Sample records for a1 decreases dark

  1. Dark septate endophyte decreases stress on rice plants.

    PubMed

    Santos, Silvana Gomes Dos; Silva, Paula Renata Alves da; Garcia, Andres Calderin; Zilli, Jerri Édson; Berbara, Ricardo Luis Louro

    Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark Transition 1

    PubMed Central

    Riens, Burgi; Heldt, Hans Walter

    1992-01-01

    In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3− assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells. PMID:16668679

  3. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Cross, Janet V; Engle, Randall; Aragón-Flores, Mariana; Gómez-Garza, Gilberto; Jewells, Valerie; Medina-Cortina, Humberto; Solorio, Edelmira; Chao, Chih-Kai; Zhu, Hongtu; Mukherjee, Partha S; Ferreira-Azevedo, Lara; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2013-01-01

    Air pollution exposures are linked to systemic inflammation, cardiovascular and respiratory morbidity and mortality, neuroinflammation and neuropathology in young urbanites. In particular, most Mexico City Metropolitan Area (MCMA) children exhibit subtle cognitive deficits, and neuropathology studies show 40% of them exhibiting frontal tau hyperphosphorylation and 51% amyloid-β diffuse plaques (compared to 0% in low pollution control children). We assessed whether a short cocoa intervention can be effective in decreasing plasma endothelin 1 (ET-1) and/or inflammatory mediators in MCMA children. Thirty gram of dark cocoa with 680 mg of total flavonols were given daily for 10.11 ± 3.4 days (range 9-24 days) to 18 children (10.55 years, SD = 1.45; 11F/7M). Key metabolite ratios in frontal white matter and in hippocampus pre and during cocoa intervention were quantified by magnetic resonance spectroscopy. ET-1 significantly decreased after cocoa treatment (p = 0.0002). Fifteen children (83%) showed a marginally significant individual improvement in one or both of the applied simple short memory tasks. Endothelial dysfunction is a key feature of exposure to particulate matter (PM) and decreased endothelin-1 bioavailability is likely useful for brain function in the context of air pollution. Our findings suggest that cocoa interventions may be critical for early implementation of neuroprotection of highly exposed urban children. Multi-domain nutraceutical interventions could limit the risk for endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, cognitive deficits, structural volumetric detrimental brain effects, and the early development of the neuropathological hallmarks of Alzheimer's and Parkinson's diseases.

  4. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children

    PubMed Central

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Cross, Janet V.; Engle, Randall; Aragón-Flores, Mariana; Gómez-Garza, Gilberto; Jewells, Valerie; Weili, Lin; Medina-Cortina, Humberto; Solorio, Edelmira; Chao, Chih-kai; Zhu, Hongtu; Mukherjee, Partha S.; Ferreira-Azevedo, Lara; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2013-01-01

    Air pollution exposures are linked to systemic inflammation, cardiovascular and respiratory morbidity and mortality, neuroinflammation and neuropathology in young urbanites. In particular, most Mexico City Metropolitan Area (MCMA) children exhibit subtle cognitive deficits, and neuropathology studies show 40% of them exhibiting frontal tau hyperphosphorylation and 51% amyloid-β diffuse plaques (compared to 0% in low pollution control children). We assessed whether a short cocoa intervention can be effective in decreasing plasma endothelin 1 (ET-1) and/or inflammatory mediators in MCMA children. Thirty gram of dark cocoa with 680 mg of total flavonols were given daily for 10.11 ± 3.4 days (range 9–24 days) to 18 children (10.55 years, SD = 1.45; 11F/7M). Key metabolite ratios in frontal white matter and in hippocampus pre and during cocoa intervention were quantified by magnetic resonance spectroscopy. ET-1 significantly decreased after cocoa treatment (p = 0.0002). Fifteen children (83%) showed a marginally significant individual improvement in one or both of the applied simple short memory tasks. Endothelial dysfunction is a key feature of exposure to particulate matter (PM) and decreased endothelin-1 bioavailability is likely useful for brain function in the context of air pollution. Our findings suggest that cocoa interventions may be critical for early implementation of neuroprotection of highly exposed urban children. Multi-domain nutraceutical interventions could limit the risk for endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, cognitive deficits, structural volumetric detrimental brain effects, and the early development of the neuropathological hallmarks of Alzheimer's and Parkinson's diseases. PMID:23986703

  5. Declining rotation curves - The end of a conspiracy. [HI rotation velocity decrease of two galaxies as indication of large luminous to dark mass ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casertano, S.; Van gorkom, J.H.

    1991-04-01

    Two new H I rotation curves, observed at the Very Large Array as part of a search for galaxies with extended H I envelopes, are presented. The two curves are characterized by a large decrease in rotation velocity (more than 50 km/s, or about 25 percent of the maximum rotation velocity) between 1 and 3 optical radii. The velocity decrease is present on both sides of each galaxy and is not due to projection effects. The decrease in rotation velocity is interpreted as an indication of a large ratio of luminous to dark mass in the luminous regions of thesemore » systems. While confirming the idea that dark matter is ubiquitous, the discovery indicates that the match between the properties of luminous and dark matter required by the well-known 'conspiracy' is not perfect. 69 refs.« less

  6. Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco

    2017-05-01

    Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.

  7. Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirelli, Marco; Petraki, Kalliopi; Sala, Filippo

    Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeVmore » to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.« less

  8. Quark seesaw mechanism, dark U (1 ) symmetry, and the baryon-dark matter coincidence

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; Mohapatra, Rabindra N.

    2017-09-01

    We attempt to understand the baryon-dark matter coincidence problem within the quark seesaw extension of the standard model where parity invariance is used to solve the strong C P problem. The S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry of this model is extended by a dark U (1 )X group plus inclusion of a heavy neutral vector-like fermion χL ,R charged under the dark group which plays the role of dark matter. All fermions are Dirac type in this model. Decay of heavy scalars charged under U (1 )X leads to simultaneous asymmetry generation of the dark matter and baryons after sphaleron effects are included. The U (1 )X group not only helps to stabilize the dark matter but also helps in the elimination of the symmetric part of the dark matter via χ -χ ¯ annihilation. For dark matter mass near the proton mass, it explains why the baryon and dark matter abundances are of similar magnitude (the baryon-dark matter coincidence problem). This model is testable in low threshold (sub-keV) direct dark matter search experiments.

  9. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness1[OPEN

    PubMed Central

    2017-01-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. PMID:28572457

  10. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  11. Axion dark matter in a 3 -3 -1 model

    NASA Astrophysics Data System (ADS)

    Montero, J. C.; Romero Castellanos, Ana R.; Sánchez-Vega, B. L.

    2018-03-01

    Slightly extending a right-handed neutrino version of the 3 -3 -1 model, we show that it is not only possible to solve the strong C P problem but also to give the total dark matter abundance reported by the Planck collaboration. Specifically, we consider the possibility of introducing a 3 -3 -1 scalar singlet to implement a gravity stable Peccei-Quinn mechanism in this model. Remarkably, for allowed regions of the parameter space, the arising axions with masses ma≈meV can both make up the total dark matter relic density through nonthermal production mechanisms and be very close to the region to be explored by the IAXO helioscope.

  12. ERTS-1 anomalous dark patches

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Through combined use of imagery from ERTS-1 and NOAA-2 satellites was found that when the sun elevation exceeds 55 degrees, the ERTS-1 imagery is subject to considerable contamination by sunlight even though the actual specular point is nearly 300 nautical miles from nadir. Based on sea surface wave slope information, a wind speed of 10 knots will theoretically provide approximately 0.5 percent incident solar reflectance under observed ERTS multispectral scanner detectors. This reflectance nearly doubles under the influence of a 20 knot wind. The most pronounced effect occurs in areas of calm water where anomalous dark patches are observed. Calm water at distances from the specular point found in ERTS scenes will reflect no solar energy to the multispectral scanner, making these regions stand out as dark areas in all bands in an ocean scene otherwise comprosed by a general diffuse sunlight from rougher ocean surfaces. Anomalous dark patches in the outer parts of the glitter zones may explain the unusual appearance of some scenes.

  13. Decreased Visual Function Scores on a Low Luminance Questionnaire Is Associated with Impaired Dark Adaptation.

    PubMed

    Yazdanie, Mohammad; Alvarez, Jason; Agrón, Elvira; Wong, Wai T; Wiley, Henry E; Ferris, Frederick L; Chew, Emily Y; Cukras, Catherine

    2017-09-01

    We investigate whether responses on a Low Luminance Questionnaire (LLQ) in patients with a range of age-related macular degeneration (AMD) severity are associated with their performance on focal dark adaptation (DA) testing and with choroidal thickness. Cross-sectional, single-center, observational study. A total of 113 participants older than 50 years of age with a range of AMD severity. Participants answered the LLQ on the same day they underwent DA testing using a focal dark adaptometer measuring rod intercept time (RIT). We performed univariable and multivariable analyses of the LLQ scores and age, RIT, AMD severity, subfoveal choroidal thickness [SFCT], phakic status, and best-corrected visual acuity. The primary outcome of this study was the score on the 32-question LLQ. Each item in the LLQ is designated to 1 of 6 subscales describing functional problems in low luminance: driving, emotional distress, mobility, extreme lighting, peripheral vision, and general dim lighting. Scores were computed for each subscale, in addition to a weighted total mean score. Responses from 113 participants (mean age, 76.2±9.3 years; 58.4% were female) and 113 study eyes were analyzed. Univariable analysis demonstrated that lower scores on all LLQ subscales were correlated with prolonged DA testing (longer RIT) and decreased choroidal thickness. All associations were statistically significant except for the association of choroidal thickness and "peripheral vision." The strongest association was the LLQ subscale of driving with RIT (r =-0.97, P < 0.001). Multivariable analysis for each of the LLQ subscale outcomes, adjusted for age, included RIT, with total LLQ score, "driving," "extreme lighting," and "mobility" also including choroidal thickness. In all multivariable analyses, RIT had a stronger association than choroidal thickness. This cross-sectional analysis demonstrates associations of patient-reported functional deficits, as assessed on the LLQ, with both reduced DA and

  14. Hidden gauged U (1 ) model: Unifying scotogenic neutrino and flavor dark matter

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Hao

    2016-06-01

    In both scotogenic neutrino and flavor dark matter models, the dark sector communicates with the standard model fermions via Yukawa portal couplings. We propose an economic scenario where the scotogenic neutrino and a flavored mediator share the same inert Higgs doublet and all are charged under a hidden gauged U (1 ) symmetry. The dark Z2 symmetry in the dark sector is regarded as the remnant of this hidden U (1 ) symmetry breaking. In particular, we investigate a dark U (1 )D [and also U (1 )B-L] model which unifies the scotogenic neutrino and top-flavored mediator. Thus dark tops and dark neutrinos are the standard model fermion partners, and the dark matter could be the inert Higgs or the lightest dark neutrino. We note that this model has rich collider signatures on dark tops, the inert Higgs and the Z' gauge boson. Moreover, the scalar associated to the U (1 )D [and also U (1 )B -L ] symmetry breaking could explain the 750 GeV diphoton excess reported by ATLAS and CMS recently.

