains the treatment of choice to address moderate to severe tissue laxity. Microfocused ultrasound was recently introduced as a novel energy modality for transcutaneous heat delivery that reaches the deeper subdermal connective tissue in tightly focused zones at consistent programmed depths. The goal is to produce a deeper wound healing response at multiple levels with robust collagen remodeling and a more durable clinical response. The Ulthera device (Ulthera, Inc, Meza, AZ), with refined microfocused ultrasound technology, has been adapted specifically for skin tightening and lifting with little recovery or risk of complications since its introduction in 2009. As clinical parameters are studied and optimized, enhanced efficacy and consistency of clinical improvement is expected.

  11. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.

    PubMed

    Song, Junho; Lucht, Benjamin; Hynynen, Kullervo

    2012-07-01

    With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.

  12. Ultrasound

    MedlinePlus

    ... community Home > Pregnancy > Prenatal care > Ultrasound during pregnancy Ultrasound during pregnancy E-mail to a friend Please ... you. What are some reasons for having an ultrasound? Your provider uses ultrasound to do several things, ...

  13. Utility of 3-dimensional ultrasound imaging to evaluate carotid artery stenosis: comparison with magnetic resonance angiography.

    PubMed

    Igase, Keiji; Kumon, Yoshiaki; Matsubara, Ichiro; Arai, Masamori; Goishi, Junji; Watanabe, Hideaki; Ohnishi, Takanori; Sadamoto, Kazuhiko

    2015-01-01

    We evaluated the utility of 3-dimensional (3-D) ultrasound imaging for assessment of carotid artery stenosis, as compared with similar assessment via magnetic resonance angiography (MRA). Subjects comprised 58 patients with carotid stenosis who underwent both 3-D ultrasound imaging and MRA. We studied whether abnormal findings detected by ultrasound imaging could be diagnosed using MRA. Ultrasound images were generated using Voluson 730 Expert and Voluson E8. The degree of stenosis was mild in 17, moderate in 16, and severe in 25 patients, according to ultrasound imaging. Stenosis could not be recognized using MRA in 4 of 17 patients diagnosed with mild stenosis using ultrasound imaging. Ultrasound imaging showed ulceration in 13 patients and mobile plaque in 6 patients. When assessing these patients, MRA showed ulceration in only 2 of 13 patients and did not detect mobile plaque in any of these 6 patients. Static 3-D B mode images demonstrated distributions of plaque, ulceration, and mobile plaque, and static 3-D flow images showed flow configuration as a total structure. Real-time 3-D B mode images demonstrated plaque and vessel movement. Carotid artery stenting was not selected for patients diagnosed with ulceration or mobile plaque. Ultrasound imaging was necessary to detect mild stenosis, ulcerated plaque, or mobile plaque in comparison with MRA, and 3-D ultrasound imaging was useful to recognize carotid stenosis and flow pattern as a total structure by static and real-time 3-D demonstration. This information may contribute to surgical planning. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.

    PubMed

    Greis, C

    2014-01-01

    Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.

  15. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer.

    PubMed

    Park, E J; Werner, Jacob; Smith, Nadine Barrie

    2007-07-01

    In previous studies, ultrasound mediated transdermal drug delivery has shown a promising potential as a method for noninvasive drug administration. For prospective future human application, this study was designed to determine the feasibility of lightweight cymbal transducer array as a practical device for noninvasive transdermal insulin delivery in large pigs. Six Yorkshire pigs (100-140 lbs) were divided into two groups. As the control (n = 3), the first group did not receive any ultrasound exposure with the insulin. The second group (n = 3) was treated with ultrasound and insulin at 20 kHz with an I(sptp) = 100 mW/cm(2) at a 20% duty cycle for 60 min. With the pigs in lateral recumbency after anesthesia, the ultrasound transducer with insulin was placed on the axillary area of the pig. At the beginning and every 15 min up to 90 min, the blood glucose level was determined using a glucose monitoring system. To compare the results of individual animals, the change of blood glucose level was normalized to each animal's initial glucose value at the start of the experiment. Although each animal had a different initial glucose level, the mean and standard error for the six animals was 146 +/- 13 mg/dl. For the control group, the blood glucose level increased to 31 +/- 21 mg/dl compared to the initial baseline over the 90 min experiment. However for the ultrasound with insulin treated group, the glucose level decreased to -72 +/- 5 mg/dl at 60 min (p < 0.05) and continued to decrease to -91 +/- 23 mg/dl in 90 min (p < 0.05). The results indicate the feasibility of ultrasound mediated transdermal insulin delivery using the cymbal transducer array in animal with a similar size and weight to a human. Based on these result, the cymbal array has potential as a practical ultrasound system for noninvasive transdermal insulin delivery for diabetes management.

  16. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    NASA Astrophysics Data System (ADS)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  17. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E [Livermore, CA; Luke, S John [Pleasanton, CA; Mauger, G Joseph [Livermore, CA; Riot, Vincent J [Berkeley, CA; Knapp, David A [Livermore, CA

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  18. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  19. Ultrasound-guided near-infrared spectroscopy for brain functional study: feasibility analysis and preliminary work

    NASA Astrophysics Data System (ADS)

    Xu, Ronald; Qiang, Bo; Liu, Jun

    2005-04-01

    Recent advances in diffuse optical imaging and spectroscopy (DOIS) allow the noninvasive measurement of local changes in cerebral oxygenation and hemodynamics. Available DOIS devices fall into three categories: time domain (TD), frequency domain (FD) and continuous wave (CW). The TD and FD devices have potential for high spatial resolution, high temporal resolution and high accuracy measurement, but the instrument cost and the hardware size prevent their wide clinical application. Furthermore, the presence of the low scattering cerebrospinal fluid layer (CSF) and its thickness variation during motion challenges quantitative, continuous monitoring of the cortex layer oxygenation and blood content. MRI has been used to provide a priori knowledge of the head anatomy that helps the NIR image reconstruction. However, the technology is expensive and lacks portability. This paper proposes a method that combines the accuracy of a TD/FD system and the portability of a CW device. With the optical baseline measured by a TD or FD device and the layer thickness characterized by an ultrasound transducer, a conventional CW system may be able to quantify the cortex layer optical absorption with high accuracy. In this paper, the feasibility of using ultrasound guided CW spectroscopy to monitor brain activities was studied on a multi layer head model using Monte Carlo simulation and order of magnitude analysis. A forward algorithm based on diffuse approximation and 2D Fourier Transform was used to optimize the source detector separation. Both analytical and neuron network approaches were developed for inverse calculation of the cortex layer absorption in real time. An ultrasound transducer was used to monitor the thickness of different layers surrounding the cerebral cortex. The concept of ultrasound guided CW spectroscopy was demonstrated by numerical simulation on a 2 layer head model and the use of the ultrasound transducer for layer thickness characterization was verified by

  20. Five-dimensional ultrasound system for soft tissue visualization.

    PubMed

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  1. Comparing Performance of Combinations of Shear Wave Elastography and B-Mode Ultrasound in Diagnosing Breast Masses: Is It Influenced by Mass Size?

    PubMed

    Cong, Rui; Li, Jing; Wang, Xuejiao

    2017-10-01

    We determined the diagnostic performance of combinations of shear wave elastography (SWE) and B-mode ultrasound (US) in differentiating malignant from benign breast masses, and we investigated whether performance is affected by mass size. In this prospective study of 315 consecutive patients with 326 breast masses, US and SWE were performed before biopsy. Masses were categorized into two subgroups on the basis of mass size (≤15 mm and >15 mm), and the optimal thresholds for the SWE parameters were determined for each subgroup using receiver operating characteristic curves. The combination proposed here achieved an area under the receiver operating characteristic curve of 0.943, 95.00% sensitivity and 81.18% specificity, which approximated the diagnostic performance of US alone. The performance of the combinations using the subgroups' thresholds did not differ significantly from those based on the entire study group's thresholds, but the optimal thresholds were higher in the subgroup of larger masses. Further research is needed to determine whether mass size affects the performance of combinations of SWE and US. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Ultrasound cavitation versus cryolipolysis for non-invasive body contouring.

