Sample records for a-site substituted perovskite

  1. Stabilized wide bandgap perovskite solar cells by tin substitution

    DOE PAGES

    Yang, Zhibin; Rajagopal, Adharsh; Jo, Sae Byeok; ...

    2016-11-16

    Wide bandgap MAPb(I 1-yBr y) 3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb 2+ with Sn 2+ and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb 0.75Sn 0.25(I 1-yBr y) 3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb 0.75Sn 0.25(I 0.4Br 0.6) 3 perovskite shows the highest efficiency of 12.59%more » with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate for application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb 0.75Sn 0.25(I 1-yBr y) 3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Furthermore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.« less

  2. A DFT+U study of A-site and B-site substitution in BaFeO3-δ.

    PubMed

    Baiyee, Zarah Medina; Chen, Chi; Ciucci, Francesco

    2015-09-28

    BaFeO3-δ (BFO)-based perovskites have emerged as cheap and effective oxygen electrocatalysts for oxygen reduction reaction at high temperatures. The BFO cubic phase facilitates a high oxygen deficiency and is commonly stabilised by partial substitution. Understanding the electronic mechanisms of substitution and oxygen deficiency is key to rational material design, and can be realised through DFT analysis. In this work an in-depth first principle DFT+U study is undertaken to determine site distinctive characteristics for 12.5%, Y, La and Ce substitutions in BFO. In particular, it is shown that B-site doped structures exhibit a lower energy cost for oxygen vacancy formation relative to A site doping and pristine BFO. This is attributed to the stabilisation of holes in the oxygen sub-lattice and increased covalency of the Fe-O bonds of the FeO6 octahedra in B-site-substituted BFO. Charge analysis shows that A-site substitution amounts to donor doping and consequently impedes the accommodation of other donors (i.e. oxygen vacancies). However, A-site substitution may also exhibit a higher electronic conductivity due to less lattice distortion for oxygen deficiency compared to B-site doped structures. Furthermore, analysis of the local structural effects provides physical insight into stoichiometric expansions observed for this material.

  3. Transition metal-substituted lead halide perovskite absorbers

    DOE PAGES

    Sampson, M. D.; Park, J. S.; Schaller, R. D.; ...

    2017-01-27

    Here, lead halide perovskites have proven to be a versatile class of visible light absorbers that allow rapid access to the long minority carrier lifetimes and diffusion lengths desirable for traditional single-junction photovoltaics. We explore the extent to which the attractive features of these semiconductors may be extended to include an intermediate density of states for future application in multi-level solar energy conversion systems capable of exceeding the Shockley–Queisser limit. We computationally and experimentally explore the substitution of transition metals on the Pb site of MAPbX 3 (MA = methylammonium, X = Br or Cl) to achieve a tunable densitymore » of states within the parent gap. Computational screening identified both Fe- and Co-substituted MAPbBr 3 as promising absorbers with a mid-gap density of states, and the later films were synthesized via conventional solution-based processing techniques. First-principles density functional theory (DFT) calculations support the existence of mid-gap states upon Co incorporation and enhanced sub-gap absorption, which are consistent with UV-visible-NIR absorption spectroscopy. Strikingly, steady state and time-resolved PL studies reveal no sign of self-quenching for Co-substitution up to 25%, which suggest this class of materials to be a worthy candidate for future application in intermediate band photovoltaics.« less

  4. Structural and thermoelectric properties of A-site substituted (Sr1-x-yCaxNdy)TiO3 perovskites

    NASA Astrophysics Data System (ADS)

    Somaily, Hamoud H.

    Detailed structural results and models are reported for a special class of A-site substituted perovskites, (Sr1-x-yCaxNd y)TiO3, obtained with high resolution NPD data as a function of temperature and Nd composition. Two series with various A-site concentrations were synthesized and investigated. Each series was designed to have a nominally constant tolerance factor. At room temperature (RT), I determine the space groups of the Sr-rich and Sr poor series as being tetragonal I4/mcm and orthorhombic Pbnm, respectively. The RT structures remain unchanged upon increasing the Nd3+ content. However, three different orthorhombic phases, Pbnm, Ibmm, Pbcm, are determined for the Sr-rich series as a function of decreasing temperature; whereas, for the Sr-poor series the orthorhombic Pbnm structure is found to persist throughout the full range of measured temperatures. A phase diagram is constructed and proposed in the temperature range 0-1000 K. Thermoelectric properties of (Sr 1-x-yCaxNdy)TiO3 were also investigated and the best figure of merit ZT=0.07 was obtained with the Sr-rich series.

  5. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  6. A-Site Cation Substitutions in Strained Y-Doped BaZrO 3 Multilayer Films Leading to Fast Proton Transport Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aruta, Carmela; Han, Chu; Zhou, Si

    Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO 3 grown by pulsed lased deposition on NdGaO 3. Our study shows that our BaZr 0.8Y 0.2O 3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba 2+, and that these substitutional defects agglomerate forming columnarmore » regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.« less

  7. Orientational Glass Formation in Substituted Hybrid Perovskites

    DOE PAGES

    Mozur, Eve M.; Maughan, Annalise E.; Cheng, Yongqiang; ...

    2017-11-07

    Hybrid organic-inorganic perovskites have gained notoriety in the photovoltaic community for their composition-tunable band gaps and long-lived electronic excited states, which are known to be related to the crystalline phase. While indirect evidence suggests that coupling between polar organic cations affects the phase behavior, it remains unclear how the coupling manifests in hybrid perovskites such as methylammonium lead halides (CH 3NH 3PbX 3). Here, we present crystallographic and spectroscopic data for the series (CH 3NH 3) 1-xCs xPbBr 3. CH 3NH 3PbBr 3 behaves as a plastic crystal in the high temperature cubic phase, and substitution of CH 3NH 3more » + with Cs + leads to the formation of an orientational glass. While the organic molecule exhibits slow, glassy reorientational dynamics, the inorganic framework continues to undergo crystallographic phase transitions. These crystallographic transitions occur in the absence of thermodynamic signatures in the specific heat, which suggests that the phase transitions result from underlying instabilities intrinsic to the inorganic lattice. However, these transitions are not decoupled from the reorientations of the organic molecule, as indicated by inelastic and quasielastic neutron scattering. Observation of a reentrant phase transition in (CH 3NH 3) 0.8Cs 0.2PbBr 3 permits the resolution of these complex behaviors within the context of strain mediated interactions. Lastly, together, these results provide critical insight into the coupled phase behavior and dynamics in hybrid perovskites.« less

  8. Magnetic, thermodynamic and optical properties of Sb-substituted Ba2PrBiO6 double perovskite oxides

    NASA Astrophysics Data System (ADS)

    Onodera, K.; Kogawa, T.; Matsukawa, M.; Taniguchi, H.; Nishidate, K.; Matsushita, A.; Shimoda, M.

    2018-03-01

    We demonstrated crystal structures, magnetic, thermodynamic and optical properties of the B-site substituted perovskite oxides Ba2Pr(Bi1 ‑ x,Sbx ) O6 (x=0, 0.1 and 0.2). Polycrystalline samples of Sb-substituted Ba2PrBiO6 were prepared with the conventional solid-state reaction technique. The X-ray diffraction data revealed that the polycrystalline samples are an almost single phase with a monoclinic structure (C2 /m). Substitution of smaller Sb ion at Bi site causes a monotonic decrease in both the lattice parameters and volume. Magnetization measurements at high temperatures above 200 K show that the effective magnetic moment is estimated to be around 3.15 µB , which is close to that for Pr3+ion. The X-ray photoemission spectroscopy analysis revealed that a prominent peak of Pr3+ is dominant with a smaller shoulder structure of Pr4+. A Schottky-like anomaly observed in the low-temperature specific heat measurement is explained by low-lying splitting of Pr ions under the crystal field effect. Optical spectra were measured using a diffuse-reflectance method. The band gaps were estimated from the optical data to be 0.977 eV and 1.073 eV, at x = 0 and 0.2, respectively. The effect of band gap opening due to Sb substitution is examined by using the density functional theory.

  9. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  10. Frustration relieved ferrimagnetism in novel A- and B-site-ordered quadruple perovskite.

    PubMed

    Chen, Wei-tin; Mizumaki, Masaichiro; Saito, Takashi; Shimakawa, Yuichi

    2013-07-28

    A novel A- and B-site-ordered quadruple perovskite CaCu3Fe2Sb2O12 was obtained and it shows ferrimagnetism below about 170 K. The B-site Fe spin sublattice adapts a tetrahedral framework in a cubic structure and the Fe(3+)-Fe(3+) antiferromagnetic interaction can result in a geometrical spin frustration as seen in a simple perovskite Ca2FeSbO6. With the introduction of Cu(2+) into the A' site, the antiferromagnetic spin frustration is relieved by the strong Cu(2+)-Fe(3+) interaction, and a ferrimagnetic ordering appears at a much higher temperature than the spin-glass transition temperature.

  11. B-Site Metal Cation Exchange in Halide Perovskites

    DOE PAGES

    Eperon, Giles E.; Ginger, David S.

    2017-05-02

    Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less

  12. B-Site Metal Cation Exchange in Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eperon, Giles E.; Ginger, David S.

    Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less

  13. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    PubMed

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  14. First-principles study on ferromagnetism in double perovskite Sr2AlTaO6 doped with Cu or Zn at B sites

    NASA Astrophysics Data System (ADS)

    Li, Y. D.; Wang, C. C.; Guo, Y. M.; Yu, Y.; Lu, Q. L.; Huang, S. G.; Li, Q. J.; Wang, H.; Cheng, R. L.; Liu, C. S.

    2018-05-01

    The possibilities of ferromagnetism induced by nonmagnetic dopants (Cu, Zn) in double perovskite Sr2AlTaO6 at B sites are investigated by density functional theory. Calculations reveal that substitutions at Ta-site tend to form high spin electronic configurations and could induce ferromagnetism which can be attributed to the hole-mediated p- d hybridization between Cu (or Zn) eg states and the neighboring O 2p states. The dopants preferably substitute at Al-site and adopt low spin electronic structures. Due to the smaller hole concentration and weaker covalent intensity, Sr2AlTaO6 with dopants at Al-site exhibits p-type metallic semiconductors without spin polarization.

  15. (La1-xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2017-02-01

    The strontium doped Mn-based perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute the noble metal. However, few studies have investigated the catalytic activities of LSM with the A-site deficiencies. Here, the (La1-xSrx)0.98MnO3 (LSM) perovskites with A-site deficiencies are prepared by a modified solid-liquid method. The structure, morphology, valence state and oxygen adsorption behaviors of these LSM samples are characterized, and their catalytic activities toward ORR are studied by the rotating ring-disk electrode (RRDE) and aluminum-air battery technologies. The results show that the appropriate doping with Sr and introducing A-site stoichiometry can effectively tailor the Mn valence and increase the oxygen adsorption capacity of LSM. Among all the LSM samples in this work, the (La0.7Sr0.3)0.98MnO3 perovskite composited with 50% carbon (50%LSM30) exhibits the best ORR catalytic activity due to the excellent oxygen adsorption capacity. Also, this catalyst has much higher durability than that of commercial 20%Pt/C. Moreover, the maximum power density of the aluminum-air battery using 50%LSM30 as the ORRC can reach 191.3 mW cm-2. Our work indicates that the LSM/C composite catalysts with A-site deficiencies can be used as a promising ORRC in the metal-air batteries.

  16. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE PAGES

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; ...

    2017-07-13

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  17. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  18. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site.

    PubMed

    Belik, Alexei A; Yi, Wei

    2014-04-23

    ABO3 perovskites with small cations at the A site (A = Sc(3+), In(3+) and Mn(2+) and B = Al(3+) and transition metals) are reviewed. They extend the corresponding families of perovskites with A(3+) = Y, La-Lu, and Bi and A(2+) = Cd, Ca, Sr and Ba and exhibit the largest structural distortions. As a result of these large distortions, they show, in many cases, distinct structural and magnetic properties. These are manifested in: B-site-ordered monoclinic structures of ScMnO3 and 'InMnO3'; an unusual superstructure of ScRhO3 and InRhO3; antiferromagnetic ground states and multiferroic properties of Sc2NiMnO6 and In2NiMnO6; two magnetic transitions in ScCrO3 and InCrO3 with very close transition temperatures; a Pnma-to-P-1 structural transition and k = (½, 0, ½) magnetic ordering in ScVO3; and incommensurate magnetic ordering of Mn(2+) spins in metallic MnVO3. A large number of simple ScBO3, InBO3 and MnBO3 perovskites has not been synthesized yet, and the number of experimental and theoretical works on each known ScBO3, InBO3 and MnBO3 perovskites counts to only one or two (except for ScAlO3). The synthesis, crystal chemistry and physics of perovskites with small cations at the A site is an emerging field in perovskite science.

  19. A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells.

    PubMed

    Gratia, Paul; Magomedov, Artiom; Malinauskas, Tadas; Daskeviciene, Maryte; Abate, Antonio; Ahmad, Shahzada; Grätzel, Michael; Getautis, Vytautas; Nazeeruddin, Mohammad Khaja

    2015-09-21

    The small-molecule-based hole-transporting material methoxydiphenylamine-substituted carbazole was synthesized and incorporated into a CH3NH3PbI3 perovskite solar cell, which displayed a power conversion efficiency of 16.91%, the second highest conversion efficiency after that of Spiro-OMeTAD. The investigated hole-transporting material was synthesized in two steps from commercially available and relatively inexpensive starting reagents. Various electro-optical measurements (UV/Vis, IV, thin-film conductivity, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole-transporting material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  1. High-Temperature Thermoelectric and Microstructural Characteristics of Cobalt-Based Oxides with Ga Substituted on the Co-Site

    NASA Astrophysics Data System (ADS)

    Nong, N. V.; Yanagiya, S.; Monica, S.; Pryds, N.; Ohtaki, M.

    2011-05-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co results in a simultaneous increase in the Seebeck coefficient ( S) and the electrical conductivity ( σ), and the influence is more significant in the high temperature region. The power factor ( S 2 σ) is thereby remarkably improved by Ga substitution, particularly at high temperatures. Texture factor calculations using x-ray diffraction pattern data for pressed and powder samples reveal that the Ga-doped samples are highly textured. Microstructure observed by scanning electron microscopy shows very well-crystallized grains for the samples with Ga substitution for Co. Among the Ga-doped samples, Ca3Co3.95Ga0.05O9 shows the best ZT value of 0.45 at 1200 K, which is about 87.5% higher than the nondoped one, a considerable improvement.

  2. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  3. Enhancement in magnetocaloric properties of ErCrO3 via A-site Gd substitution

    NASA Astrophysics Data System (ADS)

    Shi, Jianhang; Yin, Shiqi; Seehra, Mohindar S.; Jain, Menka

    2018-05-01

    Rare earth chromites (RCrO3) continue to be of considerable interest due to their intriguing physical properties such as spin-reorientation, multiferroicity, and magnetocaloric effect. In this paper, we compare the structural, magnetic, and magnetocaloric properties of bulk ErCrO3 with those of bulk Er0.33Gd0.67CrO3, the latter obtained by Gd substitution at the A-site (Er-site) and report substantial enhancement in the magnetocaloric response by Gd substitution. The samples prepared by the citrate route were structurally characterized at room temperature using x-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy. The XRD measurements refined by Rietveld analysis indicate that both samples crystallized in the orthorhombically distorted perovskite structure with Pbnm space group. Magnetic measurements on both samples were carried out between 5 K and 300 K in magnetic fields up to 7 T and show that TNC r (where Cr3+ orders) for Er0.33Gd0.67CrO3 is enhanced to 155 K vs. 133 K for ErCrO3 with analogous changes in the other magnetic parameters. Isothermal magnetization M vs. H data at different temperatures were used to determine changes in the magnetic entropy ( -ΔS ) and relative cooling power (RCP) for the two samples showing considerable improvement with Gd substitution in bulk ErCrO3. The maximum value of -ΔS for Er0.33Gd0.67CrO3 is 27.6 J kg-1 K-1 at 5 K and 7 T with a RCP of 531.1 J kg-1, in comparison to maximum -ΔS = 10.7 J kg-1 K-1 at 15 K with an RCP of 416.4 J kg-1 for ErCrO3 at 7 T.

  4. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.

    PubMed

    Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi

    2018-06-14

    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.

  5. Effect of Element Substitution at V site on Thermoelectric Properties of Aurivillius Phase Bi2VO5.5

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2016-10-01

    Thermoelectric oxides are suitable at the high temperature range because of chemical stability. Aurivillius compounds are bismuth layered oxides, and known as oxygen ion conductors. The Aurivillius compounds consist of Perovskite layers and Bi-O layers. It is expected that nano-layered structure shows high Seebeck coefficients due to the quantum confinement of carriers in Perovskite layers. It was reported that the Seebeck coefficient of hot pressed specimens for Aurivillius phase Bi2VO5.5 was a high value of -28.3 mVK-1 at 1010 K, and the electrical resistivity of one was also a high value of 0.033 Ωm at 1010 K. In this paper, the effect of element substitution at the V site on thermoelectric properties of Aurivillius phase Bi2VO5.5 was investigated. Bi2V1- x M x O5.5 (M = Cr, Mo, W x = 0, 0.05, 0.1, 0.2) were prepared by solid-state reaction. The electrical resistivity of Cr-substituted specimens were indicated at larger values than the ones for unsubstituted specimens over the measurement temperature range. The resistivity above 800 K was reduced by substitution of W or Mo. W as a substituted element was effective for reducing the thermal conductivity of Bi2VO5.5. The maximum value of the dimensionless figure of merit ZT was 0.05 at 799 K for Bi2V0.8Mo0.2O5.5 and at 902 K for Bi2V0.8W0.1O5.5. The maximum ZT of an unsubstituted sample was 0.02 at 993 K. From these results, it was found that tungsten or molybdenum substitution was effective to improve ZT for Aurivillius phase Bi2VO5.5.

  6. Spin State Control of the Perovskite Rh/Co Oxides

    PubMed Central

    Terasaki, Ichiro; Shibasaki, Soichiro; Yoshida, Shin; Kobayashi, Wataru

    2010-01-01

    We show why and how the spin state of transition-metal ions affects the thermoelectric properties of transition-metal oxides by investigating two perovskite-related oxides. In the A-site ordered cobalt oxide Sr3YCo4O10.5, partial substitution of Ca for Sr acts as chemical pressure, which compresses the unit cell volume to drive the spin state crossover, and concomitantly changes the magnetization and thermopower. In the perovskite rhodium oxide LaRhO3, partial substitution of Sr for La acts as hole-doping, and the resistivity and thermopower decrease systematically with the Sr concentration. The thermopower remains large values at high temperatures (>150 μV/K at 800 K), which makes a remarkable contrast to La1−xSrxCoO3. We associate this with the stability of the low spin state of the Rh3+ ions.

  7. Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells.

    PubMed

    Zhou, Wenke; Zhao, Yicheng; Zhou, Xu; Fu, Rui; Li, Qi; Zhao, Yao; Liu, Kaihui; Yu, Dapeng; Zhao, Qing

    2017-09-07

    Due to light-induced effects in CH 3 NH 3 -based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH 3 NH 3 -based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH 3 NH 3 PbI 3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH 3 NH 3 PbI 3 is 0.62 eV under dark conditions, larger than that of CsPbI 2 Br (0.45 eV); however, it reduces to 0.07 eV for CH 3 NH 3 PbI 3 under illumination, smaller than that for CsPbI 2 Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH 3 NH 3 PbI 3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.

  8. Structural and magnetic behavior of (Ni, Cu) substituted Nd0.67Sr0.33MnO3 perovskite compounds

    NASA Astrophysics Data System (ADS)

    Arun, B.; Sudakshina, B.; Akshay, V. R.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.

    2018-05-01

    Structural and magnetic phase transition of Ni and Cu substituted Nd0.67Sr0.33MnO3 perovskite compounds have been investigated. The Rietveld refinement of X-ray powder diffraction patterns confirms that both compounds have crystallized into an orthorhombic structure with Pbnm space group same as that of Nd0.67Sr0.33MnO3 compound. X-ray absorption spectra studies completely ruled out the possibility of existence of any impurities. Both compounds do not obey the Curie-Weiss law indicates the presence of some ferromagnetic clusters within the paramagnetic matrix. Ni substituted compound shows a lower value of TC and Cu substituted compound shows a higher value of TC than that of the parent. Non-saturating tendency of magnetization is more prominently seen in the case of Cu substituted compound, indicating an increase in the AFM component.

  9. Spin-state responses to light impurity substitution in low-spin perovskite LaCoO3

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Keisuke; Kubota, Yuuki; Shimomura, Saya; Onodera, Mitsugi; Koyama, Syun-Ichi; Nojima, Tsutomu; Ishihara, Sumio; Nakao, Hironori; Murakami, Youichi

    2013-06-01

    We studied the spin-state responses to light impurity substitution in low-spin perovskite LaCoO3 (Co3+: d6) through magnetization, x-ray fluorescence, and electrical resistivity measurements of single-crystal LaCo0.99M0.01O3 (M = Cr, Mn, Fe, Ni). In the magnetization curves measured at 1.8 K, a change in the spin-state was not observed for Cr, Mn, or Fe substitution but was observed for Ni substitution. Strong magnetic anisotropy was also found in the Ni-substituted sample. The fluorescence measurements revealed that the valences were roughly estimated to be Cr3+, Mn(4-δ)+, Fe(3+δ')+, and Ni3+. From the observed chemical trends, we propose that the chemical potential is a key factor in inducing the change of the low-spin state. By expanding a model of the ferromagnetic spin-state heptamer generated by hole doping [Podlesnyak , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.247603 101, 247603 (2008)], the emergence of highly anisotropic spin-state molecular ferromagnets induced by low-spin Ni3+ with Jahn-Teller activity is suggested. We also discuss applicability of the present results to other materials with Fe (d6).

  10. Effect of A-site deficiency in LaMn{sub 0.9}Co{sub 0.1}O{sub 3} perovskites on their catalytic performance for soot combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formationmore » of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.« less

  11. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.

    PubMed

    Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank

    2017-08-31

    Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.

  12. Chemical Substitution-Induced and Competitive Formation of 6H and 3C Perovskite Structures in Ba3-xSrxZnSb2O9: The Coexistence of Two Perovskites in 0.3 ≤ x ≤ 1.0.

    PubMed

    Li, Jing; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2017-11-20

    6H and 3C perovskites are important prototype structures in materials science. We systemically studied the structural evolution induced by the Sr 2+ -to-Ba 2+ substitution to the parent 6H perovskite Ba 3 ZnSb 2 O 9 . The 6H perovskite is only stable in the narrow range of x ≤ 0.2, which attributes to the impressibility of [Sb 2 O 9 ]. The preference of 90° Sb-O-Sb connection and the strong Sb 5+ -Sb 5+ electrostatic repulsion in [Sb 2 O 9 ] are competitive factors to stabilize or destabilize the 6H structure when chemical pressure was introduced by Sr 2+ incorporation. Therefore, in the following, a wide two-phase region containing 1:2 ordered 6H-Ba 2.8 Sr 0.2 ZnSb 2 O 9 and rock-salt ordered 3C-Ba 2 SrZnSb 2 O 9 was observed (0.3 ≤ x ≤ 1.0). In the final, the successive symmetry descending was established from cubic (Fm3̅m, 1.3 ≤ x ≤ 1.8) to tetragonal (I4/m, 2.0 ≤ x ≤ 2.4), and finally to monoclinic (I2/m, 2.6 ≤ x ≤ 3.0). Here we proved that the electronic configurations of B-site cations, with either empty, partially, or fully filled d-shell, would also affect the structure stabilization, through the orientation preference of the B-O covalent bonding. Our investigation gives a deeper understanding of the factors to the competitive formation of perovskite structures, facilitating the fine manipulation on their physical properties.

  13. Effects of Mn substitution on the thermoelectric properties of the electron-doped perovskite Sr1-xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Hata, H.; Eto, T.; Nishina, K.; Kuwahara, H.; Nakamura, M.; Kajimoto, R.

    2014-12-01

    We have tried to improve the n-type thermoelectric properties of the electron- doped Perovskite Sr1-xLaxTiO3 by a Mn substitution. The 1 ~ 2 % Mn substitution enhances the Seebeck coefficient (S) and reduces the thermal conductivity (κ) by about 50 % at room temperature (RT) without largely increasing the resistivity for the 5 % electron-doped SrTiO3. Consequently, the power factor at RT keeps a large value comparable to that of Bi2Te3 and the dimensionless figure-of-merits at RT increases twofold by the slight Mn substitution. Such a large reduction of κ at RT is perhaps due to the effect of Jahn-Teller active Mn3+ ions, around which dynamical local lattice distortion may occur.

  14. Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols

    DOE PAGES

    Acik, Muge; Alam, Todd M.; Guo, Fangmin; ...

    2017-09-29

    Methylammonium lead iodide (MAPbI 3) perovskites are organic–inorganic semiconductors with long carrier diffusion lengths serving as the light-harvesting component in optoelectronics. Through a substitutional growth of MAPbI 3 catalyzed by polar protic alcohols, evidence is shown in this paper for their substrate- and annealing-free production and use of toxic solvents and high temperature is prevented. The resulting variable-sized crystals (≈100 nm–10 µm) are found to be tetragonally single-phased in alcohols and precipitated as powders that are metallic-lead-free. A comparatively low MAPbI 3 yield in toluene supports the role of alcohol polarity and the type of solvent (protic vs aprotic). Themore » theoretical calculations suggest that overall Gibbs free energy in alcohols is lowered due to their catalytic impact. Based on this alcohol-catalyzed approach, MAPbI 3 is obtained, which is chemically stable in air up to ≈1.5 months and thermally stable (≤300 °C). Finally, this method is amendable to large-scale manufacturing and ultimately can lead to energy-efficient, low-cost, and stable devices.« less

  15. Perovskite-type catalytic materials for environmental applications.

    PubMed

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N 2 O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  16. Perovskite-type catalytic materials for environmental applications

    PubMed Central

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-01-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications. PMID:27877813

  17. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  18. Acid–base catalysis over perovskites: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Wu, Zili

    We present that perovskite catalysts have been extensively studied for reduction–oxidation (redox) reactions; however, their acid–base catalytic properties are still under-explored. This review collects work aiming to study the acid–base catalytic properties of perovskites. Reports regarding combined acid–base/redox catalysis over perovskites lie beyond the scope of the present review. For the characterization of acid–base properties, researchers have studied the interaction of probe molecules with perovskite surfaces by means of multiple techniques that provide information about the density, strength and type of adsorption sites. The top-surface composition of perovskites, which relates to the abundance of the acid–base sites, has been studiedmore » by means of low energy ion scattering (LEIS), and, the less surface sensitive, conventional X-ray photoelectron spectroscopy (XPS). Probe reactions, with the conversion of 2-propanol as the common choice, have also been employed for characterizing the acid–base catalytic properties of perovskites. The complex nature of perovskite surfaces, which explains the still absent fundamental relations between the structure of the catalyst and reaction rates/selectivity, encounters a great challenge due to the surface reconstruction of these materials. In this review, we devote a special section to highlight recent publications that report the impact of surface reconstruction and particle shape on acid–base catalysis over perovskites. In addition, we review promising catalytic performances of perovskite catalysts for other reactions of interest. Challenges in acid–base catalysis over perovskites focus on the development of time-resolved monolayer-sensitive characterization of surfaces under operando conditions and the discernment of combined acid–base/redox reaction mechanisms. Finally, opportunities lay on tuning the acid–base characteristics of perovskites with computation-based catalytic descriptors to

  19. Acid–base catalysis over perovskites: a review

    DOE PAGES

    Polo-Garzon, Felipe; Wu, Zili

    2018-01-15

    We present that perovskite catalysts have been extensively studied for reduction–oxidation (redox) reactions; however, their acid–base catalytic properties are still under-explored. This review collects work aiming to study the acid–base catalytic properties of perovskites. Reports regarding combined acid–base/redox catalysis over perovskites lie beyond the scope of the present review. For the characterization of acid–base properties, researchers have studied the interaction of probe molecules with perovskite surfaces by means of multiple techniques that provide information about the density, strength and type of adsorption sites. The top-surface composition of perovskites, which relates to the abundance of the acid–base sites, has been studiedmore » by means of low energy ion scattering (LEIS), and, the less surface sensitive, conventional X-ray photoelectron spectroscopy (XPS). Probe reactions, with the conversion of 2-propanol as the common choice, have also been employed for characterizing the acid–base catalytic properties of perovskites. The complex nature of perovskite surfaces, which explains the still absent fundamental relations between the structure of the catalyst and reaction rates/selectivity, encounters a great challenge due to the surface reconstruction of these materials. In this review, we devote a special section to highlight recent publications that report the impact of surface reconstruction and particle shape on acid–base catalysis over perovskites. In addition, we review promising catalytic performances of perovskite catalysts for other reactions of interest. Challenges in acid–base catalysis over perovskites focus on the development of time-resolved monolayer-sensitive characterization of surfaces under operando conditions and the discernment of combined acid–base/redox reaction mechanisms. Finally, opportunities lay on tuning the acid–base characteristics of perovskites with computation-based catalytic descriptors to

  20. Computational mineral physics and the physical properties of perovskite.

    PubMed

    Brodholt, John P; Oganov, A R; Price, G D

    2002-11-15

    The inherent uncertainties in modern first-principles calculations are reviewed using geophysically relevant examples. The elastic constants of perovskite at lower-mantle temperatures and pressures are calculated using ab initio molecular dynamics. These are used in conjunction with seismic tomographic models to estimate that the lateral temperature contrasts in the Earth's lower mantle are 800 K at a depth of 1000 km, and 1500 K at a depth of 2000 km. The effect of Al(3+) on the compressibility of MgSiO(3) perovskite is calculated using three different pseudopotentials. The results confirm earlier work and show that the compressibility of perovskites with Al(3+) substituted for both Si(4+) and Mg(2+) is very similar to the compressibility of Al(3+)-free perovskite. Even when 100% of the Si(4+) and Mg(2+) ions are replaced with Al(3+), the bulk modulus is only 7% less than that for Al(3+)-free perovskite. In contrast, perovskites where Al(3+) substitutes for Si(4+) only and that are charge balanced by oxygen vacancies do show higher compressibilities. When corrected to similar concentrations of Al(3+), the calculated compressibilities of the oxygen-vacancy-rich perovskites are in agreement with experimental results.

  1. Effects of Mn Substitution on the Thermoelectric Properties and Thermal Excitations of the Electron-doped Perovskite Sr1-xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi

    2016-09-01

    We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.

  2. Effect of aluminium on the compressibility of silicate perovskite

    NASA Astrophysics Data System (ADS)

    Daniel, Isabelle; Bass, Jay D.; Fiquet, Guillaume; Cardon, Hervé; Zhang, Jianzhong; Hanfland, Michael

    2004-08-01

    Volume measurements for aluminous MgSiO3 perovskite containing 5 mol% Al2O3 were carried out up to pressures of 40 GPa at ambient temperature, using monochromatic synchrotron X-ray diffraction. A least-squares refinement of the data to the Birch-Murnaghan equation of state yields the following parameters V0 = 163.234(8) Å3, KT0 = 251.5(13) GPa, K'0 = 4. Within uncertainties, the presence of 5 mol% Al2O3 in MgSiO3 perovskite induces a decrease of the bulk modulus in the range of 0% to 1.8%. Thus, KT of perovskite is affected little if at all by the presence of Al3+. This result is in excellent agreement with the values deduced from sound velocity measurements on the same sample [Jackson et al., 2004]. We discuss the possible origin of discrepancies among the different bulk moduli reported to date for aluminous perovskite. In light of recent calculations, our results are consistent with aluminium being dissolved in MgSiO3 perovskite through a coupled substitution mechanism involving the replacement of both Mg2+ and Si4+ in the dodecahedral and octahedral sites by 2 Al3+. Moreover, any slight reduction in the bulk modulus of MgSiO3 perovskite induced by the dissolution of 5 mol% Al2O3, indicates that the relative proportions of the minerals characteristic of the lower mantle, as inferred from seismological models, should not be significantly altered by the introduction of Al in the system.

  3. Generalized trends in the formation energies of perovskite oxides.

    PubMed

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  4. Electron localization and magnetism in SrRuO3 with non-magnetic cation substitution

    NASA Astrophysics Data System (ADS)

    Tong, W.; Huang, F.-Q.; Chen, I.-W.

    2011-03-01

    The destruction of the ferromagnetism of alloyed SrRuO3 can be caused by electron localization at the substitution sites. Among all the non-magnetic cations that enter the B site, Zr4 + is the least disruptive to conductivity and ferromagnetism. This is because Zr4 + does not cause any charge disorder, and its empty d electron states which are poorly matched in energy with the Ru t2g4 states cause the least resonance scattering of Ru's d electrons. Conducting Sr(Ru, Zr)O3 may be used as an electrode for perovskite-based thin film devices, while its insulating counterpart provides unprecedented magnetoresistance, seldom seen in other non-manganite and non-cobaltite perovskites.

  5. Effect of La3+ substitution with Gd3+ on the resistive switching properties of La0.7Sr0.3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Sub; Park, Chang-Sun; Park, Hyung-Ho

    2014-05-01

    This study demonstrated that the resistive switching voltage of perovskite manganite material could be controlled by A-site cation substitution in "A" MnO3 perovskite manganite structure. A partial substitution of La3+ in La0.7Sr0.3MnO3 with smaller cation Gd3+ induced A-site vacancy of the largest Sr2+ cation with surface segregation of SrOy due to ionic size mismatch, and the induced vacancies reduced migration energy barrier. The operating voltage decreased from 3.5 V to 2.5 V due to a favorable condition for electrochemical migration and redox of oxygen ions. Moreover, surface-segregated SrOy was enhanced with Gd-substitution and the SrOy reduced Schottky-like barrier height and resistive switching ratio from the potential drop and screening effect. The relationship between A-site vacancy generation resulting in surface segregation of SrOy and resistive switching behavior was also investigated by energy resolved x-ray photoelectron spectroscopy, O 1s near edge x-ray absorption spectroscopy, and current voltage measurement.