  15. Dark chocolate and blood pressure: a novel study from Jordan.

    PubMed

    Al-Safi, Saafan A; Ayoub, Nehad M; Al-Doghim, Imad; Aboul-Enein, Faisal H

    2011-11-01

    The goal of this study was to assess the effect of dark chocolate intake on cardiovascular parameters like blood pressure and heart rate values in a normotensive population. This is a randomized cross-sectional study involving a total of 14,310 adults that were selected from various regions of Jordan. Well-trained pharmacy students interviewed participants in the outpatient settings. Participants reported their weekly intake of dark chocolate that has been further classified into mild (1-2 bars/week), moderate (3-4 bars/week), and high intake ( > 4 bars/week). For each participant, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate were measured three times with (10-15) minute intervals in the sitting position and the resting state. The arterial blood pressure (ABP) was calculated from the measured SBP and DBP values. All measured blood pressure values were significantly decreased for participants who reported higher dark chocolate consumption. Our results showed that heart rate values were not affected by variable intake of dark chocolate. In addition, increasing dark chocolate intake was associated with a significant decrease of blood pressure values in participants irrespective of the family history of hypertension or the age of the individual. However, heart rate values were unaffected. Higher intake of dark chocolate can be associated with lower values of blood pressure, while its effect on heart rate values was not consistent.

  16. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  17. A parallel world in the dark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Takahashi, Fuminobu, E-mail: tetsutaro.higaki@riken.jp, E-mail: ksjeong@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    The baryon-dark matter coincidence is a long-standing issue. Interestingly, the recent observations suggest the presence of dark radiation, which, if confirmed, would pose another coincidence problem of why the density of dark radiation is comparable to that of photons. These striking coincidences may be traced back to the dark sector with particle contents and interactions that are quite similar, if not identical, to the standard model: a dark parallel world. It naturally solves the coincidence problems of dark matter and dark radiation, and predicts a sterile neutrino(s) with mass of O(0.11) eV, as well as self-interacting dark matter made ofmore » the counterpart of ordinary baryons. We find a robust prediction for the relation between the abundance of dark radiation and the sterile neutrino, which can serve as the smoking-gun evidence of the dark parallel world.« less

  18. Self-interacting dark matter constraints in a thick dark disk scenario

    NASA Astrophysics Data System (ADS)

    Vattis, Kyriakos; Koushiappas, Savvas M.

    2018-05-01

    A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way-sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to τ+τ-, either the self-interaction may not be strong enough to solve the small-scale structure motivation or a dark disk cannot be present in the Milky Way.

  19. Dark Energy and Dark Matter as w = -1 Virtual Particles and the World Hologram Model

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2011-04-01

    The elementary physics battle-tested principles of Lorentz invariance, Einstein equivalence principle and the boson commutation and fermion anti-commutation rules of quantum field theory explain gravitationally repulsive dark energy as virtual bosons and gravitationally attractive dark matter as virtual fermion-antifermion pairs. The small dark energy density in our past light cone is the reciprocal entropy-area of our future light cone's 2D future event horizon in a Novikov consistent loop in time in our accelerating universe. Yakir Aharonov's "back-from-the-future" post-selected final boundary condition is set at our observer-dependent future horizon that also explains why the irreversible thermodynamic arrow of time of is aligned with the accelerating dark energy expansion of the bulk 3D space interior to our future 2D horizon surrounding it as the hologram screen. Seth Lloyd has argued that all 2D horizon surrounding surfaces are pixelated quantum computers projecting interior bulk 3D quanta of volume (Planck area)Sqrt(area of future horizon) as their hologram images in 1-1 correspondence.

  20. Duality between a dark state and a quasi-dark state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirokawa, Masao, E-mail: hirokawa@amath.hiroshima-u.ac.jp

    We study a physical system coupled with two one-mode Bose fields. The physical system is a two-level system or a harmonic oscillator. We prove that each dark and quasi-dark state appears under a proper condition, and then, we derive a duality between the dark state and the quasi-dark state. This duality induces the switch between the dark state and the quasi-dark state.

  1. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  2. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV).more » Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less

  3. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    NASA Astrophysics Data System (ADS)

    McDermott, Samuel D.

    2018-06-01

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn˜(10-(2 -3 ))n , where n =1 , 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ˜0.1 - 1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ ˜O (100 MeV ) . Dark fusion firmly predicts constant σ v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  4. Chiral Dark Sector

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-01

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  5. Chiral Dark Sector.

    PubMed

    Co, Raymond T; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-10

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U(1)_{D}, which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U(1)_{D} quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U(1)_{D} gauge boson. Alternatively, if the dark pion stays light due to a specific U(1)_{D} charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  6. Dark matter as a weakly coupled dark baryon

    NASA Astrophysics Data System (ADS)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  7. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    DOE PAGES

    McDermott, Samuel D.

    2018-06-01

    Here, we suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v n~(10 –(2–3)) n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ~0.11 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ~O(100 MeV). Darkmore » fusion firmly predicts constant σv below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less

  8. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.

    Here, we suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v n~(10 –(2–3)) n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ~0.11 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ~O(100 MeV). Darkmore » fusion firmly predicts constant σv below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less

  9. Acutely Decreased Thermoregulatory Energy Expenditure or Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice

    PubMed Central

    Kaiyala, Karl J.; Morton, Gregory J.; Thaler, Joshua P.; Meek, Thomas H.; Tylee, Tracy; Ogimoto, Kayoko; Wisse, Brent E.

    2012-01-01

    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure. PMID:22936977

  10. Organelles Contribute Differentially to Reactive Oxygen Species-Related Events during Extended Darkness1[C][W][OA

    PubMed Central

    Rosenwasser, Shilo; Rot, Ilona; Sollner, Evelyn; Meyer, Andreas J.; Smith, Yoav; Leviatan, Noam; Fluhr, Robert; Friedman, Haya

    2011-01-01

    Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program. PMID:21372201

  11. Dark chocolate improves coronary vasomotion and reduces platelet reactivity.

    PubMed

    Flammer, Andreas J; Hermann, Frank; Sudano, Isabella; Spieker, Lukas; Hermann, Matthias; Cooper, Karen A; Serafini, Mauro; Lüscher, Thomas F; Ruschitzka, Frank; Noll, Georg; Corti, Roberto

    2007-11-20

    Dark chocolate has potent antioxidant properties. Coronary atherosclerosis is promoted by impaired endothelial function and increased platelet activation. Traditional risk factors, high oxidative stress, and reduced antioxidant defenses play a crucial role in the pathogenesis of atherosclerosis, particularly in transplanted hearts. Thus, flavonoid-rich dark chocolate holds the potential to have a beneficial impact on graft atherosclerosis. We assessed the effect of flavonoid-rich dark chocolate compared with cocoa-free control chocolate on coronary vascular and platelet function in 22 heart transplant recipients in a double-blind, randomized study. Coronary vasomotion was assessed with quantitative coronary angiography and cold pressor testing before and 2 hours after ingestion of 40 g of dark (70% cocoa) chocolate or control chocolate, respectively. Two hours after ingestion of flavonoid-rich dark chocolate, coronary artery diameter was increased significantly (from 2.36+/-0.51 to 2.51+/-0.59 mm, P<0.01), whereas it remained unchanged after control chocolate. Endothelium-dependent coronary vasomotion improved significantly after dark chocolate (4.5+/-11.4% versus -4.3+/-11.7% in the placebo group, P=0.01). Platelet adhesion decreased from 4.9+/-1.1% to 3.8+/-0.8% (P=0.04) in the dark chocolate group but remained unchanged in the control group. Dark chocolate induces coronary vasodilation, improves coronary vascular function, and decreases platelet adhesion 2 hours after consumption. These immediate beneficial effects were paralleled by a significant reduction of serum oxidative stress and were positively correlated with changes in serum epicatechin concentration.

  12. Climate change: is the dark Soay sheep endangered?

    PubMed Central

    Maloney, Shane K.; Fuller, Andrea; Mitchell, Duncan

    2009-01-01

    It was recently reported that the proportion of dark-coloured Soay sheep (Ovis aries) in the Hebrides has decreased, despite the fact that dark sheep tend to be larger than lighter sheep, and there exists a selective advantage to large body size. It was concluded that an apparent genetic linkage between loci for the coat colour polymorphism and loci with antagonistic effects on body size explained the decrease. Those results explain why the proportion of dark animals is not increasing, but not why it is decreasing. Between 1985 and 2005 there was a significant increase in mean ambient temperature near the islands. We suggest that, while in the past a dark coat has offset the metabolic costs of thermoregulation by absorbing solar radiation, the selective advantage of a dark coat may be waning as the climate warms in the North Atlantic. In parallel, Bergman's rule may be operating, reducing the selective advantage of large body size in the cold. Either or both of these mechanisms can explain the decrease in the proportion of dark-coloured larger sheep in this population in which smaller (and light-coloured) sheep should be favoured by their lower gross energy demand. If environmental effects are the cause of the decline, then we can expect the proportion of dark-coloured Soay sheep to decrease further. PMID:19625302

  13. Metabolic Origin of Carbon Isotope Composition of Leaf Dark-Respired CO2 in French Bean1

    PubMed Central

    Tcherkez, Guillaume; Nogués, Salvador; Bleton, Jean; Cornic, Gabriel; Badeck, Franz; Ghashghaie, Jaleh

    2003-01-01

    The carbon isotope composition (δ13C) of CO2 produced in darkness by intact French bean (Phaseolus vulgaris) leaves was investigated for different leaf temperatures and during dark periods of increasing length. The δ13C of CO2 linearly decreased when temperature increased, from −19‰ at 10°C to −24‰ at 35°C. It also progressively decreased from −21‰ to −30‰ when leaves were maintained in continuous darkness for several days. Under normal conditions (temperature not exceeding 30°C and normal dark period), the evolved CO2 was enriched in 13C compared with carbohydrates, the most 13C-enriched metabolites. However, at the end of a long dark period (carbohydrate starvation), CO2 was depleted in 13C even when compared with the composition of total organic matter. In the two types of experiment, the variations of δ13C were linearly related to those of the respiratory quotient. This strongly suggests that the variation of δ13C is the direct consequence of a substrate switch that may occur to feed respiration; carbohydrate oxidation producing 13C-enriched CO2 and β-oxidation of fatty acids producing 13C-depleted CO2 when compared with total organic matter (−27.5‰). These results are consistent with the assumption that the δ13C of dark respired CO2 is determined by the relative contributions of the two major decarboxylation processes that occur in darkness: pyruvate dehydrogenase activity and the Krebs cycle. PMID:12529531

  14. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.

    PubMed

    Hellbach, Katharina; Baehr, Andrea; De Marco, Fabio; Willer, Konstantin; Gromann, Lukas B; Herzen, Julia; Dmochewitz, Michaela; Auweter, Sigrid; Fingerle, Alexander A; Noël, Peter B; Rummeny, Ernst J; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Wieberneit, Nataly; Proksa, Roland; Koehler, Thomas; Rindt, Karsten; Schroeter, Tobias J; Mohr, Juergen; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Reiser, Maximilian F

    2018-02-08

    The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.