    PubMed

    Mahmoud ELdesoky, Mohamed Taher; Mohamed Abutaleb, Enas ELsayed; Mohamed Mousa, Gihan Samir

    2015-08-24

    The demand for non-surgical and non-invasive devices is continuous and increasing. Such devices have gradually gained ground in the reduction of localised fat and the improvement of body contouring. The study aimed to compare the effects of ultrasound cavitation and cryolipolysis on localised abdominal fat. In total, 60 participants with a body mass index (BMI) over 30 kg/m 2 , whose age ranged between 25 and 45 years, were included. The participants were randomly assigned to three groups of 20 each, using ultrasound cavitation and diet, cryolipolysis and diet, and diet only (the control group), respectively. Measures were bodyweight, BMI, waist circumference and suprailiac skinfold were measured at the beginning of the study and 2 months later. The three groups showed significant improvements in all measured variables after 2 months. There was no statistically significant difference in bodyweight or in BMI among the groups after treatment. However, the groups using ultrasound cavitation and cryolipolysis showed better post-treatment improvement than the diet-only group in waist circumference and suprailiac skinfold. There was no statistically significant difference post-treatment between the cavitation and cryolipolysis groups in waist circumference or suprailiac skinfold. Both ultrasound cavitation and cryolipolysis are safe and effective for the reduction of abdominal fat thickness and for abdominal contouring. © 2015 The Australasian College of Dermatologists.

  3. Electromagnetic interference from electronic devices used in the management of type 1 diabetes can impair the performance of an avalanche transceiver in search mode.

    PubMed

    Miller, Steven C M

    2015-06-01

    Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Mode evolution in polarization maintain few mode fibers and applications in mode-division-multiplexing systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.

  5. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    NASA Astrophysics Data System (ADS)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  6. An Assessment of Iterative Reconstruction Methods for Sparse Ultrasound Imaging

    PubMed Central

    Valente, Solivan A.; Zibetti, Marcelo V. W.; Pipa, Daniel R.; Maia, Joaquim M.; Schneider, Fabio K.

    2017-01-01

    Ultrasonic image reconstruction using inverse problems has recently appeared as an alternative to enhance ultrasound imaging over beamforming methods. This approach depends on the accuracy of the acquisition model used to represent transducers, reflectivity, and medium physics. Iterative methods, well known in general sparse signal reconstruction, are also suited for imaging. In this paper, a discrete acquisition model is assessed by solving a linear system of equations by an ℓ1-regularized least-squares minimization, where the solution sparsity may be adjusted as desired. The paper surveys 11 variants of four well-known algorithms for sparse reconstruction, and assesses their optimization parameters with the goal of finding the best approach for iterative ultrasound imaging. The strategy for the model evaluation consists of using two distinct datasets. We first generate data from a synthetic phantom that mimics real targets inside a professional ultrasound phantom device. This dataset is contaminated with Gaussian noise with an estimated SNR, and all methods are assessed by their resulting images and performances. The model and methods are then assessed with real data collected by a research ultrasound platform when scanning the same phantom device, and results are compared with beamforming. A distinct real dataset is finally used to further validate the proposed modeling. Although high computational effort is required by iterative methods, results show that the discrete model may lead to images closer to ground-truth than traditional beamforming. However, computing capabilities of current platforms need to evolve before frame rates currently delivered by ultrasound equipments are achievable. PMID:28282862

  7. Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Bosyj, Christopher

    An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.

  8. QUS devices for assessment of osteoporosis

    NASA Astrophysics Data System (ADS)

    Langton, Christian

    2002-05-01

    The acronym QUS (Quantitative Ultrasound) is now widely used to describe ultrasound assessment of osteoporosis, a disease primarily manifested by fragility fractures of the wrist and hip along with shortening of the spine. There is currently available a plethora of commercial QUS devices, measuring various anatomic sites including the heel, finger, and tibia. Largely through commercial rather than scientific drivers, the parameters reported often differ significantly from the two fundamental parameters of velocity and attenuation. Attenuation at the heel is generally reported as BUA (broadband ultrasound attenuation, the linearly regressed increase in attenuation between 200 and 600 kHz). Velocity derivatives include bone, heel, TOF, and AdV. Further, velocity and BUA parameters may be mathematically combined to provide proprietary parameters including ``stiffness'' and ``QUI.'' In terms of clinical utility, the situation is further complicated by ultrasound being inherently dependent upon ``bone quality'' (e.g., structure) in addition to ``bone quantity'' (generally expressed as BMD, bone mineral density). Hence the BMD derived WHO criteria for osteoporosis and osteopenia may not be directly applied to QUS. There is therefore an urgent need to understand the fundamental dependence of QUS parameters, to perform calibration and cross-correlation studies of QUS devices, and to define its clinical utility.

  9. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    PubMed Central

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-01-01

    Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3. PMID:26450398

  10. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre.

    PubMed

    Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E

    2015-10-09

    Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).

  11. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-10-01

    Mode division multiplexing (MDM)- using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10-3.

  12. MO-DE-210-07: Investigation of Treatment Interferences of a Novel Robotic Ultrasound Radiotherapy Guidance System with Clinical VMAT Plans for Liver SBRT Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Bruder, R; Schweikard, A

    Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in amore » prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95

  13. Ultrasound comparison of external and internal neck anatomy with the LMA Unique.

    PubMed

    Lee, Steven M; Wojtczak, Jacek A; Cattano, Davide

    2017-12-01

    Internal neck anatomy landmarks and their relation after placement of an extraglottic airway devices have not been studied extensively by the use of ultrasound. Based on our group experience with external landmarks as well as internal landmarks evaluation with other techniques, we aimed use ultrasound to analyze the internal neck anatomy landmarks and the related changes due to the placement of the Laryngeal Mask Airway Unique. Observational pilot investigation. Non-obese adult patients with no evidence of airway anomalies, were recruited. External neck landmarks were measured based on a validated and standardized method by tape. Eight internal anatomical landmarks, reciprocal by the investigational hypothesis to the external landmarks, were also measured by ultrasound guidance. The internal landmarks were re-measured after optimal placement and inflation of the extraglottic airway devices cuff Laryngeal Mask Airway Unique. Six subjects were recruited. Ultrasound measurements of hyoid-mental distance, thyroid-cricoid distance, thyroid height, and thyroid width were found to be significantly ( p < 0.05) overestimated using a tape measure. Sagittal neck landmark distances such as thyroid height, sternal-mental distance, and thyroid-cricoid distance significantly decreased after placement of the Laryngeal Mask Airway Unique. The laryngeal mask airway Unique resulted in significant changes in internal neck anatomy. The induced changes and respective specific internal neck anatomy landmarks could help to design devices that would modify their shape accordingly to areas of greatest displacement. Also, while external neck landmark measurements overestimate their respective internal neck landmarks, as we previously reported, the concordance of each measurement and their respective conversion factor could continue to be of help in sizing extraglottic airway devices. Due to the pilot nature of the study, more investigations are warranted.

  14. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  15. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  16. Mode Profiles in Waveguide-Coupled Resonators

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Cameron, Tom; Saw, John C. B.; Kim, Yoonkee

    1993-01-01

    Surface acoustic wave (SAW) waveguide-coupled resonators are of considerable interest for narrow-band filter applications, though to date there has been very little published on the acoustic details of their operation. As in any resonator, one must fully understand its mode structure and herein we study the SAW mode profiles in these devices. Transverse mode profiles in the resonant cavity of the device were measured at various frequencies of interest using a knife-edge laser probe. In addition we predict the mode profiles for the device structure by two independent methods. One is a stack-matrix approach adapted from integrated optics and the other is a conventional analytical eigenmode analysis of the Helmholtz equation. Both modeling techniques are in good agreement with the measured results.