  6. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  7. Lead-free Halide Perovskites via Functionality-directed Materials Screening

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Yang, Dongwen; Lv, Jian; Zhao, Xingang; Yang, Ji-Hui; Yu, Liping; Wei, Su-Huai; Zunger, Alex

    Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted much interest as low-cost and high-performance photovoltaic absorbers but one would like to improve their stability and get rid of toxic Pb. We used photovoltaic-functionality-directed materials screening approach to rationally design via first-principles DFT calculations Pb-free halide perovskites. Screening criteria involve thermodynamic and crystallographic stability, as well as solar band gaps, light carrier effective masses, exciton binding, etc. We considered both single atomic substitutions in AMX3 normal perovskites (altering chemical constituents of A, M and X individually) as well as double substitution of 2M into B+C in A2BCX6 double-perovskites. Chemical trends in phase stabilities and optoelectronic properties are discussed with some promising cases exhibiting solar cell efficiencies comparable to that of CH3NH3PbI3. L.Z. founded by Recruitment Program of Global Youth Experts and National Key Research and Development Program of China, and A.Z. by DOE EERE Sun Shot of USA.

  8. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

    DOE PAGES

    Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; ...

    2015-09-30

    In this study, titanium, tantalum-substituted Li 7La 3Z r2-xA xO 12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La (2/3)-xLi 3xTi 1-yCr yO 3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phasemore » with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li 7La 3Zr 1.4Ti 0.6O 12), Ta-LLZO (Li 6.03La 3Zr 1.533Ta 0.46O 12), and Cr-LLTO (La (2/3)-xLi 3xTi 0.9Cr 0.1O 3) at room temperature were found to be 5.21 × 10 –6, 1.01 ×10 –6, and 1.2 × 10 –4 S cm –1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti 0.6-LLZO), 0.54 eV (Ta 0.5-LLZO), and 0.20 eV (Cr 0.1-LLTO).« less

  9. Octahedral tilting instabilities in inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-02-01

    Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.

  10. Characterization of ordering in A-site deficient perovskite Ca 1–xLa 2x/3TiO 3 using STEM/EELS

    DOE PAGES

    Danaie, Mohsen; Kepaptsoglou, Demie; Ramasse, Quentin M.; ...

    2016-09-15

    The vacancy ordering behavior of an A-site deficient perovskite system, Ca 1–xLa 2x/3TiO 3, was studied using atomic resolution scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), with the aim of determining the role of A-site composition changes. At low La content (x = 0.2), adopting Pbnm symmetry, there was no indication of long-range ordering. Domains, with clear boundaries, were observed in bright-field (BF) imaging, but were not immediately visible in the corresponding high-angle annular dark-field (HAADF) image. These boundaries, with the aid of displacement maps from A-site cations in the HAADF signal, are shown tomore » be tilt boundaries. At the La-rich end of the composition (x = 0.9), adopting Cmmm symmetry, long-range ordering of vacancies and La 3+ ions was observed, with alternating La-rich and La-poor layers on (001)p planes, creating a double perovskite lattice along the c axis. These highly ordered domains can be found isolated within a random distribution of vacancies/La 3+, or within a large population, encompassing a large volume. In regions with a high number density of double perovskite domains, these highly ordered domains were separated by twin boundaries, with 90° or 180° lattice rotations across boundaries. In conclusion, the occurrence and characteristics of these ordered structures are discussed and compared with similar perovskite systems.« less

  11. A -Site Ordered Double Perovskite CaMnTi 2 O 6 as a Multifunctional Piezoelectric and Ferroelectric–Photovoltaic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Gaoyang; Charles, Nenian; Shi, Jing

    2017-09-11

    The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less

  12. Slater insulator in iridate perovskites with strong spin-orbit coupling

    DOE PAGES

    Cui, Q.; Cheng, J. -G.; Fan, W.; ...

    2016-10-20

    The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less

  13. Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.

    PubMed

    Cui, Q; Cheng, J-G; Fan, W; Taylor, A E; Calder, S; McGuire, M A; Yan, J-Q; Meyers, D; Li, X; Cai, Y Q; Jiao, Y Y; Choi, Y; Haskel, D; Gotou, H; Uwatoko, Y; Chakhalian, J; Christianson, A D; Yunoki, S; Goodenough, J B; Zhou, J-S

    2016-10-21

    The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225  K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.

  14. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, H.; Liu, H. X.; Cao, M. H.; Min, X. M.; Ouyang, S. X.

    2006-10-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi4Ti4O15 (SBT) were studied in the range 40 590 °C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm-1 modes related to the rotating and tilting of the TiO6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm-1 peaks.

  15. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  16. Study of the B-site ion behaviour in the multiferroic perovskite bismuth iron chromium oxide

    NASA Astrophysics Data System (ADS)

    McBride, Bethany R.; Lieschke, Jonathon; Berlie, Adam; Cortie, David L.; Playford, Helen Y.; Lu, Teng; Narayanan, Narendirakumar; Withers, Ray L.; Yu, Dehong; Liu, Yun

    2018-04-01

    A simple, near-ambient pressure solid-state method was developed to nominally synthesize BiFe0.5Cr0.5O3. The procedure allowed the gram-scale production of multiferroic samples with appreciable purity and large amounts of Cr incorporation that were suitable for systematic structural investigation by neutron, X-ray, and electron diffraction in tandem with physical characterization of magnetic and ferroelectric properties. The rhombohedrally distorted perovskite phase was assigned to the space group R3c by way of X-ray and neutron powder diffraction analysis. Through a combination of magnetometry and muon spin relaxation, it is evident that there is magnetic ordering in the BFCO phase consistent with G-type antiferromagnetism and a TN ˜ 400 K. There is no clear evidence for chemical ordering of Fe and Cr in the B-site of the perovskite structure and this result is rationalized by density functional theory and bond valence simulations that show a lowered energy associated with a B-site disordered structure. We believe that our contribution of a new, low-complexity method for the synthesis of BFO type samples, and dialogue about realising certain types of ordering in oxide perovskite systems, will assist in the further development of multiferroics for next-generation devices.

  17. Crystallographic site swapping of La3+ ion in BaA'LaTeO6 (A' = Na, K, Rb) double perovskite type compounds: diffraction and photoluminescence evidence for the site swapping.

    PubMed

    Phatak, R; Gupta, S K; Krishnan, K; Sali, S K; Godbole, S V; Das, A

    2014-02-28

    Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P2₁/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.

  18. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site

    PubMed Central

    Evans, Christopher D.; Smith, Paul J.; Manning, Troy D.; Miedziak, Peter J.; Brett, Gemma L.; Armstrong, Robert D.; Bartley, Jonathan K.; Taylor, Stuart H.; Rosseinsky, Matthew J.; Hutchings, Graham J.

    2016-01-01

    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology. PMID:27074316

  19. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site.

    PubMed

    Evans, Christopher D; Kondrat, Simon A; Smith, Paul J; Manning, Troy D; Miedziak, Peter J; Brett, Gemma L; Armstrong, Robert D; Bartley, Jonathan K; Taylor, Stuart H; Rosseinsky, Matthew J; Hutchings, Graham J

    2016-07-04

    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology.

  20. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    -dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance

  1. Probing cation and vacancy ordering in the dry and hydrated yttrium-substituted BaSnO3 perovskite by NMR spectroscopy and first principles calculations: implications for proton mobility.

    PubMed

    Buannic, Lucienne; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2012-09-05

    Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.

  2. Investigation by Monte Carlo simulation of substitution doping in the Double Perovskite Sr2CrRe1-xWxO6

    NASA Astrophysics Data System (ADS)

    El Rhazouani, O.; Benyoussef, A.

    2018-01-01

    Re-substitution doping by W has been investigated in the Double Perovskite (DP) Sr2CrRe1-xWxO6 for x ranging from 10 to 90% by using a Monte Carlo Simulation (MCS) in the framework of Ising model. Exchange couplings used in the simulation have been approximated in previous work for experimental Curie temperatures (TC). Doping effect on: partial and total magnetization, magnetic susceptibility, internal energy, specific heat, and Curie temperature has been studied. A sharp drop of partial magnetizations at 40% of W-concentration has been noticed at the magnetic transition. Apparition of a non-monotonic behavior of the total magnetization at 20% of W-concentration. Effect of doping on the stability of the compound has been emphasized. A quasilinear decrease of TC has been observed by increasing the concentration percentage of substitution doping by W.

  3. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    PubMed

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  4. Incorporating Alternative Care Site Characteristics Into Estimates of Substitutable ED Visits.

    PubMed

    Trueger, Nathan Seth; Chua, Kao-Ping; Hussain, Aamir; Liferidge, Aisha T; Pitts, Stephen R; Pines, Jesse M

    2017-07-01

    Several recent efforts to improve health care value have focused on reducing emergency department (ED) visits that potentially could be treated in alternative care sites (ie, primary care offices, retail clinics, and urgent care centers). Estimates of the number of these visits may depend on assumptions regarding the operating hours and functional capabilities of alternative care sites. However, methods to account for the variability in these characteristics have not been developed. To develop methods to incorporate the variability in alternative care site characteristics into estimates of ED visit "substitutability." Our approach uses the range of hours and capabilities among alternative care sites to estimate lower and upper bounds of ED visit substitutability. We constructed "basic" and "extended" criteria that captured the plausible degree of variation in each site's hours and capabilities. To illustrate our approach, we analyzed data from 22,697 ED visits by adults in the 2011 National Hospital Ambulatory Medical Care Survey, defining a visit as substitutable if it was treat-and-release and met both the operating hours and functional capabilities criteria. Use of the combined basic hours/basic capabilities criteria and extended hours/extended capabilities generated lower and upper bounds of estimates. Our criteria classified 5.5%-27.1%, 7.6%-20.4%, and 10.6%-46.0% of visits as substitutable in primary care offices, retail clinics, and urgent care centers, respectively. Alternative care sites vary widely in operating hours and functional capabilities. Methods such as ours may help incorporate this variability into estimates of ED visit substitutability.

  5. Zhang-Rice physics and anomalous copper states in A-site ordered perovskites

    PubMed Central

    Meyers, D.; Mukherjee, Swarnakamal; Cheng, J.-G.; Middey, S.; Zhou, J.-S.; Goodenough, J. B.; Gray, B. A.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J.

    2013-01-01

    In low dimensional cuprates several interesting phenomena, including high Tc superconductivity, are deeply connected to electron correlations on Cu and the presence of the Zhang-Rice (ZR) singlet state. Here, we report on direct spectroscopic observation of the ZR state responsible for the low-energy physical properties in two isostructural A-site ordered cuprate perovskites, CaCu3Co4O12 and CaCu3Cr4O12 as revealed by resonant soft x-ray absorption spectroscopy on the Cu L3,2- and O K-edges. These measurements reveal the signature of Cu in the high-energy 3+ (3d8), the typical 2+ (3d9), as well as features of the ZR singlet state (i.e., 3d9L, L denotes an oxygen hole). First principles GGA + U calculations affirm that the B-site cation controls the degree of Cu-O hybridization and, thus, the Cu valency. These findings introduce another avenue for the study and manipulation of cuprates, bypassing the complexities inherent to conventional chemical doping (i.e. disorder) that hinder the relevant physics. PMID:23666066

  6. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer.

    PubMed

    Yu, Jae Choul; Hong, Ji A; Jung, Eui Dae; Kim, Da Bin; Baek, Soo-Min; Lee, Sukbin; Cho, Shinuk; Park, Sung Soo; Choi, Kyoung Jin; Song, Myoung Hoon

    2018-01-18

    The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.

  7. Two-Dimensional Lead Halide Perovskites Templated by a Conjugated Asymmetric Diammonium.

    PubMed

    Hautzinger, Matthew P; Dai, Jun; Ji, Yujin; Fu, Yongping; Chen, Jie; Guzei, Ilia A; Wright, John C; Li, Youyong; Jin, Song

    2017-12-18

    We report novel two-dimensional lead halide perovskite structures templated by a unique conjugated aromatic dication, N,N-dimethylphenylene-p-diammonium (DPDA). The asymmetrically substituted primary and tertiary ammoniums in DPDA facilitate the formation of two-dimensional network (2DN) perovskite structures incorporating a conjugated dication between the PbX 4 2- (X = Br, I) layers. These 2DN structures of (DPDA)PbI 4 and (DPDA)PbBr 4 were characterized by single-crystal X-ray diffraction, showing uniquely low distortions in the Pb-X-Pb bond angle for 2D perovskites. The Pb-I-Pb bond angle is very close to ideal (180°) for a 2DN lead iodide perovskite, which can be attributed to the ability of the rigid diammonium DPDA to insert into the PbX 6 2- octahedral pockets. Optical characterization of (DPDA)PbI 4 shows an excitonic absorption peak at 2.29 eV (541 nm), which is red-shifted in comparison to similar 2DN lead iodide structures. Temperature-dependent photoluminescence of both compounds reveals both a self-trapped exciton and free exciton emission feature. The reduced exciton absorption energy and emission properties are attributed to the dication-induced structural order of the inorganic PbX 4 2- layers. DFT calculation results suggest mixing of the conjugated organic orbital component in the valence band of these 2DN perovskites. These results demonstrate a rational new strategy to incorporate conjugated organic dications into hybrid perovskites and will spur spectroscopic investigations of these compounds as well as optoelectronic applications.

  8. Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution

    NASA Astrophysics Data System (ADS)

    Thiel, Philipp; Populoh, Sascha; Yoon, Songhak; Weidenkaff, Anke

    2015-09-01

    Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO3-δ. In this study series of Ca1-xAxMn1-yByO3-δ (0≤x,y≤0.8) compounds, each with A-site (Dy3+, Yb3+) or B-site (Nb5+, Ta5+ and Mo6+, W6+) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion.

  9. Incorporating C60 as Nucleation Sites Optimizing PbI2 Films To Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability via Vapor-Assisted Deposition Method.

    PubMed

    Chen, Hai-Bin; Ding, Xi-Hong; Pan, Xu; Hayat, Tasawar; Alsaedi, Ahmed; Ding, Yong; Dai, Song-Yuan

    2018-01-24

    To achieve high-quality perovskite solar cells (PSCs), the morphology and carrier transportation of perovskite films need to be optimized. Herein, C 60 is employed as nucleation sites in PbI 2 precursor solution to optimize the morphology of perovskite films via vapor-assisted deposition process. Accompanying the homogeneous nucleation of PbI 2 , the incorporation of C 60 as heterogeneous nucleation sites can lower the nucleation free energy of PbI 2 , which facilitates the diffusion and reaction between PbI 2 and organic source. Meanwhile, C 60 could enhance carrier transportation and reduce charge recombination in the perovskite layer due to its high electron mobility and conductivity. In addition, the grain sizes of perovskite get larger with C 60 optimizing, which can reduce the grain boundaries and voids in perovskite and prevent the corrosion because of moisture. As a result, we obtain PSCs with a power conversion efficiency (PCE) of 18.33% and excellent stability. The PCEs of unsealed devices drop less than 10% in a dehumidification cabinet after 100 days and remain at 75% of the initial PCE during exposure to ambient air (humidity > 60% RH, temperature > 30 °C) for 30 days.

  10. The lanthanum gallate-based mixed conducting perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Stefanovich, S. Yu.; Aleksandrovskii, V. V.; Kaleva, G. M.; Mosunov, A. V.; Avetisov, A. K.; Sung, J. S.; Choo, K. Y.; Kim, T. H.

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O3- with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen.

  11. Synthesis, crystal structure and magnetic properties of a new B-site ordered double perovskite Sr{sub 2}CuIrO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasala, Sami; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-12-15

    Here we synthesize and characterize a new double-perovskite oxide Sr{sub 2}CuIrO{sub 6}. The synthesis requires the use of high oxygen pressure to stabilize the VI oxidation state of iridium. The compound has a tetragonally-distorted crystal structure due to the Jahn–Teller active Cu{sup II} ion, and a high degree of B-site cation order. Magnetic transition is apparent at 15 K, but the zero-field-cooled and field-cooled susceptibilities diverge below this temperature. The high degree of cation order would exclude the possibility of a typical spin-glass, indicating that the divergence is probably due to a frustration of the magnetic interactions between Cu andmore » Ir, with a high frustration factor of f≈25. - Graphical abstract: A new member of the A{sub 2}B′B″O{sub 6} double-perovskite family with JT-active Cu{sup II} at the B′ site and Ir{sup VI} at the B″ site is synthesized through high pressure synthesis and characterized for the structural and magnetic properties. - Highlights: • New member of the A{sub 2}CuB″O{sub 6} double-perovskite family is synthesized with B″=Ir. • Stabilization of Ir{sup VI} requires the use of high oxygen pressure synthesis. • Crystal structure is tetragonally distorted due to JT-active Cu{sup II}. • Divergence of ZFC and FC curves is seen below the T{sub N} of 15 K. • This is presumably due to a frustration effect.« less

  12. Perovskite-Perovskite Homojunctions via Compositional Doping.

    PubMed

    Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J

    2018-05-11

    One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.

  13. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic-Inorganic Halide Perovskites.

    PubMed

    Walsh, Aron

    2015-03-19

    The performance of solar cells based on hybrid halide perovskites has seen an unparalleled rate of progress, while our understanding of the underlying physical chemistry of these materials trails behind. Superficially, CH 3 NH 3 PbI 3 is similar to other thin-film photovoltaic materials: a semiconductor with an optical band gap in the optimal region of the electromagnetic spectrum. Microscopically, the material is more unconventional. Progress in our understanding of the local and long-range chemical bonding of hybrid perovskites is discussed here, drawing from a series of computational studies involving electronic structure, molecular dynamics, and Monte Carlo simulation techniques. The orientational freedom of the dipolar methylammonium ion gives rise to temperature-dependent dielectric screening and the possibility for the formation of polar (ferroelectric) domains. The ability to independently substitute on the A, B, and X lattice sites provides the means to tune the optoelectronic properties. Finally, ten critical challenges and opportunities for physical chemists are highlighted.

  14. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites

    PubMed Central

    2015-01-01

    The performance of solar cells based on hybrid halide perovskites has seen an unparalleled rate of progress, while our understanding of the underlying physical chemistry of these materials trails behind. Superficially, CH3NH3PbI3 is similar to other thin-film photovoltaic materials: a semiconductor with an optical band gap in the optimal region of the electromagnetic spectrum. Microscopically, the material is more unconventional. Progress in our understanding of the local and long-range chemical bonding of hybrid perovskites is discussed here, drawing from a series of computational studies involving electronic structure, molecular dynamics, and Monte Carlo simulation techniques. The orientational freedom of the dipolar methylammonium ion gives rise to temperature-dependent dielectric screening and the possibility for the formation of polar (ferroelectric) domains. The ability to independently substitute on the A, B, and X lattice sites provides the means to tune the optoelectronic properties. Finally, ten critical challenges and opportunities for physical chemists are highlighted. PMID:25838846

  15. Reduced thermal conductivity by nanoscale intergrowths in perovskite like layered structure La{sub 2}Ti{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaliq, Jibran; Chen, Kan; Li, Chunchun

    2015-02-21

    The effect of substitution and oxidation-reduction on the thermal conductivity of perovskite-like layered structure (PLS) ceramics was investigated in relation to mass contrast and non-stoichiometry. Sr (acceptor) was substituted on the A site, while Ta (donor) was substituted on the B site of La{sub 2}Ti{sub 2}O{sub 7}. Substitution in PLS materials creates atomic scale disorders to accommodate the non-stoichiometry. High resolution transmission electron microscopy and X ray diffraction revealed that acceptor substitution in La{sub 2}Ti{sub 2}O{sub 7} produced nanoscale intergrowths of n = 5 layered phase, while donor substitution produced nanoscale intergrowths of n = 3 layered phase. As a result of these nanoscalemore » intergrowths, the thermal conductivity value reduced by as much as ∼20%. Pure La{sub 2}Ti{sub 2}O{sub 7} has a thermal conductivity value of ∼1.3 W/m K which dropped to a value of ∼1.12 W/m K for Sr doped La{sub 2}Ti{sub 2}O{sub 7} and ∼0.93 W/m K for Ta doped La{sub 2}Ti{sub 2}O{sub 7} at 573 K.« less

  16. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    PubMed

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  17. Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight.

    PubMed

    García, Gregorio; Palacios, Pablo; Menéndez-Proupin, Eduardo; Montero-Alejo, Ana L; Conesa, José C; Wahnón, Perla

    2018-02-06

    Organic-inorganic hybrid halide perovskites compounds are emerging as new materials with great potential for efficient solar cells. This paper explores the possibility of increasing their photovoltaic efficiency through sub-bandgap absorption by way of the in gap band (IGB) concept. Thus, we assess the formation of an in gap band as well as its effect on the absorption features of Organic-inorganic hybrid halide perovskites CH 3 NH 3 PbI 3 (MAPI). For this task, we use density functional theory (DFT) as well as many-body perturbation methods along to spin-orbit coupling (SOC) to study structural, energetic and electronic properties of partially Cr-substituted MAPI perovskites (CH 3 NH 3 Pb 1-x Cr x I 3 ). Our results reveal that Cr replacement does not lead to an important cell distortion, while the energetic of the substitution process evidences the possibility of obtaining Cr-substituted perovskite. The analysis of the electronic structure shows that Cr 3d-orbitals induce new electronic states in the host semiconductor bandgap, which fulfill the requirements to be considered as an IGB. Precise many-body perturbation methods in G 0 W 0 approach provided an accurate description on the electronic structures as well as the position of the IGB. In short, Pb replacement by Cr could be useful for improved absorption features through new sub-bandgap transitions across the in gap band.

  18. Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hest, Marinus F; Moore, David; Klein, Talysa

    Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer.more » Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.« less

  19. Hybrid Organic-Inorganic Perovskites: Structural Diversity and Opportunities for Semiconductor Design

    NASA Astrophysics Data System (ADS)

    Mitzi, David

    Photovoltaic (PV) devices based on three-dimensional perovskites, (Cs, MA, FA)Pb(I, Br)3 (MA =methylammonium, FA =formamidinium), have attracted substantial recent interest, because of the unprecedented rise in power conversion efficiency to values above 20%, which in turn is made possible by the near ideal band gap, strong optical absorption, high carrier mobilities, long minority carrier lifetimes, and relatively benign defects and grain boundaries for the absorbers. Some of the same properties that render these materials near-ideal for PV, also make them attractive for LED and other optoelectronic applications. Despite the high levels of device performance, the incorporation of the heavy metal lead, coupled with issues of device stability and electrical hysteresis pose challenges for commercializing these exciting technologies. This talk will provide a perspective on and discuss recent advances related to the broader perovskite family, focusing on the extraordinary structural/chemical diversity, including ability to control structural/electronic dimensionality, substitute on the organic cation, metal or halogen sites, and prospects of multi-functionality arising from separately engineered organic/inorganic structural components (e.g., see). Further exploration within this perovskite structural and chemical space offers exciting opportunities for future energy and electronic materials design. This work has been financially supported by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Dept. of Energy, under Award Number DE-EE0006712.

  20. A-site Ordered Chromium Perovskites, ACu3Cr4O12 with A = Trivalent Ions

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Higemoto, Wataru; Isobe, Masahiko; Takagi, Hidenori; Sakurai, Hiroya; Ansaldo, Eduardo J.; Brewer, Jess H.; Sassa, Yasmine; Forslund, Ola Kenji; Månsson, Martin

    The magnetic ground state of the A-site ordered chromium perovskites, ACu3Cr4O12 with A = Y, La, Eu, and Lu has been investigated with μ+SR using powder samples prepared by a high-pressure technique. Weak transverse field measurements revealed that the four compounds enter into a magnetic phase below 230-260 K. Moreover, the transition temperature (TN) was found to decrease with increasing the size of A3+ ions. Zero field measurements indicated the formation of static antiferromagnetic (AF) order in ACu3Cr4O12 below TN. Furthermore, since the internal magnetic field in the AF phase is independent of A, the role of 4f electrons on the AF state is very limited and/or eventually absence in ACu3Cr4O12.

  1. Tailoring Electronic Properties in Semiconducting Perovskite Materials through Octahedral Control

    NASA Astrophysics Data System (ADS)

    Choquette, Amber K.

    Perovskite oxides, which take the chemical formula ABO 3, are a very versatile and interesting materials family, exhibiting properties that include ferroelectricity, ferromagnetism, mixed ionic/electronic conductivity, metal-insulator behavior and multiferroicity. Key to these functionalities is the network of BO6 corner-connected octahedra, which are known to distort and rotate, directly altering electronic and ferroic properties. By controlling the BO6 octahedral distortions and rotations through cationic substitutions, the use of strain engineering, or through the formation of superlattice structures, the functional properties of perovskites can be tuned. Motivating the use of structure-driven design in oxide heterostructures is the prediction of hybrid improper ferroelectricity in A'BO3/ABO3 superlattices. Two key design rules to realizing hybrid improper ferroelectricity are the growth of high quality superlattice structures with odd periodicities of the A / A' layers, and the control of the octahedral rotation pattern. My work explores the rotational response in perovskite oxides to strain and interface effects in thin films of RFeO3 ( R = La, Eu). I demonstrate a synchrotron x-ray diffraction technique to identify the rotation pattern that is present in the films. I then establish substrate imprinting as a key tool for controlling the rotation patterns in heterostructures, providing a means to realize the necessary structural variants of the predicted hybrid improper ferroelectricity in superlattices. In addition, by pairing measured diffraction data with a structure factor calculation, I demonstrate how one can extract both A-site and oxygen atomic positions in single crystal perovskite oxide films. Finally, I show results from (LaFeO 3)n/(EuFeO3)n superlattices (n = 1-5), synthesized to test the motivating predictions of hybrid improper ferroelectricity in oxide superlattices.

  2. Orbital Delocalization and Enhancement of Magnetic Interactions in Perovskite Oxyhydrides

    PubMed Central

    Liu, Kai; Hou, Yusheng; Gong, Xingao; Xiang, Hongjun

    2016-01-01

    Recent experiments showed that some perovskite oxyhydrides have surprisingly high magnetic-transition temperature. In order to unveil the origin of this interesting phenomenon, we investigate the magnetism in SrCrO2H and SrVO2H on the basis of first-principles calculations and Monte Carlo simulations. Our work indicates that the Cr-O-Cr superexchange interaction in SrCrO2H is unexpectedly strong. Different from the previous explanation in terms of the H− ion substitution induced increase of the Cr-O-Cr bond angle, we reveal instead that this is mainly because the 3d orbitals in perovskite oxyhydrides becomes more delocalized since H− ions have weaker electronegativity and less electrons than O2− ions. The delocalized 3d orbitals result in stronger Cr-O interactions and enhance the magnetic-transition temperature. This novel mechanism is also applicable to the case of SrVO2H. Furthermore, we predict that SrFeO2H will have unprecedented high Neel temperature because of the extraordinarily strong Fe-H-Fe σ-type interactions. Our work suggests the anion substitution can be used to effectively manipulate the magnetic properties of perovskite compounds. PMID:26804825

  3. Ferroelectricity of Sn-doped SrTiO3 perovskites with tin at both A and B sites

    NASA Astrophysics Data System (ADS)

    Suzuki, Shoichiro; Honda, Atsushi; Iwaji, Naoki; Higai, Shin'ichi; Ando, Akira; Takagi, Hiroshi; Kasatani, Hirofumi; Deguchi, Kiyoshi

    2012-08-01

    We successfully obtained Sn-doped SrTiO3 (SSTO) perovskites, and clarified their ferroelectricity and structural properties by using first-principles theoretical calculations. The ferroelectricity of SSTO was confirmed by the appearance of a dielectric permittivity maximum and a clear hysteresis loop of the relationship between the external electric field and the electric flux density below 180 K. X-ray diffraction and Raman spectra revealed the structural phase transition of SSTO at approximately 200 K. We directly observed by spherical aberration corrected scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy that Sn ions are doped into both Sr and Ti sites (SnA and SnB), and that SnA is located at an off-centered position. We also performed theoretical analyses of SSTO and related perovskites, and found that SnA is preferentially located in an off-centered position and that SnA and the O6 octahedron, which includes SnB in its center, oscillate along the antiphase direction in the soft mode. Thus, we propose that the ferroelectricity of SSTO originates from the antiphase off-centering, which induces ferroelectric nanoregions in paraelectric SrTiO3.

  4. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  5. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  6. Interplay of 3 d - and 5 d -sublattice magnetism in the double perovskite substitution series La2Zn1 -xCoxIrO6

    NASA Astrophysics Data System (ADS)

    Vogl, M.; Corredor, L. T.; Dey, T.; Morrow, R.; Scaravaggi, F.; Wolter, A. U. B.; Aswartham, S.; Wurmehl, S.; Büchner, B.

    2018-01-01

    We report on the interplay of 3 d - and 5 d -sublattice magnetism in polycrystalline samples of the double perovskite substitution series La2Zn1 -xCoxIrO6 . Powder x-ray diffraction reveals no major structural changes within the series. In magnetization measurements, a gradual shift of the transition temperature from TN ≈91 K for the Co parent compound to TN ≈8.7 K for the Zn parent compound is observed. The data on the Zn-rich members of the substitution series indicate that this is accompanied by changing roles of the 3 d sublattice of Co2 + and the strongly spin-orbit coupled 5 d -sublattice of Ir4 + with its jeff=1 /2 ground state, as a function of the Co/Zn ratio. Temperature-dependent specific-heat studies revealed a reduced magnetic entropy, pointing towards a large spin-orbit coupling and orbital contribution in the system.

  7. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Gaoyang; Young, Joshua; Liu, Xian

    2016-09-28

    Owing to its ideal semiconducting band gap and good carrier transport properties, the fully inorganic perovskite CsSnI 3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic inorganic lead halide perovskite CH 3NH 3PbI 3, CsSnI 3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI 3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI 3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to createmore » the double perovskite (CsRb)Sn 2I 6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI 6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI 3. More importantly, unlike nonpolar CsSnI 3, the electric polarization present in ferroelectric (CsRb)Sn 2I 6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with,potentially enhanced energy conversion efficiency.« less

  8. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end

  9. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio

    NASA Astrophysics Data System (ADS)

    Babayigit, Aslihan; Duy Thanh, Dinh; Ethirajan, Anitha; Manca, Jean; Muller, Marc; Boyen, Hans-Gerd; Conings, Bert

    2016-01-01

    Intensive development of organometal halide perovskite solar cells has lead to a dramatic surge in power conversion efficiency up to 20%. Unfortunately, the most efficient perovskite solar cells all contain lead (Pb), which is an unsettling flaw that leads to severe environmental concerns and is therefore a stumbling block envisioning their large-scale application. Aiming for the retention of favorable electro-optical properties, tin (Sn) has been considered the most likely substitute. Preliminary studies have however shown that Sn-based perovskites are highly unstable and, moreover, Sn is also enlisted as a harmful chemical, with similar concerns regarding environment and health. To bring more clarity into the appropriateness of both metals in perovskite solar cells, we provide a case study with systematic comparison regarding the environmental impact of Pb- and Sn-based perovskites, using zebrafish (Danio Rerio) as model organism. Uncovering an unexpected route of intoxication in the form of acidification, it is shown that Sn based perovskite may not be the ideal Pb surrogate.

  10. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio

    PubMed Central

    Babayigit, Aslihan; Duy Thanh, Dinh; Ethirajan, Anitha; Manca, Jean; Muller, Marc; Boyen, Hans-Gerd; Conings, Bert

    2016-01-01

    Intensive development of organometal halide perovskite solar cells has lead to a dramatic surge in power conversion efficiency up to 20%. Unfortunately, the most efficient perovskite solar cells all contain lead (Pb), which is an unsettling flaw that leads to severe environmental concerns and is therefore a stumbling block envisioning their large-scale application. Aiming for the retention of favorable electro-optical properties, tin (Sn) has been considered the most likely substitute. Preliminary studies have however shown that Sn-based perovskites are highly unstable and, moreover, Sn is also enlisted as a harmful chemical, with similar concerns regarding environment and health. To bring more clarity into the appropriateness of both metals in perovskite solar cells, we provide a case study with systematic comparison regarding the environmental impact of Pb- and Sn-based perovskites, using zebrafish (Danio Rerio) as model organism. Uncovering an unexpected route of intoxication in the form of acidification, it is shown that Sn based perovskite may not be the ideal Pb surrogate. PMID:26759068

  11. Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.

    PubMed

    Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo

    2016-09-14

    Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.

  12. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    PubMed

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites

    NASA Astrophysics Data System (ADS)

    Legrain, Fleur; Manzhos, Sergei

    2017-01-01

    Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).

  14. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites.

    PubMed

    Legrain, Fleur; Manzhos, Sergei

    2017-01-21

    Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).

  15. Thermoelectric Properties of the Ca1- x R x MnO3 Perovskite System (R: Pr, Nd, Sm) for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Choi, Soon-Mok; Lim, Chang-Hyun; Seo, Won-Seon

    2011-05-01

    Perovskite oxides have attracted considerable attention in the area of thermoelectrics owing to the advantages of their isotropic crystal structure and straightforward control of their electrical properties. Among the many perovskites, different types of polycrystalline Ca1- x R x MnO3 (R: Pr, Nd, Sm) were prepared by solid-state reaction in this study. Three different rare-earth dopants were substituted at the Ca-ion site at various amounts. Considering phase stability, rare-earth ions with nearly the same ionic radius as Ca2+ were selected. To assess thermoelectric performance, the electrical conductivity, Seebeck coefficient, and power factor were measured, and phase analysis was conducted. The effects of ionic radius variation on single phase formation and the effect of doping amount on carrier concentration are discussed.