  15. Revisiting Supernova 1987A constraints on dark photons

    DOE PAGES

    Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.

    2017-01-25

    We revisit constraints on dark photons with masses below ~ 100 MeV from the observations of Supernova 1987A. If dark photons are produced in sufficient quantity, they reduce the amount of energy emitted in the form of neutrinos, in conflict with observations. For the first time, we include the effects of finite temperature and density on the kinetic-mixing parameter,ϵ, in this environment. This causes the constraints on ϵ to weaken with the dark-photon mass below ~ 15 MeV. For large-enough values of ϵ, it is well known that dark photons can be reabsorbed within the supernova. Since the rates ofmore » reabsorption processes decrease as the dark-photon energy increases, we point out that dark photons with energies above the Wien peak can escape without scattering, contributing more to energy loss than is possible assuming a blackbody spectrum. Furthermore, we estimate the systematic uncertainties on the cooling bounds by deriving constraints assuming one analytic and four different simulated temperature and density profiles of the proto-neutron star. Finally, we estimate also the systematic uncertainty on the bound by varying the distance across which dark photons must propagate from their point of production to be able to affect the star. Finally, this work clarifies the bounds from SN1987A on the dark-photon parameter space.« less

  16. Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to Light/Dark cycles and to extended darkness

    PubMed

    Brouquisse; Gaudillere; Raymond

    1998-08-01

    Three-week-old maize (Zea mays L.) plants were submitted to light/dark cycles and to prolonged darkness to investigate the occurrence of sugar-limitation effects in different parts of the whole plant. Soluble sugars fluctuated with light/dark cycles and dropped sharply during extended darkness. Significant decreases in protein level were observed after prolonged darkness in mature roots, root tips, and young leaves. Glutamine and asparagine (Asn) changed in opposite ways, with Asn increasing in the dark. After prolonged darkness the increase in Asn accounted for most of the nitrogen released by protein breakdown. Using polyclonal antibodies against a vacuolar root protease previously described (F. James, R. Brouquisse, C. Suire, A. Pradet, P. Raymond [1996] Biochem J 320: 283-292) or the 20S proteasome, we showed that the increase in proteolytic activities was related to an enrichment of roots in the vacuolar protease, with no change in the amount of 20S proteasome in either roots or leaves. Our results show that no significant net proteolysis is induced in any part of the plant during normal light/dark cycles, although changes in metabolism and growth appear soon after the beginning of the dark period, and starvation-related proteolysis probably appears in prolonged darkness earlier in sink than in mature tissues.

  17. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness.

    PubMed

    Fan, Jilian; Yu, Linhui; Xu, Changcheng

    2017-07-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Dark-soliton collisions for a coupled AB system in the geophysical fluids or nonlinear optics

    NASA Astrophysics Data System (ADS)

    Xie, Xi-Yang; Meng, Gao-Qing

    2018-02-01

    Under investigation in this paper is a coupled AB system, which describes the marginally unstable baroclinic wave packets in the geophysical fluids or ultra-short pulses in nonlinear optics. As the dark solitons are more resistant against various perturbations than the bright ones, we aim to investigate the dark solitons in the geophysical fluids or nonlinear optics. Dark one- and two-soliton solutions for such a system are derived based on the bilinear forms and propagations of the one solitons and collisions between the two solitons are graphically illustrated and analyzed. Further, influences of the coefficients λ and σ on the solitons are discussed, where λ is a parameter measuring the state of the basic flow and σ is the group velocity. The dark-one solitons with invariant shapes and amplitudes are viewed, and elastic collisions between the dark-two solitons are observed. Also, elastic collision between the bright and dark solitons is viewed, and the dark soliton is found to possess two peaks. σ is found to affect the widths of the dark-one solitons and the travelling directions of the dark-two solitons. It is shown that λ cannot influence shapes of A1 and A2, but affect the plane of the one soliton for B, and the two-peak dark soliton for B changes to the single-peak one with the value of λ decreasing, where A1 and A2 are the packets of short waves and B is the mean flow.

  19. Dark energy in the dark ages

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2006-08-01

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.

  20. Genome Features of “Dark-Fly”, a Drosophila Line Reared Long-Term in a Dark Environment

    PubMed Central

    Zhou, Jun; Sugiyama, Yuzo; Nishimura, Osamu; Aizu, Tomoyuki; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu

    2012-01-01

    Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed “Dark-fly”, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation. PMID:22432011

  1. Dark sector shining through 750 GeV dark Higgs boson at the LHC

    NASA Astrophysics Data System (ADS)

    Ko, P.; Nomura, Takaaki

    2016-07-01

    We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.

  2. Right-handed neutrino dark matter in a U(1) extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    Cox, Peter; Han, Chengcheng; Yanagida, Tsutomu T.

    2018-01-01

    We consider minimal U(1) extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a U(1)(B‑L)3 flavoured B‑L symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of mχlesssim2 TeV, significantly stronger than that obtained in simplified models. Furthermore, if the U(1)(B‑L)3 breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC Z' searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of U(1) symmetries.

  3. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2012-12-01

    We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km {s-1}) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  4. Vector Dark Matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.

    2016-04-21

    We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU(2)more » $$_W \\times$$ U(1)$$_Y$$ and under the dark gauge group, U(1)$$^\\prime$$, generate an effective interaction between the Higgs and the dark matter at one loop. Furthermore, we explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.« less

  5. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce.

    PubMed

    Holefors, Anna; Opseth, Lars; Ree Rosnes, Anne Katrine; Ripel, Linda; Snipen, Lars; Fossdal, Carl Gunnar; Olsen, Jorunn E

    2009-02-01

    In woody plants of the temperate zone short photoperiod (SD) leads to growth cessation. In angiosperms CONSTANS (CO) or CO-like genes play an important role in the photoperiodic control of flowering, tuberisation and shoot growth. To investigate the role of CO-like genes in photoperiodic control of shoot elongation in gymnosperms, PaCOL1 and PaCOL2 were isolated from Norway spruce. PaCOL1 encodes a 3.9kb gene with a predicted protein of 444 amino acids. PaCOL2 encodes a 1.2kb gene with a predicted protein of 385 amino acids. Both genes consist of two exons and have conserved domains found in other CO-like genes; two zinc finger domains, a CCT and a COOH domain. PaCOL1 and PaCOL2 fall into the group 1c clade of the CO-like genes, and are thus distinct from Arabidopsis CO that belongs to group 1a. Transcript levels of both PaCOL-genes appear to be light regulated, an increasing trend was observed upon transition from darkness to light, and a decreasing trend during darkness. The increasing trend at dawn was observed both in needles and shoot tips, whereas the decreasing trend in darkness was most prominent in shoot tips, and limited to the late part of the dark period in needles. The transcript levels of both genes decreased significantly in both tissues under SD prior to growth cessation and bud formation. This might suggest an involvement in photoperiodic control of shoot elongation or might be a consequence of regulation by light.

  6. Gauge U (1) dark symmetry and radiative light fermion masses

    DOE PAGES

    Kownacki, Corey; Ma, Ernest

    2016-06-22

    A gauge U (1) family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U (1) to Z(2) divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U (1) breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC).

  7. Searching for a dark photon with DarkLight

    DOE PAGES

    Corliss, R.

    2016-07-30

    Here, we describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c 2 could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. We will detect the complete final state including scattered electron, recoil proton, and e +e - pair. A phase-I experiment has been funded and is expectedmore » to take data in the next eighteen months. The complete phase-II experiment is under final design and could run within two years after phase-I is completed. The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers.« less

  8. A dark matter scaling relation from mirror dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2014-12-01

    Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos around spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, RSN ∝ρ0r02 (RSN is the supernova rate and ρ0 ,r0 the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than 3 ×1011M⊙. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

  9. Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial.

    PubMed

    Faridi, Zubaida; Njike, Valentine Yanchou; Dutta, Suparna; Ali, Ather; Katz, David L

    2008-07-01

    Studies suggest cardioprotective benefits of dark chocolate containing cocoa. This study examines the acute effects of solid dark chocolate and liquid cocoa intake on endothelial function and blood pressure in overweight adults. Randomized, placebo-controlled, single-blind crossover trial of 45 healthy adults [mean age: 53 y; mean body mass index (in kg/m(2)): 30]. In phase 1, subjects were randomly assigned to consume a solid dark chocolate bar (containing 22 g cocoa powder) or a cocoa-free placebo bar (containing 0 g cocoa powder). In phase 2, subjects were randomly assigned to consume sugar-free cocoa (containing 22 g cocoa powder), sugared cocoa (containing 22 g cocoa powder), or a placebo (containing 0 g cocoa powder). Solid dark chocolate and liquid cocoa ingestion improved endothelial function (measured as flow-mediated dilatation) compared with placebo (dark chocolate: 4.3 +/- 3.4% compared with -1.8 +/- 3.3%; P < 0.001; sugar-free and sugared cocoa: 5.7 +/- 2.6% and 2.0 +/- 1.8% compared with -1.5 +/- 2.8%; P < 0.001). Blood pressure decreased after the ingestion of dark chocolate and sugar-free cocoa compared with placebo (dark chocolate: systolic, -3.2 +/- 5.8 mm Hg compared with 2.7 +/- 6.6 mm Hg; P < 0.001; and diastolic, -1.4 +/- 3.9 mm Hg compared with 2.7 +/- 6.4 mm Hg; P = 0.01; sugar-free cocoa: systolic, -2.1 +/- 7.0 mm Hg compared with 3.2 +/- 5.6 mm Hg; P < 0.001; and diastolic: -1.2 +/- 8.7 mm Hg compared with 2.8 +/- 5.6 mm Hg; P = 0.014). Endothelial function improved significantly more with sugar-free than with regular cocoa (5.7 +/- 2.6% compared with 2.0 +/- 1.8%; P < 0.001). The acute ingestion of both solid dark chocolate and liquid cocoa improved endothelial function and lowered blood pressure in overweight adults. Sugar content may attenuate these effects, and sugar-free preparations may augment them.

  10. Can dark matter be a scalar field?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesus, J.F.; Malatrasi, J.L.G.; Pereira, S.H.

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads tomore » m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.« less

  11. Restrained dark U (1 )d at low energies

    NASA Astrophysics Data System (ADS)

    Correia, Fagner C.; Fajfer, Svjetlana

    2016-12-01

    We investigate a spontaneously broken U (1 )d gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, ϕ , and a dark gauge boson, V , can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Second, by assuming that V must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low-energy constraints coming from K →μ X , electron (g -2 )e, K →μ νμe+e-, K →μ νμμ+μ-, and τ →ντμ νμe+e-. We focus on the scenario where the V mass is below ˜2 mμ and the ϕ mass runs from few MeV to 250 MeV, with V -photon mixing of the order ˜O (10-3). Among weak process at low energies, we check the influence of the new light vector on kaon decays as well as on the scattering e+e-→μ+μ-e+e- and discuss the impact of the dark Higgs on e+e-→μ+μ-μ+μ-. Finally, we consider contributions of the V -photon mixing in the decays π0→γ e+e-, η →γ e+e-, ρ →π e+e-, K*→K e+e-, and ϕ (1020 )→η e+e-.