  17. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging

    PubMed Central

    Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038

  18. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    PubMed

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  19. Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.

    PubMed

    Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel

    2016-12-14

    We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.

  20. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  1. A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation

    NASA Astrophysics Data System (ADS)

    Suadet, Apirak; Kasemsuwan, Varakorn

    2011-03-01

    This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18 μm CMOS technology under 1V supply and analyzed using HSPICE with BSIM3V3 device models. A pseudo-differential amplifier using two common sources and the proposed CMFB shows rail to rail output swing (± 0.7 V) with low common-mode gain (-36 dB) and power dissipation of 390 μW.

  2. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    PubMed

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  3. A motorized ultrasound system for MRI-ultrasound fusion guided prostatectomy

    NASA Astrophysics Data System (ADS)

    Seifabadi, Reza; Xu, Sheng; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Purpose: This study presents MoTRUS, a motorized transrectal ultrasound system, to enable remote navigation of a transrectal ultrasound (TRUS) probe during da Vinci assisted prostatectomy. MoTRUS not only provides a stable platform to the ultrasound probe, but also allows the physician to navigate it remotely while sitting on the da Vinci console. This study also presents phantom feasibility study with the goal being intraoperative MRI-US image fusion capability to bring preoperative MR images to the operating room for the best visualization of the gland, boundaries, nerves, etc. Method: A two degree-of-freedom probe holder is developed to insert and rotate a bi-plane transrectal ultrasound transducer. A custom joystick is made to enable remote navigation of MoTRUS. Safety features have been considered to avoid inadvertent risks (if any) to the patient. Custom design software has been developed to fuse pre-operative MR images to intraoperative ultrasound images acquired by MoTRUS. Results: Remote TRUS probe navigation was evaluated on a patient after taking required consents during prostatectomy using MoTRUS. It took 10 min to setup the system in OR. MoTRUS provided similar capability in addition to remote navigation and stable imaging. No complications were observed. Image fusion was evaluated on a commercial prostate phantom. Electromagnetic tracking was used for the fusion. Conclusions: Motorized navigation of the TRUS probe during prostatectomy is safe and feasible. Remote navigation provides physician with a more precise and easier control of the ultrasound image while removing the burden of manual manipulation of the probe. Image fusion improved visualization of the prostate and boundaries in a phantom study.

  4. Multicarrier airborne ultrasound transmission with piezoelectric transducers.

    PubMed

    Ens, Alexander; Reindl, Leonhard M

    2015-05-01

    In decentralized localization systems, the received signal has to be assigned to the sender. Therefore, longrange airborne ultrasound communication enables the transmission of an identifier of the sender within the ultrasound signal to the receiver. Further, in areas with high electromagnetic noise or electromagnetic free areas, ultrasound communication is an alternative. Using code division multiple access (CDMA) to transmit data is ineffective in rooms due to high echo amplitudes. Further, piezoelectric transducers generate a narrow-band ultrasound signal, which limits the data rate. This work shows the use of multiple carrier frequencies in orthogonal frequency division multiplex (OFDM) and differential quadrature phase shift keying modulation with narrowband piezoelectric devices to achieve a packet length of 2.1 ms. Moreover, the adapted channel coding increases data rate by correcting transmission errors. As a result, a 2-carrier ultrasound transmission system on an embedded system achieves a data rate of approximately 5.7 kBaud. Within the presented work, a transmission range up to 18 m with a packet error rate (PER) of 13% at 10-V supply voltage is reported. In addition, the transmission works up to 22 m with a PER of 85%. Moreover, this paper shows the accuracy of the frame synchronization over the distance. Consequently, the system achieves a standard deviation of 14 μs for ranges up to 10 m.

  5. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.

    PubMed

    Wu, Daocheng; Wan, Mingxi

    2008-01-01

    Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

  6. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple pregnancy - ultrasound; ...

  7. Endoscopic ultrasound-guided biliary drainage

    PubMed Central

    Chavalitdhamrong, Disaya; Draganov, Peter V

    2012-01-01

    Endoscopic ultrasound (EUS)-guided biliary drainage has emerged as a minimally invasive alternative to percutaneous and surgical interventions for patients with biliary obstruction who had failed endoscopic retrograde cholangiopancreatography (ERCP). EUS-guided biliary drainage has become feasible due to the development of large channel curvilinear therapeutic echo-endoscopes and the use of real-time ultrasound and fluoroscopy imaging in addition to standard ERCP devices and techniques. EUS-guided biliary drainage is an attractive option because of its minimally invasive, single step procedure which provides internal biliary decompression. Multiple investigators have reported high success and low complication rates. Unfortunately, high quality prospective data are still lacking. We provide detailed review of the use of EUS for biliary drainage from the perspective of practicing endoscopists with specific focus on the technical aspects of the procedure. PMID:22363114

  8. Simple, almost anywhere, with almost anyone: remote low-cost telementored resuscitative lung ultrasound.

    PubMed

    McBeth, Paul B; Crawford, Innes; Blaivas, Michael; Hamilton, Trevor; Musselwhite, Kimberly; Panebianco, Nova; Melniker, Lawrence; Ball, Chad G; Gargani, Luna; Gherdovich, Carlotta; Kirkpatrick, Andrew W

    2011-12-01

    Apnea (APN) and pneumothorax (PTX) are common immediately life-threatening conditions. Ultrasound is a portable tool that captures anatomy and physiology as digital information allowing it to be readily transferred by electronic means. Both APN and PTX are simply ruled out by visualizing respiratory motion at the visceral-parietal pleural interface known as lung sliding (LS), corroborated by either the M-mode or color-power Doppler depiction of LS. We thus assessed how economically and practically this information could be obtained remotely over a cellular network. Ultrasound images were obtained on handheld ultrasound machines streamed to a standard free internet service (Skype) using an iPhone. Remote expert sonographers directed remote providers (with variable to no ultrasound experience) to obtain images by viewing the transmitted ultrasound signal and by viewing the remote examiner over a head-mounted webcam. Examinations were conducted between a series of remote sites and a base station. Remote sites included two remote on-mountain sites, a small airplane in flight, and a Calgary household, with base sites located in Pisa, Rome, Philadelphia, and Calgary. In all lung fields (20/20) on all occasions, LS could easily and quickly be seen. LS was easily corroborated and documented through capture of color-power Doppler and M-mode images. Other ultrasound applications such as the Focused Assessment with Sonography for Trauma examination, vascular anatomy, and a fetal wellness assessment were also demonstrated. The emergent exclusion of APN-PTX can be immediately accomplished by a remote expert economically linked to almost any responder over cellular networks. Further work should explore the range of other physiologic functions and anatomy that could be so remotely assessed.

  9. Tracked ultrasound calibration studies with a phantom made of LEGO bricks

    NASA Astrophysics Data System (ADS)

    Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.

  10. Disinfection of a probe used in ultrasound-guided prostate biopsy.

    PubMed

    Rutala, William A; Gergen, Maria F; Weber, David J

    2007-08-01

    Transrectal ultrasound (TRUS)-guided prostate biopsies are among the most common outpatient diagnostic procedures in urology clinics and carry the risk of introducing pathogens that may lead to infection. To investigate the effectiveness of procedures for disinfecting a probe used in ultrasound-guided prostate biopsy. The effectiveness of disinfection was determined by inoculating 10(7) colony forming units (cfu) of Pseudomonas aeruginosa at the following 3 sites on the probe: the interior lumen of the biopsy needle guide, the outside surface of the biopsy needle guide, and the interior lumen of the ultrasound probe where the needle guide passes through the transducer. Each site was investigated separately. After inoculation, the probe was immersed in 2% glutaraldehyde for 20 minutes and then assessed for the level of microbial contamination. The results demonstrated that disinfection (ie, a reduction in bacterial load of greater than 7 log(10) cfu) could be achieved if the needle guide was removed from the probe. However, if the needle guide was left in the probe channel during immersion in 2% glutaraldehyde, disinfection was not achieved (ie, the reduction was approximately 1 log(10) cfu). Recommendations for probe disinfection are provided and include disassembling the device and immersing the probe and the needle guide separately in a high-level disinfectant.