  16. How to regulate energy levels and hole mobility of spiro-type hole transport materials in perovskite solar cells.

    PubMed

    Chi, Wei-Jie; Sun, Ping-Ping; Li, Ze-Sheng

    2016-10-21

    Methoxyaniline-based organic small molecules with three-dimensional structure have been proven as the most promising hole conductor for state-of-the-art perovskite devices. A fundamental understanding of the electronic properties and hole transport behavior of spiro-CPDT analogues, which is dependent on the number and position of the -OCH 3 groups, is significant for their potential applications as hole transport materials of perovskite solar cells. Our results from density functional theory calculations indicate that meta-substitution is more beneficial to reduce the highest occupied molecular orbital (HOMO) levels of molecules compared with ortho- and para-substitution. Furthermore, the hole mobility can be improved by ortho-substitution or mixed ortho- and para-substitution. Most interestingly, it is found that the improvement in hole mobility is at the expense of raising the HOMO level of spiro-CPDT analogues. These results can be useful in the process of designing and synthesizing excellent hole transport materials with suitable HOMO levels and high hole mobility.

  17. Electronically conductive perovskite-based oxide nanoparticles and films for optical sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohodnicki, Jr., Paul R; Schultz, Andrew M

    2015-04-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide hasmore » an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8« less

  18. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+)

    PubMed Central

    Liu, Xiao; Fan, Huiqing; Shi, Jing; Li, Qiang

    2015-01-01

    Dielectric properties and dielectric relaxation behaviors of A/B sites co-substituted Bi0.5Na0.5TiO3 perovskite-type ferroelectrics are reported. The Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+) exhibits anomalous giant dielectric permittivity (ε’) of ~105 under a heterogeneous constitution with easily discernible grain and grain boundary conductivity. The lone pairs substitution theory as well as extrinsic disorders are used to clarify the significant structural evolution and the origin of the dielectric performance. A bigger free volume promotes the anomalous relaxation between oxygen sites, and the polarization direction on the nanoscale deviates from the average polarization direction at its ferroelectric state. Furthermore, no obvious phase transition indicates the considerable static substitutional disorder at the Bi/Na sites, which facilitates delocalized conduction of oxygen ions in the intermediate temperature range. PMID:26239525

  19. Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Chaojie; Zhang, Jing; Hou, Dagang; Gan, Xinlei; Sun, Hongrui; Zeng, Zhaobing; Chen, Renjie; Tian, Hui; Xiong, Qi; Zhang, Ying; Li, Yuanyuan; Zhu, Yuejin

    2018-05-01

    The organic-inorganic perovskite material with better energy alignment in the solar cell device will have a profound impact on the solar cell performance. It is valuable to tune the energy states by element substitution and doping in perovskites. Here, we present that Ca2+ is incorporated into CH3NH3PbI3, which up-shifts the valence band maximum and the conduction band minimum, leading to a difference between the bandgap and the Fermi level in the device. Consequently, Ca2+ incorporation results in an enhancement of the photovoltage and photocurrent, achieving a summit efficiency of 18.3% under standard 1 sun (AM 1.5). This work reveals the doped perovskite to improve the solar cell performance by tuning the energy state.

  20. On the substitution of Sr ions at Y sites in YB(suba2)Cu3O(sub7-d)

    NASA Astrophysics Data System (ADS)

    Siddiqi, S. A.; Sreedhar, K.; Drobac, D.; Infante, C.; Matacotta, F. C.; Ganguly, P.

    1989-10-01

    The effect of Sr substitution at the Ba sites in YBa2 Cu3 O sub 7-d has been studied; attempts to substitute Sr exclusively at Y sites have not been successful. We have been able to substitute Sr at Y sites only when the Ba ions are simultaneously substituted by Sr to give solid solutions of the type Y sub 1-x Sr sub x Ba sub 2-2x Sr sub 2x Cu3 O(sub 7-)x(sub /2-d). These examples show superconducting transitions higher than 78 K without significant deterioration in the magnitude of the ac susceptibility. The substitutions are best understood in terms of site constraints on the ions occupying the Y and Ba sites.

  1. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  2. Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO3: a combined experimental and computational study.

    PubMed

    Srivastava, D; Azough, F; Freer, R; Combe, E; Funahashi, R; Kepaptsoglou, D M; Ramasse, Q M; Molinari, M; Yeandel, S R; Baran, J D; Parker, S C

    2015-12-21

    A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO 3 . High quality Sr-Mo co-substituted CaMnO 3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO 3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101} orthorhombic ; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn 3+ in the Mn 4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit ( ZT ) values higher than 0.1 at temperatures above 850 K. Ca 0.7 Sr 0.3 Mn 0.96 Mo 0.04 O 3 ceramics exhibit enhanced properties with S 1000K = -180 μV K -1 , ρ 1000K = 5 × 10 -5 Ωm, k 1000K = 1.8 W m -1 K -1 and ZT ≈ 0.11 at 1000 K.

  3. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik; Chen, Aiping; Harrell, Zach

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  4. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE PAGES

    Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...

    2017-04-18

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  5. Aryl-substituted aminobenzimidazoles targeting the hepatitis C virus internal ribosome entry site

    PubMed Central

    Ding, Kejia; Wang, Annie; Boerneke, Mark A.; Dibrov, Sergey M.; Hermann, Thomas

    2014-01-01

    We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex. PMID:24856063

  6. Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen

    2017-07-01

    Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.

  7. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    PubMed

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  8. Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji

    Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less

  9. Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure

    DOE PAGES

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; ...

    2017-07-17

    Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less

  10. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes

    PubMed Central

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-01-01

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m2. Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters. PMID:27633084

  11. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces

    DOE PAGES

    Acik, Muge; Park, In Kee; Koritala, Rachel E.; ...

    2017-12-21

    Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less

  12. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acik, Muge; Park, In Kee; Koritala, Rachel E.

    Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less

  13. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  14. Structural transitions in hybrid improper ferroelectric C a3T i2O7 tuned by site-selective isovalent substitutions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, C. F.; Zheng, S. H.; Wang, H. W.; Gong, J. J.; Li, X.; Zhang, Y.; Yang, K. L.; Lin, L.; Yan, Z. B.; Dong, Shuai; Liu, J.-M.

    2018-05-01

    C a3T i2O7 is an experimentally confirmed hybrid improper ferroelectric material, in which the electric polarization is induced by a combination of the coherent Ti O6 octahedral rotation and tilting. In this work, we investigate the tuning of ferroelectricity of C a3T i2O7 using isovalent substitutions on Ca sites. Due to the size mismatch, larger/smaller alkaline earths prefer A'/A sites, respectively, allowing the possibility for site-selective substitutions. Without extra carriers, such site-selected isovalent substitutions can significantly tune the Ti O6 octahedral rotation and tilting, and thus change the structure and polarization. Using the first-principles calculations, our study reveals that three substituted cases (Sr, Mg, and Sr+Mg) show divergent physical behaviors. In particular, (CaTiO3) 2SrO becomes nonpolar, which can reasonably explain the suppression of polarization upon Sr substitution observed in experiment. In contrast, the polarization in (MgTiO3) 2CaO is almost doubled upon substitutions, while the estimated coercivity for ferroelectric switching does not change. The (MgTiO3) 2SrO remains polar but its structural space group changes, with moderate increased polarization and possible different ferroelectric switching paths. Our study reveals the subtle ferroelectricity in the A3T i2O7 family and suggests one more practical route to tune hybrid improper ferroelectricity, in addition to the strain effect.

  15. Novel catalytic properties of quadruple perovskites

    PubMed Central

    Yamada, Ikuya

    2017-01-01

    ABSTRACT Quadruple perovskite oxides AA′3 B 4O12 demonstrate a rich variety of structural and electronic properties. A large number of constituent elements for A/A′/B-site cations can be introduced using the ultra-high-pressure synthesis method. Development of novel functional materials consisting of earth-abundant elements plays a crucial role in current materials science. In this paper, functional properties, especially oxygen reaction catalysis, for quadruple perovskite oxides CaCu3Fe4O12 and AMn7O12 (A = Ca, La) composed of earth-abundant elements are reviewed. PMID:28970864

  16. Single Crystal Elasticity of Iron Bearing Perovskite and Post Perovskite Analog

    NASA Astrophysics Data System (ADS)

    Yoneda, A.; Fukui, H.; Baron, A. Q. R.

    2014-12-01

    We measured single crystal elasticity of (1) pure and iron bearing MgSiO3 perovskite, and (2) Pbnm-CaIrO3 and Cmcm-CaIrO3, a representative analog of MgSiO3 perovskite and post perovskite, respectively, by means of inelastic X ray scattering at BL35XU, SPring-8. The present results for MgSiO3 perovskite demonstrate that elastic anisotropy of magnesium perovskite is highly enhanced by iron incorporation. Furthermore anti-correlation between bulk sound velocity and shear wave velocity was confirmed with iron content, which is against the theoretical prediction. The anti-correlation found in this study is important, because it enables us to interpret the recent seismological observation of the anti-correlation in the deep lower mantle by means of iron content difference in perovskite. On the other hand, we can learn difference of elasticity between perovskite and post perovskite thorough measurement on CaIrO3, as analog of MgSiO3 perovskite and post perovskite. From a characteristics of the single crystal elasticity of CaIrO3 compounds, we interpreted the texture pattern in the D" layer consistent with recent seismic observation.

  17. Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells.

    PubMed

    Salado, Manuel; Calio, Laura; Berger, Rüdiger; Kazim, Samrana; Ahmad, Shahzada

    2016-10-05

    Lead halide based perovskite solar cells are presently the flagship among the third generation solution-processed photovoltaic technologies. The organic cation part in the perovskite plays an important role in terms of crystal structure tuning from tetragonal to trigonal or pseudocubic or vice versa depending on the organic cations used, while it also displays different microstructure. In this paper, we demonstrate the influence of the organic cation part with respect to optical properties, hysteresis behavior, and stability. This study offers a clear understanding of the perovskite properties and how they can be modulated by compositional engineering. With a rational choice, light harvesting abilities and hysteresis behavior can be controlled in these systems. The substitution of formamidinium cation by methylammonium cation allows achieving low temperature annealing and inducing stability in perovskites together with enhanced photovoltaic properties. By the use of in-situ scanning force microscopy experiments the conversion of precursors to perovskite at a particular temperature can be visualized.

  18. Enhanced performance in perovskite solar cells via bromide ion substitution and ethanol treatment

    NASA Astrophysics Data System (ADS)

    Feng, Bingjie; Duan, Jinxia; Tao, Li; Zhang, Jun; Wang, Hao

    2018-02-01

    Mixed lead halide (Pb(I1-xBrx)2) as the seed layer was employed to prepare mixed lead-halide perovskite (MAPbI3-2xBr2x, MA = CH3NH3) films through two-step sequential deposition method. Ethanol treatment process was also introduced for the control of morphology and microstructure of Pb(I1-xBrx)2 films. The ethanol treatment accelerates the crystallization of Pb(I1-xBrx)2 and the resulted Pb(I1-xBrx)2 films exhibit a porous structure which facilitates more complete conversion of PbI2 at the same time. As a result, high purity and highly crystallized MAPbI3-2xBr2x films are obtained. The photovoltaic performance of assembled perovskite solar cells based on MAPbI3-2xBr2x films are improved upon ethanol treatment and a champion power conversion efficiency (PCE) of 15.53% is obtained with x = 0.2. After exposed in air condition for 14 days, a 86% of initial PCE remains in the champion device.

  19. Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films.

    PubMed

    Talbert, Eric M; Zarick, Holly F; Boulesbaa, Abdelaziz; Soetan, Naiya; Puretzky, Alexander A; Geohegan, David B; Bardhan, Rizia

    2017-08-24

    In this study, ultrafast transient absorption spectroscopy (TAS) is utilized to examine the excited-state dynamics in methylammonium lead iodide/bromide (MAPb(I 1-x Br x ) 3 ) perovskites as a function of bromide content. TAS spectral behavior reveals characteristic lifetimes for thermalization, recombination, and charge carrier injection of MAPb(I 1-x Br x ) 3 from x = 0 to 0.3 infiltrated in mesoporous titania films. Carrier recombination and charge injection lifetimes demonstrated a discernable increase with Br content likely because high carrier populations are supported by the higher density of vacant electronic states in mixed-halide perovskites due to the increased capacity of the conduction band. However, we observe for the first time that carrier thermalization lifetimes significantly decrease with increasing Br. This suggests that the shift in crystal structure from tetragonal towards pseudocubic accelerates carrier cooling, resulting in the relief of the hot phonon bottleneck. Furthermore, the stabilized MAPb(I 1-x Br x ) 3 samples exhibit a lower Burstein-Moss shift of 0.07-0.08 eV compared to pure MAPbI 3 (0.12 eV). Our results provide evidence that Br inclusion contributes to a broadening of the parabolic conduction band and to improvement in electron-phonon coupling and phonon propagation in the lattice.

  20. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl 6

    DOE PAGES

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl 6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl 3 and RbZnCl 3) forming the double perovskite exhibit a stark contrast. While CsCaCl 3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl 3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We showmore » that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl 6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  1. Intrinsic white-light emission from layered hybrid perovskites.

    PubMed

    Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I

    2014-09-24

    We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

  2. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    NASA Astrophysics Data System (ADS)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  3. Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains.

    PubMed

    Hou, Xian; Huang, Sumei; Ou-Yang, Wei; Pan, Likun; Sun, Zhuo; Chen, Xiaohong

    2017-10-11

    A high-quality perovskite film with interconnected perovskite grains was obtained by incorporating terephthalic acid (TPA) additive into the perovskite precursor solution. The presence of TPA changed the crystallization kinetics of the perovskite film and promoted lateral growth of grains in the vicinity of crystal boundaries. As a result, sheet-shaped perovskite was formed and covered onto the bottom grains, which made some adjacent grains partly merge together to form grains-interconnected perovskite film. Perovskite solar cells (PSCs) with TPA additive exhibited a power conversion efficiency (PCE) of 18.51% with less hysteresis, which is obviously higher than that of pristine cells (15.53%). PSCs without and with TPA additive retain 18 and 51% of the initial PCE value, respectively, aging for 35 days exposed to relative humidity 30% in air without encapsulation. Furthermore, MAPbI 3 film with TPA additive shows superior thermal stability to the pristine one under 100 °C baking. The results indicate that the presence of TPA in perovskite film can greatly improve the performance of PSCs as well as their moisture resistance and thermal stability.

  4. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model.

    PubMed

    Rodrigue, Nicolas; Lartillot, Nicolas

    2017-01-01

    Codon substitution models have traditionally attempted to uncover signatures of adaptation within protein-coding genes by contrasting the rates of synonymous and non-synonymous substitutions. Another modeling approach, known as the mutation-selection framework, attempts to explicitly account for selective patterns at the amino acid level, with some approaches allowing for heterogeneity in these patterns across codon sites. Under such a model, substitutions at a given position occur at the neutral or nearly neutral rate when they are synonymous, or when they correspond to replacements between amino acids of similar fitness; substitutions from high to low (low to high) fitness amino acids have comparatively low (high) rates. Here, we study the use of such a mutation-selection framework as a null model for the detection of adaptation. Following previous works in this direction, we include a deviation parameter that has the effect of capturing the surplus, or deficit, in non-synonymous rates, relative to what would be expected under a mutation-selection modeling framework that includes a Dirichlet process approach to account for across-codon-site variation in amino acid fitness profiles. We use simulations, along with a few real data sets, to study the behavior of the approach, and find it to have good power with a low false-positive rate. Altogether, we emphasize the potential of recent mutation-selection models in the detection of adaptation, calling for further model refinements as well as large-scale applications. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite

    NASA Astrophysics Data System (ADS)

    Gore, Shyam K.; Jadhav, Santosh S.; Tumberphale, Umakant B.; Shaikh, Shoyeb M.; Naushad, Mu; Mane, Rajaram S.

    2017-12-01

    The phase transition of bismuth-substituted nickel ferrite, synthesized by using a simple sol-gel autocombustion method, from cubic to perovskite is confirmed from the X-ray diffraction spectrums. The changes in isomer shift, hyperfine field and cation distribution are obtained from the Mossbauer spectroscopy analysis. The cation distribution demonstrates Ni2+ cations occupy tetrahedral sites, while Fe3+ and Bi3+ occupy both tetrahedral as well as octahedral sites. For higher concentrations of bismuth, saturation magnetization is increased whereas, coercivity is decreased which is related to phase change. The variations of dielectric constant, tangent loss and conductivity (ac) with frequency (10 Hz-5 MHz) have been explored with Bi3+-doping i.e. 'x'. According to Maxwell-Wagener model, there is an involvement of electron hopping kinetics as both dielectric constant and tangent loss are decreased with increasing frequency. Increase of conductivity with frequency (measured at room temperature, 27 °C) is attributed to increase of number of carriers and mobility.

  6. Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic-Inorganic Perovskites in Light-Emitting Diodes.

    PubMed

    Lee, Seungjin; Park, Jong Hyun; Lee, Bo Ram; Jung, Eui Dae; Yu, Jae Choul; Di Nuzzo, Daniele; Friend, Richard H; Song, Myoung Hoon

    2017-04-20

    The use of hybrid organic-inorganic perovskites in optoelectronic applications are attracting an interest because of their outstanding characteristics, which enable a remarkable enhancement of device efficiency. However, solution-processed perovskite crystals unavoidably contain defect sites that cause hysteresis in perovskite solar cells (PeSCs) and blinking in perovskite light-emitting diodes (PeLEDs). Here, we report significant beneficial effects using a new treatment based on amine-based passivating materials (APMs) to passivate the defect sites of methylammonium lead tribromide (MAPbBr 3 ) through coordinate bonding between the nitrogen atoms and undercoordinated lead ions. This treatment greatly enhanced the PeLED's efficiency, with an external quantum efficiency (EQE) of 6.2%, enhanced photoluminescence (PL), a lower threshold for amplified spontaneous emission (ASE), a longer PL lifetime, and enhanced device stability. Using confocal microscopy, we observed the cessation of PL blinking in perovskite films treated with ethylenediamine (EDA) due to passivation of the defect sites in the MAPbBr 3 .

  7. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGES

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; ...

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  8. Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbert, Eric M.; Zarick, Holly F.; Boulesbaa, Abdelaziz

    Here in this study, ultrafast transient absorption spectroscopy (TAS) is utilized to examine the excited-state dynamics in methylammonium lead iodide/bromide (MAPb(I 1-xBrx)3) perovskites as a function of bromide content. TAS spectral behavior reveals characteristic lifetimes for thermalization, recombination, and charge carrier injection of MAPb(I 1-xBr x) 3 from x = 0 to 0.3 infiltrated in mesoporous titania films. Carrier recombination and charge injection lifetimes demonstrated a discernable increase with Br content likely because high carrier populations are supported by the higher density of vacant electronic states in mixed-halide perovskites due to the increased capacity of the conduction band. However, wemore » observe for the first time that carrier thermalization lifetimes significantly decrease with increasing Br. This suggests that the shift in crystal structure from tetragonal towards pseudocubic accelerates carrier cooling, resulting in the relief of the hot phonon bottleneck. Furthermore, the stabilized MAPb(I 1-xBrx) 3 samples exhibit a lower Burstein–Moss shift of 0.07–0.08 eV compared to pure MAPbI 3 (0.12 eV). Our results provide evidence that Br inclusion contributes to a broadening of the parabolic conduction band and to improvement in electron–phonon coupling and phonon propagation in the lattice.« less

  9. Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films

    DOE PAGES

    Talbert, Eric M.; Zarick, Holly F.; Boulesbaa, Abdelaziz; ...

    2017-08-02

    Here in this study, ultrafast transient absorption spectroscopy (TAS) is utilized to examine the excited-state dynamics in methylammonium lead iodide/bromide (MAPb(I 1-xBrx)3) perovskites as a function of bromide content. TAS spectral behavior reveals characteristic lifetimes for thermalization, recombination, and charge carrier injection of MAPb(I 1-xBr x) 3 from x = 0 to 0.3 infiltrated in mesoporous titania films. Carrier recombination and charge injection lifetimes demonstrated a discernable increase with Br content likely because high carrier populations are supported by the higher density of vacant electronic states in mixed-halide perovskites due to the increased capacity of the conduction band. However, wemore » observe for the first time that carrier thermalization lifetimes significantly decrease with increasing Br. This suggests that the shift in crystal structure from tetragonal towards pseudocubic accelerates carrier cooling, resulting in the relief of the hot phonon bottleneck. Furthermore, the stabilized MAPb(I 1-xBrx) 3 samples exhibit a lower Burstein–Moss shift of 0.07–0.08 eV compared to pure MAPbI 3 (0.12 eV). Our results provide evidence that Br inclusion contributes to a broadening of the parabolic conduction band and to improvement in electron–phonon coupling and phonon propagation in the lattice.« less

  10. Chromium and Tantalum Site Substitution Patterns in Ni3Al (L1(sub 2))gamma(prime)- Precipitates

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The site substitution behavior of Cr and Ta in the Ni3Al (Ll2)-type gamma'-precipitates of a Ni-Al-Cr-Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the gamma'-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the gamma'-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the gamma'-precipitates, altering the elemental phase partitioning behavior of the Ni-Al-Cr-Ta alloy.

  11. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    NASA Astrophysics Data System (ADS)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  12. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  13. Characterization of mixed-conducting barium cerate-based perovskites for potential fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mukundan, R.

    Chemical modifications of barium cerium gadolinium oxide through the substitution of Bi, Tb, Pr, Nb and Ta were attempted in an effort to increase the p-type or n-type conductivity, and to develop new mixed-conducting electrodes that are chemically compatible with the Ba(Cesb{1-x}Gdsb{x})Osb{3-x/2} electrolyte. The structure, oxygen non-stoichiometry, electronic and ionic-conductivity of several compositions in the doped-barium cerate systems were studied by X-ray diffraction, TGA, DC and AC conductivity, and EMF measurements. The cathodic overpotential of the mixed (electronic/ionic) conducting compositions in this system, on a Ba(Cesb{0.8}Gdsb{0.2})Osb{2.9} electrolyte, were also studied using Current Interruption and AC impedance techniques. The substitution of Bi into Ba(Cesb{0.9}Gdsb{0.1})Osb{2.95} lead to a significant increase in the electronic conductivity, and a total conductivity of about 0.94 S/cm was obtained for Ba(Bisb{0.5}Cesb{0.4}Gdsb{0.1})Osb3 at 800sp°C in air. However, the concentration of oxygen-ion vacancies and hence the ionic conductivity decreased due to the oxidation of Bi to the 5sp{+} state. Compositions in the Ba(Bisb{0.5}Cesb{x}Gdsb{0.5-x})Osb3 system also exhibited significant oxygen non-stoichiometry depending upon the ordering of the B-site cations and the relative concentrations of Ce and Gd. However, the absence of any detectable EMF in the non-stoichiometric compositions implied that the oxygen vacancies are strongly associated with the Bisp{3+} cations. Although highly conductive, chemically stable compositions were prepared in the Ba(Bisb{x}Cesb{y}Gdsb{1-(x+y)})Osb{3-d} system, their ionic conductivities were low. The mixed-conduction properties of Ba(Cesb{1-x}Gdsb{x})Osb{3-d} were enhanced under cathode conditions (600-800sp°C in air) by the substitution of Ce by Tb and Pr. While the substitution of Tb resulted in a decrease in the total conductivity, Pr induced a significant increase in the total conductivity at high Pr

  14. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon, E-mail: kimsg@ccs.msstate.edu

    2015-11-28

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe{sub 12}O{sub 19}). Based on the calculation of the substitution energy of Ga and In in SrFe{sub 12}O{sub 19} and the formation probability analysis, we conclude that in SrFe{sub 12−x}Ga{sub x}O{sub 19} the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f{sub 1} sites, while In atoms in SrFe{sub 12−x}In{sub x}O{sub 19} occupy the 12k, 4f{sub 2}, and 4f{sub 1} sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe{sub 12}O{sub 19}. It was found that as the fractionmore » of Ga atoms in SrFe{sub 12−x}Ga{sub x}O{sub 19} increases, the saturation magnetization (M{sub s}) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (H{sub a}) increases. In the case of SrFe{sub 12−x}In{sub x}O{sub 19}, M{sub s}, MAE, and H{sub a} decrease with an increase of the concentration of In atoms.« less

  15. Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.

  16. Lead-Free, Two-Dimensional Mixed Germanium and Tin Perovskites.

    PubMed

    Cheng, Pengfei; Wu, Tao; Liu, Junxue; Deng, Wei-Qiao; Han, Keli

    2018-05-17

    Hybrid two-dimensional (2D) organic-inorganic perovskites continue to draw increased attention in view of their outstanding performance in optoelectronic devices such as solar cells and light-emitting devices. Herein, for the first time, we report the synthesis and characterization of lead-free, 2D mixed Ge-Sn halide perovskites, (PEA) 2 Ge 1- x Sn x I 4 (where PEA = C 6 H 5 CH 2 CH 2 NH 3 + ), and demonstrate that the bandgaps decrease linearly with increasing Sn content. Most importantly, among them, (PEA) 2 Ge 0.5 Sn 0.5 I 4 possesses the smallest bandgap of 1.95 eV. Density functional theory calculations confirm that Sn substitution induces a smaller bandgap and more dispersed band structure, which are desirable characteristics of light-absorbing materials. In addition, conductivity and stability of (PEA) 2 Ge 0.5 Sn 0.5 I 4 have also been assessed.

  17. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    PubMed Central

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2016-01-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388

  18. Perovskites: transforming photovoltaics, a mini-review

    DOE PAGES

    Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; ...

    2015-01-06

    The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This paper provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. Finally, the compatibility of various PV layers and its fabrication methods is also discussed.

  19. Dry (Mg,Fe)SiO 3 perovskite in the Earth's lower mantle

    DOE PAGES

    Panero, Wendy R.; Pigott, Jeffrey S.; Reaman, Daniel M.; ...

    2015-02-26

    Combined synthesis experiments and first-principles calculations show that MgSiO 3-perovskite with minor Al or Fe does not incorporate significant OH under lower mantle conditions. Perovskite, stishovite, and residual melt were synthesized from natural Bamble enstatite samples (Mg/(Fe+Mg) = 0.89 and 0.93; Al 2O 3 < 0.1 wt% with 35 and 2065 ppm wt H 2O, respectively) in the laser-heated diamond anvil cell at 1600-2000 K and 25-65 GPa. Combined Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction, and ex-situ transmission electron microscopy (TEM) analysis demonstrates little difference in the resulting perovskite as a function of initial water content. Four distinct OHmore » vibrational stretching bands are evident upon cooling below 100 K (3576, 3378, 3274, and 3078 cm -1), suggesting 4 potential bonding sites for OH in perovskite with a maximum water content of 220 ppm wt H 2O, and likely no more than 10 ppm wt H 2O. Complementary, Fe-free, first-principles calculations predict multiple potential bonding sites for hydrogen in perovskite, each with significant solution enthalpy (0.2 eV/defect). We calculate that perovskite can dissolve less than 37 ppm wt H 2O (400 ppm H/Si) at the top of the lower mantle, decreasing to 31 ppm wt H 2O (340 ppm H/Si) at 125 GPa and 3000 K in the absence of a melt or fluid phase. Here, we propose that these results resolve a long-standing debate of the perovskite melting curve and explain the order of magnitude increase in viscosity from upper to lower mantle.« less

  20. Structural manipulation and tailoring of dielectric properties in SrTi1−xFexTaxO3 perovskites: Design of new lead free relaxors

    PubMed Central

    Shukla, R.; Patwe, S. J.; Deshpande, S. K.; Achary, S. N.; Krishna, P. S. R.; Shinde, A. B.; Gopalakrishnan, J.; Tyagi, A. K.

    2016-01-01

    We report composition dependent structure evolution from SrTiO3 to SrFe0.5Ta0.5O3 by powder X-ray and neutron diffraction studies of SrTi1−2xFexTaxO3 (0.00 ≤ × ≤ 0.50) compositions. Structural studies reveal cubic (Pm3m) perovskite-type structure of the parent SrTiO3 for x up to 0.075 and cation disordered orthorhombic (Pbnm) perovskite-type structure for x ≥ 0.33. A biphasic region consisting of a mixture of cubic and orthorhombic structures is found in the range for 0.10 ≤ × ≤ 0.25. Dielectric studies reveal transformation from a normal dielectric to relaxor like properties with increasing Fe3+ and Ta5+ concentration. Dielectric response is maximum at x = 0.33 in the series. The results establish a protocol for designing new lead-free relaxor materials based on the co-substitution of Fe3+ and Ta5+ for Ti4+ in SrTiO3. A complex interplay of strain effects arising from distribution of cations at the octahedral sites of the perovskite structure controls the dielectric properties. PMID:27514668

  1. Double perovskites overtaking the single perovskites: A set of new solar harvesting materials with much higher stability and efficiency

    NASA Astrophysics Data System (ADS)

    Kangsabanik, Jiban; Sugathan, Vipinraj; Yadav, Anuradha; Yella, Aswani; Alam, Aftab

    2018-05-01

    Solar energy plays an important role in substituting the ever declining source of fossil fuel energy. Finding novel materials for solar cell applications is an integral part of photovoltaic research. Hybrid lead halide perovskites are one of, if not the most, well sought material in the photovoltaic research community. Its unique intrinsic properties, flexible synthesis techniques, and device fabrication architecture made the community highly buoyant over the past few years. Yet, there are two fundamental issues that still remain a concern, i.e., the stability in external environment and the toxicity due to Pb. This led to a search for alternative materials. More recently, double perovskite [A2B B'X6 (X =Cl, Br, I)] materials have emerged as a promising choice. Few experimental synthesis and high throughput computational studies have been carried out to check for promising candidates of this class. The main outcome from these studies, however, can essentially be summarized into two categories: (i) either they have an indirect band gap or (ii) a direct but large optical band gap, which is not suitable for solar devices. Here we propose a large set of stable double perovskite materials, Cs2B B 'X6 (X =Cl, Br, I), which show indirect to direct band gap transition via small Pb+2 doping at both B and B'sites. This is done by careful band (orbital) engineering using first-principles calculations. This kind of doping has helped to change the topology of the band structure, triggering an indirect to direct transition that is optically allowed. It also reduces the band gap significantly, bringing it well into the visible region. We also simulated the optical absorption spectra of these systems and found a comparable/higher absorption coefficient and solar efficiency with respect to the state of the art photovoltaic absorber material CH3NH3PbI3 . A number of materials Cs2(B0.75Pb0.25) (B0.75'Pb0.25) X6 (for various combinations of B ,B ', and X ) are found to be promising

  2. Structural origins of broadband emission from layered Pb-Br hybrid perovskites.

    PubMed

    Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2017-06-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

  3. Identifying the charge generation dynamics in Cs+-based triple cation mixed perovskite solar cells.

    PubMed

    Salado, Manuel; Kokal, Ramesh K; Calio, Laura; Kazim, Samrana; Deepa, Melepurath; Ahmad, Shahzada

    2017-08-30

    Triple cation based perovskite solar cells offer enhanced moisture tolerance and stability compared to mixed perovskites. Slight substitution of methyl ammonium or formamidinium cation by cesium (Cs + ), was also reported to eliminate halide segregation due to its smaller size. To elucidate the device kinetics and understand the role of the Cs, we undertook different modes of scanning probe microscopy and electrochemical impedance spectroscopy (EIS) experiments. Kelvin probe force microscopy revealed that the incorporation of the Cs cation increases the contact potential difference (CPD), this CPD further increases when Spiro-OMeTAD is used as a hole transport material. The current at the nanoscale level shows improvement with Cs inclusion and further enhancement by the Spiro-OMeTAD deposition, studied under light illumination, which supports the high photocurrent density obtained from the cells. EIS demonstrates that in a triple cation environment, reduced carrier recombination at the TiO 2 /perovskite interface was also obtained which in turn allow us to achieve a higher V oc value.

  4. Hybrid Organic-Inorganic Perovskite Photodetectors.

    PubMed

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Long-Term View on Perovskite Optoelectronics.

    PubMed

    Docampo, Pablo; Bein, Thomas

    2016-02-16

    Recently, metal halide perovskite materials have become an exciting topic of research for scientists of a wide variety of backgrounds. Perovskites have found application in many fields, starting from photovoltaics and now also making an impact in light-emitting applications. This new class of materials has proven so interesting since it can be easily solution processed while exhibiting materials properties approaching the best inorganic optoelectronic materials such as GaAs and Si. In photovoltaics, in only 3 years, efficiencies have rapidly increased from an initial value of 3.8% to over 20% in recent reports for the commonly employed methylammonium lead iodide (MAPI) perovskite. The first light emitting diodes and light-emitting electrochemical cells have been developed already exhibiting internal quantum efficiencies exceeding 15% for the former and tunable light emission spectra. Despite their processing advantages, perovskite optoelectronic materials suffer from several drawbacks that need to be overcome before the technology becomes industrially relevant and hence achieve long-term application. Chief among these are the sensitivity of the structure toward moisture and crystal phase transitions in the device operation regime, unreliable device performance dictated by the operation history of the device, that is, hysteresis, the inherent toxicity of the structure, and the high cost of the employed charge selective contacts. In this Account, we highlight recent advances toward the long-term viability of perovskite photovoltaics. We identify material decomposition routes and suggest strategies to prevent damage to the structure. In particular, we focus on the effect of moisture upon the structure and stabilization of the material to avoid phase transitions in the solar cell operating range. Furthermore, we show strategies to achieve low-cost chemistries for the development of hole transporters for perovskite solar cells, necessary to be able to compete with other

  6. A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Haixue; Li, Chengen; Zhou, Jiaguang; Zhu, Weimin; He, Lianxin; Song, Yuxin

    2000-11-01

    We investigated the effect of A-site compound substitution on the structures and properties of Ca0.8(MCe)0.1Bi4Ti4O15 (M denotes Li, Na and K) ceramics. The samples were prepared by the conventional ceramic technique. Sintering characteristics of Ca0.8(MCe)0.1Bi4Ti4O15 and CaBi4Ti4O15 ceramics were discussed. X-ray powder diffraction patterns of the three modified CBT-based compounds show a single phase of bismuth oxide layer type structure with m=4. The hysteresis loops of polarization versus electric field of the four compounds were also measured. A-site compound substitution improves the piezoelectric properties and the high-temperature resistivity of these materials. A-site (LiCe) and (KCe) substitution not only improves the Curie temperature but also decreases the temperature coefficient of dielectric constant (TK\\varepsilon). Among the three modified ceramics, only the Curie temperature of Ca0.8(NaCe)0.1Bi4Ti4O15 is lower than that of CaBi4Ti4O15; however, its TK\\varepsilon is the lowest. As a result, all the three modified CBT-based ceramics were found to be excellent high-temperature piezoelectric materials.