  12. Dark matter as a cancer hazard

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2016-07-01

    We comment on the paper ;Dark matter collisions with the human body; by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  13. The Xenon1T Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, Xenon100 has already reached a sensitivity of 7 × 10-45 cm2, and continues to accrue data at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy towards its ultimate sensitivity reach at the σ SI ˜ 2 × 10-45 cm2 level for the spin-independent WIMP-nucleon cross-section. To fully explore the favoured parameter space for WIMP dark matter in search of a first robust and statistically significant discovery, or to confirm any hint of a signal from Xenon100, the next phase of the Xenon program will be a detector at the ton scale - Xenon1T. The Xenon1T detector, based on 2.2 ton of LXe viewed by low radioactivity photomultiplier tubes and housed in a water Cherenkov muon veto at LNGS, is presented. With an experimental aim of probing WIMP interaction cross-sections above of order σ SI ˜ 2 × 10-47 cm2 within 2 years of operation, Xenon1T will provide the sensitivity to probe a particularly favourable region of electroweak physics on a timescale compatible with complementary ground and satellite based indirect searches and with accelerator dark matter searches at the LHC. Indeed, for a σ SI ˜ 10-45 cm2 and 100 GeV/c2 WIMP mass, Xenon1T could detect of order 100 events in this exposure, providing statistics for placing significant constraints on the WIMP mass.

  14. Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin

    2017-02-01

    We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.

  15. Searching for a dark photon with DarkLight

    NASA Astrophysics Data System (ADS)

    Corliss, R.; DarkLight Collaboration

    2017-09-01

    Despite compelling astrophysical evidence for the existence of dark matter in the universe, we have yet to positively identify it in any terrestrial experiment. If such matter is indeed particle in nature, it may have a new interaction as well, carried by a dark counterpart to the photon. The DarkLight experiment proposes to search for such a beyond-the-standard-model dark photon through complete reconstruction of the final states of electron-proton collisions. In order to accomplish this, the experiment requires a moderate-density target and a very high intensity, low energy electron beam. I describe DarkLight's approach and focus on the implications this has for the design of the experiment, which centers on the use of an internal gas target in Jefferson Lab's Low Energy Recirculating Facility. I also discuss upcoming beam tests, where we will place our target and solenoidal magnet in the beam for the first time.

  16. A New Dark Vortex on Neptune

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph

    2018-03-01

    An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.

  17. Phases of cannibal dark matter

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  18. Complementary test of the dark matter self-interaction in dark U(1) model by direct and indirect dark matter detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chian-Shu; Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30010 R.O.C.; Institute of Physics, Academia Sinica, 128 Sec. 2,Academia Rd., Nangang, Taipei, Taiwan, 11529 R.O.C.

    2016-01-07

    The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less

  19. Complementary test of the dark matter self-interaction in dark U(1) model by direct and indirect dark matter detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chian-Shu; Lin, Guey-Lin; Lin, Yen-Hsun, E-mail: chianshu@gmail.com, E-mail: glin@cc.nctu.edu.tw, E-mail: chris.py99g@g2.nctu.edu.tw

    2016-01-01

    The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less

  20. Light chiral dark sector

    DOE PAGES

    Harigaya, Keisuke; Nomura, Yasunori

    2016-08-11

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling ofmore » the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g-2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e +e - collision into a photon and a "dark rho meson." Observation of two processes in e +e - collision - the mode into the dark photon and that into the dark rho meson - would provide strong evidence for the model.« less

  1. Light chiral dark sector

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Nomura, Yasunori

    2016-08-01

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U (1 ) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, S U (N ) , and a U (1 ) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g -2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e+e- collision into a photon and a "dark rho meson." Observation of two processes in e+e- collision—the mode into the dark photon and that into the dark rho meson—would provide strong evidence for the model.

  2. Light chiral dark sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harigaya, Keisuke; Nomura, Yasunori

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling ofmore » the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g-2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e +e - collision into a photon and a "dark rho meson." Observation of two processes in e +e - collision - the mode into the dark photon and that into the dark rho meson - would provide strong evidence for the model.« less

  3. The viability of phantom dark energy: A review

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin J.

    2017-09-01

    In this brief review, we examine the theoretical consistency and viability of phantom dark energy. Almost all data sets from cosmological probes are compatible with the dark energy of the phantom variety (i.e. equation-of-state parameter w < -1) and may even favor evolving dark energy, and since we expect every physical entity to have some kind of field description, we set out to examine the case for phantom dark energy as a field theory. We discuss the many attempts at frameworks that may mitigate and eliminate theoretical pathologies associated with phantom dark energy. We also examine frameworks that provide an apparent measurement w < -1 while avoiding the need for a phantom field theory.

  4. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  5. A single administration of methamphetamine to mice early in the light period decreases running wheel activity observed during the dark period

    PubMed Central

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F. Scott; Uhl, George R.; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tatsuta, Tomohiro; Morita, Yoshio; Takemura, Motohiko

    2014-01-01

    Repeated intermittent administration of amphetamines acutely increases appetitive and consummatory aspects of motivated behaviors as well as general activity and exploratory behavior, including voluntary running wheel activity. Subsequently, if the drug is withdrawn, the frequency of these behaviors decrease, which is thought to be indicative of dysphoric symptoms associated with amphetamine withdrawal. Such decreases may be observed after chronic treatment or even after single drug administrations. In the present study, the effect of acute methamphetamine (METH) on running wheel activity, horizontal locomotion, appetitive behavior (food access), and consummatory behavior (food and water intake) was investigated in mice. A multi-configuration behavior apparatus designed to monitor the five behaviors was developed, where combined measures were recorded simultaneously. In the first experiment, naïve male ICR mice showed gradually increasing running wheel activity over three consecutive days after exposure to a running wheel, while mice without a running wheel showed gradually decreasing horizontal locomotion, consistent with running wheel activity being a positively motivated form of natural motor activity. In experiment 2, increased horizontal locomotion and food access, and decreased food intake, were observed for the initial 3 h after acute METH challenge. Subsequently, during the dark phase period decreased running wheel activity and horizontal locomotion were observed. The reductions in running wheel activity and horizontal locomotion may be indicative of reduced dopaminergic function, although it remains to be seen if these changes may be more pronounced after more prolonged METH treatments. PMID:22079320

  6. Multi-component dark matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Univ. of California, Irvine, CA; Rutgers Univ., Piscataway, NJ; ...

    2017-01-18

    Here, we study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged undermore » $$SU(2)_W \\times U(1)_Y$$ and under the dark gauge group, $$U(1)^\\prime$$. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.« less

  7. Metabolism of [3H]Gibberellin A20 in Light- and Dark-grown Tobacco Callus Cultures 1

    PubMed Central

    Lance, Barbara; Durley, Richard C.; Reid, David M.; Thorpe, Trevor A.; Pharis, Richard P.

    1976-01-01

    The growth of tobacco callus in culture (previously shown to contain gibberellin [GA]-like substances), and its ability to metabolize [3H]-GA20 were examined. Growth rates, in the presence and absence of exogenously applied GA, were examined in light and dark conditions. Dark-grown callus grew at a much faster rate than light-grown and [3H]GA20 was metabolized much more rapidly in darkness than in light. [3H]GA1 was identified by combined gas-liquid chromatography/mass spectrometry as a major product of [3H]GA20, and was found to be a more potent promoter of tobacco callus growth than GA20. PMID:16659684

  8. Dynamical dark matter: A new framework for dark-matter physics

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Thomas, Brooks

    2013-05-01

    Although much remains unknown about the dark matter of the universe, one property is normally considered sacrosanct: dark matter must be stable well beyond cosmological time scales. However, a new framework for dark-matter physics has recently been proposed which challenges this assumption. In the "dynamical dark matter" (DDM) framework, the dark sector consists of a vast ensemble of individual dark-matter components with differing masses, lifetimes, and cosmological abundances. Moreover, the usual requirement of stability is replaced by a delicate balancing between lifetimes and cosmological abundances across the ensemble as a whole. As a result, it is possible for the DDM ensemble to remain consistent with all experimental and observational bounds on dark matter while nevertheless giving rise to collective behaviors which transcend those normally associated with traditional dark-matter candidates. These include a new, non-trivial darkmatter equation of state as well as potentially distinctive signatures in collider and direct-detection experiments. In this review article, we provide a self-contained introduction to the DDM framework and summarize some of the work which has recently been done in this area. We also present an explicit model within the DDM framework, and outline a number of ideas for future investigation.

  9. A Dark Spot on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view taken by NASA's Galileo spacecraft of Jupiter's icy moon Europa focuses on a dark, smooth region whose center is the lowest area in this image. To the west (left), it is bounded by a cliff and terraces, which might have been formed by normal faulting. The slopes toward the east (right) leading into the dark spot are gentle.

    Near the center of the dark area, it appears the dark materials have covered some of the bright terrain and ridges. This suggests that when the dark material was deposited, it may have been a fluid or an icy slush.

    Only a few impact craters are visible, with some of them covered or flooded by dark material. Some appear in groups, which may indicate that they are secondary craters formed by debris excavated during a larger impact event. A potential source for these is the nearby crater Mannann`an.

    North is to the top of the picture which is centered at 1 degree south latitude and 225 degrees west longitude. The images in this mosaic have been re-projected to 50 meters (55 yards) per picture element. They were obtained by the Solid State Imaging (SSI) system on March 29, 1998, during Galileo's fourteenth orbit of Jupiter, at ranges as close as 1940 kilometers (1,200 miles) from Europa.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Sourcing dark matter and dark energy from α-attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none ofmore » its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.« less

  11. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Wechsler, Risa H.; Loeb, Abraham, E-mail: behroozi@stanford.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: rwechsler@stanford.edu

    2013-06-01

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  12. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  13. Phases of cannibal dark matter

    DOE PAGES

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; ...

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector ismore » cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.« less

  14. Cold dark matter plus not-so-clumpy dark relics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions,more » covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.« less

  15. Unification of dark matter-dark energy in generalized Galileon theories

    NASA Astrophysics Data System (ADS)

    Koutsoumbas, George; Ntrekis, Konstantinos; Papantonopoulos, Eleftherios; Saridakis, Emmanuel N.

    2018-02-01

    We present a unified description of the dark matter and the dark energy sectors, in the framework of shift-symmetric generalized Galileon theories. Considering a particular combination of terms in the Horndeski Lagrangian in which we have not introduced a cosmological constant or a matter sector, we obtain an effective unified cosmic fluid whose equation of state wU is zero during the whole matter era, namely from redshifts z ~ 3000 up to z ~ 2–3. Then at smaller redshifts it starts decreasing, passing the bound wU = ‑1/3, which marks the onset of acceleration, at around z ~ 0.5. At present times it acquires the value wU = ‑0.7. Finally, it tends toward a de-Sitter phase in the far future. This behaviour is in excellent agreement with observations. Additionally, confrontation with Supernovae type Ia data leads to a very efficient fit. Examining the model at the perturbative level, we show that it is free from pathologies such as ghosts and Laplacian instabilities, at both scalar and tensor sectors, at all times.