  11. Low-cost, disposable microfluidics device for blood plasma extraction using continuously alternating paramagnetic and diamagnetic capture modes

    PubMed Central

    Kim, Pilkee; Ong, Eng Hui; Yoon, Yong-Jin; Ng, Sum Huan Gary; Puttachat, Khuntontong

    2016-01-01

    Blood plasma contains biomarkers and substances that indicate the physiological state of an organism, and it can be used to diagnose various diseases or body condition. To improve the accuracy of diagnostic test, it is required to obtain the high purity of blood plasma. This paper presents a low-cost, disposable microfluidics device for blood plasma extraction using magnetophoretic behaviors of blood cells. This device uses alternating magnetophoretic capture modes to trap and separate paramagnetic and diamagnetic cells away from blood plasma. The device system is composed of two parts, a disposable microfluidics chip and a non-disposable (reusable) magnetic field source. Such modularized device helps the structure of the disposable part dramatically simplified, which is beneficial for low-cost mass production. A series of numerical simulation and parametric study have been performed to describe the mechanism of blood cell separation in the microchannel, and the results are discussed. Furthermore, experimental feasibility test has been carried out in order to demonstrate the blood plasma extraction process of the proposed device. In this experiment, pure blood plasma has been successfully extracted with yield of 21.933% from 75 μl 1:10 dilution of deoxygenated blood. PMID:27042252

  12. Ultrasound elastomicroscopy for articular cartilage: from static to transient and 1D to 2D

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Bridal, Sharon L.; Shi, Jun; Saied, Amena; Lu, Minghua; Jaffre, Britta; Mak, Arthur F. T.; Laugier, Pascal; Qin, Ling

    2003-05-01

    Articular cartilage (AC) is a biological weight-bearing tissue covering the ends of articulating bones within synovial joints. Its function very much depends on the unique multi-layered structure and the depth-dependent material properties, which have not been well invetigated nondestructively. In this study, transient depth-dependent material properties of bovine patella cartilage were measured using ultrasound elastomicroscopy methods. A 50 MHz focused ultrasound transducer was used to collect A-mode ultrasound echoes from the articular cartilage during the compression and subsequent force-relaxation. The transient displacements of the cartilage tissues at different depths were calculated from the ultrasound echoes using a cross-correlation technique. It was observed that the strains in the superficial zone were much larger than those in the middle and deep zones as the equilibrium state was approached. The tissues inside the AC layer continued to move during the force-relaxation phase after the compression was completed. This process has been predicted by a biphasic theory. In this study, it has been verified experimentally. It was also observed that the tissue deformations at different depths of AC were much more evenly distributed before force-relaxation. AC specimens were also investigated using a 2D ultrasound elastomicroscopy system that included a 3D translating system for moving the ultrasound transducer over the specimens. B-mode RF ultrasound signals were collected from the specimens under different loading levels applied with a specially designed compressor. Preliminary results demonstrated that the scanning was repeatable with high correlation of radio frequency signals obtained from the same site during different scans when compression level was unchanged (R2 > 0.97). Strains of the AC specimens were mapped using data collected with this ultrasound elastomicroscope. This system can also be potentially used for the assessment of other biological

  13. Comparison of torsional and longitudinal modes using phacoemulsification parameters.

    PubMed

    Rekas, Marek; Montés-Micó, Robert; Krix-Jachym, Karolina; Kluś, Adam; Stankiewicz, Andrzej; Ferrer-Blasco, Teresa

    2009-10-01

    To compare phacoemulsification parameters of torsional and longitudinal ultrasound modes. Ophthalmology Department, Military Health Service Institute, Warsaw, Poland. This prospective study evaluated eyes 1, 7, and 30 days after phacoemulsification with an Infiniti Vision System using the torsional or longitudinal ultrasound (US) mode. Cataract classification was according to the Lens Opacities Classification System II. Nucleus fragmentation was by the phaco-chop and quick-chop methods. Primary outcome measures were phaco time, mean phaco power, mean torsional amplitude, and aspiration time. Total energy, defined as cumulative dissipated energy (CDE) x aspiration time, and the effective coefficient, defined as aspiration time/phaco time, were also calculated. Four hundred eyes were evaluated. The CDE was statistically significantly lower in the torsional mode for nucleus grades I, II, and III (P<.001) but not for grade IV (P>.05). Aspiration time was statistically significantly shorter in the torsional mode than in the longitudinal mode for nucleus grades III and IV (P<.05). Total energy was significantly lower in the torsional mode for all nucleus densities (P<.05). The effective coefficient was significantly lower in the longitudinal mode except for nucleus grade I (P<.05). Torsional phacoemulsification was more effective than longitudinal phacoemulsification in the amount of applied fluid and the quantity of US energy expended. With the torsional method, it was possible to maintain a constant ratio of amount of fluid flow to quantity of US energy used, regardless of nucleus density.

  14. Transvaginal ultrasound

    MedlinePlus

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  15. Applications of ultrasound in dentistry.

    PubMed

    Walmsley, A D

    1988-01-01

    An ultrasonic descaler working at kHz frequencies is used in dentistry to remove attached deposits from the teeth. Such devices offer many advantages over conventional hand instruments by reducing both the work and time involved in the clinical descaling process. Although it is a recognised clinical instrument, there has been little attempt to standardise its acoustic power output. A parameter which may characterise adequately the acoustic emission from these instruments is the displacement amplitude of the probe tip. Modification of the ultrasonic descaler generator has led to the further use of the instrument in other dental areas. Diagnostic applications of MHz ultrasound is limited by the structure and arrangement of the dental tissues. Therapeutic ultrasound has been used to treat a variety of dentally related ailments, and ultrasonic cleaning baths are used to clean both dental instruments and materials.

  16. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    PubMed

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  17. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  18. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  19. Broadband rectangular TEn0 mode exciter with H-plane power dividers for 100 GHz confocal gyro-devices.

    PubMed

    Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong

    2017-07-01

    A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.

  20. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  1. Contrast-enhanced ultrasound evaluation of pancreatic cancer xenografts in nude mice after irradiation with sub-threshold focused ultrasound for tumor ablation

    PubMed Central

    Wang, Rui; Guo, Qian; Chen, Yi Ni; Hu, Bing; Jiang, Li Xin

    2017-01-01

    We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS. PMID:28402267

  2. Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.

    2016-03-01

    Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.

  3. Self-mode-locking semiconductor disk laser.

    PubMed

    Gaafar, Mahmoud; Richter, Philipp; Keskin, Hakan; Möller, Christoph; Wichmann, Matthias; Stolz, Wolfgang; Rahimi-Iman, Arash; Koch, Martin

    2014-11-17

    The development of mode-locked semiconductor disk lasers received striking attention in the last 14 years and there is still a vast potential of such pulsed lasers to be explored and exploited. While for more than one decade pulsed operation was strongly linked to the employment of a saturable absorber, self-mode-locking emerged recently as an effective and novel technique in this field - giving prospect to a reduced complexity and improved cost-efficiency of such lasers. In this work, we highlight recent achievements regarding self-mode-locked semiconductor devices. It is worth to note, that although nonlinear effects in the active medium are expected to give rise to self-mode-locking, this has to be investigated with care in future experiments. However, there is a controversy whether results presented with respect to self-mode-locking truly show mode-locking. Such concerns are addressed in this work and we provide a clear evidence of mode-locking in a saturable-absorber-free device. By using a BBO crystal outside the cavity, green light originating from second-harmonic generation using the out-coupled laser beam is demonstrated. In addition, long-time-span pulse trains as well as radiofrequency-spectra measurements are presented for our sub-ps pulses at 500 MHz repetition rate which indicate the stable pulse operation of our device. Furthermore, a long-time-span autocorrelation trace is introduced which clearly shows absence of a pedestal or double pulses. Eventually, a beam-profile measurement reveals the excellent beam quality of our device with an M-square factor of less than 1.1 for both axes, showing that self-mode-locking can be achieved for the fundamental transverse mode.