  7. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.

    PubMed

    Son, Dae-Yong; Kim, Seul-Gi; Seo, Ja-Young; Lee, Seon-Hee; Shin, Hyunjung; Lee, Donghwa; Park, Nam-Gyu

    2018-01-31

    Organic-inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)-voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J-V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO 2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH 3 NH 3 PbI 3 and HC(NH 2 ) 2 PbI 3 , and the mixed cation/anion perovskites, FA 0.85 MA 0.15 PbI 2.55 Br 0.45 and FA 0.85 MA 0.1 Cs 0.05 PbI 2.7 Br 0.3 , with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K + energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (-0.65 V for CH 3 NH 3 PbI 3 vs -1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.

  8. Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites

    NASA Astrophysics Data System (ADS)

    Boström, Hanna L. B.; Hill, Joshua A.; Goodwin, Andrew L.

    We introduce columnar shifts---collective rigid-body translations---as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX$_{\\textrm3}$ (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.

  9. Rubidium as an Alternative Cation for Efficient Perovskite Light-Emitting Diodes.

    PubMed

    Kanwat, Anil; Moyen, Eric; Cho, Sinyoung; Jang, Jin

    2018-05-16

    Incorporation of rubidium (Rb) into mixed lead halide perovskites has recently achieved record power conversion efficiency and excellent stability in perovskite solar cells. Inspired by these tremendous advances in photovoltaics, this study demonstrates the impact of Rb incorporation into MAPbBr 3 -based light emitters. Rb partially substitutes MA (methyl ammonium), resulting in a mixed cation perovskite with the formula MA (1- x) Rb x PbBr 3 . Pure MAPbBr 3 crystallizes into a polycrystalline layer with highly defective sub-micrometer grains. However, the addition of a small amount of Rb forms MA (1- x) Rb x PbBr 3 nanocrystals (10 nm) embedded in an amorphous matrix of MA/Rb Br. These nanocrystals grow into defect-free sub-micrometer-sized crystallites with further addition of Rb, resulting in a 3-fold increase in exciton lifetime when the molar ratio of MABr/RbBr is 1:1. A thin film fabricated with a 1:1 molar ratio of MABr/RbBr showed the best electroluminescent properties with a current efficiency (CE) of 9.45 cd/A and a luminance of 7694 cd/m 2 . These values of CE and luminance are, respectively, 19 and 10 times larger than those achieved by pure MAPbBr 3 devices (0.5 cd/A and 790 cd/m 2 ). We believe this work provides important information on the future compositional optimization of Rb + -based mixed cation perovskites for obtaining high-performance light-emitting diodes.

  10. Resonant halide perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  11. Tuning the Curie temperature of L 1 0 ordered FePt thin films through site-specific substitution of Rh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongbin; Sun, Cheng-Jun; Chen, Jing-Sheng

    2014-10-14

    In structurally ordered magnetic thin films, the Curie temperature (TC) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling elemental substitutional concentration at the lattice site of interest. We show how to control the TC in high anisotropy L10 Fe50Pt50 magnetic thin films by substituting Rh into the Pt site. Rh substitution in L10 FePt modified the local atomic environment and corresponding electronic properties while retaining the ordered L10 phase. The analysis of extended x-ray Absorption Fine Structure (EXAFS) spectra shows that Rh uniformly substitutes formore » Pt in L10 FePt. With 15 at. % of Rh substitution, temperature-dependent magnetic measurements show that the saturation magnetization (Ms) decreases from 1152 emu/cc to 670 emu/cc, the magnetocrystalline anisotropy (Ku) drops from 5×107 erg/cc to 2×107 erg/cc, and TC decreased from 750 to 500 K. A model of antiferromagnetic (AFM) defects caused by controlled Rh substitution of the Pt site, reducing the TC, is proposed to interpret this phenomenon and the validity is further examined by ab initio density functional calculations.« less

  12. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, William A.

    2016-04-21

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less

  13. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    PubMed

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  14. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions.

    PubMed

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-04-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. © 2014 The Protein Society.

  15. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  16. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  17. Tuning the Curie temperature of L1{sub 0} ordered FePt thin films through site-specific substitution of Rh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongbin, E-mail: dongbin.xu@seagate.com; Department of Materials Science and Engineering, National University of Singapore, Singapore 117576; Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg

    2014-10-14

    In structurally ordered magnetic thin films, the Curie temperature (T{sub C}) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling the elemental substitutional concentration at the lattice site of interest. We show how to control the T{sub C} in high anisotropy L1{sub 0} Fe{sub 50}Pt{sub 50} magnetic thin films by substituting Rh into the Pt site. Rh substitution in L1{sub 0} FePt modified the local atomic environment and the corresponding electronic properties, while retaining the ordered L1{sub 0} phase. The analysis of extended x-ray Absorption Finemore » Structure spectra shows that Rh uniformly substitutes for Pt in L1{sub 0} FePt. A model of antiferromagnetic defects caused by controlled Rh substitution of the Pt site, reducing the T{sub C,} is proposed to interpret this phenomenon and its validity is further examined by ab initio density functional calculations.« less

  18. Correlating valence state, site preference and co-substitution to the magnetoelastic properties of cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Nlebedim, Cajetan; Jiles, David

    2015-03-01

    Understanding how to influence the physics of magnetism, especially the relationship between magnetic susceptibility and stress, can be very useful in designing non-contact stress and torque sensors using magnetoelastic materials. This is particularly important considering that materials rarely occur in states desirable for direct applications. In this work we show that the magnetoelastic properties of cobalt ferrite are strongly dependent on the valence states and site preferences of substituted cations. It was found that co-substitution of magnetic and non-magnetic cations, is key to achieving simultaneous improvement in magnetostriction amplitude and strain sensitivity to applied magnetic field. Nevertheless, Curie temperature decreased, irrespective of the valence state, site preference or co-substitution. This presentation will show why tetravalent Ge resulted in superior magnetostrictive properties compared to other tetravalent, trivalent and divalent cations substituted into the crystal lattice of cobalt ferrite. This work was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at Ames Laboratory, operated for the USDoE by Iowa State University (Contract #DE-AC02-07CH11358).

  19. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.

    PubMed

    Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping

    2015-04-29

    Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.

  20. Copper-Substituted Lead Perovskite Materials Constructed with Different Halides for Working (CH3NH3)2CuX4-Based Perovskite Solar Cells from Experimental and Theoretical View.

    PubMed

    Elseman, Ahmed Mourtada; Shalan, Ahmed Esmail; Sajid, Sajid; Rashad, Mohamed Mohamed; Hassan, Ali Mostafa; Li, Meicheng

    2018-04-11

    Toxicity and chemical instability issues of halide perovskites based on organic-inorganic lead-containing materials still remain as the main drawbacks for perovskite solar cells (PSCs). Herein, we discuss the preparation of copper (Cu)-based hybrid materials, where we replace lead (Pb) with nontoxic Cu metal for lead-free PSCs, and investigate their potential toward solar cell applications based on experimental and theoretical studies. The formation of (CH 3 NH 3 ) 2 CuX 4 [(CH 3 NH 3 ) 2 CuCl 4 , (CH 3 NH 3 ) 2 CuCl 2 I 2 , and (CH 3 NH 3 ) 2 CuCl 2 Br 2 ] was discussed in details. Furthermore, it was found that chlorine (Cl - ) in the structure is critical for the stabilization of the formed compounds. Cu-based perovskite-like materials showed attractive absorbance features extended to the near-infrared range, with appropriate band gaps. Green photoluminescence of these materials was obtained because of Cu + ions. The power conversion efficiency was measured experimentally and estimated theoretically for different architectures of solar cell devices.

  1. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites.

    PubMed

    Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae

    2017-06-28

    In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn 2 O 5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution.

  2. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites

    PubMed Central

    Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae

    2017-01-01

    In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn2O5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution. PMID:28656965

  3. Pressure Induced Iron Spin Crossover in MgGeO3 Perovskite and Post-perovskite

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.; Shukla, G.; Topsakal, M.

    2014-12-01

    MgGeO3-perovskite is known to be a low-pressure analog of MgSiO3-perovskite in many respects, but especially in regard to the post-perovskite transition. As such, investigation of spin state changes in Fe-bearing MgGeO3 might help to clarify some aspects of this type of state change in Fe-bearing MgSiO3. Using DFT+U calculations, we have investigated pressure induced state changes in Fe-bearing MgGeO3 perovskite and post-perovskite. Owing to the relatively larger atomic size of germanium compared to silicon, germanate phases have larger unit cell volume and interatomic distances than equivalent silicate phases at same pressures. As a result, all pressure induced state changes in iron occur at higher pressures in germanate phases than in the silicate ones, be it a spin state change or position change of (ferrous) iron in the perovskite cage. The effect of iron in the post-perovskite transition is also investigated.

  4. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    PubMed Central

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  5. Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.

    2016-03-23

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1-xSr xCoO 3-δ. We attempt tomore » rationalize the high activities of La 1-xSr xCoO 3-δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  6. Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts

    DOE PAGES

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; ...

    2016-03-23

    Here, perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1–xSr xCoO 3–δ. We attemptmore » to rationalize the high activities of La 1–xSr xCoO 3–δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  7. Amorphous Hole-Transporting Material based on 2,2'-Bis-substituted 1,1'-Biphenyl Scaffold for Application in Perovskite Solar Cells.

    PubMed

    Magomedov, Artiom; Sakai, Nobuya; Kamarauskas, Egidijus; Jokubauskaitė, Gabrielė; Franckevičius, Marius; Jankauskas, Vygintas; Snaith, Henry J; Getautis, Vytautas

    2017-05-04

    Perovskite solar cells are considered a promising technology for solar-energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro-OMeTAD is used for positive-charge extraction and transport layer. Although a number of alternative hole-transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well-performing hole-transporting material is still in high demand. In this work, a two-step synthesis of a carbazole-based hole-transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro-OMeTAD (17.5 %). The low-cost synthesis and high performance makes our hole-transport material promising for applications in perovskite-based optoelectronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Room-temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen The; Bac, Luong Huu; Trung, Nguyen Ngoc; Hoang, Nguyen The; Van Vinh, Pham; Dung, Dang Duc

    2018-04-01

    The integration of ferromagnetism in lead-free ferroelectric materials is important to fabricate smart materials for electronic devices. In this work, (1 - x)Bi0.5Na0.5TiO3 + xMgFeO3-δ materials (x = 0-9 mol%) were prepared through sol-gel method. X-ray diffraction characterization indicated that MgFeO3-δ materials existed as a well solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials. The rhombohedral structure of Bi0.5Na0.5TiO3 materials was distorted due to the random distribution of Mg and Fe cations into the host lattice. The reduced optical band gap and the induced room-temperature ferromagnetism were due to the spin splitting of transition metal substitution at the B-site of perovskite Bi0.5Na0.5TiO3 and the modification by A-site co-substitution. This work elucidates the role of secondary phase as solid solution in Bi0.5Na0.5TiO3 material for development of lead-free multiferroelectric materials.

  9. Structural and magnetic properties of SrMn1-xRuxO3 perovskites

    NASA Astrophysics Data System (ADS)

    Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Maxwell, T.

    2007-03-01

    Ferromagnetism of SrRuO3 is unique among 4d transition metal based perovskite oxides. On substitution of Mn its TC decreases from 163 K to 0 for x˜0.5-0.6 followed by a formation of an antiferromagnetic insulating state at a quantum critical point. The other end member of the SrMn1-xRuxO3 family, a cubic perovskite SrMnO3 is a G-type antiferromagnet with TN=233 K. We have synthesized the complete SrMn1-xRuxO3 solid solution. The polycrystalline samples were characterized by neutron difraction, magnetic, and transport experiments. The incorporation of Ru in the SrMnO3 matrix (0.1<=x<=0.4) results in a phase transition to a C-type antiferromagnetic state accompanied by a cubic-tetragonal transition. The intermediate substitution level induces a spin-glass behavior, due to competing ferro- and antiferromagnetic interactions. Mixed valence Mn^3+/Mn^4+ and Ru^4+/Ru^5+ pairs introduce additional frustration to the magnetic states. The glassy behavior can be observed for x up to 0.7 in the tetragonal structure. Supported by NSF (DMR-0302617) and the U.S. Department of Education

  10. Polaronic Charge Carrier-Lattice Interactions in Lead Halide Perovskites.

    PubMed

    Wolf, Christoph; Cho, Himchan; Kim, Young-Hoon; Lee, Tae-Woo

    2017-10-09

    Almost ten years after the renaissance of the popular perovskite-type semiconductors based on lead salts with the general formula AMX 3 (A=organic or inorganic cation; M=divalent metal; X=halide), many facets of photophysics continue to puzzle researchers. In this Minireview, light is shed on the low mobilities of charge carriers in lead halide perovskites with special focus on the lattice properties at non-zero temperature. The polar and soft lattice leads to pronounced electron-phonon coupling, limiting carrier mobility and retarding recombination. We propose that the proper picture of excited charge carriers at temperature ranges that are relevant for device operations is that of a polaron, with Fröhlich coupling constants between 1<α<3. Under the aspect of light-emitting diode application, APbX 3 perovskite show moderate second order (bimolecular) recombination rates and high third-order (Auger) rate constants. It has become apparent that this is a direct consequence of the anisotropic polar A-site cation in organic-inorganic hybrid perovskites and might be alleviated by replacing the organic moiety with an isotropic cation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    PubMed

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)

    DOE PAGES

    Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.

    2017-07-19

    Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less

  13. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.

    Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less

  14. Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3

    NASA Astrophysics Data System (ADS)

    An, Ming; Zhang, Hui-Min; Weng, Ya-Kui; Zhang, Yang; Dong, Shuai

    2016-04-01

    Titanates with the perovskite structure, including ferroelectrics (e.g., BaTiO3) and ferromagnetic ones (e.g., YTiO3), are important functional materials. Recent theoretical studies predicted multiferroic states in strained EuTiO3 and titanate superlattices, the former of which has already been experimental confirmed. Here, a first-principles calculation is performed to investigate the structural, magnetic, and electronic properties of Y half-substituted LaTiO3. Our results reveal that the magnetism of Y0.5La0.5TiO3 sensitively depends on its structural details because of the inherent phase competition. The lowest energy state is the ferromagnetic state, resulting in 0.25 μ B /Ti. Furthermore, some configurations of Y0.5La0.5TiO3 exhibit hybrid improper polarizations, which can be significantly affected by magnetism, resulting in the multiferroic properties. Because of the quenching disorder of substitution, the real Y0.5La0.5TiO3 material with random A-site ions may exhibit interesting relaxor behaviors.

  15. Effect of Fe-site Substitution on Pressure-induced Spin Transition in SrFeO2

    NASA Astrophysics Data System (ADS)

    Kawakami, Takateru; Yamamoto, Takafumi; Yata, Kanami; Ishii, Minoru; Watanabe, Yoshitaka; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Takahashi, Hiroki; Okada, Taku; Yagi, Takehiko; Kageyama, Hiroshi

    2017-12-01

    The effect of Fe-site substitution on structural and physical properties of the infinite layer iron oxide SrFeO2 was investigated under high pressure by 57Fe Mössbauer spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray magnetic circular dichroism, and electrical resistance measurements using a diamond-anvil cell. Both 20% Mn- and Co-substituted samples exhibit spin transitions from a high-spin (S = 2) to an intermediate-spin (S = 1) state at Pc ˜ 32 GPa, which is much the same pressure 33 GPa observed in SrFeO2. This result indicates that the spin transition pressure is insensitive to the d-orbital electron counts [Mn2+ (d5), Fe2+ (d6), Co2+ (d7)], but is governed by the local structure around the Fe site.

  16. Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis.

    PubMed

    Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo

    2016-10-05

    Materials engineering is a key for the enhancement of photovoltaics technology. This is particularly true for the novel class of perovskite solar cells. Accurate theoretical modelling can help establish general trends of behavior when addressing structural changes. Here, we consider the effects due to halide substitution in organohalide CH 3 NH 3 PbX 3 perovskites exploring the halide series with X = Cl, Br, I. For this task, we use accurate DFT and GW methods including spin-orbit coupling. We find the expected band gap increase when moving from X = I to Cl, in line with the experimental data. Most notably, the calculated absorption coefficients for I, Br and Cl are nicely reproducing the behavior reported experimentally. A common feature of all the simulated band structures is a significant Rashba effect. This is similar for MAPbI 3 and MAPbBr 3 while MAPbCl 3 shows in general a reduced Rashba interaction coefficient. Finally, a monotonic increase of the exciton reduced masses is calculated when moving from I to Br to Cl, in line with the stronger excitonic character of the lighter perovskite halides.

  17. Cu-In Halide Perovskite Solar Absorbers.

    PubMed

    Zhao, Xin-Gang; Yang, Dongwen; Sun, Yuanhui; Li, Tianshu; Zhang, Lijun; Yu, Liping; Zunger, Alex

    2017-05-17

    The long-term chemical instability and the presence of toxic Pb in otherwise stellar solar absorber APbX 3 made of organic molecules on the A site and halogens for X have hindered their large-scale commercialization. Previously explored ways to achieve Pb-free halide perovskites involved replacing Pb 2+ with other similar M 2+ cations in ns 2 electron configuration, e.g., Sn 2+ or by Bi 3+ (plus Ag + ), but unfortunately this showed either poor stability (M = Sn) or weakly absorbing oversized indirect gaps (M = Bi), prompting concerns that perhaps stability and good optoelectronic properties might be contraindicated. Herein, we exploit the electronic structure underpinning of classic Cu[In,Ga]Se 2 (CIGS) chalcopyrite solar absorbers to design Pb-free halide perovskites by transmuting 2Pb to the pair [B IB + C III ] such as [Cu + Ga] or [Ag + In] and combinations thereof. The resulting group of double perovskites with formula A 2 BCX 6 (A = K, Rb, Cs; B = Cu, Ag; C = Ga, In; X = Cl, Br, I) benefits from the ionic, yet narrow-gap character of halide perovskites, and at the same time borrows the advantage of the strong Cu(d)/Se(p) → Ga/In(s/p) valence-to-conduction-band absorption spectra known from CIGS. This constitutes a new group of CuIn-based Halide Perovskite (CIHP). Our first-principles calculations guided by such design principles indicate that the CIHPs class has members with clear thermodynamic stability, showing direct band gaps, and manifesting a wide-range of tunable gap values (from zero to about 2.5 eV) and combination of light electron and heavy-light hole effective masses. Materials screening of candidate CIHPs then identifies the best-of-class Rb 2 [CuIn]Cl 6 , Rb 2 [AgIn]Br 6 , and Cs 2 [AgIn]Br 6 , having direct band gaps of 1.36, 1.46, and 1.50 eV, and theoretical spectroscopic limited maximal efficiency comparable to chalcopyrites and CH 3 NH 3 PbI 3 . Our finding offers a new routine for designing new-type Pb-free halide perovskite solar

  18. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  19. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  20. Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air.

    PubMed

    Ito, Nozomi; Kamarudin, Muhammad Akmal; Hirotani, Daisuke; Zhang, Yaohong; Shen, Qing; Ogomi, Yuhei; Iikubo, Satoshi; Minemoto, Takashi; Yoshino, Kenji; Hayase, Shuzi

    2018-04-05

    Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4-1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation.

  1. A Direct Bandgap Copper-Antimony Halide Perovskite.

    PubMed

    Vargas, Brenda; Ramos, Estrella; Pérez-Gutiérrez, Enrique; Alonso, Juan Carlos; Solis-Ibarra, Diego

    2017-07-12

    Since the establishment of perovskite solar cells (PSCs), there has been an intense search for alternative materials to replace lead and improve their stability toward moisture and light. As single-metal perovskite structures have yielded unsatisfactory performances, an alternative is the use of double perovskites that incorporate a combination of metals. To this day, only a handful of these compounds have been synthesized, but most of them have indirect bandgaps and/or do not have bandgaps energies well-suited for photovoltaic applications. Here we report the synthesis and characterization of a unique mixed metal ⟨111⟩-oriented layered perovskite, Cs 4 CuSb 2 Cl 12 (1), that incorporates Cu 2+ and Sb 3+ into layers that are three octahedra thick (n = 3). In addition to being made of abundant and nontoxic elements, we show that this material behaves as a semiconductor with a direct bandgap of 1.0 eV and its conductivity is 1 order of magnitude greater than that of MAPbI 3 (MA = methylammonium). Furthermore, 1 has high photo- and thermal-stability and is tolerant to humidity. We conclude that 1 is a promising material for photovoltaic applications and represents a new type of layered perovskite structure that incorporates metals in 2+ and 3+ oxidation states, thus significantly widening the possible combinations of metals to replace lead in PSCs.

  2. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals.

    PubMed

    Meng, Fan-Li; Wu, Jiao-Jiao; Zhao, Er-Fei; Zheng, Yan-Zhen; Huang, Mei-Lan; Dai, Li-Ming; Tao, Xia; Chen, Jian-Feng

    2017-11-30

    Integration of the upconversion effect in perovskite solar cells (PSCs) is a facile approach towards extending the spectral absorption from the visible to the near infrared (NIR) range and reducing the non-absorption loss of solar photons. However, the big challenge for practical application of UCNCs in planar PSCs is the poor compatibility between UCNCs and the perovskite precursor. Herein, we have subtly overcome the tough compatibility issue using a ligand-exchange strategy. For the first time, β-NaYF 4 :Yb,Er UCNCs have been embedded in situ into a CH 3 NH 3 PbI 3 layer to fabricate NIR-enabled planar PSCs. The CH 3 NH 3 I-capped UCNCs generated from the ligand-exchange were mixed with the perovskite precursor and served as nucleation sites for the UCNC-mediated heteroepitaxial growth of perovskite; moreover, the in situ embedding of UCNCs into the perovskite layer was realized during a spin-coating process. The resulting UCNC-embedded perovskite layer attained a uniform pinhole-free morphology with enlarged crystal grains and enabled NIR absorption. It also contributed to the energy transfer from the UCNCs to the perovskite and electron transport to the collecting electrode surface. The device fabricated using the UCNC-embedded perovskite film achieved an average power-conversion efficiency of 18.60% (19.70% for the best) under AM 1.5G and 0.37% under 980 nm laser, corresponding to 54% and 740-fold increase as compared to that of its counterpart without UCNCs.

  3. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    NASA Astrophysics Data System (ADS)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  4. Strongly correlated perovskite fuel cells

    DOE PAGES

    Zhou, You; Guan, Xiaofei; Zhou, Hua; ...

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes.more » Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.« less

  5. Comparative study of 2mol% Li- and Mn-substituted lead-free potassium sodium niobate ceramics

    NASA Astrophysics Data System (ADS)

    Dahiya, Asha; Thakur, O. P.; Juneja, J. K.; Singh, Sangeeta; Dipti

    2014-12-01

    The effect of Li and Mn substitution on the dielectric, ferroelectric and piezoelectric properties of lead free K0.5Na0.5NbO3 (KNN) was investigated. Samples were prepared using a conventional solid state reaction method. The sintering temperature for all the samples was 1050°C. The optimum doping concentration for the enhancement of different properties without the introduction of any other co-dopants such as Ti, Sb, and La was investigated. X-ray diffraction analysis confirmed that all the samples crystallize in a single phase perovskite structure. The dielectric properties were investigated as a function of temperature and applied electric field frequency. Compared with Li-substituted KNN (KLNN), Mn-substituted KNN (KMNN) exhibited a higher dielectric constant ɛ max (i.e., 4840) at its critical transition temperature T c (i.e., 421°C) along with a lower value of tangent loss at 10 kHz and greater values of saturation polarisation P s (i.e., 20.14 μC/cm2) and remnant polarisation P r (i.e., 15.48 μC/cm2). The piezoelectric constant ( d 33) of KMNN was 178 pC/N, which is comparable to that of lead-based hard ceramics. The results presented herein suggest that B-site or Mn substitution at the optimum concentration results in good enhancement of different properties required for materials used in memory devices and other applications.

  6. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts

    PubMed Central

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie M.; Johnston, Keith P.; Stevenson, Keith J.

    2016-01-01

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1−xSrxCoO3−δ. We attempt to rationalize the high activities of La1−xSrxCoO3−δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis. PMID:27006166

  7. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGES

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; ...

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr 1-xLa x)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  8. Crystal structure and thermoelectric properties of Sr–Mo substituted CaMnO3: a combined experimental and computational study† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5tc02318a

    PubMed Central

    Srivastava, D.; Azough, F.; Combe, E.; Funahashi, R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Molinari, M.; Yeandel, S. R.; Baran, J. D.

    2015-01-01

    A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO3. High quality Sr–Mo co-substituted CaMnO3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101}orthorhombic; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn3+ in the Mn4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit (ZT) values higher than 0.1 at temperatures above 850 K. Ca0.7Sr0.3Mn0.96Mo0.04O3 ceramics exhibit enhanced properties with S 1000K = –180 μV K–1, ρ 1000K = 5 × 10–5 Ωm, k 1000K = 1.8 W m–1 K–1 and ZT ≈ 0.11 at 1000 K. PMID:28496979

  9. [Am]Mn(H2POO)3: A New Family of Hybrid Perovskites Based on the Hypophosphite Ligand.

    PubMed

    Wu, Yue; Shaker, Sammy; Brivio, Federico; Murugavel, Ramaswamy; Bristowe, Paul D; Cheetham, Anthony K

    2017-11-29

    A family of five hybrid ABX 3 perovskites has been synthesized using hypophosphite (H 2 POO) - as the X-site ion. These compounds adopt the general formula [Am]Mn(H 2 POO) 3 , where Am = guanidinium (GUA), formamidinium (FA), imidazolium, triazolium, and dabconium. We explore the diverse structural and phase transition behavior of these materials through single-crystal diffraction measurements and demonstrate contrasting magnetism in two of the phases, Am = GUA and FA, that arises from structural distortions. The results show that hypophosphite perovskites offer a promising platform for generating new functional materials.

  10. Chalcogenide Perovskites for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Perera, Samanthe

    Methylammonium Lead halide perovskites have recently emerged as a promising candidate for realizing high efficient low cost photovoltaic modules. Charge transport properties of the solution processed halide perovskites are comparable to some of the existing absorbers used in the current PV industry which require sophisticated processing techniques. Due to this simple processing required to achieve high efficiencies, halide perovskites have become an active field of research. As a result, perovskite solar cells are rapidly reaching towards theoretical efficiency limit of close to 30%. It's believed that ionicity inherent to perovskite materials is one of the contributing factors for the excellent charge transport properties of perovskites. Despite the growing interest for solar energy harvesting purposes, these halide perovskites have serious limitations such as toxicity and instability that need to be addressed in order to commercialize the solar cells incorporating them. This dissertation focuses on a new class of ionic semiconductors, chalcogenide perovskites for solar energy harvesting purposes. Coming from the family perovskites they are expected to have same excellent charge transport properties inherent to perovskites due to the ionicity. Inspired by few theoretical studies on chalcogenide perovskites, BaZrS3 and its Ti alloys were synthesized by sulfurizing the oxide counterpart. Structural characterizations have confirmed the predicted distorted perovskite phase. Optical characterizations have verified the direct band gap suitable for thin film single junction solar cells. Anion alloying was demonstrated by synthesizing oxysulfides with widely tunable band gap suitable for applications such as solid state lighting and sensing.

  11. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed

    Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B

    1988-08-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.

  12. Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.

    PubMed

    Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S

    2017-04-12

    Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI 3 ) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (V oc ) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

  13. Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6}:Eu{sup 3+}, Li{sup +}: An emission tunable phosphor through site symmetry and excitation wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Ning; Shen, Jun; Xiao, Tengjiao

    2015-10-15

    The emission of Eu{sup 3+} doped Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors could be tunable by the site symmetry of the activators and the excitation wavelengths. - Highlights: • The emission of Eu{sup 3+} depends on site symmetry and excitation wavelengths. • The color of the samples was tunable by structure and excitation wavelength. • The effect of W and Eu content on the properties of the samples was investigated. - Abstract: A series of Eu{sup 3+} substituted double-perovskite Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors were prepared by solid state reactions. The phase, photoluminescence and energy transfer of the phosphorsmore » were investigated by X-ray diffraction (XRD), photoluminescence (PL) and luminescence decay respectively. It is found that the emission of the Eu{sup 3+} substituted double perovskites depends on both the site symmetry of the activators and the excitation wavelengths. Based on the decay analysis of Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} matrix and Eu{sup 3+} doped samples, the energy transfer efficiencies between the host and activators Eu{sup 3+} were investigated. The results of the emission tunable phosphors indicate their potential applications in LEDs.« less

  14. Selective dissolution of halide perovskites as a step towards recycling solar cells

    PubMed Central

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-01-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. PMID:27211006

  15. Selective dissolution of halide perovskites as a step towards recycling solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  16. Selective dissolution of halide perovskites as a step towards recycling solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO 2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easilymore » decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb 2+ cations. After 10 cycles of recycling, a mesoporous TiO 2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less

  17. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    PubMed

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  18. Selective dissolution of halide perovskites as a step towards recycling solar cells

    DOE PAGES

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; ...

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO 2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easilymore » decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb 2+ cations. After 10 cycles of recycling, a mesoporous TiO 2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less

  19. Conducting tin halides with a layered organic-based perovskite structure

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  20. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  1. Perovskite in Earth’s deep interior

    NASA Astrophysics Data System (ADS)

    Hirose, Kei; Sinmyo, Ryosuke; Hernlund, John

    2017-11-01

    Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth’s lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.

  2. Time-Dependent Mechanical Response of APbX 3 (A = Cs, CH 3NH 3; X = I, Br) Single Crystals [The Dynamic Mechanical Properties of Lead-Halide Perovskite Single Crystals are Independent of A-site Cation Chemistry

    DOE PAGES

    Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; ...

    2017-05-02

    The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX 3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. Themore » magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. In conclusion, this contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.« less

  3. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications.

  4. Influence of Rb/Cs Cation-Exchange on Inorganic Sn Halide Perovskites: From Chemical Structure to Physical Properties.

    PubMed

    Jung, Young-Kwang; Lee, Ji-Hwan; Walsh, Aron; Soon, Aloysius

    2017-04-11

    CsSnI 3 is a potential lead-free inorganic perovskite for solar energy applications due to its nontoxicity and attractive optoelectronic properties. Despite these advantages, photovoltaic cells using CsSnI 3 have not been successful to date, in part due to low stability. We demonstrate how gradual substitution of Rb for Cs influences the structural, thermodynamic, and electronic properties on the basis of first-principles density functional theory calculations. By examining the effect of the Rb:Cs ratio, we reveal a correlation between octahedral distortion and band gap, including spin-orbit coupling. We further highlight the cation-induced variation of the ionization potential (work function) and the importance of surface termination for tin-based halide perovskites for engineering high-performance solar cells.

  5. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Yao, Kai; Wang, Xiaofeng; Jiang, Yihua; Liu, Xueyuan; Zhou, Naigen; Li, Fan

    2018-01-01

    In this paper, we demonstrate the high-performance inverted planar heterojunction perovskite solar cells (PeSCs) based on the novel inorganic hole-transporting layer (HTL) of silver (Ag)-doped NiOx (Ag:NiOx). Density-functional theory (DFT) calculation reveals that Ag prefers to occupy the substitutional Ni site (AgNi) and behaves as an acceptor in NiO lattice. Compared with the pristine NiOx films, appropriate Ag doping can increase the optical transparency, work function, electrical conductivity and hole mobility of NiOx films. Moreover, the CH3NH3PbI3 perovskite films grown on Ag:NiOx exhibit better crystallinity, higher coverage and smoother surface with densely packed larger grains than those grown on the pristine NiOx film. Consequently, the Ag:NiOx HTL boosts the efficiency of the inverted planar heterojunction PeSCs from 13.46% (for the pristine NiOx-based device) to 16.86% (for the 2 at.% Ag:NiOx-based device). Furthermore, the environmental stability of PeSCs based on Ag:NiOx HTL is dramatically improved compared to devices based on organic HTLs and pristine NiOx HTLs. This work provides a simple and effective HTL material system for high-efficient and stable PeSCs.

  6. Efficient Sky-Blue Perovskite Light-Emitting Devices Based on Ethylammonium Bromide Induced Layered Perovskites.

    PubMed

    Wang, Qi; Ren, Jie; Peng, Xue-Feng; Ji, Xia-Xia; Yang, Xiao-Hui

    2017-09-06

    Low-dimensional organometallic halide perovskites are actively studied for the light-emitting applications due to their properties such as solution processability, high luminescence quantum yield, large exciton binding energy, and tunable band gap. Introduction of large-group ammonium halides not only serves as a convenient and versatile method to obtain layered perovskites but also allows the exploitation of the energy-funneling process to achieve a high-efficiency light emission. Herein, we investigate the influence of the addition of ethylammonium bromide on the morphology, crystallite structure, and optical properties of the resultant perovskite materials and report that the phase transition from bulk to layered perovskite occurs in the presence of excess ethylammonium bromide. On the basis of this strategy, we report green perovskite light-emitting devices with the maximum external quantum efficiency of ca. 3% and power efficiency of 9.3 lm/W. Notably, blue layered perovskite light-emitting devices with the Commission Internationale de I'Eclairage coordinates of (0.16, 0.23) exhibit the maximum external quantum efficiency of 2.6% and power efficiency of 1 lm/W at 100 cd/m 2 , representing a large improvement over the previously reported analogous devices.

  7. Colossal change in thermopower with temperature-driven p-n-type conduction switching in La x Sr2-x TiFeO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Roy, Pinku; Maiti, Tanmoy

    2018-02-01

    Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0  ⩽  x  ⩽  0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x  =  0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.

  8. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed Central

    Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.