  16. Dark Signal Characterization of 1.7 micron cutoff devices for SNAP

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; SNAP Collaboration

    2004-12-01

    We report initial progress characterizing non-photometric sources of error -- dark current, noise, and zero point drift -- for 1.7 micron cutoff HgCdTe and InGaAs detectors under development by Raytheon, Rockwell, and Sensors Unlimited for SNAP. Dark current specifications can already be met with several detector types. Changes to the manufacturing process are being explored to improve the noise reduction available through multiple sampling. In some cases, a significant number of pixels suffer from popcorn noise, with a few percent of all pixels exhibiting a ten fold noise increase. A careful study of zero point drifts is also under way, since these errors can dominate dark current, and may contribute to the noise degradation seen in long exposures.

  17. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark

    PubMed Central

    Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu

    2017-01-01

    Abstract Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. PMID:28444370

  18. The Dark Energy Survey Data Release 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single epoch images, coadded images, coadded source catalogs, and associated products and services assembled over the first three years of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (August 2013 to February 2016) by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ~5,000 sq. deg. of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 hasmore » a median delivered point-spread function of g = 1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.90 arcsec FWHM, a photometric precision of < 1% in all bands, and an astrometric precision of 151 mas. The median coadded catalog depth for a 1.95" diameter aperture at S/N = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 mag. DES DR1 includes nearly 400M distinct astronomical objects detected in ~10,000 coadd tiles of size 0.534 sq. deg. produced from ~39,000 individual exposures. Benchmark galaxy and stellar samples contain ~310M and ~ 80M objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive coadd image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.« less

  19. Interacting holographic dark energy models: a general approach

    NASA Astrophysics Data System (ADS)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  20. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings

    NASA Technical Reports Server (NTRS)

    Myers, P. N.; Mitchell, C. A.

    1998-01-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation.

  1. Dark Skies are a Universal Resource: IYA Programs on Dark Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Bueter, C.; Pompea, S. M.; Berglund, K.; Mann, T.; Gay, P.; Crelin, B.; Collins, D.; Sparks, R.

    2008-05-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also health, ecology, safety, economics and energy conservation. Because of its relevance, "Dark Skies” is a theme of the US Node for the International Year of Astronomy (IYA). Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, the ASP session will immerse participants in hands-on, minds-on activities, events and resources on dark skies awareness. These include a planetarium show on DVD, podcasting, social networking, a digital photography contest, The Great Switch Out, Earth Hour, National Dark Skies Week, a traveling exhibit, a 6-minute video tutorial, Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights, and unaided-eye and digital-meter star counting programs like GLOBE at Night. The ASP "Dark Skies” session is offered to provide IYA dark skies-related programs to a variety of attendees. Participants include professional or amateur astronomers, education and public outreach professionals, science center/museum/planetarium staff and educators who want to lead activities involving dark skies awareness in conjunction with IYA. During the session, each participant will be given a package of educational materials on the various dark skies programs. We will provide the "know-how” and the means for session attendees to become community leaders in promoting these dark skies programs as public events at their home institutions during IYA. Participants will be able to jump-start their education programs through the use of well-developed instructional materials and kits sent later if they commit to leading IYA dark skies activities. For more information about the IYA Dark Skies theme, visit http://astronomy2009.us/darkskies/.

  2. A dark energy model alternative to generalized Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Hova, Hoavo; Yang, Huanxiong

    By proposing a new cosmic fluid model of ‑ 1 ≤ ω ≤ 0 as an alternative to the generalized Chaplygin gas, we reexamine the role of Chaplygin gaslike fluid models in understanding dark energy and dark matter. Instead of as a unified dark matter, the fluid is suggested to be a mixture of unclustered dark energy and pressureless dark matter. Within such a scenario, the sub-horizon fluctuations of matter are stable and scale invariant, similar to those in standard ΛCDM model.

  3. The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents

    PubMed Central

    Li, Dake; Fang, Qi; Yu, Hongbo

    2016-01-01

    Purpose Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours’ dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. Methods In vivo ERG recording in adult and developing rodents after light manipulations. Results We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour’s dark exposure, but after that decreased continuously and finally attained steady state after 1 day’s dark exposure. After 3 repetitive, 10 minutes’ light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. Conclusions This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system. PMID:27517462

  4. The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents.

    PubMed

    Li, Dake; Fang, Qi; Yu, Hongbo

    2016-01-01

    Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours' dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. In vivo ERG recording in adult and developing rodents after light manipulations. We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour's dark exposure, but after that decreased continuously and finally attained steady state after 1 day's dark exposure. After 3 repetitive, 10 minutes' light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system.

  5. Dark Gauge U(1) symmetry for an alternative left-right model

    NASA Astrophysics Data System (ADS)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    An alternative left-right model of quarks and leptons, where the SU(2)_R lepton doublet (ν ,l)_R is replaced with (n,l)_R so that n_R is not the Dirac mass partner of ν _L, has been known since 1987. Previous versions assumed a global U(1)_S symmetry to allow n to be identified as a dark-matter fermion. We propose here a gauge extension by the addition of extra fermions to render the model free of gauge anomalies, and just one singlet scalar to break U(1)_S. This results in two layers of dark matter, one hidden behind the other.

  6. Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-04-01

    We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.

  7. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS

    NASA Astrophysics Data System (ADS)

    Aalseth, C. E.; Acerbi, F.; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Antonioli, P.; Arcelli, S.; Ardito, R.; Arnquist, I. J.; Asner, D. M.; Ave, M.; Back, H. O.; Barrado Olmedo, A. I.; Batignani, G.; Bertoldo, E.; Bettarini, S.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Boulay, M.; Bunker, R.; Bussino, S.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Candela, A.; Cantini, C.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Cereseto, R.; Chepurnov, A.; Cicalò, C.; Cifarelli, L.; Citterio, M.; Cocco, A. G.; Colocci, M.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Antone, I.; D'Incecco, M.; D'Urso, D.; Da Rocha Rolo, M. D.; Daniel, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Guido, G.; De Rosa, G.; Dellacasa, G.; Della Valle, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dormia, I.; Dussoni, S.; Empl, A.; Fernandez Diaz, M.; Ferri, A.; Filip, C.; Fiorillo, G.; Fomenko, K.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Garcia Abia, P.; Gendotti, A.; Ghisi, A.; Giagu, S.; Giampa, P.; Gibertoni, G.; Giganti, C.; Giorgi, M. A.; Giovanetti, G. K.; Gligan, M. L.; Gola, A.; Gorchakov, O.; Goretti, A. M.; Granato, F.; Grassi, M.; Grate, J. W.; Grigoriev, G. Y.; Gromov, M.; Guan, M.; Guerra, M. B. B.; Guerzoni, M.; Gulino, M.; Haaland, R. K.; Hallin, A.; Harrop, B.; Hoppe, E. W.; Horikawa, S.; Hosseini, B.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; Jillings, C.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kim, S.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M.; Kuźniak, M.; La Commara, M.; Lehnert, B.; Li, X.; Lissia, M.; Lodi, G. U.; Loer, B.; Longo, G.; Loverre, P.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mapelli, L.; Marcante, M.; Margotti, A.; Mari, S. M.; Mariani, M.; Maricic, J.; Martoff, C. J.; Mascia, M.; Mayer, M.; McDonald, A. B.; Messina, A.; Meyers, P. D.; Milincic, R.; Moggi, A.; Moioli, S.; Monroe, J.; Monte, A.; Morrocchi, M.; Mount, B. J.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Nania, R.; Navrer Agasson, A.; Nikulin, I.; Nosov, V.; Nozdrina, A. O.; Nurakhov, N. N.; Oleinik, A.; Oleynikov, V.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pavletcov, V.; Pazzona, F.; Peeters, S.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perotti, F.; Perruzza, R.; Pesudo, V.; Piemonte, C.; Pilo, F.; Pocar, A.; Pollmann, T.; Portaluppi, D.; Pugachev, D. A.; Qian, H.; Radics, B.; Raffaelli, F.; Ragusa, F.; Razeti, M.; Razeto, A.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Retière, F.; Riffard, Q.; Rivetti, A.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rubbia, A.; Sablone, D.; Salatino, P.; Samoylov, O.; Sánchez García, E.; Sands, W.; Sanfilippo, S.; Sant, M.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Segreto, E.; Seifert, A.; Semenov, D. A.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Sheshukov, A.; Simeone, M.; Singh, P. N.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Sobrero, G.; Sokolov, A.; Sotnikov, A.; Speziale, F.; Stainforth, R.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E. V.; Vacca, A.; Vázquez-Jáuregui, E.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Wahl, J.; Walding, J.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Williams, R.; Wojcik, M. M.; Wu, S.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Yllera de Llano, A.; Zappa, F.; Zappalà, G.; Zhu, C.; Zichichi, A.; Zullo, M.; Zullo, A.; Zuzel, G.

    2018-03-01

    Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of >3 × 109 is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than < 0.1 events (other than ν-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of 1.2 × 10^{-47} cm2 (1.1 × 10^{-46} cm2) for WIMPs of 1 TeV/c 2 (10 TeV/c 2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.

  8. First Dark Matter Search Results from the XENON1T Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Gardner, R.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Mariş, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Riedel, B.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thapa, S.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Upole, N.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-11-01

    We report the first dark matter search results from XENON1T, a ˜2000 -kg -target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 ±12 )-kg fiducial mass and in the [5 ,40 ] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 ±0.25 )×10-4 events /(kg ×day ×keVee) , the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV /c2 , with a minimum of 7.7 ×10-47 cm2 for 35 -GeV /c2 WIMPs at 90% C.L.

  9. Dancing in the dark: darkness as a signal in plants.

    PubMed

    Seluzicki, Adam; Burko, Yogev; Chory, Joanne

    2017-11-01

    Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.

  10. Balance of dark and luminous mass in rotating galaxies.

    PubMed

    McGaugh, Stacy S

    2005-10-21

    A fine balance between dark and baryonic mass is observed in spiral galaxies. As the contribution of the baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.

  11. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark.