  4. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  5. Ultrasound monitoring of inter-knee distances during gait.

    PubMed

    Lai, Daniel T H; Wrigley, Tim V; Palaniswami, M

    2009-01-01

    Knee osteoarthritis is an extremely common, debilitating disease associated with pain and loss of function. There is considerable interest in monitoring lower limb alignment due to its close association with joint overload leading to disease progression. The effects of gait modifications that can lower joint loading are of particular interest. Here we describe an ultrasound-based system for monitoring an important aspect of dynamic lower limb alignment, the inter-knee distance during walking. Monitoring this gait parameter should facilitate studies in reducing knee loading, a primary risk factor of knee osteoarthritis progression. The portable device is composed of an ultrasound sensor connected to an Intel iMote2 equipped with Bluetooth wireless capability. Static tests and calibration results show that the sensor possesses an effective beam envelope of 120 degrees, with maximum distance errors of 10% at the envelope edges. Dynamic walking trials reveal close correlation of inter-knee distance trends between that measured by an optical system (Optotrak Certus NDI) and the sensor device. The maximum average root mean square error was found to be 1.46 cm. Future work will focus on improving the accuracy of the device.

  6. A racetrack mode-locked silicon evanescent laser.

    PubMed

    Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E

    2008-01-21

    By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.

  7. In-line positioning of ultrasound images using wireless remote display system with tablet computer facilitates ultrasound-guided radial artery catheterization.

    PubMed

    Tsuchiya, Masahiko; Mizutani, Koh; Funai, Yusuke; Nakamoto, Tatsuo

    2016-02-01

    Ultrasound-guided procedures may be easier to perform when the operator's eye axis, needle puncture site, and ultrasound image display form a straight line in the puncture direction. However, such methods have not been well tested in clinical settings because that arrangement is often impossible due to limited space in the operating room. We developed a wireless remote display system for ultrasound devices using a tablet computer (iPad Mini), which allows easy display of images at nearly any location chosen by the operator. We hypothesized that the in-line layout of ultrasound images provided by this system would allow for secure and quick catheterization of the radial artery. We enrolled first-year medical interns (n = 20) who had no prior experience with ultrasound-guided radial artery catheterization to perform that using a short-axis out-of-plane approach with two different methods. With the conventional method, only the ultrasound machine placed at the side of the head of the patient across the targeted forearm was utilized. With the tablet method, the ultrasound images were displayed on an iPad Mini positioned on the arm in alignment with the operator's eye axis and needle puncture direction. The success rate and time required for catheterization were compared between the two methods. Success rate was significantly higher (100 vs. 70 %, P = 0.02) and catheterization time significantly shorter (28.5 ± 7.5 vs. 68.2 ± 14.3 s, P < 0.001) with the tablet method as compared to the conventional method. An ergonomic straight arrangement of the image display is crucial for successful and quick completion of ultrasound-guided arterial catheterization. The present remote display system is a practical method for providing such an arrangement.

  8. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.

    PubMed

    Novák, Petr; Moros, Eduardo G; Straube, William L; Myerson, Robert J

    2005-11-01

    A detailed description of a clinical grade Scanning Ultrasound Reflector Linear Array System (SURLAS) applicator was given in a previous paper [Med. Phys. 32, 230-240 (2005)]. In this paper we concentrate on the design, development, and testing of the personal computer (PC) based treatment delivery software that runs the therapy system. The SURLAS requires the coordinated interaction between the therapy applicator and several peripheral devices for its proper and safe operation. One of the most important tasks was the coordination of the input power sequences for the elements of two parallel opposed ultrasound arrays (eight 1.5 cm x 2 cm elements/array, array 1 and 2 operate at 1.9 and 4.9 MHz, respectively) in coordination with the position of a dual-face scanning acoustic reflector. To achieve this, the treatment delivery software can divide the applicator's treatment window in up to 64 sectors (minimum size of 2 cm x 2 cm), and control the power to each sector independently by adjusting the power output levels from the channels of a 16-channel radio-frequency generator. The software coordinates the generator outputs with the position of the reflector as it scans back and forth between the arrays. Individual sector control and dual frequency operation allows the SURLAS to adjust power deposition in three dimensions to superficial targets coupled to its treatment window. The treatment delivery software also monitors and logs several parameters such as temperatures acquired using a 16-channel thermocouple thermometry unit. Safety (in particular to patients) was the paramount concern and design criterion. Failure mode and effects analysis (FMEA) was applied to the applicator as well as to the entire therapy system in order to identify safety issues and rank their relative importance. This analysis led to the implementation of several safety mechanisms and a software structure where each device communicates with the controlling PC independently of the others. In case

  9. Transverse acoustic trapping using a Gaussian focused ultrasound

    PubMed Central

    Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K. Kirk

    2009-01-01

    The optical tweezer has become a popular device to manipulate particles in nanometer scales, and to study the underlying principles of many cellular or molecular interactions. Theoretical analysis was previously carried out at the authors’ laboratory, to show that similar acoustic trapping of microparticles may be possible with a single beam ultrasound. This paper experimentally presents the transverse trapping of 125 μm lipid droplets under an acoustically transparent mylar film, which is an intermediate step toward achieving acoustic tweezers in 3D. Despite the lack of axial trapping capability in the current experimental arrangement, it was found that a 30 MHz focused beam could be used to laterally direct the droplets towards the focus. The spatial range within which acoustic traps may guide droplet motion was in the range of hundreds of micrometers, much greater than that of optical traps. This suggests that this acoustic device may offer an alternative for manipulating microparticles in a wider spatial range. PMID:20045590

  10. Novel dual-mode nanobubbles as potential targeted contrast agents for female tumors exploration.

    PubMed

    Yang, Hengli; Zhou, Tian; Cai, Wenbin; Yi, Xiaomin; Liu, Xi; Wang, Yixiao; Zhang, Li; Duan, Yunyou

    2016-10-01

    The purpose of this study was to prepare tumor-specific dual-mode nanobubbles as both ultrasound contrast agents (UCAs) and near-infrared fluorescence (NIRF) imaging agents for female tumors. Recent studies have demonstrated the conjugation of anti-tumor ligands on the surface of nanobubbles for use as molecule-targeting ultrasound contrast agents for tumor visualization. However, this complicated procedure has also posed a challenge to nanobubble stability. Thus, in the present study, we combined the fluorescent dye, NIRF IR-780 iodide, which has lipid solubility and tumor-targeting characteristics, with the phospholipid film of nanobubbles that we constructed. We then characterized the physical features of the IR-780-nanobubbles, observed their tumor-targeting capacity in multiple female tumor cell types in vitro, and verified their capability for use in tumor-specific ultrasound contrast imaging and NIRF imaging in vivo. The results showed that the new IR-780-nanobubbles had a uniform nano-size (442.5 ± 48.6 nm) and stability and that they were safe and effective at NIRF imaging and ultrasound imaging in vitro. The IR-780-nanobubbles were found to automatically accumulate on different female tumor cells in vitro with a considerable targeting rate (close to 40 %) but did not accumulate on cardiac muscle cells used as a negative control. Importantly, the IR-780-nanobubbles can detect female tumors precisely via dual-mode imaging in vivo. In conclusion, the new dual-mode IR-780-nanobubbles are stable and have potential advantages in non-invasive tumor-specific detection for female tumors via contrast-enhanced ultrasound and NIRF imaging.