    1988-01-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2850059

  9. Zn-site Substitution Effect in YbCo2Zn20

    NASA Astrophysics Data System (ADS)

    Kobayashi, Riki; Takamura, Haruki; Higa, Yasuyuki; Ikeda, Yoichi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yoshizawa, Hideki; Aso, Naofumi

    2017-04-01

    We have investigated the substitution effect of YbCo2(Zn1-xTx)20 (T = Cu, Ga, and Cd) systems by using the experiments of X-ray powder diffraction (XRPD), specific heat, magnetic susceptibility, magnetization, and electrical resistivity in order to find out a material that approaches a quantum critical point by chemical pressure. The XRPD and electrical resistivity measurements clarify that the Cu-substitution makes the lattice constants shrink and keeps the magnetic electrical resistivity high, while the Ga- and the Cd-substitution show opposite relation of the Cu-substitution. However, we could not detect clear substitution effect in the specific heat, magnetic susceptibility, and magnetization measurements of Cu-substitution system within our experiments. It is necessary that to study the Cu-substitution samples that have higher x value at lower temperature.

  10. Photo-induced halide redistribution in organic–inorganic perovskite films

    DOE PAGES

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; ...

    2016-05-24

    Organic-inorganic perovskites such as CH 3NH 3PbI 3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH 3NH 3PbI 3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction inmore » trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. In conclusion, our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.« less

  11. Application of carbon nanotubes in perovskite solar cells: A review

    NASA Astrophysics Data System (ADS)

    Oo, Thet Tin; Debnath, Sujan

    2017-11-01

    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  12. La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study

    NASA Astrophysics Data System (ADS)

    López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.

    2008-11-01

    La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.

  13. Electronic and magnetic transitions in perovskite SrRu{sub 1-x}Ir{sub x}O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Abhijit; Lee, Yong Woo; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr

    2015-09-07

    We have investigated the electronic and magnetic properties of perovskite SrRu{sub 1−x}Ir{sub x}O{sub 3} (0.0≤ x ≤ 0.25) thin films grown by pulsed laser deposition on atomically flat (001) SrTiO{sub 3} substrates. SrRuO{sub 3} has the properties of a ferromagnetic metal (resistivity ρ ∼ 200 μΩ · cm at T = 300 K) with Curie temperature T{sub C} ∼ 150 K. Substituting Ir (5d{sup 5+}) for Ru (4d{sup 4+}) in SrRuO{sub 3}, films (0.0 ≤ x ≤ 0.20) showed fully metallic behavior and ferromagnetic ordering, although ρ increased and the ferromagnetic T{sub C} decreased. Films with x = 0.25 underwent the metal-to-insulator transition (T{sub MIT}∼75 K) in ρ, and spin-glass-like ordering (T{sub SG}∼45 K) with the elimination of ferromagnetic long-range ordering causedmore » by the electron localization at the substitution sites. In ferromagnetic films (0.0 ≤ x ≤ 0.20), ρ increased near-linearly with T at T > T{sub C}, but in paramagnetic film (x = 0.25) ρ increased as T{sup 3/2} at T > T{sub MIT}. Moreover, observed spin-glass-like (T{sub SG}) ordering with the negative magnetoresistance at T < T{sub MIT} in film with x = 0.25 validates the hypothesis that (Anderson) localization favors glassy ordering at amply disorder limit. These observations provide a promising approach for future applications and of fundamental interest in 4d and 5d mixed perovskites.« less

  14. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  15. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  16. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup

    NASA Astrophysics Data System (ADS)

    Locock, Andrew J.; Mitchell, Roger H.

    2018-04-01

    Perovskite mineral oxides commonly exhibit extensive solid-solution, and are therefore classified on the basis of the proportions of their ideal end-members. A uniform sequence of calculation of the end-members is required if comparisons are to be made between different sets of analytical data. A Microsoft Excel spreadsheet has been programmed to assist with the classification and depiction of the minerals of the perovskite- and vapnikite-subgroups following the 2017 nomenclature of the perovskite supergroup recommended by the International Mineralogical Association (IMA). Compositional data for up to 36 elements are input into the spreadsheet as oxides in weight percent. For each analysis, the output includes the formula, the normalized proportions of 15 end-members, and the percentage of cations which cannot be assigned to those end-members. The data are automatically plotted onto the ternary and quaternary diagrams recommended by the IMA for depiction of perovskite compositions. Up to 200 analyses can be entered into the spreadsheet, which is accompanied by data calculated for 140 perovskite compositions compiled from the literature.

  17. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE PAGES

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu; ...

    2017-07-14

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  18. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  19. Magnetic Modes in Rare Earth Perovskites: A Magnetic-Field-Dependent Inelastic Light Scattering study.

    PubMed

    Saha, Surajit; Cao, Bing-Chen; Motapothula, M; Cong, Chun-Xiao; Sarkar, Tarapada; Srivastava, Amar; Sarkar, Soumya; Patra, Abhijeet; Ghosh, Siddhartha; Ariando; Coey, J M D; Yu, Ting; Venkatesan, T

    2016-11-15

    Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO 3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO 3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO 3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.

  20. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    DOE PAGES

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; ...

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm 2 2-terminal monolithic perovskite/silicon multijunction solar cell with a V OC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  1. The effect of A-site substitution on the structure and magnetism of Sr2-xPrxFeCoO6 (x = 0, 1, 2)

    NASA Astrophysics Data System (ADS)

    Haripriya, G. R.; Chakraborty, Debamitra; Pradheesh, R.; Sankaranarayanan, V.; Sethupathi, K.

    2018-05-01

    The paper presents the variation of structure and magnetism observed with the A-site composition of the double perovskite oxide Sr2-xPrxFeCoO6 (x = 0, 1, 2). The lattice symmetry was found to be lowered from tetragonal (x = 0) to orthorhombic (x = 2). With a ratio 1:1 of Sr and Pr, a highly asymmetric monoclinic structure is observed. The magnetic behavior of the middle member (x = 1) shows resemblance with that of Sr2FeCoO6, indicating the effect of Sr in the dilution of rare earth magnetism.

  2. Inhomogeneous degradation in metal halide perovskites

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Zhang, Li; Cao, Yu; Miao, Yanfeng; Ke, You; Wei, Yingqiang; Guo, Qiang; Wang, Ying; Rong, Zhaohua; Wang, Nana; Li, Renzhi; Wang, Jianpu; Huang, Wei; Gao, Feng

    2017-08-01

    Although the rapid development of organic-inorganic metal halide perovskite solar cells has led to certified power conversion efficiencies of above 20%, their poor stability remains a major challenge, preventing their practical commercialization. In this paper, we investigate the intrinsic origin of the poor stability in perovskite solar cells by using a confocal fluorescence microscope. We find that the degradation of perovskite films starts from grain boundaries and gradually extend to the center of the grains. Firmly based on our findings, we further demonstrate that the device stability can be significantly enhanced by increasing the grain size of perovskite crystals. Our results have important implications to further enhance the stability of optoelectronic devices based on metal halide perovskites.

  3. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    PubMed

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  4. Probing magnetic transitions in (Mg,Fe)GeO3-perovskite with Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wicks, J. K.; Tracy, S. J.; Stan, C. V.; Bi, W.; Alp, E. E.; Xiao, Y.; Chow, P.; Duffy, T. S.

    2016-12-01

    The effect of iron on the properties of major lower mantle minerals must be understood for proper interpretation of seismic and geodynamic data. The role of Fe in bridgmanite in the deep earth is complicated as Fe can occupy two different crystallographic sites (8-fold site or octahedral site) and adopt different valence states (2+,3+) and electronic configurations (high or low spin). Previous experimental and theoretical work on this material has reported a pressure-induced low- to high-QS (quadrupole splitting) transition at 30 GPa, explained by a small lateral displacement of the Fe2+ ion (e.g. Jackson et al., 2005, Hsu et al., 2010). Further insight into the nature of this transition can be obtained through the study of germanates which are well-known to be effective analogues for silicates. The perovskite (Pv) to post-perovskite (pPv) transition is reduced by 50 GPa in MgGeO3 compared with MgSiO3. Despite this, a recent theoretical study predicts that in the Ge analogue the low- to high-QS transition should be 20 GPa higher in the germanate due to its larger unit cell (Shukla et al., 2015). 57Fe-enriched (Mg0.8Fe0.2)GeO3 perovskite was synthesized at 40 GPa with laser heating at Sector 13-ID-D, as confirmed with X-ray diffraction. Conventional and synchrotron Mössbauer spectroscopy was conducted at Sector 3 and Sector 16 of the Advanced Photon source, Argonne National Laboratory over the stability field of germanate perovskite: 39-61 GPa. This study took advantage of the new capability of synchrotron Mössbauer spectroscopy conducted during the APS operations in hybrid mode, which expanded the experimental time window from 150 to 800 ns. Preliminary analysis indicates that iron is predominately Fe2+ with some Fe3+ contribution at low pressure. With increasing pressure, we find the appearance of a third high-QS site, consistent with similar observations in the silicate. Our results provide new insights into high-pressure behavior of Fe in perovskite

  5. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy.

    PubMed

    Li, Dawei; Qu, Lulu; Zhai, Wenlei; Xue, Jinqun; Fossey, John S; Long, Yitao

    2011-05-01

    A novel facile method for on-site detection of substituted aromatic pollutants in water using thin layer chromatography (TLC) combined with surface-enhanced Raman spectroscopy (SERS) was explored. Various substituted aromatics in polluted water were separated by a convenient TLC protocol and then detected using a portable Raman spectrometer with the prepared silver colloids serving as SERS-active substrates. The effects of operating conditions on detection efficacy were evaluated, and the application of TLC-SERS to on-site detection of artificial and real-life samples of aromatics/polluted water was systematically investigated. It was shown that commercially available Si 60-F(254) TLC plates were suitable for separation and displayed low SERS background and good separation efficiency, 2 mM silver colloids, 20 mM NaCl (working as aggregating agent), 40 mW laser power, and 50 s intergration time were appropriate for the detection regime. Furthermore, qualitative and quantitative detection of most of substituted aromatic pollutants was found to be readily accomplished using the developed TLC-SERS technique, which compared well with GC-MS in terms of identification ability and detection accuracy, and a limit of detection (LOD) less than 0.2 ppm (even at ppb level for some analytes) could be achieved under optimal conditions. The results reveal that the presented convenient method could be used for the effective separation and detection of the substituted aromatic pollutants of water on site, thus reducing possible influences of sample transportation and contamination while shortening the overall analysis time for emergency and routine monitoring of the substituted aromatics/polluted water.

  6. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dewei; Yu, Yue; Wang, Changlei

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  7. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE PAGES

    Zhao, Dewei; Yu, Yue; Wang, Changlei; ...

    2017-03-01

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  8. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    NASA Astrophysics Data System (ADS)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  9. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electronmore » microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to

  10. Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira

    2018-01-01

    Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.

  11. Development of Perovskite-Type Materials for Thermoelectric Application.

    PubMed

    Wu, Tingjun; Gao, Peng

    2018-06-12

    Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  12. 2D Ruddlesden-Popper Perovskites for Optoelectronics.

    PubMed

    Chen, Yani; Sun, Yong; Peng, Jiajun; Tang, Junhui; Zheng, Kaibo; Liang, Ziqi

    2018-01-01

    Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  14. Perovskite as light harvester: a game changer in photovoltaics.

    PubMed

    Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Ahmad, Shahzada

    2014-03-10

    It is not often that the scientific community is blessed with a material, which brings enormous hopes and receives special attention. When it does, it expands at a rapid pace and its every dimension creates curiosity. One such material is perovskite, which has triggered the development of new device architectures in energy conversion. Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior. Power conversion efficiencies have been doubled in less than a year and over 15% is being now measured in labs. Every digit increment in efficiency is being celebrated widely in the scientific community and is being discussed in industry. Here we provide a summary on the use of perovskite for inexpensive solar cells fabrication. It will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Morrow, Darien J.; Fu, Yongping

    High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less

  16. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO 3)

    DOE PAGES

    Chen, Jie; Morrow, Darien J.; Fu, Yongping; ...

    2017-09-05

    High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less

  17. Enhancement of charge transport properties of small molecule semiconductors by controlling fluorine substitution and effects on photovoltaic properties of organic solar cells and perovskite solar cells.

    PubMed

    Yun, Jae Hoon; Park, Sungmin; Heo, Jin Hyuck; Lee, Hyo-Sang; Yoon, Seongwon; Kang, Jinback; Im, Sang Hyuk; Kim, Hyunjung; Lee, Wonmok; Kim, BongSoo; Ko, Min Jae; Chung, Dae Sung; Son, Hae Jung

    2016-11-01

    We prepared a series of small molecules based on 7,7'-(4,4-bis(2-ethylhexyl)-4 H -silolo[3,2- b :4,5- b ']dithiophene-2,6-diyl)bis(4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[ c ][1,2,5]thiadiazole) with different fluorine substitution patterns ( 0F-4F ). Depending on symmetricity and numbers of fluorine atoms incorporated in the benzo[ c ][1,2,5]thiadiazole unit, they show very different optical and morphological properties in a film. 2F and 4F , which featured symmetric and even-numbered fluorine substitution patterns, display improved molecular packing structures and higher crystalline properties in a film compared with 1F and 3F and thus, 2F achieved the highest OTFT mobility, which is followed by 4F . In the bulk heterojunction solar cell fabricated with PC 71 BM, 2F achieves the highest photovoltaic performance with an 8.14% efficiency and 0F shows the lowest efficiency of 1.28%. Moreover, the planar-type perovskite solar cell (PSC) prepared with 2F as a dopant-free hole transport material shows a high power conversion efficiency of 14.5% due to its high charge transporting properties, which were significantly improved compared with the corresponding PSC device obtained from 0F (8.5%). From the studies, it is demonstrated that low variation in the local dipole moment and the narrow distribution of 2F conformers make intermolecular interactions favorable, which may effectively drive crystal formations in the solid state and thus, higher charge transport properties compared with 1F and 3F .

  18. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi

    2017-07-01

    Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.

  19. Negative pressure driven phase transformation in Sr doped SmCoO₃.

    PubMed

    Arshad Farhan, M; Javed Akhtar, M

    2010-02-24

    Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.

  20. Interface architecture between TiO2/perovskite, perovskite/hole transport layer, and perovskite grain boundary(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro

    2016-09-01

    In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2

  1. Recent patents on perovskite ferroelectric nanostructures.

    PubMed

    Zhu, Xinhua

    2009-01-01

    Ferroelectric oxide materials with a perovskite structure have promising applications in electronic devices such as random access memories, sensors, actuators, infrared detectors, and so on. Recent advances in science and technology of ferroelectrics have resulted in the feature sizes of ferroelectric-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite ferroelectric materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. One-dimensional perovskite ferroelectric nanotube/nanowire systems, offer fundamental scientific opportunities for investigating the intrinsic size effects in ferroelectrics. In the past several years, much progress has been made both in fabrication and physical property testing of perovskite ferroelectric nanostructures. In the first part of this paper, the recent patents and literatures for fabricating ferroelectric nanowires, nanorods, nanotubes, and nanorings with promising features, are reviewed. The second part deals with the recent advances on the physical property testing of perovskite ferroelectric nanostructures. The third part summarizes the recently patents and literatures about the microstructural characterizations of perovskite ferroelectric nanostructures, to improve their crystalline quality, morphology and uniformity. Finally, we conclude this review with personal perspectives towards the potential future developments of perovskite ferroelectric nanostructures.

  2. Graded bandgap perovskite solar cells.

    PubMed

    Ergen, Onur; Gilbert, S Matt; Pham, Thang; Turner, Sally J; Tan, Mark Tian Zhi; Worsley, Marcus A; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm -2 . The cells are based on an architecture of two perovskite layers (CH 3 NH 3 SnI 3 and CH 3 NH 3 PbI 3-x Br x ), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  3. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter.

    PubMed

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis

    2018-01-24

    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.

  4. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability.

    PubMed

    Jiang, Xiaoqing; Yu, Ze; Lai, Jianbo; Zhang, Yuchen; Hu, Maowei; Lei, Ning; Wang, Dongping; Yang, Xichuan; Sun, Licheng

    2017-04-22

    In high-performance perovskite solar cells (PSCs), hole-transporting materials (HTMs) play an important role in extracting and transporting the photo-generated holes from the perovskite absorber to the cathode, thus reducing unwanted recombination losses and enhancing the photovoltaic performance. Herein, solution-processable tetra-4-(bis(4-tert-butylphenyl)amino)phenoxy-substituted copper phthalocyanine (CuPc-OTPAtBu) was synthesized and explored as a HTM in PSCs. The optical, electrochemical, and thermal properties were fully characterized for this organic metal complex. The photovoltaic performance of PSCs employing this CuPc derivative as a HTM was further investigated, in combination with a mixed-ion perovskite as a light absorber and a low-cost vacuum-free carbon as cathode. The optimized devices [doped with 6 % (w/w) tetrafluoro-tetracyano-quinodimethane (F4TCNQ)] showed a decent power conversion efficiency of 15.0 %, with an open-circuit voltage of 1.01 V, a short-circuit current density of 21.9 mA cm -2 , and a fill factor of 0.68. Notably, the PSC devices studied also exhibited excellent long-term durability under ambient condition for 720 h, mainly owing to the introduction of the hydrophobic HTM interlayer, which prevents moisture penetration into the perovskite film. The present work emphasizes that solution-processable CuPc holds a great promise as a class of alternative HTMs that can be further explored for efficient and stable PSCs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. What makes the difference in perovskite titanates?

    NASA Astrophysics Data System (ADS)

    Bussmann-Holder, Annette; Roleder, Krystian; Ko, Jae-Hyeon

    2018-06-01

    We have investigated in detail the lattice dynamics of five different perovskite titanates ATiO3 (A = Ca, Sr, Ba, Pb, Eu) where the A sites are occupied by +2 ions. In spite of the largely ionic character of these ions, the properties of these compounds differ substantially. They range from order/disorder like, to displacive ferroelectric, quantum paraelectric, and antiferromagnetic. All compounds crystallize in the cubic structure at high temperature and undergo structural phase transitions to tetragonal symmetry, partly followed by further transitions to lower symmetries. Since the TiO6 moiety is the essential electronic and structural unit, the question arises, what makes the significant difference between them. It is shown that the lattice dynamics of these compounds are very different, and that mode-mode coupling effects give rise to many distinct properties. In addition, the oxygen ion nonlinear polarizability plays a key role since it dominates the anharmonicity of these perovskites and determines the structural instability.

  6. Anomalous perovskite PbRuO3 stabilized under high pressure

    PubMed Central

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  7. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  8. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE PAGES

    Chen, Bo; Bai, Yang; Yu, Zhengshan; ...

    2016-07-19

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  9. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Bai, Yang; Yu, Zhengshan

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  10. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  11. A New Lead Iodide Perovskite based on Large Organic Cation for Solar Cell Application.

    PubMed

    Ma, Chunqing; Shen, Dong; Lo, Ming Fai; Lee, Chun-Sing

    2018-06-06

    Methylammonium (CH3NH3+) and formamidinium ((NH2)2CH+) based lead iodide perovskites are currently the two commonly used organic-inorganic lead iodide perovskites for solar cell application. Till now, there is still no alternative organic cations, which can produce perovskites with bandgaps spanning the visible spectrum (i.e. < 1.7 eV) for solar cell application. Here, a new perovskite using large propane-1,3-diammonium cation (n-Pr(NH3)22+) with a chemical structure of (n-Pr(NH3)2)0.5PbI3 is demonstrated. X-ray diffraction (XRD) result shows that the new perovskite exhibits a three-dimensional (3D), tetragonal phase. The bandgap of the new perovskite is ~ 1.6 eV, which is desirable for photovoltaic application. A (n-Pr(NH3)2)0.5PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1%. More importantly, this new perovskite is composed of larger hydrophobic cation that provides a better moisture resistance compared to CH3NH3PbI3 perovskite. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    NASA Astrophysics Data System (ADS)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  13. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability

    DOE PAGES

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W.; ...

    2016-01-04

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX 3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX 3) that feature red-shifted emission and better thermal stability compared to MAPbX 3. We demonstrate optically pumped room-temperature near-infrared (~820 nm) and green lasing (~560more » nm) from FAPbI 3 (and MABr-stabilized FAPbI 3) and FAPbBr 3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500–2300. More remarkably, the FAPbI 3 and MABr-stabilized FAPbI 3 nanowires display durable room-temperature lasing under ~10 8 shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI 3 (~10 7 laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI 3 and (FA,MA)Pb(I,Br) 3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.« less

  14. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.

    PubMed

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song

    2016-02-10

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.

  15. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix.

    PubMed

    Manshor, Nurul Ain; Wali, Qamar; Wong, Ka Kan; Muzakir, Saifful Kamaluddin; Fakharuddin, Azhar; Schmidt-Mende, Lukas; Jose, Rajan

    2016-08-21

    Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells.

  16. Perovskites in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hwang, Jonathan; Rao, Reshma R.; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-01

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts.

  17. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells

    PubMed Central

    Zhao, Jingjing; Deng, Yehao; Wei, Haotong; Zheng, Xiaopeng; Yu, Zhenhua; Shao, Yuchuan; Shield, Jeffrey E.; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films. PMID:29159287

  18. Material and Device Stability in Perovskite Solar Cells.

    PubMed

    Kim, Hui-Seon; Seo, Ja-Young; Park, Nam-Gyu

    2016-09-22

    Organic-inorganic halide perovskite solar cells have attracted great attention because of their superb efficiency reaching 22 % and low-cost, facile fabrication processing. Nevertheless, stability issues in perovskite solar cells seem to block further advancements toward commercialization. Thus, device stability is one of the important topics in perovskite solar cell research. In the beginning, the poor moisture resistivity of the perovskite layer was considered as a main problem that hindered further development of perovskite solar cells, which encouraged engineering of the perovskite or protection of the perovskite by a buffer layer. Soon after, other parameters affecting long-term stability were sequentially found and various attempts have been made to enhance intrinsic and extrinsic stability. Here we review the recent progresses addressing stability issues in perovskite solar cells. In this report, we investigated factors affecting stability from material and device points of view. To gain a better understanding of the stability of the bulk perovskite material, decomposition mechanisms were investigated in relation to moisture, photons, and heat. Stability of full device should also be carefully examined because its stability is dependent not only on bulk perovskite but also on the interfaces and selective contacts. In addition, ion migration and current-voltage hysteresis were found to be closely related to stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. First principles study on mixed orthorhombic perovskite CH3NH3 Pb(I1-xBrx) 3

    NASA Astrophysics Data System (ADS)

    Fang, Zhou; Yi, Zhijun

    2017-11-01

    Chemically tuned inorganic-organic hybrid halide perovskites based on iodine and bromine halide anions have been studied using first-principles calculations. Firstly, our results show that the volume of CH3NH3 Pb(I1-xBrx) 3 decreases linearly with the concentration of Br ions, and the band gap can be tuned from 1.9 eV to 2.3 eV by substituting I with Br, resulting in the shift of absorption onset from 650 nm (1.9 eV) to 540 nm (2.3 eV). Secondly, our calculations show that the color of crystal can be tuned from wine to yellow by substituting I with Br.

  20. Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots.

    PubMed

    Eperon, Giles E; Jedlicka, Erin; Ginger, David S

    2018-01-04

    We use time-resolved photoluminescence measurements to determine the biexciton Auger recombination rate in both hybrid organic-inorganic and fully inorganic halide perovskite nanocrystals as a function of nanocrystal volume. We find that the volume scaling of the biexciton Auger rate in the hybrid perovskites, containing a polar organic A-site cation, is significantly shallower than in the fully inorganic Cs-based nanocrystals. As the nanocrystals become smaller, the Auger rate in the hybrid nanocrystals increases even less than expected, compared to the fully inorganic nanocrystals, which already show a shallower volume dependence than other material systems such as chalcogenide quantum dots. This finding suggests there may be differences in the strength of Coulombic interactions between the fully inorganic and hybrid perovskites, which may prove to be crucial in selecting materials to obtain the highest performing devices in the future, and hints that there could be something "special" about the hybrid materials.

  1. Ba3Fe1.56Ir1.44O9: A Polar Semiconducting Triple Perovskite with Near Room Temperature Magnetic Ordering.

    PubMed

    Ferreira, Timothy; Carone, Darren; Huon, Amanda; Herklotz, Andreas; Stoian, Sebastian A; Heald, Steve M; Morrison, Gregory; Smith, Mark D; Loye, Hans-Conrad Zur

    2018-05-29

    The crystal chemistry and magnetic properties for two triple perovskites, Ba 3 Fe 1.56 Ir 1.44 O 9 and Ba 3 NiIr 2 O 9 , grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A 3 MM 2 'O 9 hexagonal symmetry characteristic of most triple perovskites, including Ba 3 NiIr 2 O 9, Ba 3 Fe 1.56 Ir 1.44 O 9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O 6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (T N = 270 K) was observed for Ba 3 Fe 1.56 Ir 1.44 O 9 .

  2. Photoluminescence of A- and B-site Eu{sup 3+}-substituted (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sletnes, M.; Lindgren, M.; Valmalette, J.C.

    The photoluminescence of two series of A- and B-site Eu{sup 3+} substituted (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6} double perovskite phosphor materials, (Sr{sub x}Ba{sub 1−x}){sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub y}Mo{sub 1−y}O{sub 6} and (Sr{sub x}Ba{sub 1−x}){sub 2}Ca{sub 0.96}Eu{sub 0.02}Li{sub 0.02}W{sub y}Mo{sub 1−y}O{sub 6} (x and y=0, 0.25, 0.50, 0.75, and 1), were studied systematically as a function of stoichiometry and crystal structure. The Eu{sup 3+} lattice sites controlled by co-doping with either K or Li were confirmed by Raman spectroscopy. The variation in integrated emission intensity and emission colour over the experimental matrix was examined using statistical tools, and themore » observed trends were rationalized based on the physical and electronic structure of the phosphors. Phosphors with Eu on B-site with maximum Sr content had remarkably higher emission intensities than all other materials, but the emission was more orange than red due to domination of the {sup 5}D{sub 0}–{sup 7}F{sub 1} (595 nm) transition of Eu{sup 3+}. The relative intensities of the {sup 5}D{sub 0}–{sup 7}F{sub 2} (615 nm) and {sup 5}D{sub 0}–{sup 7}F{sub 1} transitions of Eu{sup 3+}, and thus the red-shift of the emission, decreased linearly with increasing Sr content in the A-site Eu-substituted phosphors, and reached a maximum for Sr{sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub 0.25}Mo{sub 0.75}O{sub 6}. A maximum external quantum efficiency of 17% was obtained for the phosphor Sr{sub 2}Ca{sub 0.7}Eu{sub 0.15}Li{sub 0.15}W{sub 0.5}Mo{sub 0.5}O{sub 6} with Eu on B-site. - Highlights: • Systematic study of the photoluminescence of Eu{sup 3+}-doped (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6}. • The Eu{sup 3+} lattice sites were confirmed by Raman spectroscopy. • A large parameter space was investigated using statistical tools. • A maximum external QE of 17% was obtained for Sr{sub 2}Ca{sub 0.7}Eu{sub 0

  3. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik

    2018-02-01

    As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

  4. Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method.

    PubMed

    Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik

    2017-10-01

    Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of High Efficiency Four-Terminal Perovskite-Silicon Tandems

    NASA Astrophysics Data System (ADS)

    Duong, The Duc

    This thesis is concerned with the development of high efficiency four-terminal perovskite-silicon tandem solar cells with the potential to reduce the cost of solar energy. The work focuses on perovskite top cells and can be divided into three main parts: developing low parasitic absorption and efficient semi-transparent perovskite cells, doping perovskite materials with rubidium, and optimizing perovskite material's bandgap with quadruple-cation and mixed-halide. A further section investigates the light stability of optimized bandgap perovskite cells. In a four-terminal mechanically stacked tandem, the perovskite top cell requires two transparent contacts at both the front and rear sides. Through detailed optical and electrical power loss analysis of the tandem efficiency due to non-ideal properties of the two transparent contacts, optimal contact parameters in term of sheet resistance and transparency are identified. Indium doped tin oxide by sputtering is used for both two transparent contacts and their deposition parameters are optimized separately. The semi-transparent perovskite cell using MAPbI3 has an efficiency of more than 12% with less than 12% parasitic absorption and up to 80% transparency in the long wavelength region. Using a textured foil as anti-reflection coating, an outstanding average transparency of 84% in the long wavelength is obtained. The low parasitic absorption allows an opaque version of the semi-transparent perovskite cell to operate efficiently in a filterless spectrum splitting perovskite-silicon tandem configuration. To further enhance the performance of perovskite cells, it is essential to improve the quality of perovskite films. This can be achieved with mixed-perovskite FAPbI3/MAPbBr3. However, mixed-perovskite films normally contain small a small amount of a non-perovskite phase, which is detrimental for the cell performance. Rb-doping is found to eliminate the formation of the non-perovskite phase and enhance the crystallinity of

  6. Using Perovskite Nanoparticles as Halide Reservoirs in Catalysis and as Spectrochemical Probes of Ions in Solution

    DOE PAGES

    Doane, Tennyson L.; Ryan, Kayla L.; Pathade, Laxmikant; ...

    2016-05-05

    The ability of cesium lead halide (CsPbX 3; X = Cl –, Br –, I –) perovskite nanoparticles (P-NPs) to participate in halide exchange reactions, to catalyze Finkelstein organohalide substitution reactions, and to colorimetrically monitor chemical reactions and detect anions in real time is described. With the use of tetraoctylammonium halide salts as a starting point, halide exchange with the P-NPs was performed to calibrate reactivity, stability, and extent of ion exchange. Also, the exchange of CsPbI 3 with Cl – or Br – causes a significant blue-shift in absorption and photoluminescence, whereas reacting I – with CsPbBr 3 causesmore » a red-shift of similar magnitudes. With the high local halide concentrations and the facile nature of halide exchange in mind, we then explored the ability of P-NPs to catalyze organohalide exchange in Finkelstein like reactions. Results indicate that the P-NPs serve as excellent halide reservoirs for substitution of organohalides in nonpolar media, leading to not only different organohalide products, but also a complementary color change over the course of the reaction, which can be used to monitor kinetics in a precise manner. Finally, the merits of using P-NP as spectrochemical probes for real time assaying is then expanded to other anions which can react with, or result in unique, classes of perovskites.« less

  7. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells.

    PubMed

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young

    2017-12-06

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.

  8. A study on the thermal conversion of scheelite-type ABO4 into perovskite-type AB(O,N)3.

    PubMed

    Li, Wenjie; Li, Duan; Gao, Xin; Gurlo, Aleksander; Zander, Stefan; Jones, Philip; Navrotsky, Alexandra; Shen, Zhijian; Riedel, Ralf; Ionescu, Emanuel

    2015-05-07

    Phase-pure scheelite AMoO4 and AWO4 (A = Ba, Sr, Ca) were thermally treated under an ammonia atmosphere at 400 to 900 °C. SrMoO4 and SrWO4 were shown to convert into cubic perovskite SrMoO2N and SrWO1.5N1.5, at 700 °C and 900 °C respectively, and to form metastable intermediate phases (scheelite SrMoO4-xNx and SrWO4-xNx), as revealed by X-ray diffraction (XRD), elemental analysis and FTIR spectroscopy. High-temperature oxide melt solution calorimetry reveals that the enthalpy of formation for SrM(O,N)3 (M = Mo, W) perovskites is less negative than that of the corresponding scheelite oxides, though the conversion of the scheelite oxides into perovskite oxynitrides is thermodynamically favorable at moderate temperatures. The reaction of BaMO4 with ammonia leads to the formation of rhombohedral Ba3M2(O,N)8 and the corresponding binary metal nitrides Mo3N2 and W4.6N4; similar behavior was observed for CaMO4, which converted upon ammonolysis into individual oxides and nitrides. Thus, BaMO4 and CaMO4 were shown to not provide access to perovskite oxynitrides. The influence of the starting scheelite oxide precursor, the structure distortion and the degree of covalency of the B-site-N bond are discussed within the context of the formability of perovskite oxynitrides.

  9. Tailoring perovskite compounds for broadband light absorption

    NASA Astrophysics Data System (ADS)

    Lu, Hengchang; Guo, Xiaowei; Yang, Cheng; Li, Shaorong

    2018-01-01

    Perovskite solar cells have experienced an outstanding advance in power conversion efficiency (PCE) by optimizing the perovskite layer morphology, composition, interfaces, and charge collection efficiency. To enhance PCE, the mixed perovskites were proposed in recent years. In this study, optoelectronic performance of pure perovskites and mixed ones were investigated. It was demonstrated that the mixed perovskites exhibit superior to the pure ones. The mixed material can absorb broadband light absorption and result in increased short circuit current density and power conversion efficiency.

  10. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    PubMed Central

    2017-01-01

    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening. PMID:28910418

  11. Moessbauer spectroscopy of Mg(0.9)Fe(0.1)SiO3 perovskite

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond; O'Neill, Bridget; Pasternak, Moshe P.; Taylor, R. D.; Bohlen, Steven R.

    1992-01-01

    Ambient pressure Moessbauer spectra of Mg(0.9)Fe-57(0.1)SiO3 perovskite synthesized at pressure-temperature conditions of about 50 GPa and 1700 K show that the iron is entirely high-spin Fe(2+) and appears to be primarily located in the octahedral site within the crystal structure. We observe broad Moessbauer lines, suggesting a distribution of electric-field gradients caused by disorder associated with the Fe ions. Also, the perovskite exhibits magnetic ordering at temperatures lower than 5 K, implying that there is a magnetic contribution to the absolute ('third-law') entropy of this phase.

  12. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon, E-mail: kimsg@ccs.msstate.edu

    2015-06-28

    We use first-principles total-energy calculations based on density functional theory to study the site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite SrFe{sub 12−x}Al{sub x}O{sub 19} with x = 0.5 and x = 1.0. We find that the non-magnetic Al{sup 3+} ions preferentially replace Fe{sup 3+} ions at two of the majority spin sites, 2a and 12k, eliminating their positive contribution to the total magnetization causing the saturation magnetization M{sub s} to be reduced as Al concentration x is increased. Our formation probability analysis further provides the explanation for increased magnetic anisotropy field when the fraction of Al is increased. Although Al{sup 3+}more » ions preferentially occupy the 2a sites at a low temperature, the occupation probability of the 12k site increases with the rise of the temperature. At a typical annealing temperature (>700 °C) Al{sup 3+} ions are much more likely to occupy the 12k site than the 2a site. Although this causes the magnetocrystalline anisotropy K{sub 1} to be reduced slightly, the reduction in M{sub s} is much more significant. Their combined effect causes the anisotropy field H{sub a} to increase as the fraction of Al is increased, consistent with recent experimental measurements.« less

  13. Inorganic perovskite photocatalysts for solar energy utilization.

    PubMed

    Zhang, Guan; Liu, Gang; Wang, Lianzhou; Irvine, John T S

    2016-10-24

    The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.