    PubMed

    Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu; Duan, Jun; Wu, Keqiang; Liu, Xuncheng

    2017-07-07

    Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Simulations of galaxy cluster collisions with a dark plasma component

    NASA Astrophysics Data System (ADS)

    Spethmann, Christian; Veermäe, Hardi; Sepp, Tiit; Heikinheimo, Matti; Deshev, Boris; Hektor, Andi; Raidal, Martti

    2017-12-01

    Context. Dark plasma is an intriguing form of self-interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. Aims: We aim to find an explanation for an isolated mass clump in the Abell 520 system, which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations. Methods: We performed N-body smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 10-40% mass fraction of dark plasma. Results: The mass of a possible dark clump was calculated for each simulation in a parameter scan over the underlying model parameters. In two higher resolution simulations shock-waves and Mach cones were observed to form in the dark plasma halos. Conclusions: By choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  13. Hidden sector monopole, vector dark matter and dark radiation with Higgs portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Seungwon; Ko, P.; Park, Wan-Il, E-mail: sbaek1560@gmail.com, E-mail: pko@kias.re.kr, E-mail: wipark@kias.re.kr

    2014-10-01

    We show that the 't Hooft-Polyakov monopole model in the hidden sector with Higgs portal interaction makes a viable dark matter model, where monopole and massive vector dark matter (VDM) are stable due to topological conservation and the unbroken subgroup U(1 {sub X}. We show that, even though observed CMB data requires the dark gauge coupling to be quite small, a right amount of VDM thermal relic can be obtained via s-channel resonant annihilation for the mass of VDM close to or smaller than the half of SM higgs mass, thanks to Higgs portal interaction. Monopole relic density turns outmore » to be several orders of magnitude smaller than the observed dark matter relic density. Direct detection experiments, particularly, the projected XENON1T experiment, may probe the parameter space where the dark Higgs is lighter than ∼< 50 GeV. In addition, the dark photon associated with the unbroken U(1 {sub X} contributes to the radiation energy density at present, giving Δ N{sub eff}{sup ν} ∼ 0.1 as the extra relativistic neutrino species.« less

  14. Dark Chocolate Intake Acutely Enhances Neutrophil Count in Peripheral Venous Blood.

    PubMed

    Montagnana, Martina; Danese, Elisa; Lima-Oliveira, Gabriel; Salvagno, Gian Luca; Lippi, Giuseppe

    2017-01-01

    Beside the well-established impact on decreasing the risk of cardiovascular diseases (1), recent attention has been paid to the relationship between cocoa-containing foods and the immune system (2), showing that dark chocolate consumption enhances the systemic defense against bacterial (3) and viral (4) infections. Hence, the current study aimed at investigating the acute effect of dark chocolate intake on peripheral blood leukocytes.

  15. Dark Chocolate Intake Acutely Enhances Neutrophil Count in Peripheral Venous Blood

    PubMed Central

    Montagnana, Martina; Danese, Elisa; Lima-Oliveira, Gabriel; Salvagno, Gian Luca; Lippi, Giuseppe

    2017-01-01

    Beside the well-established impact on decreasing the risk of cardiovascular diseases (1), recent attention has been paid to the relationship between cocoa-containing foods and the immune system (2), showing that dark chocolate consumption enhances the systemic defense against bacterial (3) and viral (4) infections. Hence, the current study aimed at investigating the acute effect of dark chocolate intake on peripheral blood leukocytes. PMID:29531561

  16. A New Dark Vortex

    NASA Astrophysics Data System (ADS)

    Wong, Michael

    2015-10-01

    A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.

  17. DarkBit: a GAMBIT module for computing dark matter observables and likelihoods

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-12-01

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.

  18. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    PubMed

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Dark Matter Search Using XMM-Newton Observations of Willman 1

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  20. Dark matter and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less

  1. Dark matter and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less

  2. Dark matter and cosmology

    NASA Astrophysics Data System (ADS)

    Schramm, David N.

    1992-07-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  3. Dark matter and cosmology

    NASA Astrophysics Data System (ADS)

    Schramm, D. N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  4. Search for the dark photon and the dark Higgs boson at belle.

    PubMed

    Jaegle, I; Adachi, I; Aihara, H; Al Said, S; Asner, D M; Aushev, T; Ayad, R; Bakich, A M; Bansal, V; Barrett, M; Bhuyan, B; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chang, M-C; Cheon, B G; Chilikin, K; Cho, K; Chobanova, V; Choi, S-K; Choi, Y; Cinabro, D; Dalseno, J; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Eidelman, S; Epifanov, D; Farhat, H; Fast, J E; Ferber, T; Frost, O; Gaur, V; Gabyshev, N; Ganguly, S; Garmash, A; Getzkow, D; Gillard, R; Goh, Y M; Golob, B; Grzymkowska, O; Hayasaka, K; Hayashii, H; He, X H; Hedges, M; Hou, W-S; Iijima, T; Inami, K; Ishikawa, A; Iwasaki, Y; Julius, T; Kang, K H; Kato, E; Kawasaki, T; Kim, D Y; Kim, J B; Kim, J H; Kim, S H; Kinoshita, K; Ko, B R; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Lewis, P; Li Gioi, L; Libby, J; Liventsev, D; Matvienko, D; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Mussa, R; Nakano, E; Nakao, M; Nisar, N K; Nishida, S; Ogawa, S; Pakhlov, P; Pakhlova, G; Park, H; Pedlar, T K; Pesántez, L; Petrič, M; Piilonen, L E; Ritter, M; Rostomyan, A; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Semmler, D; Senyo, K; Seon, O; Seong, I; Sevior, M E; Shebalin, V; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sinha, R; Sohn, Y-S; Starič, M; Sumihama, M; Sumisawa, K; Tamponi, U; Tatishvili, G; Teramoto, Y; Thorne, F; Uchida, M; Uehara, S; Unno, Y; Uno, S; Vahsen, S E; Van Hulse, C; Vanhoefer, P; Varner, G; Vinokurova, A; Wagner, M N; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yashchenko, S; Yook, Y; Yusa, Y; Zhilich, V; Zhulanov, V; Zupanc, A

    2015-05-29

    The dark photon A^{'} and the dark Higgs boson h^{'} are hypothetical constituents featured in a number of recently proposed dark sector models. Assuming prompt decays of both dark particles, we search for their production in the so-called Higgstrahlung channel e^{+}e^{-}→A^{'}h^{'}, with h^{'}→A^{'}A^{'}. We investigate ten exclusive final states with A^{'}→e^{+}e^{-}, μ^{+}μ^{-}, or π^{+}π^{-} in the mass ranges 0.1  GeV/c^{2} A^{'}}<3.5  GeV/c^{2} and 0.2  GeV/c^{2} a dark photon candidate detected via missing mass, in the mass ranges 1.1  GeV/c^{2} A^{'}}<3.5  GeV/c^{2} and 2.2  GeV/c^{2} 1} data set collected by Belle, we observe no significant signal. We obtain individual and combined 90% credibility level upper limits on the branching fraction times the Born cross section, B×σ_{Born}, on the Born cross section σ_{Born}, and on the dark photon coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α_{D}×ε^{2}. These limits improve upon and cover wider mass ranges than previous experiments. The limits from the final states 3(π^{+}π^{-}) and 2(e^{+}e^{-})X are the first placed by any experiment. For α_{D} equal to 1/137, m_{h^{'}}< 8  GeV/c^{2}, and m_{A^{'}}<1  GeV/c^{2}, we exclude values of the mixing parameter ε above ∼8×10^{-4}.

  5. Low-Mass Dark Matter Search with the DarkSide-50 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; et al.

    We present the results of a search for dark matter WIMPs in the mass range below 20 GeV/c^2 using a target of low-radioactivity argon. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso (LNGS). The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 events/keVee/kg/day and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^2 for the spin-independent cross section of darkmore » matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^2.« less

  6. First Dark Matter Search Results from the XENON1T Experiment.

    PubMed

    Aprile, E; Aalbers, J; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arneodo, F; Barrow, P; Baudis, L; Bauermeister, B; Benabderrahmane, M L; Berger, T; Breur, P A; Brown, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Calvén, J; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Diglio, S; Eurin, G; Fei, J; Ferella, A D; Fieguth, A; Fulgione, W; Gallo Rosso, A; Galloway, M; Gao, F; Garbini, M; Gardner, R; Geis, C; Goetzke, L W; Grandi, L; Greene, Z; Grignon, C; Hasterok, C; Hogenbirk, E; Howlett, J; Itay, R; Kaminsky, B; Kazama, S; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Lin, Q; Lindemann, S; Lindner, M; Lombardi, F; Lopes, J A M; Manfredini, A; Mariş, I; Marrodán Undagoitia, T; Masbou, J; Massoli, F V; Masson, D; Mayani, D; Messina, M; Micheneau, K; Molinario, A; Morå, K; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Pizzella, V; Piro, M-C; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Riedel, B; Rizzo, A; Rosendahl, S; Rupp, N; Saldanha, R; Dos Santos, J M F; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Scotto Lavina, L; Selvi, M; Shagin, P; Shockley, E; Silva, M; Simgen, H; Sivers, M V; Stein, A; Thapa, S; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; Vargas, M; Upole, N; Wang, H; Wang, Z; Wei, Y; Weinheimer, C; Wulf, J; Ye, J; Zhang, Y; Zhu, T

    2017-11-03

    We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40]  keV_{nr} energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10^{-4}  events/(kg×day×keV_{ee}), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10  GeV/c^{2}, with a minimum of 7.7×10^{-47}  cm^{2} for 35-GeV/c^{2} WIMPs at 90% C.L.

  7. Strongly coupled dark energy with warm dark matter vs. LCDM

    NASA Astrophysics Data System (ADS)

    Bonometto, S. A.; Mezzetti, M.; Mainini, R.

    2017-10-01

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ~ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k. This motivates a second related paper [1], where such problems are treated in a quantitative way.

  8. Strongly coupled dark energy with warm dark matter vs. LCDM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonometto, S.A.; Mezzetti, M.; Mainini, R., E-mail: bonometto@oats.inaf.it, E-mail: mezzetti@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ∼ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating,more » and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k 's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k . This motivates a second related paper [1], where such problems are treated in a quantitative way.« less

  9. Reconstructing the interaction between dark energy and dark matter using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen

    2015-06-01

    We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.

  10. Direct Search for Dark Matter with DarkSide

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2015-11-01

    The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.

  11. Probing the Dark Sector with Dark Matter Bound States

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-01

    A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  12. Thermal dark matter from a highly decoupled sector

    DOE PAGES

    Berlin, Asher; Hooper, Dan; Krnjaic, Gordan

    2016-11-17

    It has recently been shown that if the dark matter is in thermal equilibrium with a sector that is highly decoupled from the Standard Model, it can freeze out with an acceptable relic abundance, even if the dark matter is as heavy as ~1–100 PeV. In such scenarios, both the dark and visible sectors are populated after inflation, but with independent temperatures. The lightest particle in the dark sector will be generically long-lived and can come to dominate the energy density of the Universe. Upon decaying, these particles can significantly reheat the visible sector, diluting the abundance of dark mattermore » and thus allowing for dark matter particles that are much heavier than conventional WIMPs. In this study, we present a systematic and pedagogical treatment of the cosmological history in this class of models, emphasizing the simplest scenarios in which a dark matter candidate annihilates into hidden sector particles which then decay into visible matter through the vector, Higgs, or lepton portals. In each case, we find ample parameter space in which very heavy dark matter particles can provide an acceptable thermal relic abundance. We also discuss possible extensions of models featuring these dynamics.« less

  13. Thermal dark matter from a highly decoupled sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Hooper, Dan; Krnjaic, Gordan

    It has recently been shown that if the dark matter is in thermal equilibrium with a sector that is highly decoupled from the Standard Model, it can freeze out with an acceptable relic abundance, even if the dark matter is as heavy as ~1–100 PeV. In such scenarios, both the dark and visible sectors are populated after inflation, but with independent temperatures. The lightest particle in the dark sector will be generically long-lived and can come to dominate the energy density of the Universe. Upon decaying, these particles can significantly reheat the visible sector, diluting the abundance of dark mattermore » and thus allowing for dark matter particles that are much heavier than conventional WIMPs. In this study, we present a systematic and pedagogical treatment of the cosmological history in this class of models, emphasizing the simplest scenarios in which a dark matter candidate annihilates into hidden sector particles which then decay into visible matter through the vector, Higgs, or lepton portals. In each case, we find ample parameter space in which very heavy dark matter particles can provide an acceptable thermal relic abundance. We also discuss possible extensions of models featuring these dynamics.« less

  14. Darkness without dark matter and energy - generalized unimodular gravity

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.; Kamenshchik, A. Yu.