  11. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  13. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  14. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  15. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    NASA Astrophysics Data System (ADS)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  16. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  17. Compensated Row-Column Ultrasound Imaging System Using Fisher Tippett Multilayered Conditional Random Field Model

    PubMed Central

    Ben Daya, Ibrahim; Chen, Albert I. H.; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T. W.

    2015-01-01

    3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging systems were largely focused on sensor design. However, these imaging systems face three intrinsic challenges that cannot be addressed by improving sensor design alone: speckle noise, sparsity of data in the imaged volume, and the spatially dependent point spread function of the imaging system. In this paper, we propose a compensated row-column ultrasound image reconstruction system using Fisher-Tippett multilayered conditional random field model. Tests carried out on both simulated and real row-column ultrasound images show the effectiveness of our proposed system as opposed to other published systems. Visual assessment of the results show our proposed system’s potential at preserving detail and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal to Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging. PMID:26658577

  18. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study

    PubMed Central

    2010-01-01

    Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840

  19. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Beard, P. C.; Mills, T. N.

    1996-02-01

    Theoretical and experimental aspects of an extrinsic optical-fiber ultrasound sensor are described. The sensor is based on a thin transparent polymer film acting as a low-finesse Fabry-Perot cavity that is mounted at the end of a multimode optical fiber. Performance was found to be comparable with that of a piezoelectric polyvinylidene difluoride-membrane (PVDF) hydrophone with a sensitivity of 61 mV/MPa, an acoustic noise floor of 2.3 KPa over a 25-MHz bandwidth, and a frequency response to 25 MHz. The wideband-sensitive response and design flexibility of the concept suggests that it may find application as an alternative to piezoelectric devices for the detection and measurement of ultrasound.

  20. Real-time needle guidance with photoacoustic and laser-generated ultrasound probes

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-03-01

    Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.

  1. A Comparison of Ultrasound Tomography Methods in Circular Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, R R; Azevedo, S G; Berryman, J G

    2002-01-24

    Extremely high quality data was acquired using an experimental ultrasound scanner developed at Lawrence Livermore National Laboratory using a 2D ring geometry with up to 720 transmitter/receiver transducer positions. This unique geometry allows reflection and transmission modes and transmission imaging and quantification of a 3D volume using 2D slice data. Standard image reconstruction methods were applied to the data including straight-ray filtered back projection, reflection tomography, and diffraction tomography. Newer approaches were also tested such as full wave, full wave adjoint method, bent-ray filtered back projection, and full-aperture tomography. A variety of data sets were collected including a formalin-fixed humanmore » breast tissue sample, a commercial ultrasound complex breast phantom, and cylindrical objects with and without inclusions. The resulting reconstruction quality of the images ranges from poor to excellent. The method and results of this study are described including like-data reconstructions produced by different algorithms with side-by-side image comparisons. Comparisons to medical B-scan and x-ray CT scan images are also shown. Reconstruction methods with respect to image quality using resolution, noise, and quantitative accuracy, and computational efficiency metrics will also be discussed.« less

  2. Remote ultrasound detection with a quasi-balanced confocal Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Roither, J.; Berer, T.; Hornhuber, C.; Burgholzer, P.

    2011-09-01

    In this article, we show the benefits of a quasi-balanced fringe hopping confocal Fabry-Perot interferometer (CFPI) with broadband common mode rejection ratio (CMRR) for remote ultrasound detection. In laser ultrasound, the ultrasonic information, in general, lies in the phase modulation of laser light which in this case is demodulated using the CFPI at a certain working point on a fringe. By hopping from the positive to the negative slope on the same fringe, the detected ultrasonic signals are inverted. In contrary, interference signals - such crosstalk from the generation, ghosts or noise correlated to pulse laser excitation - are not influenced and hence get rejected by subtracting the signals measured at both slopes. Hence, a minimum of two measurements is needed for common mode rejection. The fringe hopping from the positive to the negative slope is done by changing the distance of the CFPI mirrors with a precise piezoelectric-stack and a fast high-resolution digital controller. As only one photodetector with a transimpedance amplifier is needed, a high CMRR can be accomplished. The CMRR is not affected by the symmetry of the fringe but only by pulse-to-pulse energy fluctuations of the generation laser. We show that with fringe hopping and averaging the signal-to-noise ratio increases much faster than with averaging without fringe hopping. This is due to the correlation of the quasi-noise with the generation cycle.

  3. Line fiducial material and thickness considerations for ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.

    2015-03-01

    Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower

  4. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    PubMed

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  5. Ergonomic design and evaluation of a diagnostic ultrasound transducer holder.

    PubMed

    Ghasemi, Mohamad Sadegh; Hosseinzadeh, Payam; Zamani, Farhad; Ahmadpoor, Hossein; Dehghan, Naser

    2017-12-01

    Work-related musculoskeletal disorders (WMSDs) are injuries and disorders that affect the body's movement and musculoskeletal system. Awkward postures represent one of the major ergonomic risk factors that cause WMSDs among sonographers while working with an ultrasound transducer. This study aimed to design and evaluate a new holder for the ultrasound transducer. In the first phase a new holder was designed for the transducer, considering design principles. Evaluation of the new holder was then carried out by electrogoniometry and a locally perceived discomfort (LPD) scale. The application of design principles to the new holder resulted in an improvement of wrist posture and comfort. Wrist angles in extension, flexion, radial deviation and ulnar deviation were lower with utilization of the new holder. The severity of discomfort based on the LPD method in the two modes of work with and without the new holder was reported with values of 1.3 and 1.8, respectively (p < 0.05). Overall, this study indicated that applying ergonomics design principles was effective in minimizing wrist deviation and increasing comfort while working with the new holder.

  6. Verification and compensation of respiratory motion using an ultrasound imaging system.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-01

    The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81-2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm displacement resulted in

  7. Verification and compensation of respiratory motion using an ultrasound imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Ho-Chiao, E-mail: hchuang@mail.ntut.edu.tw; Hsu, Hsiao-Yu; Chiu, Wei-Hung

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effectmore » of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the

  8. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    PubMed

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  10. Motion tracing system for ultrasound guided HIFU

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong

    2017-03-01

    One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.

  11. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  12. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    PubMed

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  13. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  14. Gait mode recognition and control for a portable-powered ankle-foot orthosis.

    PubMed

    David Li, Yifan; Hsiao-Wecksler, Elizabeth T

    2013-06-01

    Ankle foot orthoses (AFOs) are widely used as assistive/rehabilitation devices to correct the gait of people with lower leg neuromuscular dysfunction and muscle weakness. We have developed a portable powered ankle-foot orthosis (PPAFO), which uses a pneumatic bi-directional rotary actuator powered by compressed CO2 to provide untethered dorsiflexor and plantarflexor assistance at the ankle joint. Since portability is a key to the success of the PPAFO as an assist device, it is critical to recognize and control for gait modes (i.e. level walking, stair ascent/descent). While manual mode switching is implemented in most powered orthotic/prosthetic device control algorithms, we propose an automatic gait mode recognition scheme by tracking the 3D position of the PPAFO from an inertial measurement unit (IMU). The control scheme was designed to match the torque profile of physiological gait data during different gait modes. Experimental results indicate that, with an optimized threshold, the controller was able to identify the position, orientation and gait mode in real time, and properly control the actuation. It was also illustrated that during stair descent, a mode-specific actuation control scheme could better restore gait kinematic and kinetic patterns, compared to using the level ground controller.