  14. Perovskites in catalysis and electrocatalysis.

    PubMed

    Hwang, Jonathan; Rao, Reshma R; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-10

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts. Copyright © 2017, American Association for the Advancement of Science.

  15. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  16. A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2004-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  17. Perovskite Superlattices as Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  18. White perovskite based lighting devices.

    PubMed

    Bidikoudi, M; Fresta, E; Costa, R D

    2018-06-28

    Hybrid organic-inorganic and all-inorganic metal halide perovskites have been one of the most intensively studied materials during the last few years. In particular, research focusing on understanding how to tune the photoluminescence features and to apply perovskites to optoelectronic applications has led to a myriad of new materials featuring high photoluminescence quantum yields covering the whole visible range, as well as devices with remarkable performances. Having already established their successful incorporation in highly efficient solar cells, the next step is to tackle the challenges in solid-state lighting (SSL) devices. Here, the most prominent is the preparation of white-emitting devices. Herein, we have provided a comprehensive view of the route towards perovskite white lighting devices, including thin film light-emitting diodes (PeLEDs) and hybrid LEDs (HLEDs), using perovskite based color down-converting coatings. While synthesis and photoluminescence features are briefly discussed, we focus on highlighting the major achievements and limitations in white devices. Overall, we expect that this review will provide the reader a general overview of the current state of perovskite white SSL, paving the way towards new breakthroughs in the near future.

  19. Site specific ligand substitution in cubane-type Mo3FeS(4)(4+) clusters: kinetics and mechanism of reaction and isolation of mixed ligand Cl/SPh complexes.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Fernandez-Trujillo, M J; Llusar, Rosa; Pino-Chamorro, Jose A; Sorribes, Ivan; Vicent, Cristian

    2010-04-21

    The synthesis, crystal structure and solution characterization of the cubane-type [Mo(3)(FeCl)S(4)(dmpe)(3)Cl(3)] (1) (dmpe = 1,2-bis(dimethylphophane-ethane)) cluster are reported and the ligand substitution processes of chloride by thiophenolate investigated. The kinetics and the intimate mechanism of these substitutions reveal that compound 1 undergoes a number of Fe and Mo site specific ligand substitution reactions in acetonitrile solutions. In particular, PhS(-) coordination at the tetrahedral Fe site proceeds in a single resolved kinetic step whereas such substitutions at the Mo sites proceed more slowly. The effect of the presence of acids in the reaction media is also investigated and reveals that an acid excess hinders substitution reactions both at the Fe and Mo sites; however, an acid-promoted solvolysis of the Fe-Cl bonds is observed. Electrospray ionization (ESI) and tandem (ESI-MS/MS) mass spectrometry allow the identification of all the reaction intermediates proposed on the basis of stopped-flow measurements. The distinctive site specific reactivity made it possible to isolate two new clusters of the Mo(3)FeS(4)(4+) family featuring mixed chlorine/thiophenolate ligands, namely Mo(3)S(4)(FeSPh)(dmpe)(3)Cl(3) (2) and [Mo(3)S(4)(FeSPh)(dmpe)(3)(SPh)(3)] (3). A detailed computational study has also been carried out to understand the details of the mechanism of substitution at the M-Cl (M = Mo and Fe) bonds as well as the solvolysis at the Fe-Cl sites, with particular emphasis on the role of acids on the substitution process. The results of the calculations are in agreement with the experimental observations, thus justifying the non-existence of an accelerating effect of acids on the thiophenolate substitution reaction, which differs from previous proposals for the Fe(4)S(4) and MoFe(3)S(4) clusters and some related compounds.

  20. Perovskite Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic -Defect Hybrid Organic/Inorganic Perovskite Films as PV Absorbers. (FY 2015FY 2016). In collaboration with organic metal halide perovskite (see article). Ultrahigh-Efficiency and Low-Cost Polycrystalline Halide

  1. Planar-integrated single-crystalline perovskite photodetectors

    PubMed Central

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941

  2. Bandgap Engineering of Stable Lead-Free Oxide Double Perovskites for Photovoltaics.

    PubMed

    Sun, Qingde; Wang, Jing; Yin, Wan-Jian; Yan, Yanfa

    2018-04-01

    Despite the rapid progress in solar power conversion efficiency of archetype organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3 -based solar cells, the long-term stability and toxicity of Pb remain the main challenges for the industrial deployment, leading to more uncertainties for global commercialization. The poor stabilities of CH 3 NH 3 PbI 3 -based solar cells may not only be attributed to the organic molecules but also the halides themself, most of which exhibit intrinsic instability under moisture and light. As an alternative, the possibility of oxide perovskites for photovoltaic applications is explored here. The class of lead-free stable oxide double perovskites A 2 M(III)M(V)O 6 (A = Ca, Sr, Ba; M(III) = Sb 3+ or Bi 3+ ; M(V) = V 5+ , Nb 5+ , or Ta 5+ ) is comprehensively explored with regard to their stability and their electronic and optical properties. Apart from the strong stability, this class of double perovskites exhibits direct bandgaps ranging from 0.3 to 3.8 eV. With proper B site alloying, the bandgap can be tuned within the range of 1.0-1.6 eV with optical absorptions as strong as CH 3 NH 3 PbI 3 , making them suitable for efficient single-junction thin-film solar cell application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    PubMed

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  4. A mesoporous nickel counter electrode for printable and reusable perovskite solar cells.

    PubMed

    Ku, Zhiliang; Xia, Xinhui; Shen, He; Tiep, Nguyen Huy; Fan, Hong Jin

    2015-08-28

    A mesoporous nickel layer is used as the counter electrode in printable perovskite solar cells. A unique reuse process is realized in such perovskite solar cell devices by repeated loading of the perovskite material. Under standard AM1.5 illumination, the fresh device shows a promising power conversion efficiency of 13.6%, and an efficiency of 12.1% is obtained in the reused devices.

  5. A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film.

    PubMed

    Chen, Zheng; Gu, Zhi-Gang; Fu, Wen-Qiang; Wang, Fei; Zhang, Jian

    2016-10-26

    Organic-inorganic hybrid lead organohalide perovskites are inexpensive materials for high-efficiency photovoltaic solar cells, optical properties, and superior electrical conductivity. However, the fabrication of their quantum dots (QDs) with uniform ultrasmall particles is still a challenge. Here we use oriented microporous metal-organic framework (MOF) thin film prepared by liquid phase epitaxy approach as a template for CH 3 NH 3 PbI 2 X (X = Cl, Br, and I) perovskite QDs fabrication. By introducing the PbI 2 and CH 3 NH 3 X (MAX) precursors into MOF HKUST-1 (Cu 3 (BTC) 2 , BTC = 1,3,5-benzene tricarboxylate) thin film in a stepwise approach, the resulting perovskite MAPbI 2 X (X = Cl, Br, and I) QDs with uniform diameters of 1.5-2 nm match the pore size of HKUST-1. Furthermore, the photoluminescent properties and stability in the moist air of the perovskite QDs loaded HKUST-1 thin film were studied. This confined fabrication strategy demonstrates that the perovskite QDs loaded MOF thin film will be insensitive to air exposure and offers a novel means of confining the uniform size of the similar perovskite QDs according to the oriented porous MOF materials.

  6. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acik, Muge; Alam, Todd M.; Guo, Fangmin

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). Onmore » the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.« less

  7. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  8. Making and Breaking of Lead Halide Perovskites

    DOE PAGES

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; ...

    2016-01-20

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution

  9. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    NASA Astrophysics Data System (ADS)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  10. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    PubMed

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  11. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  12. La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.

    2008-11-15

    La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less

  13. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    PubMed

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  14. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  15. Evidence for a different electronic configuration as a primary effect during compression of orthorhombic perovskites: The case of Nd M3 +O3 (M =Cr ,Ga )

    NASA Astrophysics Data System (ADS)

    Ardit, M.; Dondi, M.; Merli, M.; Cruciani, G.

    2018-02-01

    (Mg ,Fe ) Si O3 perovskite is the most abundant mineral of the Earth's lower mantle, and compounds with the perovskite structure are perhaps the most widely employed ceramics. Hence, they attract both geophysicists and material scientists. Several investigations attempted to predict their structural evolution at high pressure, and recent advancements highlighted that perovskites having ions with the same formal valence at both polyhedral sites (i.e., 3 +:3 + ) define different compressional patterns when transition metal ions (TMI) are involved. In this study, in situ high-pressure synchrotron XRD measurements coupled with ab initio simulations of the electronic population of NdCr O3 perovskite are compared with the compressional feature of NdGa O3 . Almost identical from a steric point of view (C r3 + and G a3 + have almost the same ionic radius), the different electronic configuration of octahedrally coordinated ions - which leads to a redistribution of electrons at the 3 d orbitals for C r3 + - allows the crystal field stabilization energy (CFSE) to act as a vehicle of octahedral softening in NdCr O3 or it turns octahedra into rigid units when CFSE is null as in NdGa O3 . Besides to highlight that different electronic configurations can act as a primary effect during compression of perovskite compounds, our findings have a deep repercussion on the way the compressibility of perovskites have to be modeled.

  16. Thermochromic halide perovskite solar cells.

    PubMed

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  17. Thermochromic halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  18. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  19. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    PubMed

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  1. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability

    DOE PAGES

    Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...

    2016-05-25

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI 2).

  2. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites

    NASA Astrophysics Data System (ADS)

    Kang, Sung Gu

    2018-06-01

    The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.

  3. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    PubMed

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  4. Analysis of the local structure around Cr3+ centers in perovskite KMgF3 using both ab initio (DFT) and semi-empirical (SPM) calculations

    NASA Astrophysics Data System (ADS)

    Emül, Y.; Erbahar, D.; Açıkgöz, M.

    2014-11-01

    The local structure around Cr3+ centers in perovskite KMgF3 crystal have been investigated through the applications of both an ab-initio, density functional theory (DFT), and a semi empirical, superposition model (SPM), analyses. A supercell approach is used for DFT calculations. All the tetragonal (Cr3+-VMg and Cr3+-Li+), trigonal (Cr3+-VK), and CrF5O cluster centers have been considered with various structural models based on the previously suggested experimental inferences. The significant structural changes around the Cr3+ centers induced by Mg2+ or K+ vacancies and the Li substitution at those vacancy sites have been determined and discussed by means of charge distribution. This study provides insight on both the roles of Mg2+ and K+ vacancies and Li+ ion in the local structural properties around Cr3+ centers in KMgF3.

  5. Extrinsic ion migration in perovskite solar cells

    DOE PAGES

    Li, Zhen; Xiao, Chuanxiao; Yang, Ye; ...

    2017-04-10

    In this study, the migration of intrinsic ions (e.g., MA +, Pb 2+, I –) in organic–inorganic hybrid perovskites has received significant attention with respect to the critical roles of these ions in the hysteresis and degradation in perovskite solar cells (PSCs). Here, we demonstrate that extrinsic ions (e.g., Li +, H +, Na +), when used in the contact layers in PSCs, can migrate across the perovskite layer and strongly impact PSC operation. In a TiO 2/perovskite/spiro-OMeTAD-based PSC, Li +-ion migration from spiro-OMeTAD to the perovskite and TiO 2 layer is illustrated by time-of-flight secondary-ion mass spectrometry. The movementmore » of Li + ions in PSCs plays an important role in modulating the solar cell performance, tuning TiO 2 carrier-extraction properties, and affecting hysteresis in PSCs. The influence of Li +-ion migration was investigated using time-resolved photoluminescence, Kelvin probe force microscopy, and external quantum efficiency spectra. Other extrinsic ions such as H + and Na + also show a clear impact on the performance and hysteresis in PSCs. Understanding the impacts of extrinsic ions in perovskite-based devices could lead to new material and device designs to further advance perovskite technology for various applications.« less

  6. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    PubMed

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth

    NASA Technical Reports Server (NTRS)

    O'Neill, Bridget; Jeanloz, Raymond

    1994-01-01

    Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.

  8. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

    DOE PAGES

    Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN; ...

    2016-11-04

    The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less

  9. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN

    The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less

  10. Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites

    DOE PAGES

    Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.

    2017-06-01

    Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less

  11. Local and average structure of Mn- and La-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  12. Local and average structure of Mn- and La-substituted BiFeO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO 3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space groupmore » symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO 3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.« less

  13. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells

    DOE PAGES

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; ...

    2017-11-10

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb xMA 1-x)PbI 3) films and the photovoltaic performance of (Rb xMA 1-x)PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc) and the short circuit photocurrent density (J sc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the singlemore » tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05MA 0.95)PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0). The optimized (Rb xMA 1-x)PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.« less

  14. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb xMA 1-x)PbI 3) films and the photovoltaic performance of (Rb xMA 1-x)PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc) and the short circuit photocurrent density (J sc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the singlemore » tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05MA 0.95)PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0). The optimized (Rb xMA 1-x)PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.« less

  15. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  16. Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Shao, Zongping

    2017-03-01

    Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improved perovskite phototransistor prepared using multi-step annealing method

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  18. Perovskite solar cells: from materials to devices.

    PubMed

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    PubMed

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-07

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.

  20. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  1. Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application.

    PubMed

    Park, Byung-Wook; Philippe, Bertrand; Zhang, Xiaoliang; Rensmo, Håkan; Boschloo, Gerrit; Johansson, Erik M J

    2015-11-18

    Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3 Bi2 I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  3. Perovskite Solar Cells for High-Efficiency Tandems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Michael; Buonassisi, Tonio

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n ++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm 2. Werner et al. 15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher currentmore » density of 15.9 mA/cm 2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both organic cation evolution and

  4. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.

    PubMed

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin

    2017-06-21

    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  5. Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries

    NASA Astrophysics Data System (ADS)

    Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei

    2014-11-01

    Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.

  6. Impact of Interfacial Layers in Perovskite Solar Cells.

    PubMed

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    PubMed Central

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-01-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder. PMID:27297396

  8. Thermoelasticity of (Mg,Fe)SiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Wu, Zhongqing; Hsu, Han; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present LDA+U calculations of high temperature elastic properties of (Mg(1 - x)Fex2+)SiO3 bridgemanite (0 <= x <= 0 . 125), the most abundant constituent of Earth's lower mantle. Calculations of aggregate elastic moduli and acoustic velocities for the Mg-end member (x=0) are in excellent agreement with the latest high pressure and high temperature experimental measurements. In the iron bearing system, we particularly focus on the change in thermoelastic parameters across the state change that occurs in ferrous iron above ~30 GPa, often attributed to a high-spin (HS) to intermediate spin (IS) crossover but explained by calculations as a lateral displacement of substitutional iron in the perovskite cage. We show that the measured effect on the equation of state of this change in the state of iron can be explained by the lateral displacement of substitutional iron, not by the HS to IS crossover. Calculated elastic properties of (Mg0.875 Fe0.125 2 +)SiO3 along an adiabatic mantle geotherm, somewhat overestimate longitudinal velocities but produce densities and shear velocities consistent with Preliminary Reference Earth Model data throughout most of the lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  9. Ion-Migration Inhibition by the Cation-π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells.

    PubMed

    Wei, Dong; Ma, Fusheng; Wang, Rui; Dou, Shangyi; Cui, Peng; Huang, Hao; Ji, Jun; Jia, Endong; Jia, Xiaojie; Sajid, Sajid; Elseman, Ahmed Mourtada; Chu, Lihua; Li, Yingfeng; Jiang, Bing; Qiao, Juan; Yuan, Yongbo; Li, Meicheng

    2018-06-25

    Migration of ions can lead to photoinduced phase separation, degradation, and current-voltage hysteresis in perovskite solar cells (PSCs), and has become a serious drawback for the organic-inorganic hybrid perovskite materials (OIPs). Here, the inhibition of ion migration is realized by the supramolecular cation-π interaction between aromatic rubrene and organic cations in OIPs. The energy of the cation-π interaction between rubrene and perovskite is found to be as strong as 1.5 eV, which is enough to immobilize the organic cations in OIPs; this will thus will lead to the obvious reduction of defects in perovskite films and outstanding stability in devices. By employing the cation-immobilized OIPs to fabricate perovskite solar cells (PSCs), a champion efficiency of 20.86% and certified efficiency of 20.80% with negligible hysteresis are acquired. In addition, the long-term stability of cation-immobilized PSCs is improved definitely (98% of the initial efficiency after 720 h operation), which is assigned to the inhibition of ionic diffusions in cation-immobilized OIPs. This cation-π interaction between cations and the supramolecular π system enhances the stability and the performance of PSCs efficiently and would be a potential universal approach to get the more stable perovskite devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Controlling octahedral rotations in a perovskite via strain doping

    DOE PAGES

    Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; ...

    2016-05-24

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO 3 films coherently grown on SrTiO 3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less

  11. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; ...

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  12. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  13. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    PubMed

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  14. Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells.

    PubMed

    Bi, Dongqin; Luo, Jingshan; Zhang, Fei; Magrez, Arnaud; Athanasopoulou, Evangelia Nefeli; Hagfeldt, Anders; Grätzel, Michael

    2017-04-10

    Despite the rapid increase in the performance of perovskite solar cells (PSC), they still suffer from low lab-to-lab or people-to-people reproducibility. Aiming for a universal condition to high-performance devices, we investigated the morphology evolution of a composite perovskite by tuning annealing temperature and precursor concentration of the perovskite film. Here, we introduce thermal annealing as a powerful tool to generate a well-controlled excess of PbI 2 in the perovskite formulation and show that this benefits the photovoltaic performance. We demonstrated the correlation between the film microstructure and electronic property and device performance. An optimized average grain size/thickness aspect ratio of the perovskite crystallite is identified, which brings about a highly reproducible power conversion efficiency (PCE) of 19.5 %, with a certified value of 19.08 %. Negligible hysteresis and outstanding morphology stability are observed with these devices. These findings lay the foundation for further boosting the PCE of PSC and can be very instructive for fabrication of high-quality perovskite films for a variety of applications, such as light-emitting diodes, field-effect transistors, and photodetectors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Strain-induced changes of the electronic properties of B -site ordered double-perovskite Sr2CoIrO6 thin films

    NASA Astrophysics Data System (ADS)

    Esser, S.; Chang, C. F.; Kuo, C.-Y.; Merten, S.; Roddatis, V.; Ha, T. D.; Jesche, A.; Moshnyaga, V.; Lin, H.-J.; Tanaka, A.; Chen, C. T.; Tjeng, L. H.; Gegenwart, P.

    2018-05-01

    B -site ordered thin films of double perovskite Sr2CoIrO6 were epitaxially grown by a metalorganic aerosol deposition technique on various substrates, actuating different strain states. X-ray diffraction, transmission electron microscopy, and polarized far-field Raman spectroscopy confirm the strained epitaxial growth on all used substrates. Polarization-dependent Co L2 ,3 x-ray absorption spectroscopy reveals a change of the magnetic easy axis of the antiferromagnetically ordered (high-spin) Co3 + sublattice within the strain series. By reversing the applied strain direction from tensile to compressive, the easy axis changes abruptly from in-plane to out-of-plane orientation. The low-temperature magnetoresistance changes its sign respectively and is described by a combination of weak antilocalization and anisotropic magnetoresistance effects.

  16. Growth of MAPbBr3 perovskite crystals and its interfacial properties with Al and Ag contacts for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R. A.; Alashraf, Abdulla; Bhadra, Jolly; Al-Thani, N. J.; Al-Muhtaseb, Shaheen A.; Mohamed, A. M. A.

    2017-11-01

    In this work, the MAPbBr3 perovskite crystals were grown and the interfacial properties of the poly-crystalline MAPbBr3 with Aluminum (Al) and Silver (Ag) contacts has been investigated. MAPbBr3 crystals are turned into the poly-crystalline pellets (PCP) using compaction technique and the Al/PCP, Al/interface layer/PCP, Ag/PCP, and Ag/interface layer/PCP contacts were investigated. Scanning Electron Microscopic (SEM), Energy-dispersive X-ray spectroscopy (EDX) and current-voltage (I-V) characteristic technique were used to have an insight of the degradation mechanism happening at the Metal/perovskite interface. The Ag/PCP contact appears to be stable, whereas Al is found to be highly reactive with the MAPbBr3 perovskite crystals due to the infiltration setback of Al in to the perovskite crystals. The interface layer showed a slight effect on the penetration of Al in to the perovskite crystals however it does not seem to be an appropriate solution. It is noteworthy that the stability of the underlying metal/perovskite contact is very crucial towards the perovskite solar cells with extended device lifetime.

  17. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  18. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  19. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Oliver, E-mail: oliver.clemens@kit.edu; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

    2015-05-15

    The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for themore » structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.« less

  20. White-Light Emission from Layered Halide Perovskites.

    PubMed

    Smith, Matthew D; Karunadasa, Hemamala I

    2018-03-20

    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the

  1. A numerical model for charge transport and energy conversion of perovskite solar cells.

    PubMed

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-14

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.

  2. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molecular behavior of zero-dimensional perovskites

    PubMed Central

    Yin, Jun; Maity, Partha; De Bastiani, Michele; Dursun, Ibrahim; Bakr, Osman M.; Brédas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them. PMID:29250600

  4. Structural State and Elastic Properties of Perovskites in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Ross, N. L.; Angel, R. J.; Zhao, J.

    2005-12-01

    Recent advances in laboratory-based single-crystal X-ray diffraction techniques for measuring the intensities of diffraction from crystals held in situ at high pressures in the diamond-anvil cell have been used to determine the role of polyhedral compression in the response of 2:4 and 3:3 GdFeO3-type perovskites to high pressure [1]. These new data clearly demonstrate that, contrary to previous belief, the compression of the octahedral sites is significant and that the evolution of the perovskite structure with pressure is controlled by a new principle; that of equipartition of bond-valence strain across the structure [2]. This new paradigm, together with the minimal information available from high- pressure powder diffraction studies, may provide the possibility of predicting the structural state and elastic properties of perovskites of any composition at mantle pressures and temperatures. Cation partioning between silicate perovskites and other phases should then be predictable through the application of a Brice-style model [3]. The geochemical implications of this type of analysis will be presented as well as the possibility for extending these measurements to higher pressures. References [1] e.g. Zhao, Ross & Angel (2004) Phys Chem Miner. 31: 299; Ross, Zhao,. & Angel (2004). J. Solid State Chemistry 177:1276. [2] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263 [3] e.g Walter et al. (2004) Geochim Cosmochim Acta 68:4267; Blundy & Wood (1994) Nature 372:452

  5. Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1987-01-01

    Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.

  6. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    PubMed Central

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  7. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    PubMed

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Structural chemistry and magnetic properties of the perovskite Sr{sub 3}Fe{sub 2}TeO{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yawei; Hunter, Emily C.; Battle, Peter D., E-mail: peter.battle@chem.ox.ac.uk

    2016-10-15

    A polycrystalline sample of perovskite-like Sr{sub 3}Fe{sub 2}TeO{sub 9} has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mössbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe{sup 3+} and Te{sup 6+} cations. However, the sample is prone to nano-twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr{sub 3}Fe{sub 2}TeO{sub 9} is thus the first example of amore » perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin-glass behaviour below ~80 K. - Graphical abstract: Sr{sub 3}Fe{sub 2}TeO{sub 9} has a 2:1 ordered arrangement of Fe{sup 3+} and Te{sup 6+} cations over the octahedral sites of a perovskite structure and is antiferromagnetic at room temperature. - Highlights: • 2:1 Cation ordering in a trigonal perovskite. • Magnetically ordered trigonal perovskite. • Intergrowth of nanodomains in perovskite microstructure.« less

  9. Synthesis and characterization of Eu{sup 3+}-doped CaZrO{sub 3}-based perovskite-type phosphors. Part I: Determination of the Eu{sup 3+} occupied site using the ALCHEMI technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaida, Satoshi; Shimokawa, Yohei; Asaka, Toru

    2015-07-15

    Highlights: • Eu{sup 3+}-doped CaZrO{sub 3}-based compounds were synthesized by the solid state reaction. • PL emission intensity at 614 nm was changed by the second dopant cations. • The site substituted by Eu{sup 3+} cations was investigated by using XRD and ALCHEMI technique. • The dominant Eu{sup 3+} substitution site was found as the B site (Zr{sup 4+}) in the CaZrO{sub {sup 3}}. • The dominant Eu{sup 3+} substitution site could be strongly influenced by the co-dopants. - Abstract: Eu{sup 3+}-doped CaZrO{sub 3}, SrZrO{sub 3}, and Mg{sup 2+}- or Sr{sup 2+}-co-doped CaZrO{sub 3} were synthesized by conventional solid statemore » reaction and their photoluminescence (PL) properties were characterized. The Eu{sup 3+}-doped CaZrO{sub 3}-based compounds exhibited characteristic emissions of Eu{sup 3+} (f–f transition). The intensity of the main PL emission peak at 614 nm increased with Mg{sup 2+} co-doping, while it decreased with the amount of co-doped Sr{sup 2+}. The site substituted by Eu{sup 3+} cations in the CaZrO{sub 3}-based compounds was investigated by X-ray diffraction analysis and energy-dispersive X-ray analysis based on the electron channeling effects in transmission electron microscopy. The Eu{sup 3+} cations were determined to occupy mainly the B site (Zr{sup 4+}) in CaZrO{sub 3}. The dominant Eu{sup 3+} substitution site was also strongly influenced by the co-dopant, and the ionic radius of the co-dopant was identified as an important factor that determines the dominant Eu{sup 3+} substitution site.« less

  10. Structure of 18R shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} revisited by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn

    The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less

  11. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    PubMed

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  12. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation

    PubMed Central

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method. PMID:24899871

  13. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    PubMed

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  14. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    PubMed

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    PubMed

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung

    2018-02-01

    The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.

  17. 4d Electronic structure analysis of ruthenium in the perovskite oxides by Ru K- and L-edge XAS.

    PubMed

    Kim, J Y; Hwang, S H; Kim, S J; Demazeau, G; Choy, J H; Shimada, H

    2001-03-01

    The 4d electronic structure of ruthenium in the perovskite oxides, La2MRuIVO6 (M = Zn, Mg, and Li) and Ba2YRuVO6, has been investigated by the Ru K-and L-edge XANES and EXAFS analyses. Such X-ray absorption spectroscopic results clarify that the RuIV (d4) and RuV (d3) ions are stabilized in nearly regular Oh site. Comparing the Ru L-edge XANES spectra of perovskites containing isovalent ruthenium, it has been found that the t2g state is mainly influenced by A site cation, whereas the eg is mainly affected by neighboring B site cation. The experimental EXAFS spectra in the range of R < or = approximately 4.5 A are well reproduced by ab-initio calculation based on crystallographic data, which supports the long-range structure presented by Rietveld refinement.

  18. A polymer scaffold for self-healing perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  19. A polymer scaffold for self-healing perovskite solar cells.

    PubMed

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-06

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  20. Charge disproportionation of mixed-valent Cr triggered by Bi lone-pair effect in the A -site-ordered perovskite BiC u3C r4O12

    NASA Astrophysics Data System (ADS)

    Etter, Martin; Isobe, Masahiko; Sakurai, Hiroya; Yaresko, Alexander; Dinnebier, Robert E.; Takagi, Hidenori

    2018-05-01

    A new A -site-ordered perovskite BiC u3C r4O12 is synthesized under a high pressure of 7.7 GPa. A phase transition from a paramagnetic metal to a ferrimagnetic metal is observed at Tc=190 K accompanied with a structural change from cubic to monoclinic. Structural analysis of the low-temperature monoclinic phase reveals that this transition represents a charge disproportionation of C r3.75 + into C r4 + and C r3.5 + . We argue that the asymmetric displacement of Bi caused by a lone-pair effect triggers the formation of a dimeric Cr4+2O5 unit and leads to an ordering of C r4 + and C r3.5 + below the transition.

  1. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    NASA Astrophysics Data System (ADS)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-05-01

    Single crystals of the osmium-containing compound Ca3OsO6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca3OsO6 were characterized as an ordered double-perovskite structure of space group P21/n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K.

  3. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    PubMed

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  4. Microscopic origin of entropy-driven polymorphism in hybrid organic-inorganic perovskite materials

    NASA Astrophysics Data System (ADS)

    Butler, Keith T.; Svane, Katrine; Kieslich, Gregor; Cheetham, Anthony K.; Walsh, Aron

    2016-11-01

    Entropy is a critical, but often overlooked, factor in determining the relative stabilities of crystal phases. The importance of entropy is most pronounced in softer materials, where small changes in free energy can drive phase transitions, which has recently been demonstrated in the case of organic-inorganic hybrid-formate perovskites. In this Rapid Communication we demonstrate the interplay between composition and crystal structure that is responsible for the particularly pronounced role of entropy in determining polymorphism in hybrid organic-inorganic materials. Using ab initio based lattice dynamics, we probe the origins and effects of vibrational entropy of four archetype perovskite (A B X3 ) structures. We consider an inorganic material (SrTiO3), an A -site hybrid-halide material (CH3NH3) PbI3 , a X -site hybrid material KSr (BH4)3 , and a mixed A - and X -site hybrid-formate material (N2H5) Zn (HCO2)3 , comparing the differences in entropy between two common polymorphs. The results demonstrate the importance of low-frequency intermolecular modes in determining the phase stability in these materials. The understanding gained allows us to propose a general principle for the relative stability of different polymorphs of hybrid materials as temperature is increased.

  5. Structural And Electrical Properties oF (La{sub 0.5-x}Pr{sub x}Ba{sub 0.5})(Mn{sub 0.5}Ti{sub 0.5})O{sub 3} Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alias, Nor Hayati; Department of Physics, Faculty Science, University Putra of Malaysia; Shaari, Abdul Halim

    2010-01-05

    A single phase monoclinic new perovskite based titano-manganite (La{sub 0.5-x}Pr{sub x}Ba{sub 0.5})(Mn{sub 0.5}Ti{sub 0.5})O{sub 3} has been successfully prepared by ceramic solid-state technique at sintering temperature of 1300 deg. C. The concentration of Pr (Praseodymium), x, in molar proportion in A site has been varied as x = 0, 0.02 and 0.2. Analysis has been carried out to determine the electrical properties of the synthesized material at frequency ranging from 5 Hz to 1 MHz; and at temperature range between 25 deg. C to 200 deg. C. It is found that Pr addition promoted liquid phase sintering diffusion, porosity andmore » agglomeration formation at 1300 deg. C. Dual relaxation is observed in unsubstituted Pr sample x = 0 and high Pr substituted sample x = 0.2. This phenomenon was a combinational contribution from a quasi dc (QDC) or low frequency dispersion (LFD), two cole-cole relaxational responses and a resistor. While low concentrated Pr substituted sampled x = 0.02 shows a combinational contribution from a quasi dc (QDC) or low frequency dispersion (LFD), single cole-cole relaxational response and a resistor at room temperature. Pr substitution at x = 0(max 12000) and x = 0.2(max 16000) showed high dielectric values compared to low substituted sample x = 0.02. Variation of dielectric loss tangent (tan delta) are observed for all samples at temperature ranged studied.« less

  6. Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode.

    PubMed

    Miyano, Kenjiro; Tripathi, Neeti; Yanagida, Masatoshi; Shirai, Yasuhiro

    2016-02-16

    The lead halide perovskite photovoltaic cells, especially the iodide compound CH3NH3PbI3 family, exhibited enormous progress in the energy conversion efficiency in the past few years. Although the first attempt to use the perovskite was as a sensitizer in a dye-sensitized solar cell, it has been recognized at the early stage of the development that the working of the perovskite photovoltaics is akin to that of the inorganic thin film solar cells. In fact, theoretically perovskite is always treated as an ordinary direct band gap semiconductor and hence the perovskite photovoltaics as a p-i-n diode. Despite this recognition, research effort along this line of thought is still in pieces and incomplete. Different measurements have been applied to different types of devices (different not only in the materials but also in the cell structures), making it difficult to have a coherent picture. To make the situation worse, the perovskite photovoltaics have been plagued by the irreproducible optoelectronic properties, most notably the sweep direction dependent current-voltage relationship, the hysteresis problem. Under such circumstances, it is naturally very difficult to analyze the data. Therefore, we set out to make hysteresis-free samples and apply time-tested models and numerical tools developed in the field of inorganic semiconductors. A series of electrical measurements have been performed on one type of CH3NH3PbI3 photovoltaic cells, in which a special attention was paid to ensure that their electronic reproducibility was better than the fitting error in the numerical analysis. The data can be quantitatively explained in terms of the established models of inorganic semiconductors: current/voltage relationship can be very well described by a two-diode model, while impedance spectroscopy revealed the presence of a thick intrinsic layer with the help of a numerical solver, SCAPS, developed for thin film solar cell analysis. These results point to that CH3NH3PbI3 is an

  7. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Yin, Wei; Pan, Lijia; Yang, Tingbin; Liang, Yongye

    2016-06-25

    Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  8. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules

    NASA Astrophysics Data System (ADS)

    Chen, Han; Ye, Fei; Tang, Wentao; He, Jinjin; Yin, Maoshu; Wang, Yanbo; Xie, Fengxian; Bi, Enbing; Yang, Xudong; Grätzel, Michael; Han, Liyuan

    2017-10-01

    Recent advances in the use of organic-inorganic hybrid perovskites for optoelectronics have been rapid, with reported power conversion efficiencies of up to 22 per cent for perovskite solar cells. Improvements in stability have also enabled testing over a timescale of thousands of hours. However, large-scale deployment of such cells will also require the ability to produce large-area, uniformly high-quality perovskite films. A key challenge is to overcome the substantial reduction in power conversion efficiency when a small device is scaled up: a reduction from over 20 per cent to about 10 per cent is found when a common aperture area of about 0.1 square centimetres is increased to more than 25 square centimetres. Here we report a new deposition route for methyl ammonium lead halide perovskite films that does not rely on use of a common solvent or vacuum: rather, it relies on the rapid conversion of amine complex precursors to perovskite films, followed by a pressure application step. The deposited perovskite films were free of pin-holes and highly uniform. Importantly, the new deposition approach can be performed in air at low temperatures, facilitating fabrication of large-area perovskite devices. We reached a certified power conversion efficiency of 12.1 per cent with an aperture area of 36.1 square centimetres for a mesoporous TiO2-based perovskite solar module architecture.