    2017-11-01

    We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.

  15. Dark energy and the anthropic principle

    NASA Astrophysics Data System (ADS)

    Křížek, Michal

    2012-01-01

    The Hubble constant is split into two terms H = H1 + H2 , where H1 is a decreasing function due to the Big Bang and the subsequent gravitational interaction that slows the expansion of the Universe and H2 is an increasing function that corresponds to dark energy which accelerates this expansion. For T = 13.7 Gyr we prove that H2( T) > 5 m/(yr AU). This is a quite large number and thus the impact of dark energy, which is spread almost everywhere uniformly, should be observable not only on large scales, but also in our Solar system. In particular, we show that Earth, Mars and other planets were closer to the Sun 4.5 Gyr ago. The recession speed ≈5.3 m/yr of the Earth from the Sun seems to be just right for an almost constant influx of solar energy from the origin of life on Earth up to the present over which time the Sun's luminosity has increased approximately linearly. This presents further support for the Anthropic Principle. Namely, the existence of dark energy guarantees very stable conditions for the development of intelligent life on Earth over a period of 3.5 Gyr.

  16. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE PAGES

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  17. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  18. The XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-12-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  19. Searching for dark matter with neutron star mergers and quiet kilonovae

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai

    2018-03-01

    We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.

  20. Light dark Higgs boson in minimal sub-GeV dark matter scenarios

    NASA Astrophysics Data System (ADS)

    Darmé, Luc; Rao, Soumya; Roszkowski, Leszek

    2018-03-01

    Minimal scenarios with light (sub-GeV) dark matter whose relic density is obtained from thermal freeze-out must include new light mediators. In particular, a very well-motivated case is that of a new "dark" massive vector gauge boson mediator. The mass term for such mediator is most naturally obtained by a "dark Higgs mechanism" which leads to the presence of an often long-lived dark Higgs boson whose mass scale is the same as that of the mediator. We study the phenomenology and experimental constraints on two minimal, self-consistent dark sectors that include such a light dark Higgs boson. In one the dark matter is a pseudo-Dirac fermion, in the other a complex scalar. We find that the constraints from BBN and CMB are considerably relaxed in the framework of such minimal dark sectors. We present detection prospects for the dark Higgs boson in existing and projected proton beam-dump experiments. We show that future searches at experiments like Xenon1T or LDMX can probe all the relevant parameter space, complementing the various upcoming indirect constraints from astrophysical observations.

  1. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  2. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    NASA Technical Reports Server (NTRS)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  3. Direct search for dark matter with DarkSide

    DOE PAGES

    Agnes, P.

    2015-11-16

    Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10 -44 cm 2 (for a WIMP mass of 100 GeV/c 2) and it's currently the most sensitive limit obtained with an Argon target.« less

  4. Dark photons from the center of the Earth: Smoking-gun signals of dark matter

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Smolinsky, Jordan; Tanedo, Philip

    2016-01-01

    Dark matter may be charged under dark electromagnetism with a dark photon that kinetically mixes with the Standard Model photon. In this framework, dark matter will collect at the center of the Earth and annihilate into dark photons, which may reach the surface of the Earth and decay into observable particles. We determine the resulting signal rates, including Sommerfeld enhancements, which play an important role in bringing the Earth's dark matter population to their maximal, equilibrium value. For dark matter masses mX˜100 GeV - 10 TeV , dark photon masses mA'˜MeV -GeV , and kinetic mixing parameters ɛ ˜1 0-9- 1 0-7 , the resulting electrons, muons, photons, and hadrons that point back to the center of the Earth are a smoking-gun signal of dark matter that may be detected by a variety of experiments, including neutrino telescopes, such as IceCube, and space-based cosmic ray detectors, such as Fermi-LAT and AMS. We determine the signal rates and characteristics and show that large and striking signals—such as parallel muon tracks—are possible in regions of the (mA',ɛ ) plane that are not probed by direct detection, accelerator experiments, or astrophysical observations.

  5. VDM: a model for vector dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman; RezaeiAkbarieh, Amin, E-mail: yasaman@theory.ipm.ac.ir, E-mail: am_rezaei@physics.sharif.ir

    2012-10-01

    We construct a model based on a new U(1){sub X} gauge symmetry and a discrete Z{sub 2} symmetry under which the new gauge boson is odd. The model contains new complex scalars which carry U(1){sub X} charge but are singlets of the Standard Model. The U(1){sub X} symmetry is spontaneously broken but the Z{sub 2} symmetry is maintained, making the new gauge boson a dark matter candidate. In the minimal version there is only one complex scalar field but by extending the number of scalars to two, the model will enjoy rich phenomenology which comes in various phases. In onemore » phase, CP is spontaneously broken. In the other phase, an accidental Z{sub 2} symmetry appears which makes one of the scalars stable and therefore a dark matter candidate along with the vector boson. We discuss the discovery potential of the model by colliders as well as the direct dark matter searches.« less

  6. Investigation of the role of the calvin cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated petunia under light and dark conditions using 13C-NMR.

    PubMed

    Sun, Huiqun; Zhang, Wei; Tang, Lijuan; Han, Shuang; Wang, Xinjia; Zhou, Shengen; Li, Kunzhi; Chen, Limei

    2015-01-01

    It has been shown that formaldehyde (HCHO) absorbed by plants can be assimilated through the Calvin cycle or C1 metabolism. Our previous study indicated that Petunia hybrida could effectively eliminate HCHO from HCHO-polluted air. To understand the roles of C1 metabolism and the Calvin cycle during HCHO metabolism and detoxification in petunia plants treated with gaseous H(13)CHO under light and dark conditions. Aseptically grown petunia plants were treated with gaseous H(13)CHO under dark and light conditions. The metabolites generated from HCHO detoxification in petunia were investigated using (13)C-NMR. [2-(13)C]glycine (Gly) was generated via C1 metabolism and [U-(13)C]glucose (Gluc) was produced through the Calvin cycle simultaneously in petunia treated with low-level gaseous H(13)CHO under light conditions. Generation of [2-(13)C]Gly decreased whereas [U-(13) C]Gluc and [U-(13)C]fructose (Fruc) production increased greatly under high-level gaseous H(13)CHO stress in the light. In contrast, [U-(13)C]Gluc and [U-(13)C] Fruc production decreased greatly and [2-(13)C]Gly generation increased significantly under low-level and high-level gaseous H(13)CHO stress in the dark. C1 metabolism and the Calvin cycle contributed differently to HCHO metabolism and detoxification in gaseous H(13CHO-treated petunia plants. As the level of gaseous HCHO increased, the role of C1 metabolism decreased and the role of the Calvin cycle increased under light conditions. However, opposite changes were observed in petunia plants under dark conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  7. DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, C.E.; et al.

    Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). Operation of DarkSide-50 demonstrated a major reduction in the dominantmore » $$^{39}$$Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $$\\gt3\\times10^9$$ is achievable. This, along with the use of the veto system, is the key to unlocking the path to large LArTPC detector masses, while maintaining an "instrumental background-free" experiment, an experiment in which less than 0.1 events (other than $$\

  8. A balance for dark matter bound states

    NASA Astrophysics Data System (ADS)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  9. Galaxies and gas in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Katz, Neal; Hernquist, Lars; Weinberg, David H.

    1992-01-01

    We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.

  10. Probing the Dark Sector with Dark Matter Bound States.

    PubMed

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  11. Exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state.more » In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.« less

  12. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D'Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.

    2017-07-01

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ˜ {10}14.2 {M}⊙ . We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile—with a free parameter for the inner density slope—we find that the break radius is {270}-76+48 kpc, and that the inner density falls with radius to the power -0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as {r}-1. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as {r}-0.8 and {r}-1.0) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.

  13. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster atmore » $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $$z_s=2.39$$ and the mass enclosed within the 14 arc second radius Einstein ring is $$10^{14.2}$$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $$270^{+48}_{-76}$$ kpc, and that the inner density falls with radius to the power $$-0.38\\pm0.04$$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $$r^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $$r^{-0.8}$$ and $$r^{-1.0}$$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  14. Binary pulsars as probes of a Galactic dark matter disk

    NASA Astrophysics Data System (ADS)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  15. Levitating dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaloper, Nemanja; Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beaconsmore » like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.« less

  16. Levitating dark matter

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  17. A Unified Model of Phantom Energy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ < -1/3. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has w = p/ρ < -1. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  18. Electrophilic dark matter with dark photon: From DAMPE to direct detection

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; He, Xiao-Gang

    2018-03-01

    The electron-positron excess reported by the DAMPE collaboration recently may be explained by an electrophilic dark matter (DM). A standard model singlet fermion may play the role of such a DM when it is stabilized by some symmetries, such as a dark U(1)X gauge symmetry, and dominantly annihilates into the electron-positron pairs through the exchange of a scalar mediator. The model, with appropriate Yukawa couplings, can well interpret the DAMPE excess. Naively one expects that in this type of models the DM-nucleon cross section should be small since there is no tree-level DM-quark interactions. We however find that at one-loop level, a testable DM-nucleon cross section can be induced for providing ways to test the electrophilic model. We also find that a U (1) kinetic mixing can generate a sizable DM-nucleon cross section although the U(1)X dark photon only has a negligible contribution to the DM annihilation. Depending on the signs of the mixing parameter, the dark photon can enhance/reduce the one-loop induced DM-nucleon cross section.

  19. Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate.

    PubMed

    Montiel Corona, Virginia; Le Borgne, Sylvie; Revah, Sergio; Morales, Marcia

    2017-02-01

    A Rhodobacter capsulatus strain and a photoheterotrophic culture (IZT) were cultivated to produce hydrogen under different light-dark cycles. A dark fermentation effluent (DFE) was used as substrate. It was found that IZT culture had an average cumulative hydrogen production (Paccum H 2 ) of 1300±43mLH 2 L -1 under continuous illumination and light-dark cycles of 30 or 60min. In contrast, R. capsulatus reduced its Paccum H 2 by 20% under 30:30min light-dark cycles, but tripled its poly-β-hydroxybutyrate (PHB) content (308±2mgPHB gdw -1 ) compared to continuous illumination. The highest PHB content by IZT culture was 178±10mgPHB gdw -1 under 15:15min light-dark cycles. PCR-DGGE analysis revealed that the IZT culture was mainly composed of Rhodopseudomonas palustris identified with high nucleotide similarity (99%). The evaluated cultures might be used for hydrogen and PHB production. They might provide energy savings by using light-dark cycles and DFE valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dark energy from the string axiverse.

    PubMed

    Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E

    2014-12-19

    String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.