  15. Focused Ultrasound to Expel Calculi from the Kidney: Safety and Efficacy of a Clinical Prototype Device

    PubMed Central

    Harper, Jonathan D.; Sorensen, Mathew D.; Cunitz, Bryan W.; Wang, Yak-Nam; Simon, Julianna C.; Starr, Frank; Paun, Marla; Dunmire, Barbrina; Liggitt, H. Denny; Evan, Andrew P.; McAteer, James A.; Hsi, Ryan S.; Bailey, Michael R.

    2015-01-01

    Purpose Focused ultrasound has the potential to expel small stones or residual stone fragments from the kidney, or move obstructing stones to a nonobstructing location. We evaluated the efficacy and safety of ultrasonic propulsion in a live porcine model. Materials and Methods Calcium oxalate monohydrate kidney stones and laboratory model stones (2 to 8 mm) were ureteroscopically implanted in the renal pelvicalyceal system of 12 kidneys in a total of 8 domestic swine. Transcutaneous ultrasonic propulsion was performed using an HDI C5-2 imaging transducer (ATL/Philips, Bothell, Washington) and the Verasonics® diagnostic ultrasound platform. Successful stone relocation was defined as stone movement from the calyx to the renal pelvis, ureteropelvic junction or proximal ureter. Efficacy and procedure time was determined. Three blinded experts evaluated histological injury to the kidney in the control, sham treatment and treatment arms. Results All 26 stones were observed to move during treatment and 17 (65%) were relocated successfully to the renal pelvis (3), ureteropelvic junction (2) or ureter (12). Average ± SD successful procedure time was 14 ± 8 minutes and a mean of 23 ± 16 ultrasound bursts, each about 1 second in duration, were required. There was no evidence of gross or histological injury to the renal parenchyma in kidneys exposed to 20 bursts (1 second in duration at 33-second intervals) at the same output (2,400 W/cm2) used to push stones. Conclusions Noninvasive transcutaneous ultrasonic propulsion is a safe, effective and time efficient means to relocate calyceal stones to the renal pelvis, ureteropelvic junction or ureter. This technology holds promise as a useful adjunct to surgical management for renal calculi. PMID:23583535

  16. Discrete mode lasers for communications applications

    NASA Astrophysics Data System (ADS)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  17. Continuous-wave ultrasound reflectometry for surface roughness imaging applications

    PubMed Central

    Kinnick, R. R.; Greenleaf, J. F.; Fatemi, M.

    2009-01-01

    Background Measurement of surface roughness irregularities that result from various sources such as manufacturing processes, surface damage, and corrosion, is an important indicator of product quality for many nondestructive testing (NDT) industries. Many techniques exist, however because of their qualitative, time-consuming and direct-contact modes, it is of some importance to work out new experimental methods and efficient tools for quantitative estimation of surface roughness. Objective and Method Here we present continuous-wave ultrasound reflectometry (CWUR) as a novel nondestructive modality for imaging and measuring surface roughness in a non-contact mode. In CWUR, voltage variations due to phase shifts in the reflected ultrasound waves are recorded and processed to form an image of surface roughness. Results An acrylic test block with surface irregularities ranging from 4.22 μm to 19.05 μm as measured by a coordinate measuring machine (CMM), is scanned by an ultrasound transducer having a diameter of 45 mm, a focal distance of 70 mm, and a central frequency of 3 MHz. It is shown that CWUR technique gives very good agreement with the results obtained through CMM inasmuch as the maximum average percent error is around 11.5%. Conclusion Images obtained here demonstrate that CWUR may be used as a powerful noncontact and quantitative tool for nondestructive inspection and imaging of surface irregularities at the micron-size level with an average error of less than 11.5%. PMID:18664399

  18. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    NASA Astrophysics Data System (ADS)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  <  200 nm) population without micron-sized outliers (>1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  19. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology

    PubMed Central

    Lin, Guiting; Lei, Hongen; Lue, Tom F.; Guo, Yinglu

    2016-01-01

    Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that delivered at a much lower intensity (<3 W/cm2) than traditional ultrasound energy and output in the mode of pulse wave, and it is typically used for therapeutic purpose in rehabilitation medicine. LIPUS has minimal thermal effects due to its low intensity and pulsed output mode, and its non-thermal effects which is normally claimed to induce therapeutic changes in tissues attract most researchers’ attentions. LIPUS have been demonstrated to have a rage of biological effects on tissues, including promoting bone-fracture healing, accelerating soft-tissue regeneration, inhibiting inflammatory responses and so on. Recent studies showed that biological effects of LIPUS in healing morbid body tissues may be mainly associated with the upregulation of cell proliferation through activation of integrin receptors and Rho/ROCK/Src/ERK signaling pathway, and with promoting multilineage differentiation of mesenchyme stem/progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Hopefully, LIPUS may become an effective clinical procedure for the treatment of urological diseases, such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), erectile dysfunction (ED), and stress urinary incontinence (SUI) in the field of urology. It still needs an intense effort for basic-science and clinical investigators to explore the biomedical applications of ultrasound. PMID:27141455

  20. The development of a combined b-mode, ARFI, and spectral Doppler ultrasound imaging system for investigating cardiovascular stiffness and hemodynamics

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.

    2011-03-01

    The progression of atherosclerotic disease, caused by the formation of plaques within arteries, is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of vascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function, and the growth of soft-lipid filled plaques that could help a clinician better diagnose a patient's risk of clinical events such as stroke. To that end, the approach taken in this work was to combine conventional B-mode, Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and spectral Doppler techniques into a single imaging system capable of simultaneously measuring the tissue displacements and WSR throughout the cardiac cycle and over several heartbeats. Implemented on a conventional scanner, the carotid arteries of human subjects were scanned to demonstrate the initial in vivo feasibility of the method. Two non-invasive ultrasound based imaging methods, SAD-SWEI and SAD-Gated Imaging, were developed that measure ARF-induced on-axis tissue displacements, off-axis transverse wave velocities, and WSR throughout the cardiac cycle. Human carotid artery scans were performed in vivo on 5 healthy subjects. Statistical differences were observed in both on-axis proximal wall displacements and transverse wave velocities during diastole compared to systole.

  1. Ultrasound in the evaluation of enthesitis: status and perspectives.

    PubMed

    Gandjbakhch, Frédérique; Terslev, Lene; Joshua, Fredrick; Wakefield, Richard J; Naredo, Esperanza; D'Agostino, Maria Antonietta

    2011-01-01

    An increasing number of studies have applied ultrasound to the evaluation of entheses in spondyloarthritis patients. However, no clear agreement exists on the definition of enthesitis, on the number and choice of entheses to examine and on ultrasound technique, which may all affect the results of the examination. The objectives of this study were to first determine the level of homogeneity in the ultrasound definitions for the principal lesions of enthesitis in the published literature and second, to evaluate the metric properties of ultrasound for detecting enthesitis according to the OMERACT filter. Search was performed in PUBMED and EMBASE. Both grey-scale and Doppler definitions of enthesitis, including describing features of enthesitis, were collected and metrological qualities of studies were assessed. After selection, 48 articles were analyzed. The definition of ultrasound enthesitis and elementary features varied among authors. Grey-scale enthesitis was characterized by increasing thickness (94% of studies), hypoechogenicity (83%), enthesophytes (69%), erosions (67%), calcifications (52%), associated bursitis (46%) and cortical irregularities (29%). Only 46% of studies reported the use of Doppler. High discrepancies were observed on frequency, type of probe and Doppler mode used. Face and content validity were the most frequently evaluated criteria (43%) followed by reliability (29%) and responsiveness (19%). Ultrasound has evidence to support face, content validity and reliability for the evaluation of enthesitis, though there is a lack of well-reported methodology in most of the studies. Consensus on elementary lesions and standardization of exam is needed to determine the ultrasound definition of enthesitis in grey-scale and in Doppler for future applications.