  9. Perovskite and Organic Photovoltaics | Photovoltaic Research | NREL

    Science.gov Websites

    Perovskite and Organic Photovoltaics Perovskite and Organic Photovoltaics Scientist holds several solar cells; 2) electronic energy level alignment at the carbon nanotube/organic metal halide perovskite Hest in the PDIL in the S and TF at NREL. Organic Photovoltaics (OPV) We develop and apply new absorber

  10. Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites.

    PubMed

    Chen, Hongjun; Zhang, Meng; Bo, Renheng; Barugkin, Chog; Zheng, Jianghui; Ma, Qingshan; Huang, Shujuan; Ho-Baillie, Anita W Y; Catchpole, Kylie R; Tricoli, Antonio

    2018-02-01

    Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr 3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O 2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O 2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film

    PubMed Central

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan

    2017-01-01

    Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974

  12. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.

    PubMed

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin

    2018-03-01

    Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.

  13. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells

    PubMed Central

    Zhang, Taiyang; Dar, M. Ibrahim; Li, Ge; Xu, Feng; Guo, Nanjie; Grätzel, Michael; Zhao, Yixin

    2017-01-01

    Among various all-inorganic halide perovskites exhibiting better stability than organic-inorganic halide perovskites, α-CsPbI3 with the most suitable band gap for tandem solar cell application faces an issue of phase instability under ambient conditions. We discovered that a small amount of two-dimensional (2D) EDAPbI4 perovskite containing the ethylenediamine (EDA) cation stabilizes the α-CsPbI3 to avoid the undesirable formation of the nonperovskite δ phase. Moreover, not only the 2D perovskite of EDAPbI4 facilitate the formation of α-CsPbI3 perovskite films exhibiting high phase stability at room temperature for months and at 100°C for >150 hours but also the α-CsPbI3 perovskite solar cells (PSCs) display highly reproducible efficiency of 11.8%, a record for all-inorganic lead halide PSCs. Therefore, using the bication EDA presents a novel and promising strategy to design all-inorganic lead halide PSCs with high performance and reliability. PMID:28975149

  14. An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ren, Ziqiu; Zhu, Menghua; Li, Xin; Dong, Cunku

    2017-09-01

    As a promising photovoltaic device, perovskite solar cells have attracted numerous attention in recent years, where forming a compact and pinhole-free perovskite film in air is of great importance. Herein, we evaluate highly efficient and air stable planar perovskite solar cells in air (relative humidity over 50%) with the modified two-step sequential deposition method by adjusting the CH3NH3I (MAI) concentrations and regulating the crystallization process of the perovskite film. The optimum MAI concentration is 60 mg mL-1 in isopropanol. With a planar structure of FTO/TiO2/MAPbI3/spiro-OMeTAD/Au, the efficient devices composed of compact and pinhole-free perovskite films are constructed in air, achieving a high efficiency of up to 15.10% and maintaining over 80% after 20 days storing without any encapsulation in air. With a facile fabrication process and high photovoltaic performance, this work represents a promising method for fabricating low-cost, highly efficient and stable photovoltaic device.

  15. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.

    PubMed

    Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco

    2015-12-28

    Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.

  16. Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber.

    PubMed

    Kwon, Hyeok-Chan; Yang, Wooseok; Lee, Daehee; Ahn, Jihoon; Lee, Eunsong; Ma, Sunihl; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho

    2018-05-22

    Organometal halide perovskite materials have become an exciting research topic as manifested by intense development of thin film solar cells. Although high-performance solar-cell-based planar and mesoscopic configurations have been reported, one-dimensional (1-D) nanostructured perovskite solar cells are rarely investigated despite their expected promising optoelectrical properties, such as enhanced charge transport/extraction. Herein, we have analyzed the 1-D nanostructure effects of organometal halide perovskite (CH 3 NH 3 PbI 3- x Cl x ) on recombination and charge carrier dynamics by utilizing a nanoporous anodized alumina oxide scaffold to fabricate a vertically aligned 1-D nanopillared array with controllable diameters. It was observed that the 1-D perovskite exhibits faster charge transport/extraction characteristics, lower defect density, and lower bulk resistance than the planar counterpart. As the aspect ratio increases in the 1-D structures, in addition, the charge transport/extraction rate is enhanced and the resistance further decreases. However, when the aspect ratio reaches 6.67 (diameter ∼30 nm), the recombination rate is aggravated due to high interface-to-volume ratio-induced defect generation. To obtain the full benefits of 1-D perovskite nanostructuring, our study provides a design rule to choose the appropriate aspect ratio of 1-D perovskite structures for improved photovoltaic and other optoelectrical applications.

  17. Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Tsirlin, Alexander A; McCammon, Catherine; Dubrovinsky, Leonid; Hadermann, Joke

    2013-09-03

    Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites were investigated using the (Pb(1-z)Sr(z))(1-x)Fe(1+x)O(3-y) perovskites as a model system. The isovalent substitution of Sr(2+) for Pb(2+) highlights the influence of the A cation electronic structure because these cations exhibit very close ionic radii. Two compositional ranges have been identified in the system: 0.05 ≤ z ≤ 0.2, where the CS plane orientation gradually varies but stays close to (203)p, and 0.3 ≤ z ≤ 0.45 with (101)p CS planes. The incommensurately modulated structure of Pb0.792Sr0.168Fe1.040O2.529 was refined from neutron powder diffraction data using the (3 + 1)D approach (space group X2/m(α0γ), X = (1/2, 1/2, 1/2, 1/2), a = 3.9512(1) Å, b = 3.9483(1) Å, c = 3.9165(1) Å, β = 93.268(2)°, q = 0.0879(1)a* + 0.1276(1)c*, RF = 0.023, RP = 0.029, and T = 900 K). A comparison of the compounds with different CS planes indicates that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.

  18. The Effect of 24c-site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7-xLa3-xAxZr2O12 Garnet-Based Ceramic Electrolyte

    DTIC Science & Technology

    2012-12-27

    Another super-valent substitution scheme involves either Nb (5þ) or Ta (5þ) on the 16a site ( Zr 4þ), that reduces the Li content and/or increases Li...substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb $ Zr ¼ V0Li (4) Likewise, super-valent substitution on the 24c (La 3þ) is...Substitution of La with Ce stabilizes the cubic LLZO garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super

  19. Structural studies on the substitution of Ag, Na doped LCSMO CMR manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhashini, P., E-mail: subhashinisvu@gmail.com; Krishnaiah, M.; Munirathinam, B.

    2016-05-06

    Synthesis and characterization of colossal magnetoresistance (CMR) materials has been a subject of scientific research due to the unique transport, magnetotransport, and magnetic properties. The single phase polycrystalline La{sub 0.7}Ca{sub 0.1}Sr{sub 0.1}M{sub 0.1}MnO{sub 3} (LCSMO) (M=Ag and Na) samples prepared using nitrate route method. The structural properties are studied at different dopants by X-ray diffraction. The surface morphology and elemental analysis of both samples were carried out by scanning electron microscopy (SEM) and energy dispersive X-ray technique (EDAX) respectively. The structural analysis shows that the LCSMO is crystallized in an orthorhombic perovskite structure belonging to Pnma space group. The crystalmore » size of the sample is calculated using Scherrer formula. The SEM images show that the polycrystalline grains are observed to be near spherical shape and uniform in size. EDAX spectra taken from the surface of the synthesized powders show a nominal composition near the desired one for M=Na sample where as some vacancies are present in the A-site in the case of Ag substitution as will be discussed in this paper.« less

  20. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    NASA Astrophysics Data System (ADS)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  1. A polymer scaffold for self-healing perovskite solar cells

    PubMed Central

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  2. Random lasing actions in self-assembled perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  3. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  4. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  5. Synthesis and structural studies on cerium substituted La0.4Ca0.6MnO3 as solid oxide fuel cell electrode material

    NASA Astrophysics Data System (ADS)

    Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar

    2018-04-01

    For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.

  6. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  7. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less

  8. Globularity-Selected Large Molecules for a New Generation of Multication Perovskites.

    PubMed

    Gholipour, Somayeh; Ali, Abdollah Morteza; Correa-Baena, Juan-Pablo; Turren-Cruz, Silver-Hamill; Tajabadi, Fariba; Tress, Wolfgang; Taghavinia, Nima; Grätzel, Michael; Abate, Antonio; De Angelis, Filippo; Gaggioli, Carlo Alberto; Mosconi, Edoardo; Hagfeldt, Anders; Saliba, Michael

    2017-10-01

    Perovskite solar cells (PSCs) use perovskites with an APbX 3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA 0.5 EA 0.5 PbBr 3 , shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant.

    PubMed

    Salado, Manuel; Ramos, F Javier; Manzanares, Valentin M; Gao, Peng; Nazeeruddin, Mohammad Khaja; Dyson, Paul J; Ahmad, Shahzada

    2016-09-22

    The principle limitation of perovskite solar cells is related to their instability and, hence, their limited lifetime. Herein, we employ an imidazolium iodide dopant, 1-methyl-3-(1H,1H,2H,2H-nonafluorohexyl)-imidazolium iodide, containing a perfluorous appendage, which leads to prolonged (unencapsulated, under Ar atmosphere) device activities exceeding 100 days without compromising the power conversion efficiency and other photovoltaic parameters. The extended lifetime of the device can be attributed, at least in part, to the hydrophobic nature of the imidazolium iodide salt. The functionalization of the perovskite material was found to have negligible influence on the perovskite crystal structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  12. Semitransparent Fully Air Processed Perovskite Solar Cells.

    PubMed

    Bu, Lingling; Liu, Zonghao; Zhang, Meng; Li, Wenhui; Zhu, Aili; Cai, Fensha; Zhao, Zhixin; Zhou, Yinhua

    2015-08-19

    Semitransparent solar cells are highly attractive for application as power-generating windows. In this work, we present semitransparent perovskite solar cells that employ conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) film as the transparent counter electrode. The PSS electrode is prepared by transfer lamination technique using plastic wrap as the transfer medium. The use of the transfer lamination technique avoids the damage of the CH3NH3PbI3 perovskite film by direct contact of PSS aqueous solution. The semitransparent perovskite solar cells yield a power conversion efficiency of 10.1% at an area of about 0.06 cm(2) and 2.9% at an area of 1 cm(2). The device structure and the fabrication technique provide a facile way to produce semitransparent perovskite solar cells.

  13. Synthesis and applications of nanoporous perovskite metal oxides

    PubMed Central

    Huang, Xiubing; Zhao, Guixia

    2018-01-01

    Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity). Recently, nanoporous perovskite metal oxides have attracted extensive attention because of their special morphology and properties, as well as superior performance. This minireview aims at summarizing and reviewing the different synthesis methods of nanoporous perovskite metal oxides and their various applications comprehensively. The correlations between the nanoporous structures and the specific performance of perovskite oxides are summarized and highlighted. The future research directions of nanoporous perovskite metal oxides are also prospected. PMID:29862001

  14. Hole-Transport Materials for Perovskite Solar Cells.

    PubMed

    Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada

    2016-11-14

    The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Indari, E. D.; Wungu, T. D. K.; Hidayat, R.

    2017-07-01

    Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.

  16. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance.

    PubMed

    Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin

    2018-06-01

    All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  18. Phase Composition and Disorder in La2(Sn,Ti)2O7 Ceramics: New Insights from NMR Crystallography.

    PubMed

    Fernandes, Arantxa; McKay, David; Sneddon, Scott; Dawson, Daniel M; Lawson, Sebastian; Veazey, Richard; Whittle, Karl R; Ashbrook, Sharon E

    2016-09-15

    An NMR crystallographic approach, involving the combination of 119 Sn NMR spectroscopy, XRD, and DFT calculations, is demonstrated for the characterization of La 2 Sn 2- x Ti x O 7 ceramics. A phase change from pyrochlore (La 2 Sn 2 O 7 ) to a layered perovskite phase (La 2 Ti 2 O 7 ) is predicted (by radius ratio rules) to occur when x ≈ 0.95. However, the sensitivity of NMR spectroscopy to the local environment is able to reveal a significant two-phase region is present, extending from x = 1.8 to ∼0.2, with limited solid solution at the two extremes, in broad agreement with powder XRD measurements. DFT calculations reveal that there is preferential site substitution of Sn in La 2 Ti 2 O 7 , with calculated shifts for Sn substitution onto Ti1 and Ti2 sites (in the "bulk" perovskite layers) in better agreement with experiment than those for Ti3 and Ti4 ("edge" sites). Substitution onto these two sites also produces structural models with lower relative enthalpy. As the Sn content decreases, there is a further preference for substitution onto Sn2. In contrast, the relative intensities of the spectral resonances suggest that Ti substitution into the pyrochlore phase is random, although only a limited solid solution is observed (up to ∼7% Ti). DFT calculations predict very similar 119 Sn shifts for Sn substitution into the two proposed models of La 2 Ti 2 O 7 (monoclinic ( P 2 1 ) and orthorhombic ( Pna 2 1 )), indicating it is not possible to distinguish between them. However, the relative energy of the Sn-substituted orthorhombic phase was higher than that of substituted monoclinic cells, suggesting that the latter is the more likely structure.

  19. Evaluation of Different Oligonucleotide Base Substitutions at CpG Binding sites in Multiplex Bisulfite-PCR sequencing.

    PubMed

    Lu, Jennifer; Ru, Kelin; Candiloro, Ida; Dobrovic, Alexander; Korbie, Darren; Trau, Matt

    2017-03-22

    Multiplex bisulfite-PCR sequencing is a convenient and scalable method for the quantitative determination of the methylation state of target DNA regions. A challenge of this application is the presence of CpGs in the same region where primers are being placed. A common solution to the presence of CpGs within a primer-binding region is to substitute a base degeneracy at the cytosine position. However, the efficacy of different substitutions and the extent to which bias towards methylated or unmethylated templates may occur has never been evaluated in bisulfite multiplex sequencing applications. In response, we examined the performance of four different primer substitutions at the cytosine position of CpG's contained within the PCR primers. In this study, deoxyinosine-, 5-nitroindole-, mixed-base primers and primers with an abasic site were evaluated across a series of methylated controls. Primers that contained mixed- or deoxyinosine- base modifications performed most robustly. Mixed-base primers were further selected to determine the conditions that induce bias towards methylated templates. This identified an optimized set of conditions where the methylated state of bisulfite DNA templates can be accurately assessed using mixed-base primers, and expands the scope of bisulfite resequencing assays when working with challenging templates.

  20. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    PubMed

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  1. Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light-Emitting Diodes.

    PubMed

    Wang, Haoran; Li, Xiaomin; Yuan, Mingjian; Yang, Xuyong

    2018-04-01

    Despite the recent advances in the performance of perovskite light-emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high-performance PeLEDs. Here, the effects of postmoisture on the luminescent CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture-treated perovskite films, a high-performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A -1 , which is an almost 20-fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture-assisted growth of luminescent perovskite films and will aid in the development of high-performance perovskite light-emitting devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    PubMed

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI 2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH 3 NH 3 PbI 3 perovskite crystals and PbI 2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI 2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  3. Mixed-Halide Perovskites with Stabilized Bandgaps.

    PubMed

    Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P

    2017-11-08

    One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.

  4. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  5. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  7. Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashchenko, A. V., E-mail: alpash@mail.ru; Pashchenko, V. P.; Prokopenko, V. K.

    2017-01-15

    The structure, the structure imperfection, and the magnetoresistance, magnetotransport, and microstructure properties of rare-earth perovskite La{sub 0.3}Ln{sub 0.3}Sr{sub 0.3}Mn{sub 1.1}O{sub 3–δ} manganites are studied by X-ray diffraction, thermogravimetry, electrical resistivity measurement, magnetic, {sup 55}Mn NMR, magnetoresistance measurement, and scanning electron microscopy. It is found that the structure imperfection increases, and the symmetry of a rhombohedrally distorted R3̅c perovskite structure changes into its pseudocubic type during isovalent substitution for Ln = La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, or Eu{sup 3+} when the ionic radius of an A cation decreases. Defect molar formulas are determined for a real perovskite structure,more » which contains anion and cation vacancies. The decrease in the temperatures of the metal–semiconductor (T{sub ms}) and ferromagnet–paramagnet (T{sub C}) phase transitions and the increase in electrical resistivity ρ and activation energy E{sub a} with increasing serial number of Ln are caused by an increase in the concentration of vacancy point defects, which weaken the double exchange 3d{sup 4}(Mn{sup 3+})–2p{sup 6}(O{sup 2–})–3d{sup 3}(Mn{sup 4+})–V{sup (a)}–3d{sup 4}(Mn{sup 3+}). The crystal structure of the compositions with Ln = La contains nanostructured planar clusters, which induce an anomalous magnetic hysteresis at T = 77 K. Broad and asymmetric {sup 55}Mn NMR spectra support the high-frequency electronic double exchange Mn{sup 3+}(3d{sup 4}) ↔ O{sup 2–}(2p{sup 6}) ↔ Mn{sup 4+}(3d{sup 3}) and indicate a heterogeneous surrounding of manganese by other ions and vacancies. A correlation is revealed between the tunneling magnetoresistance effect and the crystallite size. A composition–structure imperfection–property experimental phase diagram is plotted. This diagram supports the conclusion about a strong influence of structure imperfection on the formation of the

  8. Structural and thermoelectric properties of n-type Sr1- x Ti x MnO3- δ perovskite system

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Seo, J. W.; Choi, S.-M.; Seo, W.-S.; Lee, S.; Lim, Y. S.; Park, K.

    2015-03-01

    A series of Sr1- x Ti x MnO3- δ (0.05 ≤ x ≤ 0.3) was fabricated by the solid-state reaction method. We studied the structural and thermoelectric properties of Sr1- x Ti x MnO3- δ , with respect to the partial substitution of Ti4+ for Sr2+. The sintered Sr1- x Ti x MnO3- δ crystallized in the hexagonal perovskite-type structure with a space group of P6 3 / mmc. For x ≤ 0.1, the partial substitution of Ti4+ for Sr2+ led to increases in the electrical conductivity and the absolute value of the Seebeck coefficient, thus enhancing the power factor. The highest power factor (2.5 × 10-5 Wm-1K-2) was obtained for Sr0.9Ti0.1MnO3- δ at 800°C. The partial substitution of Ti4+ for Sr2+ in SrMnO3- δ led to a significant improvement in the thermoelectric properties. [Figure not available: see fulltext.

  9. Vapor Grown Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Abdussamad Abbas, Hisham

    Perovskite solar cells has been the fastest growing solar cell material till date with verified efficiencies of over 22%. Most groups in the world focuses their research on solution based devices that has residual solvent in the material bulk. This work focuses extensively on the fabrication and properties of vapor based perovskite devices that is devoid of solvents. The initial part of my work focuses on the detailed fabrication of high efficiency consistent sequential vapor NIP devices made using P3HT as P-type Type II heterojunction. The sequential vapor devices experiences device anomalies like voltage evolution and IV hysteresis owing to charge trapping in TiO2. Hence, sequential PIN devices were fabricated using doped Type-II heterojunctions that had no device anomalies. The sequential PIN devices has processing restriction, as organic Type-II heterojunction materials cannot withstand high processing temperature, hence limiting device efficiency. Thereby bringing the need of co-evaporation for fabricating high efficiency consistent PIN devices, the approach has no-restriction on substrates and offers stoichiometric control. A comprehensive description of the fabrication, Co-evaporator setup and how to build it is described. The results of Co-evaporated devices clearly show that grain size, stoichiometry and doped transport layers are all critical for eliminating device anomalies and in fabricating high efficiency devices. Finally, Formamidinium based perovskite were fabricated using sequential approach. A thermal degradation study was conducted on Methyl Ammonium Vs. Formamidinium based perovskite films, Formamidinium based perovskites were found to be more stable. Lastly, inorganic films such as CdS and Nickel oxide were developed in this work.

  10. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.

    PubMed

    Chang, Ting-Hsiang; Kung, Chung-Wei; Chen, Hsin-Wei; Huang, Tzu-Yen; Kao, Sheng-Yuan; Lu, Hsin-Che; Lee, Min-Han; Boopathi, Karunakara Moorthy; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-11-25

    Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Density functional calculations of carbon substituting for Zr in barium zirconate

    NASA Astrophysics Data System (ADS)

    Al-Hadidi, Meaad; Goss, J. P.; Al-Ani, Oras A.; Briddon, P. R.; Rayson, M. J.

    2017-06-01

    Oxide perovskites such as BaZrO3 possess many significant properties which render them useful in many technological and scientific applications such as sensors, optoelectronics, laser frequency doubling and high capacity memory cells. Several methods are used to grow BaZrO3 crystal, and organic species that may be present during growth lead to carbon contamination. We have investigated, using density-functional theory, the role of carbon impurities on the structural, electrical and electronic properties of carbon substituting of Zr in cubic barium zirconate. The local vibrational modes of the defect centre has been calculated and we suggest it is a feasible route to experimental identification

  12. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  13. Rational Strategies for Efficient Perovskite Solar Cells.

    PubMed

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  14. Electrodeposition of organic-inorganic tri-halide perovskites solar cell

    NASA Astrophysics Data System (ADS)

    Charles, U. A.; Ibrahim, M. A.; Teridi, M. A. M.

    2018-02-01

    Perovskite (CH3NH3PbI3) semiconductor materials are promising high-performance light energy absorber for solar cell application. However, the power conversion efficiency of perovskite solar cell is severely affected by the surface quality of the deposited thin film. Spin coating is a low-cost and widely used deposition technique for perovskite solar cell. Notably, film deposited by spin coating evolves surface hydroxide and defeats from uncontrolled precipitation and inter-diffusion reaction. Alternatively, vapor deposition (VD) method produces uniform thin film but requires precise control of complex thermodynamic parameters which makes the technique unsuitable for large scale production. Most deposition techniques for perovskite require tedious surface optimization to improve the surface quality of deposits. Optimization of perovskite surface is necessary to significantly improve device structure and electrical output. In this review, electrodeposition of perovskite solar cell is demonstrated as a scalable and reproducible technique to fabricate uniform and smooth thin film surface that circumvents the need for high vacuum environment. Electrodeposition is achieved at low temperatures, supports precise control and optimization of deposits for efficient charge transfer.

  15. Improving the photovoltaic performance of perovskite solar cells with acetate

    PubMed Central

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  16. Improving the photovoltaic performance of perovskite solar cells with acetate.

    PubMed

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  17. Confining metal-halide perovskites in nanoporous thin films

    PubMed Central

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-01-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices. PMID:28798959

  18. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites.

    PubMed

    Chanana, Ashish; Liu, Xiaojie; Zhang, Chuang; Vardeny, Zeev Valy; Nahata, Ajay

    2018-05-01

    The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices.

  19. Hybrid Perovskites: Prospects for Concentrator Solar Cells

    PubMed Central

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J.; Johnston, Michael B.

    2018-01-01

    Abstract Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley–Queisser limit stipulated for a single‐junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge‐carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy‐conversion efficiencies under solar concentration, where they are able to exceed the Shockley–Queisser limit and exhibit strongly elevated open‐circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications. PMID:29721426

  20. Phase transformation of Ca-perovskite in MORB at D" region

    NASA Astrophysics Data System (ADS)

    Nishitani, N.; Ohtani, E.; Sakai, T.; Kamada, S.; Miyahara, M.; Hirao, N.

    2012-12-01

    Seismological studies indicate the presence of seismic anomalies in the Earth's deep interior. To investigate the anomaly, the physical property of the major minerals in lower mantle such as MgSiO3-perovskite, MgSiO3 post-perovskite and MgO periclase were studied well. Other candidate, CaSiO3 perovskite (Ca-perovskite) exists in peridotitic mantle and basaltic oceanic crust (mid-ocean ridge basalt; MORB). Previous studies indicate the abundance of Ca-perovskite is up to ~9 vol.% in the pyrolite mantle and ~24 vol.% in the MORB oceanic crust. However, the pressure range of previous works are still not enough to understand the D" region. In this study, natural MORB was compressed in double sided laser heated DAC. Au was used as a pressure maker and a laser absorber. NaCl was used as the thermal insulator and pressure medium. The phase relation of Ca-perovskite in MORB was investigated from 36 to 156 GPa and 300 to 2600 K by the in situ X-ray diffraction measurements at SPring-8 (BL10XU). The transition of Ca-perovskite from a tetragonal structure to a cubic structure occurred at about 1800 K up to about 100 GPa and below 1500 K at pressures above 100 GPa. This suggests that the tetragonal-cubic transition of Ca-perovskite could occur in MORB, associating with Al2O3 contents. The present results suggest that the seismic anomaly at D" layer could be caused by the transition in Ca-perovskite.

  1. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    PubMed

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  2. Synthesis of a polar ordered oxynitride perovskite

    NASA Astrophysics Data System (ADS)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.

    2017-06-01

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007), 10.1063/1.2776370] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O2N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O2N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.

  3. Synthesis of a polar ordered oxynitride perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007)] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O 2 N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O 2 N by using a combination of a diamond-anvil cell and inmore » situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.« less

  4. Optical Experiments With Manganese Doped Yttrium Orthoaluminate, a Potential Material for Holographic Recording and Data Storage

    NASA Technical Reports Server (NTRS)

    Warren, Matthew E.; Loutts, George

    1998-01-01

    The YAlO3 host crystal has a distorted perovskite structure that belongs to the orthorhombic centrosymmetric Pbnm space group. The cationic sites in the structure available for Mn substitution are the relatively large strongly distorted YO12 polyhedral (Y3+ ionic radius R(sub Y) = 1.02 A) and the smaller nearly ideal AlO6 octahedra R(sub Al) = 0.53 A). Manganese may enter YAlO3 in the form of Mn2+ ions (R(sub Mn)= 0.96 A), substituting most likely Y3+ ions, and Mn3+ ions (R(sub Mn) = 0.65 A) or Mn4+ ions (R(sub Mn) = 0.53 A) substituting Al3+ ions. The latter substitution is most probable because of dimensional parameters. Point defects, which are common in YAl03, may provide the charge compensation required for substitution.

  5. Laser Direct Write Synthesis of Lead Halide Perovskites

    DOE PAGES

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; ...

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less

  6. Laser Direct Write Synthesis of Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less

  7. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola; ...

    2018-04-30

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less

  8. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less

  9. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates

    NASA Astrophysics Data System (ADS)

    Baca, Alfred J.; Roberts, M. Joseph; Stenger-Smith, John; Baldwin, Lawrence

    2018-06-01

    Soft nanoimprinted titanium dioxide (TiO2) substrates decorated with methylammonium lead halide perovskite (MAPbI3) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI3 growth methods (1-step and 2-step processing). Both types of MAPbI3 crystals were fabricated on hydrophobic TiO2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 μm × 100 μm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

  10. Unusual Ferroelectricity in Two-Dimensional Perovskite Oxide Thin Films.

    PubMed

    Lu, Jinlian; Luo, Wei; Feng, Junsheng; Xiang, Hongjun

    2018-01-10

    Two-dimensional (2D) ferroelectricity have attracted much attention due to their applications in novel miniaturized devices such as nonvolatile memories, field effect transistors, and sensors. Since most of the commercial ferroelectric (FE) devices are based on ABO 3 perovskite oxides, it is important to investigate the properties of 2D ferroelectricity in perovskite oxide thin films. Here, based on density functional theory (DFT) calculations, we find that there exist three kinds of in-plane FE states that originate from different microscopic mechanisms: (i) a proper FE state with the polarization along [110] due to the second-order Jahn-Teller effect related to the B ion with empty d-orbitals; (ii) a robust FE state with the polarization along [100] induced by the surface effect; (iii) a hybrid improper FE state with the polarization along [110] that is induced by the trilinear coupling between two rotational modes and the A-site displacement. Interestingly, the ferroelectricity in the latter two cases becomes stronger along with decreasing the thin film thickness, in contrast to the usual behavior. Moreover, the latter two FE states are compatible with magnetism since their stability does not depend on the occupation of the d-orbitals of the B-ion. These two novel 2D FE mechanisms provide new avenues to design 2D multiferroics, as we demonstrated in SrVO and CaFeO thin film cases. Our work not only reveals new physical mechanisms of 2D ferroelectricity in perovskite oxide thin films but also provides a new route to design the high-performance 2D FE and multiferroics.

  11. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    PubMed

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  12. Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3-based ceramics

    NASA Astrophysics Data System (ADS)

    Amonpattaratkit, P.; Jantaratana, P.; Ananta, S.

    2015-09-01

    In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1-x)PFN-xPZT (x=0.1-0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO4 B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M-H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (Mmax), remanent polarization (Mr), and coercive field (HC).

  13. Scalable fabrication of perovskite solar cells

    DOE PAGES

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; ...

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discussmore » common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.« less

  14. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.

    PubMed

    Mei, Anyi; Li, Xiong; Liu, Linfeng; Ku, Zhiliang; Liu, Tongfa; Rong, Yaoguang; Xu, Mi; Hu, Min; Chen, Jiangzhao; Yang, Ying; Grätzel, Michael; Han, Hongwei

    2014-07-18

    We fabricated a perovskite solar cell that uses a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated with perovskite and does not require a hole-conducting layer. The perovskite was produced by drop-casting a solution of PbI2, methylammonium (MA) iodide, and 5-ammoniumvaleric acid (5-AVA) iodide through a porous carbon film. The 5-AVA templating created mixed-cation perovskite (5-AVA)x(MA)1- xPbI3 crystals with lower defect concentration and better pore filling as well as more complete contact with the TiO2 scaffold, resulting in a longer exciton lifetime and a higher quantum yield for photoinduced charge separation as compared to MAPbI3. The cell achieved a certified power conversion efficiency of 12.8% and was stable for >1000 hours in ambient air under full sunlight. Copyright © 2014, American Association for the Advancement of Science.

  15. Effect of size and site preference of trivalent non-magnetic metal ions (Al3+, Ga3+, In3+) substituted for Fe3+ on the magnetostrictive properties of sintered CoFe2O4

    NASA Astrophysics Data System (ADS)

    Anantharamaiah, P. N.; Joy, P. A.

    2017-11-01

    The influence of size and crystallographic site preference of three non-magnetic isovalent metal ions of larger (In3+), comparable (Ga3+) and smaller (Al3+) sizes, substituted for Fe3+ in the spinel lattice of CoFe2O4 on its magnetostrictive properties is compared. For the different compositions in CoFe2-x M x O4 (M  =  In3+, Ga3+, Al3+ and 0  ⩽  x  ⩽  0.3), significant changes in the structural and magnetic parameters are observed with the degree of substitution, due to the size and site preferences. Magnetic and Raman spectral studies revealed that Al3+ is substituted for Fe3+ at both octahedral and tetrahedral sites for all compositions, whereas In3+ and Ga3+ are substituted for Fe3+ at the tetrahedral site only for x  ⩽  0.2 and partly at the octahedral site for x  >  0.2. Regardless of the differences in the ionic size, site preference and the magnetic properties, compositions in all three series with x  =  0.1 showed almost equal magnitude of maximum magnetostriction (λ max  =  ~230 ppm), marginally higher than that of x  =  0 (217 ppm). However, at higher substituted compositions, λ max is decreased with x, but the decrease is much faster for the Al-substituted compositions. The maximum strain sensitivity, [dλ/dH]max, is also found to be comparable for all three compositions. The comparable magnetostriction characteristics and high strain at low magnetic fields for different substituted compositions at low levels of substitution are attributed to the local structural distortions associated with the inhomogeneous distribution of the substituted ions in the spinel ferrite lattice. The studies suggest ways to optimise the magnetostriction properties of properly substituted sintered cobalt ferrite for applications in sensors and actuators.

  16. Understanding perovskite formation through the intramolecular exchange method in ambient conditions

    NASA Astrophysics Data System (ADS)

    Szostak, Rodrigo; Castro, Jhon A. P.; Marques, Adriano S.; Nogueira, Ana F.

    2017-04-01

    Among the methods to prepare hybrid organic-inorganic perovskite films, the intramolecular exchange method was the first one that made possible to prepare perovskite solar cells with efficiencies higher than 20%. However, perovskite formation by this method is not completely understood, especially in ambient conditions. In this work, perovskite films were prepared by the intramolecular exchange method in ambient conditions. The spin coating speed and the frequency of the MAI solution dripping onto PbI2(DMSO) were varied during the deposition steps. With the combination of these two parameters, a rigid control of the solvent drying was possible. Thus, depending on the chosen conditions, the intermediate MAPb3I8·2DMSO was formed with residual PbI2. Otherwise, direct formation of perovskite film was attained. A mechanism for the direct formation of bulk perovskite was proposed. We also investigated how the posterior thermal annealing affects the crystallinity and defects in perovskite films. With prolonged thermal annealing, the excess of MAI can be avoided, increasing the efficiency and decreasing the hysteresis of the solar cells. The best perovskite solar cell achieved a stabilized power output of 12.9%. The findings of this work pave the way for realizing the fabrication of efficient perovskite solar cells in ambient atmosphere, a very desirable condition for cost-efficient large scale manufacturing of this technology.