  2. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    NASA Astrophysics Data System (ADS)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  3. Mode-coupling mechanisms in nanocontact spin-torque oscillators

    DOE PAGES

    Iacocca, Ezio; Dürrenfeld, Philipp; Heinonen, Olle; ...

    2015-03-11

    Spin torque oscillators (STOs) are devices that allow for the excitation of a variety of magneto-dynamical modes at the nanoscale. Depending on both external conditions and intrinsic magnetic properties, STOs can exhibit regimes of mode-hopping and even mode coexistence. Whereas mode hopping has been extensively studied in STOs patterned as nanopillars, coexistence has been only recently observed for localized modes in nanocontact STOs (NC-STOs) where the current is confined to flow through a NC fabricated on an extended pseudo spin valve. We investigate the physical origin of the mode coupling mechanisms favoring coexistence, by means of electrical characterization and amore » multi-mode STO theory. Two coupling mechanisms are identified: (i) magnon mediated scattering and (ii) inter-mode interactions. These mechanisms can be physically disentangled by fabricating devices where the NCs have an elliptical cross-section. Furthermore, the generation power and linewidth from such devices are found to be in good qualitative agreement with the theoretical predictions, as well as provide evidence of the dominant mode coupling mechanisms.« less

  4. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. WE-A-210-00: Educational: Diagnostic Ultrasound QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will focus on the present role of ultrasound medical physics in clinical practices. The first part of the presentation will provide an overview of ultrasound QC methodologies and testing procedures. A brief review of ultrasound phantoms utilized in these testing procedures will be presented. The second part of the presentation will summarize ultrasound imaging technical standards and professional guidelines by American College of Radiology (ACR), American Institute of Ultrasound in Medicine (AIUM), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC). The current accreditation requirements by ACR and AIUM for ultrasound practices will be describedmore » and the practical aspects of implementing QC programs to be compliant with these requirements will be discussed. Learning Objectives: Achieve familiarity with common ultrasound QC test methods and ultrasound phantoms. Understand the coverage of the existing testing standards and professional guidelines on diagnostic ultrasound imaging. Learn what a medical physicist needs to know about ultrasound program accreditation and be able to implement ultrasound QC programs accordingly.« less

  6. Factors associated with low-lying intrauterine devices: a cross-sectional ultrasound study in a cohort of African-American women.

    PubMed

    Moshesh, Malana; Saldana, Tina; Deans, Elizabeth; Cooper, Tracy; Baird, Donna

    2018-03-14

    The object of this study is to examine factors and symptoms associated with low-lying IUDs as defined by ultrasound. This is a cross-sectional sub-study of participants in the Study of Environment, Life-style, and Fibroids (SELF). SELF participants had screening ultrasounds for fibroids at study enrollment; those with an IUD in place are included in this sub-study. Low-lying IUDs were identified and localized. Logistic regression was used to identify factors and symptoms associated with low-lying IUDs. Among 168 women with IUDs at ultrasound, 28 (17%) had a low-lying IUD. Having a low-lying IUD was associated with low education level (≤high school: aOR 3.1 95% CI 1.14-8.55) and with increased BMI (p=.002). Women with a low-lying IUD were more likely to report a "big problem" with dysmenorrhea (the highest option of the Likert scale) as compared to women with a normally-positioned IUD (OR 3.2 95% CI 1.07-9.54). Our study found that women with a low-lying IUD are more likely to be of lower education and higher BMI, and to report more dysmenorrhea. Women who are obese may benefit from additional counseling and closer follow-up after IUD placement. Future research is warranted to investigate IUD placement and possible IUD migration among women who are obese. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis.

    PubMed

    Liu, Zheng; Gao, Shunji; Zhao, Yang; Li, Peijing; Liu, Jia; Li, Peng; Tan, Kaibin; Xie, Feng

    2012-02-01

    Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that acoustic cavitation combining high-pressure amplitude pulsed ultrasound (US) and circulating microbubble could potentially disrupt tumor vasculature. A high-pressure amplitude, pulsed ultrasound device was developed to induce inertial cavitation of circulating microbubbles. The tumor vasculature of rat Walker 256 was insonated percutaneously with two acoustic pressures, 2.6 MPa and 4.8 MPa, both with intravenous injection of a lipid microbubble. The controls were treated by the ultrasound only or sham ultrasound exposure. Contrast enhanced ultrasound (CEUS) and histology were performed to assess tumor circulation and pathological changes. The CEUS results showed that the circulation of Walker 256 tumors could be completely blocked off for 24 hours in 4.8 MPa treated tumors. The CEUS gray scale value (GSV) indicated that there was significant GSV drop-off in both of the two experimental groups but none in the controls. Histology showed that the tumor microvasculature was disrupted into diffuse hematomas accompanied by thrombosis, intercellular edema and multiple cysts formation. The 24 hours of tumor circulation blockage resulted in massive necrosis of the tumor. MEUS provides a new, simple physical method for anti-angiogenic therapy and may have great potential for clinical applications. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    PubMed

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  9. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  10. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    PubMed Central

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  11. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.

    PubMed

    Wang, Chung-Hsin; Kang, Shih-Tsung; Lee, Ya-Hsuan; Luo, Yun-Ling; Huang, Yu-Fen; Yeh, Chih-Kuang

    2012-02-01

    Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. An open access thyroid ultrasound image database

    NASA Astrophysics Data System (ADS)

    Pedraza, Lina; Vargas, Carlos; Narváez, Fabián.; Durán, Oscar; Muñoz, Emma; Romero, Eduardo

    2015-01-01

    Computer aided diagnosis systems (CAD) have been developed to assist radiologists in the detection and diagnosis of abnormalities and a large number of pattern recognition techniques have been proposed to obtain a second opinion. Most of these strategies have been evaluated using different datasets making their performance incomparable. In this work, an open access database of thyroid ultrasound images is presented. The dataset consists of a set of B-mode Ultrasound images, including a complete annotation and diagnostic description of suspicious thyroid lesions by expert radiologists. Several types of lesions as thyroiditis, cystic nodules, adenomas and thyroid cancers were included while an accurate lesion delineation is provided in XML format. The diagnostic description of malignant lesions was confirmed by biopsy. The proposed new database is expected to be a resource for the community to assess different CAD systems.

  13. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  15. Contrast-enhanced harmonic endoscopic ultrasound in solid lesions of the pancreas: results of a pilot study.

    PubMed

    Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T

    2010-07-01

    Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.

  16. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    PubMed

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  17. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  18. Evaluation of ultrasound techniques for brain injury detection

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  19. Value of transperineal ultrasound on the observation of paravaginal support.

    PubMed

    Dou, Chaoran; Li, Qin; Ying, Tao; Shui, Wen; Yan, Yulin; Luo, Yijia; Wang, Xia

    2018-04-01

    To explore the feasibility of three-dimensional (3D) transperineal ultrasound on the observation of paravaginal support in nulliparous and postpartum women. Volume datasets were acquired in 50 nulliparous and 100 postpartum women using 3D transperineal ultrasound. Paravaginal supports were observed by studying the vaginal cross-sectional morphology. The extent of paravaginal support in specific level were evaluated by counting out at a 2 mm interval in tomographic ultrasound imaging mode in all subjects. The Mann-Whitney U test were applied to establish comparisons between the two groups. Three representative manifestations of vaginal cross-sectional morphology corresponding to different paravaginal support were presented from the dorsal side to the caudal side, both in nulliparous women and postpartum women. The extent of paravaginal support in middle vagina was 11 slices (range 9-12) in nulliparous women and 7 slices (range 4-10) in postpartum women (P < 0.05). This pilot study confirmed that it was feasible to indirectly study paravaginal support by observing the vaginal cross-sectional morphology using 3D transperineal ultrasound.

  20. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.