  17. Canted ferrimagnetism and giant coercivity in the nonstoichiometric double perovskite L a2N i1.19O s0.81O6

    NASA Astrophysics Data System (ADS)

    Feng, Hai L.; Reehuis, Manfred; Adler, Peter; Hu, Zhiwei; Nicklas, Michael; Hoser, Andreas; Weng, Shih-Chang; Felser, Claudia; Jansen, Martin

    2018-05-01

    The nonstoichiometric double perovskite oxide L a2N i1.19O s0.81O6 was synthesized by solid-state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. L a2N i1.19O s0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2B B'O6 ) with space group P 21/n , where the B site is fully occupied by Ni and the B ' site by 19% Ni and 81% Os atoms. Using x-ray absorption spectroscopy an O s4.5 + oxidation state was established, suggesting the presence of about 50% paramagnetic O s5 + (5 d3 , S =3 /2 ) and 50% nonmagnetic O s4 + (5 d4 , Jeff=0 ) ions at the B ' sites. Magnetization and neutron diffraction measurements on L a2N i1.19O s0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear N i2 + -spin chains extending along the c axis but a noncollinear spin alignment within the a b plane. The magnetization curve of L a2N i1.19O s0.81O6 features a hysteresis with a very high coercive field, HC=41 kOe , at T =5 K , which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder. Our results are encouraging to search for rare-earth-free hard magnets in the class of double perovskite oxides.

  18. A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics.

    PubMed

    Ahmadi, Mahshid; Wu, Ting; Hu, Bin

    2017-11-01

    The last eight years (2009-2017) have seen an explosive growth of interest in organic-inorganic halide perovskites in the research communities of photovoltaics and light-emitting diodes. In addition, recent advancements have demonstrated that this type of perovskite has a great potential in the technology of light-signal detection with a comparable performance to commercially available crystalline Si and III-V photodetectors. The contemporary growth of state-of-the-art multifunctional perovskites in the field of light-signal detection has benefited from its outstanding intrinsic optoelectronic properties, including photoinduced polarization, high drift mobilities, and effective charge collection, which are excellent for this application. Photoactive perovskite semiconductors combine effective light absorption, allowing detection of a wide range of electromagnetic waves from ultraviolet and visible, to the near-infrared region, with low-cost solution processability and good photon yield. This class of semiconductor might empower breakthrough photodetector technology in the field of imaging, optical communications, and biomedical sensing. Therefore, here, the focus is specifically on the critical understanding of materials synthesis, design, and engineering for the next-stage development of perovskite photodetectors and highlighting the current challenges in the field, which need to be further studied in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Perovskite nanocrystals: across-dimensional attachment, film-scale assembly on a flexible substrate and their fluorescence properties

    NASA Astrophysics Data System (ADS)

    Huang, Wenyi; Liu, Jiajia; Bai, Bing; Huang, Liu; Xu, Meng; Liu, Jia; Rong, Hongpan; Zhang, Jiatao

    2018-03-01

    Perovskite nanocrystals (NCs), which are a good fluorescence candidate with excellent photoelectric properties, have opened new avenues in the fabrication of highly efficient solar cells, light-emitting diodes (LEDs), and other optoelectronic devices. Further advances will rely on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional (3D) perovskites with architectural innovations. In this work, the perovskite film was fabricated on a flexible substrate using simple dip-coating technology and 3D assemblies of perovskite NCs were obtained through an attachment process. Original perovskite NCs had a rectangular or square morphology with high particle uniformity and the narrow and symmetric fluorescence emission peak was adjustable at 515-527 nm. The controllable self-assembly of the micron size cuboid-like 3D assembly had an apparent enhancement on peak (111) in the x-ray diffraction (XRD) pattern. Surface ligands not only play a role in the attachment process but also keep the independence of each NC in 3D assemblies. Such assembly of the perovskite film maintained the original perovskite NCs fluorescence emission peak and narrow full width at the half-maximum (FWHM), which is of great importance for the investigation of future devices.

  20. Research progress on organic-inorganic halide perovskite materials and solar cells

    NASA Astrophysics Data System (ADS)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  1. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  2. Polarized emission from CsPbX3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption.Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01915c

  3. A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Feng, Yulin; Bian, Jiming; Liu, Hongzhu; Shi, Yantao

    2018-01-01

    The mesoscopic perovskite solar cells (M-PSCs) were synthesized with MAPbI3 perovskite layers as light harvesters, which were grown with one-step and two-step solution process, respectively. A comparative study was performed through the quantitative correlation of resulting device performance and the crystalline quality of perovskite layers. Comparing with the one-step counterpart, a pronounced improvement in the steady-state power conversion efficiencies (PCEs) by 56.86% was achieved with two-step process, which was mainly resulted from the significant enhancement in fill factor (FF) from 48% to 77% without sacrificing the open circuit voltage (Voc) and short circuit current (Jsc). The enhanced FF was attributed to the reduced non-radiative recombination channels due to the better crystalline quality and larger grain size with the two-step processed perovskite layer. Moreover, the superiority of two-step over one-step process was demonstrated with rather good reproducibility.

  4. Novel growth techniques for the deposition of high-quality perovskite thin films

    NASA Astrophysics Data System (ADS)

    Ng, Annie; Ren, Zhiwei; Li, Gang; Djurišić, Aleksandra B.; Surya, Charles

    2018-02-01

    We present investigations on the growth of high quality CH3NH3PbI3 (MAPI) thin films using both vapor and solution techniques. Recent work on perovskite film growth indicates critical dependencies of the film quality on the nucleation and crystallization steps requiring: i.) uniform distribution of nucleation sites; and ii.) optimal crystallization rate that facilitates the growth of a compact, continuous film with low density of pinholes. Our work shows that the hybrid chemical vapor deposition technique (HCVD) technique is well suited for the deposition of evenly distributed nucleation sites and the optimization of the crystallization rate of the film through detailed monitoring of the thermal profile of the growth process. Signficant reduction in the defect states is recorded by annealing the perovskite films in O2. The results are consistent with theoretical studies by Yin et al. 1 on O and Cl passivation of the shallow states at the grain boundary of MAPI. Their work provides the theoretical basis for our experimental observations on the passivation of shallow states by oxygen annealing. High quality films were achieved through detailed management of the carrier gas composition and the thermal profile of the nucleation and crystallization steps.

  5. Reconditioning perovskite films in vapor environments through repeated cation doping

    NASA Astrophysics Data System (ADS)

    Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn

    2018-06-01

    Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.

  6. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    NASA Astrophysics Data System (ADS)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage

  7. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites

    PubMed Central

    Chanana, Ashish; Liu, Xiaojie; Vardeny, Zeev Valy

    2018-01-01

    The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices. PMID:29736416

  8. Bond length (Ti-O) dependence of nano ATO3-based (A = Pb, Ba, Sr) perovskite structures: Optical investigation in IR range

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Okay, Cengiz

    2018-01-01

    In the current study, ABO3 (A = Pb, Ba, Sr and B = Ti) perovskite structures are produced by the auto-combustion route by using citric acid (CA) and nitric acid (NA) as fuel and oxidizer. The X-ray diffraction (XRD) patterns confirmed the perovskite nanostructure with cubic, tetragonal, and rhombohedral for SrTiO3, PbTiO3, and BaTiO3, respectively. Using Scherrer’s equation and XRD pattern, the average crystallite size of the samples were acquired. The effect of Ti-O bond length on the structure of the samples was evaluated. The type of structures obtained depends on Ti-O bond length which is in turn influenced by A2+ substitutions. Microstructural studies of nanostructures calcined at 850∘C confirmed the formation of polyhedral particles with a narrow size distribution. The values of optical band gaps were measured and the impact of A2+ was discussed. The optical properties such as the complex refractive index and dielectric function were calculated by IR spectroscopy and Kramers-Kronig (K-K) relations. Lead, as the element with the highest density as compared to other elements, changes the optical constants, remarkably due to altering titanium and oxygen distance in TO6 groups.

  9. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  10. Insights into the structure–photoreactivity relationships in well-defined perovskite ferroelectric KNbO 3 nanowires

    DOE PAGES

    Zhang, Tingting; Lei, Wanying; Liu, Ping; ...

    2015-04-23

    Structure–function correlations are a central theme in heterogeneous (photo)catalysis. In this study, the geometric and electronic structure of perovskite ferroelectric KNbO 3 nanowires with respective orthorhombic and monoclinic polymorphs have been systematically addressed. By virtue of aberration-corrected scanning transmission electron microscopy, we directly visualize surface photocatalytic active sites, measure local atomic displacements at an accuracy of several picometers, and quantify ferroelectric polarization combined with first-principles calculations. The photoreactivity of the as-prepared KNbO 3 nanowires is assessed toward aqueous rhodamine B degradation under UV light. A synergy between the ferroelectric polarization and electronic structure in photoreactivity enhancement is uncovered, which accountsmore » for the prominent reactivity order: orthorhombic > monoclinic. Additionally, by identifying new photocatalytic products, rhodamine B degradation pathways involving N-deethylation and conjugated structure cleavage are proposed. The findings not only provide new insights into the structure–photoreactivity relationships in perovskite ferroelectric photocatalysts, but also have broad implications in perovskite-based water splitting and photovoltaics, among others.« less

  11. A lead-halide perovskite molecular ferroelectric semiconductor

    PubMed Central

    Liao, Wei-Qiang; Zhang, Yi; Hu, Chun-Li; Mao, Jiang-Gao; Ye, Heng-Yun; Li, Peng-Fei; Huang, Songping D.; Xiong, Ren-Gen

    2015-01-01

    Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm−2 and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics. PMID:26021758

  12. Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

    PubMed

    Lignos, Ioannis; Morad, Viktoriia; Shynkarenko, Yevhen; Bernasconi, Caterina; Maceiczyk, Richard M; Protesescu, Loredana; Bertolotti, Federica; Kumar, Sudhir; Ochsenbein, Stefan T; Masciocchi, Norberto; Guagliardi, Antonietta; Shih, Chih-Jen; Bodnarchuk, Maryna I; deMello, Andrew J; Kovalenko, Maksym V

    2018-05-22

    Hybrid organic-inorganic and fully inorganic lead halide perovskite nanocrystals (NCs) have recently emerged as versatile solution-processable light-emitting and light-harvesting optoelectronic materials. A particularly difficult challenge lies in warranting the practical utility of such semiconductor NCs in the red and infrared spectral regions. In this context, all three archetypal A-site monocationic perovskites-CH 3 NH 3 PbI 3 , CH(NH 2 ) 2 PbI 3 , and CsPbI 3 -suffer from either chemical or thermodynamic instabilities in their bulk form. A promising approach toward the mitigation of these challenges lies in the formation of multinary compositions (mixed cation and mixed anion). In the case of multinary colloidal NCs, such as quinary Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs, the outcome of the synthesis is defined by a complex interplay between the bulk thermodynamics of the solid solutions, crystal surface energies, energetics, dynamics of capping ligands, and the multiple effects of the reagents in solution. Accordingly, the rational synthesis of such NCs is a formidable challenge. Herein, we show that droplet-based microfluidics can successfully tackle this problem and synthesize Cs x FA 1- x PbI 3 and Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs in both a time- and cost-efficient manner. Rapid in situ photoluminescence and absorption measurements allow for thorough parametric screening, thereby permitting precise optical engineering of these NCs. In this showcase study, we fine-tune the photoluminescence maxima of such multinary NCs between 700 and 800 nm, minimize their emission line widths (to below 40 nm), and maximize their photoluminescence quantum efficiencies (up to 89%) and phase/chemical stabilities. Detailed structural analysis revealed that the Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs adopt a cubic perovskite structure of FAPbI 3 , with iodide anions partially substituted by bromide ions. Most importantly, we demonstrate the excellent transference of reaction

  13. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates.

    PubMed

    Baca, Alfred J; Roberts, M Joseph; Stenger-Smith, John; Baldwin, Lawrence

    2018-06-22

    Soft nanoimprinted titanium dioxide (TiO 2 ) substrates decorated with methylammonium lead halide perovskite (MAPbI 3 ) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO 2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI 3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI 3 growth methods (1-step and 2-step processing). Both types of MAPbI 3 crystals were fabricated on hydrophobic TiO 2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 μm × 100 μm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI 3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

  14. Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution

    NASA Astrophysics Data System (ADS)

    Kovalevsky, A. V.; Yaremchenko, A. A.; Populoh, S.; Weidenkaff, A.; Frade, J. R.

    2013-02-01

    In order to identify the effects of Pr additions on thermoelectric properties of strontium titanate, crystal structure, electrical and thermal conductivity, and Seebeck coefficient of Sr1-xPrxTiO3 (x = 0.02-0.30) materials were studied at 400 < T < 1180 K under highly reducing atmosphere. The mechanism of electronic transport was found to be similar up to 10% of praseodymium content, where generation of the charge carriers upon substitution resulted in significant increase of the electrical conductivity, moderate decrease in Seebeck coefficient, and general improvement of the power factor. Formation of point defects in the course of substitution led to suppression of the lattice thermal conductivity, whilst the contribution from electronic component was increasing with carrier concentration. Possible formation of layered structures and growing distortion of the perovskite lattice resulted in relatively low thermoelectric performance for Sr0.80Pr0.20TiO3 and Sr0.70Pr0.30TiO3. The maximum dimensionless figure of merit was observed for Sr0.90Pr0.10TiO3 and amounted to ˜0.23 at 670 K and ˜0.34 at 1170 K, close to the values, obtained in similar conditions for the best bulk thermoelectrics, based on rare-earth substituted SrTiO3.

  15. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    PubMed

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  16. Perovskite Solar Cell Stability Workshop: Quick Look Report

    DTIC Science & Technology

    2016-08-12

    Commercialization of Perovskite PV – Markets, Concerns, Opportunities” by Dirk Weiss, First Solar , USA j. “Expectations for PV Product Testing Today” by Sarah...Perovskite Solar Cell Stability Workshop Quick-Look Report Held by the Office of Naval Research at University...Workshop Summary, 11-12 Aug 2016 4. TITLE AND SUBTITLE Perovskite Solar Cell Stability Workshop: Quick-Look Report 5. FUNDING NUMBERS 6. AUTHOR(S

  17. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  18. Giant ferrimagnetism and polarization in a mixed metal perovskite metal-organic framework

    NASA Astrophysics Data System (ADS)

    Rout, Paresh C.; Srinivasan, Varadharajan

    2018-01-01

    Perovskite metal-organic frameworks (MOFs) have recently emerged as potential candidates for multiferroicity. However, the compounds synthesized so far possess only weak ferromagnetism and low polarization. Additionally, the very low magnetic transition temperatures (Tc) also pose a challenge to the application of the materials. We have computationally designed a mixed metal perovskite MOF—[C(NH2)3] [(Cu0.5Mn0.5) (HCOO) 3] —that is predicted to have magnetization two orders of magnitude larger than its parent ([C (NH2)3] [Cu (HCOO) 3] ), a significantly larger polarization (9.9 μ C /cm2), and an enhanced Tc of up to 56 K, unprecedented in perovskite MOFs. A detailed study of the magnetic interactions revealed a mechanism leading to the large moments as well as the increase in the Tc. Mixing a non-Jahn-Teller ion (Mn2 +) into a Jahn-Teller host (Cu2 +) leads to competing lattice distortions which are directly responsible for the enhanced polarization. The MOF is thermodynamically stable as evidenced by the computed enthalpy of formation and can likely be synthesized. Our work represents a first step towards rational design of multiferroic perovskite MOFs through the largely unexplored mixed metal approach.

  19. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Hou, Yi; Du, Xiaoyan; Scheiner, Simon; McMeekin, David P.; Wang, Zhiping; Li, Ning; Killian, Manuela S.; Chen, Haiwei; Richter, Moses; Levchuk, Ievgen; Schrenker, Nadine; Spiecker, Erdmann; Stubhan, Tobias; Luechinger, Norman A.; Hirsch, Andreas; Schmuki, Patrik; Steinrück, Hans-Peter; Fink, Rainer H.; Halik, Marcus; Snaith, Henry J.; Brabec, Christoph J.

    2017-12-01

    A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WOx)/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WOx-doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.

  20. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction,more » UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.« less

  1. Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application.

    PubMed

    Ma, Yongchao; Liu, Yanliang; Shin, Insoo; Hwang, In-Wook; Jung, Yun Kyung; Jeong, Jung Hyun; Park, Sung Heum; Kim, Kwang Ho

    2017-10-04

    The fundamental mechanism of grain growth evolution in the fabrication process from the precursor phase to the perovskite phase is not fully understood despite its importance in achieving high-quality grains in organic-inorganic hybrid perovskites, which are strongly affected by processing parameters. In this work, we investigate the fundamental conversion mechanism from the precursor phase of perovskite to the complete perovskite phase and how the intermediate phase promotes growth of the perovskite grains during the fabrication process. By monitoring the morphological evolution of the perovskite during the film fabrication process, we observed a clear rod-shaped intermediate phase in the highly crystalline perovskite and investigated the role of the nanorod intermediate phase on the growth of the grains of the perovskite film. Furthermore, on the basis of these findings, we developed a simple and effective method to tailor grain properties including the crystallinity, size, and number of grain boundaries, and then utilized the film with the tailored grains to develop perovskite solar cells.

  2. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  3. Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets.

    PubMed

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m <110>-oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  4. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  5. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    NASA Astrophysics Data System (ADS)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  6. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Local Time-Dependent Charging in a Perovskite Solar Cell.

    PubMed

    Bergmann, Victor W; Guo, Yunlong; Tanaka, Hideyuki; Hermes, Ilka M; Li, Dan; Klasen, Alexander; Bretschneider, Simon A; Nakamura, Eiichi; Berger, Rüdiger; Weber, Stefan A L

    2016-08-03

    Efficient charge extraction within solar cells explicitly depends on the optimization of the internal interfaces. Potential barriers, unbalanced charge extraction, and interfacial trap states can prevent cells from reaching high power conversion efficiencies. In the case of perovskite solar cells, slow processes happening on time scales of seconds cause hysteresis in the current-voltage characteristics. In this work, we localized and investigated these slow processes using frequency-modulation Kelvin probe force microscopy (FM-KPFM) on cross sections of planar methylammonium lead iodide (MAPI) perovskite solar cells. FM-KPFM can map the charge density distribution and its dynamics at internal interfaces. Upon illumination, space charge layers formed at the interfaces of the selective contacts with the MAPI layer within several seconds. We observed distinct differences in the charging dynamics at the interfaces of MAPI with adjacent layers. Our results indicate that more than one process is involved in hysteresis. This finding is in agreement with recent simulation studies claiming that a combination of ion migration and interfacial trap states causes the hysteresis in perovskite solar cells. Such differences in the charging rates at different interfaces cannot be separated by conventional device measurements.

  8. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    PubMed Central

    Tavakoli, Mohammad Mahdi; Gu, Leilei; Gao, Yuan; Reckmeier, Claas; He, Jin; Rogach, Andrey L.; Yao, Yan; Fan, Zhiyong

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency. PMID:26392200

  9. Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?

    PubMed Central

    2016-01-01

    The methylammonium lead halides have become champion photoactive semiconductors for solar cell applications; however, issues still remain with respect to chemical instability and potential toxicity. Recently, the Cs2AgBiX6 (X = Cl, Br) double perovskite family has been synthesized and investigated as stable nontoxic replacements. We probe the chemical bonding, physical properties, and cation anti-site disorder of Cs2AgBiX6 and related compounds from first-principles. We demonstrate that the combination of Ag(I) and Bi(III) leads to the wide indirect band gaps with large carrier effective masses owing to a mismatch in angular momentum of the frontier atomic orbitals. The spectroscopically limited photovoltaic conversion efficiency is less than 10% for X = Cl or Br. This limitation can be overcome by replacing Ag with In or Tl; however, the resulting compounds are predicted to be unstable thermodynamically. The search for nontoxic bismuth perovskites must expand beyond the Cs2AgBiX6 motif. PMID:28066823

  10. Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?

    PubMed

    Savory, Christopher N; Walsh, Aron; Scanlon, David O

    2016-11-11

    The methylammonium lead halides have become champion photoactive semiconductors for solar cell applications; however, issues still remain with respect to chemical instability and potential toxicity. Recently, the Cs 2 AgBiX 6 (X = Cl, Br) double perovskite family has been synthesized and investigated as stable nontoxic replacements. We probe the chemical bonding, physical properties, and cation anti-site disorder of Cs 2 AgBiX 6 and related compounds from first-principles. We demonstrate that the combination of Ag(I) and Bi(III) leads to the wide indirect band gaps with large carrier effective masses owing to a mismatch in angular momentum of the frontier atomic orbitals. The spectroscopically limited photovoltaic conversion efficiency is less than 10% for X = Cl or Br. This limitation can be overcome by replacing Ag with In or Tl; however, the resulting compounds are predicted to be unstable thermodynamically. The search for nontoxic bismuth perovskites must expand beyond the Cs 2 AgBiX 6 motif.

  11. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  12. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells.

    PubMed

    Sewvandi, Galhenage A; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-29

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  13. Temperature Gradient-Induced Instability of Perovskite via Ion Transport.

    PubMed

    Wang, Xinwei; Liu, Hong; Zhou, Feng; Dahan, Jeremy; Wang, Xin; Li, Zhengping; Shen, Wenzhong

    2018-01-10

    Perovskite has been known as a promising novel material for photovoltaics and other fields because of its excellent opto-electric properties and convenient fabrication. However, its stability has been a widely known haunting factor that has severely deteriorated its application in reality. In this work, it has been discovered for the first time that perovskite can become significantly chemically unstable with the existence of a temperature gradient in the system, even at temperature far below its thermal decomposition condition. A study of the detailed mechanism has revealed that the existence of a temperature gradient could induce a mass transport process of extrinsic ionic species into the perovskite layer, which enhances its decomposition process. Moreover, this instability could be effectively suppressed with a reduced temperature gradient by simple structural modification of the device. Further experiments have proved the existence of this phenomenon in different perovskites with various mainstream substrates, indicating the universality of this phenomenon in many previous studies and future research. Hopefully, this work may bring deeper understanding of its formation mechanisms and facilitate the general development of perovskite toward its real application.

  14. Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.

    PubMed

    Kao, Tsung Sheng; Chou, Yu-Hsun; Hong, Kuo-Bin; Huang, Jiong-Fu; Chou, Chun-Hsien; Kuo, Hao-Chung; Chen, Fang-Chung; Lu, Tien-Chang

    2016-11-03

    Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequential deposition process, thus achieving the feasible tunability of excitonic properties and lasing performance in hybrid metal-halide perovskites. The lasing threshold is at around 230 μJ cm -2 in this solution-processed organic-inorganic lead-halide material, which is comparable to the colloidal quantum dot lasers. The efficient stimulated emission originates from the multiple random scattering provided by the micro-meter scale rugged morphology and polycrystalline grain boundaries. Thus the excitonic properties in perovskites exhibit high correlation with the formed morphology of the perovskite nanocrystals. Compared to the conventional lasers normally serving as a coherent light source, the perovskite random lasers are promising in making low-cost thin-film lasing devices for flexible and speckle-free imaging applications.

  15. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    NASA Astrophysics Data System (ADS)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  16. Metal-halide perovskites for photovoltaic and light-emitting devices.

    PubMed

    Stranks, Samuel D; Snaith, Henry J

    2015-05-01

    Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

  17. Structure, magnetism and electronic properties in 3d-5d based double perovskite ({Sr_{1-x}} Y x )2FeIrO6

    NASA Astrophysics Data System (ADS)

    Kharkwal, K. C.; Pramanik, A. K.

    2017-12-01

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr1-x Y x )2FeIrO6 with x ≤slant 0.2 . With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr2FeIrO6 show antiferromagnetic type magnetic transition around 45 K however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr2FeIrO6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott’s variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr1-x Y x )2FeIrO6 is observed to reverse with x > 0.1 , which is believed to arise due to a change in the transition metal ionic state.

  18. Structure, magnetism and electronic properties in 3d-5d based double perovskite ([Formula: see text]Y x )2FeIrO6.

    PubMed

    Kharkwal, K C; Pramanik, A K

    2017-11-13

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material ([Formula: see text]Y x ) 2 FeIrO 6 with [Formula: see text]. With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr 2 FeIrO 6 show antiferromagnetic type magnetic transition around 45 K; however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr 2 FeIrO 6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott's variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in ([Formula: see text]Y x ) 2 FeIrO 6 is observed to reverse with [Formula: see text], which is believed to arise due to a change in the transition metal ionic state.

  19. On the likelihood of post-perovskite near the core-mantle boundary: A statistical interpretation of seismic observations

    NASA Astrophysics Data System (ADS)

    Cobden, Laura; Mosca, Ilaria; Trampert, Jeannot; Ritsema, Jeroen

    2012-11-01

    Recent experimental studies indicate that perovskite, the dominant lower mantle mineral, undergoes a phase change to post-perovskite at high pressures. However, it has been unclear whether this transition occurs within the Earth's mantle, due to uncertainties in both the thermochemical state of the lowermost mantle and the pressure-temperature conditions of the phase boundary. In this study we compare the relative fit to global seismic data of mantle models which do and do not contain post-perovskite, following a statistical approach. Our data comprise more than 10,000 Pdiff and Sdiff travel-times, global in coverage, from which we extract the global distributions of dln VS and dln VP near the core-mantle boundary (CMB). These distributions are sensitive to the underlying lateral variations in mineralogy and temperature even after seismic uncertainties are taken into account, and are ideally suited for investigating the likelihood of the presence of post-perovskite. A post-perovskite-bearing CMB region provides a significantly closer fit to the seismic data than a post-perovskite-free CMB region on both a global and regional scale. These results complement previous local seismic reflection studies, which have shown a consistency between seismic observations and the physical properties of post-perovskite inside the deep Earth.

  20. The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials

    NASA Astrophysics Data System (ADS)

    Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.

    2017-11-01

    Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1-x RE x SnO3 (RE  =  La and Sr) materials with x  =  0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1-x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1-x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.

  1. Method for single crystal growth of photovoltaic perovskite material and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  2. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    NASA Astrophysics Data System (ADS)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  3. Determination of the structural phase and octahedral rotation angle in halide perovskites

    NASA Astrophysics Data System (ADS)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  4. Determination of the structural phase and octahedral rotation angle in halide perovskites

    DOE PAGES

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...

    2018-02-12

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less

  5. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx.

    PubMed

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2014-04-17

    The organic-inorganic hybrid perovskites methylammonium lead iodide (CH3NH3PbI3) and the partially chlorine-substituted mixed halide CH3NH3PbI3-xClx emit strong and broad photoluminescence (PL) around their band gap energy of ∼1.6 eV. However, the nature of the radiative decay channels behind the observed emission and, in particular, the spectral broadening mechanisms are still unclear. Here we investigate these processes for high-quality vapor-deposited films of CH3NH3PbI3-xClx using time- and excitation-energy dependent photoluminescence spectroscopy. We show that the PL spectrum is homogenously broadened with a line width of 103 meV most likely as a consequence of phonon coupling effects. Further analysis reveals that defects or trap states play a minor role in radiative decay channels. In terms of possible lasing applications, the emission spectrum of the perovskite is sufficiently broad to have potential for amplification of light pulses below 100 fs pulse duration.

  6. Sn2+-Stabilization in MASnI3 perovskites by superhalide incorporation.

    PubMed

    Xiang, Junxiang; Wang, Kan; Xiang, Bin; Cui, Xudong

    2018-03-28

    Sn-based hybrid halide perovskites are a potential solution to replace Pb and thereby reduce Pb toxicity in MAPbI 3 perovskite-based solar cells. However, the instability of Sn 2+ in air atmosphere causes a poor reproducibility of MASnI 3 , hindering steps towards this goal. In this paper, we propose a new type of organic metal-superhalide perovskite of MASnI 2 BH 4 and MASnI 2 AlH 4 . Through first-principles calculations, our results reveal that the incorporation of BH 4 and AlH 4 superhalides can realize an impressive enhancement of oxidation resistance of Sn 2+ in MASnI 3 perovskites because of the large electron transfer between Sn 2+ and [BH 4 ] - /[AlH 4 ] - . Meanwhile, the high carrier mobility is preserved in these superhalide perovskites and only a slight decrease is observed in the optical absorption strength. Our studies provide a new path to attain highly stable performance and reproducibility of Sn-based perovskite solar cells.

  7. Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals.

    PubMed

    Parobek, David; Roman, Benjamin J; Dong, Yitong; Jin, Ho; Lee, Elbert; Sheldon, Matthew; Son, Dong Hee

    2016-12-14

    We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX 3 ) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence. Mn-doped CsPbCl 3 and CsPb(Cl/Br) 3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼0.2% doping concentrations and no signature of phase separation. The strong sensitized luminescence from d-d transition of Mn 2+ ions upon band-edge excitation of the CsPbX 3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots. Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX 3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn 2+ in host CsPbX 3 nanocrystal lattices suggest relatively uniform doping sites, likely from substitutional doping at Pb 2+ . These observations indicate that CsPbX 3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.

  8. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    PubMed

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating.

    PubMed

    Jiang, Youyu; Luo, Bangwu; Jiang, Fangyuan; Jiang, Fuben; Fuentes-Hernandez, Canek; Liu, Tiefeng; Mao, Lin; Xiong, Sixing; Li, Zaifang; Wang, Tao; Kippelen, Bernard; Zhou, Yinhua

    2016-12-14

    Organometal halide perovskites have shown excellent optoelectronic properties and have been used to demonstrate a variety of semiconductor devices. Colorful solar cells are desirable for photovoltaic integration in buildings and other aesthetically appealing applications. However, the realization of colorful perovskite solar cells is challenging because of their broad and large absorption coefficient that commonly leads to cells with dark-brown colors. Herein, for the first time, we report a simple and efficient strategy to achieve colorful perovskite solar cells by using the transparent conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) as a top electrode and simultaneously as an spectrally selective antireflection coating. Vivid colors across the visible spectrum are attained by engineering optical interference effects among the transparent PEDOT:PSS polymer electrode, the hole-transporting layer and the perovskite layer. The colored perovskite solar cells display power conversion efficiency values from 12.8 to 15.1% (from red to blue) when illuminated from the FTO glass side and from 11.6 to 13.8% (from red to blue) when illuminated from the PEDOT:PSS side. The new approach provides an advanced solution for fabricating colorful perovskite solar cells with easy processing and high efficiency.

  10. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.

    PubMed

    Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong

    2017-07-01

    Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (V OC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of V OC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger V OC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced V OC by 60 mV, reduced V OC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome.

    PubMed

    Morton, B R; Oberholzer, V M; Clegg, M T

    1997-09-01

    Substitutions occurring in noncoding sequences of the plant chloroplast genome violate the independence of sites that is assumed by substitution models in molecular evolution. The probability that a substitution at a site is a transversion, as opposed to a transition, increases significantly with increasing A + T content of the two adjacent nucleotides. In the present study, this dependency of substitutions on local context is examined further in a number of noncoding regions from the chloroplast genome of members of the grass family (Poaceae). Two features were examined; the influence of specific neighboring bases, as opposed to the general A + T content, on transversion proportion and an influence on substitutions by nucleotides other than the two immediately adjacent to the site of substitution. In both cases, a significant effect was found. In the case of specific nucleotides, transversion proportion is significantly higher at sites with a pyrimidine immediately 5' on either strand. Substitutions at sites of the type YNR, where N is the site of substitution, have the highest rate of transversion. This specific effect is secondary to the A + T content effect such that, in terms of proportion of substitutions that are transversions, the nucleotides are ranked T > A > C > G as to their effect when they are immediately 5' to the site of substitution. In the case of nucleotides other than the immediate neighbors, a significant influence on substitution dynamics is observed in the case where the two neighboring bases are both A and/or T. Thus, substitutions are primarily, but not exclusively, influenced by the composition of the two nucleotides that are immediately adjacent. These results indicate that the pattern of molecular evolution of the plant chloroplast genome is extremely complex as a result of a variety of inter-site dependencies.

  12. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates.

    PubMed

    Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E

    2008-05-20

    The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.

  13. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates

    PubMed Central

    Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.

    2008-01-01

    The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262

  14. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence

    PubMed Central

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei

    2017-01-01

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence. PMID:28239146

  15. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence.

    PubMed

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K L; Sum, Tze Chien; Huang, Wei

    2017-02-27

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10 15  cm -3 , defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.

  16. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells.

    PubMed

    Zuo, Lijian; Chen, Qi; De Marco, Nicholas; Hsieh, Yao-Tsung; Chen, Huajun; Sun, Pengyu; Chang, Sheng-Yung; Zhao, Hongxiang; Dong, Shiqi; Yang, Yang

    2017-01-11

    The ionic nature of perovskite photovoltaic materials makes it easy to form various chemical interactions with different functional groups. Here, we demonstrate that interfacial chemical interactions are a critical factor in determining the optoelectronic properties of perovskite solar cells. By depositing different self-assembled monolayers (SAMs), we introduce different functional groups onto the SnO 2 surface to form various chemical interactions with the perovskite layer. It is observed that the perovskite solar cell device performance shows an opposite trend to that of the energy level alignment theory, which shows that chemical interactions are the predominant factor governing the interfacial optoelectronic properties. Further analysis verifies that proper interfacial interactions can significantly reduce trap state density and facilitate the interfacial charge transfer. Through use of the 4-pyridinecarboxylic acid SAM, the resulting perovskite solar cell exhibits striking improvements to the reach the highest efficiency of 18.8%, which constitutes an ∼10% enhancement compared to those without SAMs. Our work highlights the importance of chemical interactions at perovskite/electrode interfaces and paves the way for further optimizing performances of perovskite solar cells.

  17. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

    PubMed

    Lee, Jin-Wook; Kim, Hui-Seon; Park, Nam-Gyu

    2016-02-16

    Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance

  19. Accounting for substitution and spatial heterogeneity in a labelled choice experiment.

    PubMed

    Lizin, S; Brouwer, R; Liekens, I; Broeckx, S

    2016-10-01

    Many environmental valuation studies using stated preferences techniques are single-site studies that ignore essential spatial aspects, including possible substitution effects. In this paper substitution effects are captured explicitly in the design of a labelled choice experiment and the inclusion of different distance variables in the choice model specification. We test the effect of spatial heterogeneity on welfare estimates and transfer errors for minor and major river restoration works, and the transferability of river specific utility functions, accounting for key variables such as site visitation, spatial clustering and income. River specific utility functions appear to be transferable, resulting in low transfer errors. However, ignoring spatial heterogeneity increases transfer errors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.