  1. Decoding a Dark Splotch

    NASA Image and Video Library

    2017-10-09

    Geologists aren't quite sure what to make of the dark splotch in the middle of this image from NASA's Mars Reconnaisance Orbiter (MRO) -- one of several similar dark splotches that extend east and west for over 100 kilometers. From measurements made in infrared, this and other dark splotches have what we call "high thermal inertia," meaning that it heats up and cools down slowly. Scientists use thermal inertia to assess how rocky, sandy, or dusty a place is. A higher thermal inertia than the surrounding area means it's less dusty. Wavy, banded patterns in the dark splotch (possibly due to cross bedding from sand dunes that once occupied the area) were lithified into sandstone, and then eroded away. These clues could help geologists figure out what's going on there. https://photojournal.jpl.nasa.gov/catalog/PIA22042

  2. Dark current of organic heterostructure devices with insulating spacer layers

    NASA Astrophysics Data System (ADS)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-03-01

    The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.

  3. Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes

    DOE PAGES

    Amori, Amanda R.; Rossi, Jamie E.; Landi, Brian J.; ...

    2018-01-24

    Variable temperature photoluminescence excitation spectroscopy of three (n,m) species of single-walled carbon nanotubes revealed that at resonant S 22 excitation, in addition to allowed excitonic optical transitions, several sidebands that should be forbidden based on selection rules were observed and appeared to have a strong temperature dependence. In particular, we found that a sideband located approximately 130 meV away from the bright S 11 exciton peak relating to the K-momentum dark exciton state, called X 1, decreased in intensity five-fold as the samples were cooled. Direct optical excitation of this dark state is nominally forbidden, thus calling into question howmore » the state is populated, and why it is so prominent in the photoluminescence spectrum. Interestingly, the ratio of the integrated photoluminescence intensities of X 1 to S 11 scales with a Boltzmann factor unrelated to the phonon that is thought to be responsible for depopulating the K-momentum dark exciton state: an in-plane transverse optical phonon, A 1’. Furthermore, photoluminescence spectra from individual (7,5) nanotubes show that only a small fraction exhibit the X 1 feature, with varying oscillator strength, thus suggesting that intrinsic processes such as phonon scattering are not responsible for populating the dark state. Alternatively, we suggest that populating the K-momentum dark exciton state requires scattering from defects, which is consistent with the increased magnitude of the X 1 feature for samples with increased sample purification and processing. Thus, the presence of an X 1 peak in photoluminescence is an extremely sensitive spectroscopic indicator of defects on single-walled carbon nanotubes.« less

  4. Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amori, Amanda R.; Rossi, Jamie E.; Landi, Brian J.

    Variable temperature photoluminescence excitation spectroscopy of three (n,m) species of single-walled carbon nanotubes revealed that at resonant S 22 excitation, in addition to allowed excitonic optical transitions, several sidebands that should be forbidden based on selection rules were observed and appeared to have a strong temperature dependence. In particular, we found that a sideband located approximately 130 meV away from the bright S 11 exciton peak relating to the K-momentum dark exciton state, called X 1, decreased in intensity five-fold as the samples were cooled. Direct optical excitation of this dark state is nominally forbidden, thus calling into question howmore » the state is populated, and why it is so prominent in the photoluminescence spectrum. Interestingly, the ratio of the integrated photoluminescence intensities of X 1 to S 11 scales with a Boltzmann factor unrelated to the phonon that is thought to be responsible for depopulating the K-momentum dark exciton state: an in-plane transverse optical phonon, A 1’. Furthermore, photoluminescence spectra from individual (7,5) nanotubes show that only a small fraction exhibit the X 1 feature, with varying oscillator strength, thus suggesting that intrinsic processes such as phonon scattering are not responsible for populating the dark state. Alternatively, we suggest that populating the K-momentum dark exciton state requires scattering from defects, which is consistent with the increased magnitude of the X 1 feature for samples with increased sample purification and processing. Thus, the presence of an X 1 peak in photoluminescence is an extremely sensitive spectroscopic indicator of defects on single-walled carbon nanotubes.« less

  5. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers.

    PubMed

    Carnevale, R; Loffredo, L; Pignatelli, P; Nocella, C; Bartimoccia, S; Di Santo, S; Martino, F; Catasca, E; Perri, L; Violi, Francesco

    2012-01-01

    Dark chocolate is reported to decrease platelet activation but the underlying mechanism is still undefined. Dark chocolate is rich in polyphenols that could exert an antiplatelet action via inhibition of oxidative stress. The aim of the present study was to assess if dark chocolate inhibits platelet reactive oxidant species (ROS) formation and platelet activation. Twenty healthy subjects (HS) and 20 smokers were randomly allocated to receive 40 g of dark (cocoa > 85%) or milk chocolate (cocoa < 35%) in a cross-over, single-blind study. There was an interval of 7 days between the two phases of the study. At baseline and 2 h after chocolate ingestion, platelet recruitment (PR), platelet ROS, platelet isoprostane 8-ISO-prostaglandin F2α (8-iso-PGF2α), Thromboxane (TxA2) and platelet activation of NOX2, the catalytic sub-unit of NADPH oxidase, and serum epicatechin were measured. Compared with HS, smokers showed enhanced PR, platelet formation of ROS and eicosanoids and NOX2 activation. After dark chocolate, platelet ROS (-48%, P < 0.001), 8-iso-PGF2α (-10%, P < 0.001) and NOX2 activation (-22%, P < 0.001) significantly decreased; dark chocolate did not affect platelet variables in HS. No effect of milk chocolate was detected in both groups. Serum epicatechin increased after dark chocolate in HS (from 0.454 ± 0.3 nm to 118.3 ± 53.7 nm) and smokers (from 0.5 ± 0.28 nm to 120.9 ± 54.2 nm). Platelet incubation with 0.1-10 μm catechin significantly reduced PR, platelet 8-iso-PGF2α and ROS formation and NOX2 activation only in platelets from smokers. Dark chocolate inhibits platelet function by lowering oxidative stress only in smokers; this effect seems to be dependent on its polyphenolic content. © 2011 International Society on Thrombosis and Haemostasis.

  6. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  7. The Dirty Dozen: A Concise Measure of the Dark Triad

    ERIC Educational Resources Information Center

    Jonason, Peter K.; Webster, Gregory D.

    2010-01-01

    There has been an exponential increase of interest in the dark side of human nature during the last decade. To better understand this dark side, the authors developed and validated a concise, 12-item measure of the Dark Triad: narcissism, psychopathy, Machiavellianism. In 4 studies involving 1,085 participants, they examined its structural…

  8. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  9. Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flatmore » $$\\Lambda$$CDM model with minimal neutrino mass ($$\\sum m_\

  10. Evolution of light domain walls interacting with dark matter, part 1

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1990-01-01

    The evolution of domain walls generated in the early Universe is discussed considering an interaction between the walls and a major gaseous component of the dark matter. The walls are supposed able to reflect the particles elastically and with a reflection coefficient of unity. A toy Lagrangian that could give rise to such a phenomenon is discussed. In the simple model studied, highly non-relativistic and slowly varying speeds are obtained for the domain walls (approximately 10 (exp -2)(1+z)(exp -1)) and negligible distortions of the microwave background. In addition, these topological defects may provide a mechanism of forming the large scale structure of the Universe, by creating fluctuations in the dark matter (delta rho/rho approximately O(1)) on a scale comparable with the distance the walls move from the formation (in the model d less than 20 h(exp -1) Mpc). The characteristic scale of the wall separation can be easily chosen to be of the order of 100 Mpc instead of being restricted to the horizon scale, as usually obtained.

  11. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    PubMed

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  12. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  13. Dark-matter decay as a complementary probe of multicomponent dark sectors.

    PubMed

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2015-02-06

    In single-component theories of dark matter, the 2→2 amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. The detection techniques based on these processes are thus complementary. However, multicomponent theories exhibit an additional direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter components. We discuss how this new detection channel may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  14. Current status of the dark matter experiment DarkSide-50

    NASA Astrophysics Data System (ADS)

    Marini, L.; Pagani, L.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-01-01

    DarkSide-50 is a dark matter direct search experiment at LNGS, searching for rare nuclear recoils possibly induced by WIMPs. It has two nested vetoes and a dual phase liquid argon TPC as dark matter detector. Key features of this experiment are the use of underground argon as radio-pure target and of muon and neutron active vetoes to suppress the background. The first data-taking campaign was running from November 2013 to April 2015 with an atmospheric argon target and a reduced efficiency neutron veto due to internal contamination. However, an upper limit on the WIMP-nucleon cross section of 6.1×10-44 cm2 at 90% CL was obtained for a WIMP mass of 100 GeV/c2 and an exposure of (1422±67) kg . d . At present DarkSide-50 started a 3 years run, intended to be background-free because the neutron veto was successfully recovered and underground argon replaced the atmospheric one. Additionally calibration campaigns for both the TPC and the neutron veto were completed. Thanks to the good performance of the background rejection, the results obtained so far suggest the scalability of DarkSide-50 to a ton-scale detector, which will play a key role into the dark matter search scenario.

  15. Cold dark matter. 1: The formation of dark halos

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  16. Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Yuan, Yu-Qiang; Sun, Yan

    2018-02-01

    Under investigation in this paper is the (2 + 1) -dimensional Maccari system, which is related to the Kadomtsev-Petviashvili (KP) equation. Bright and dark N -soliton solutions in terms of the Gramian are obtained via the KP hierarchy reduction. Oblique and parallel interactions between the bright solitons and between the dark solitons are studied analytically and graphically. We find that there are elastic and inelastic interactions for the bright solitons, but there are only elastic interactions for the dark solitons. Resonance, breather, attraction and repulsion structures are presented. It is expected that these soliton interactions have potential applications in fluid dynamics, nonlinear optics and plasma physics.

  17. Dark conditions enhance aluminum tolerance in several rice cultivars via multiple modulations of membrane sterols.

    PubMed

    Wagatsuma, Tadao; Maejima, Eriko; Watanabe, Toshihiro; Toyomasu, Tomonobu; Kuroda, Masaharu; Muranaka, Toshiya; Ohyama, Kiyoshi; Ishikawa, Akifumi; Usui, Masami; Hossain Khan, Shahadat; Maruyama, Hayato; Tawaraya, Keitaro; Kobayashi, Yuriko; Koyama, Hiroyuki

    2018-01-23

    Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel

    2014-11-01

    We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.

  19. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    NASA Astrophysics Data System (ADS)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  20. The DarkSide awakens

    NASA Astrophysics Data System (ADS)

    Davini, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-05-01

    The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.

  1. Effects of 3,4-methylenedioxy-methamphetamine (MDMA) on anxiety in mice tested in the light-dark box.

    PubMed

    Maldonado, E; Navarro, J F

    2000-04-01

    1. The effects of acute administration of 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") on anxiety tested in the light/dark box were examined in albino male mice of the OF.1 strain. 2. Animals were evaluated in the light/dark test 30 min after injection of MDMA (1, 8, and 15 mg/kg, i.p) or saline. The following parameters were recorded (for 5 min); (a) number of exploratory rearings in the light and dark sections; (b) number of transitions between the lit and dark areas; (c) time spent in the light and dark areas; (d) latency of the initial movement from the light to the dark area, and (e) locomotor activity in light area. 3. MDMA (8 and 15 mg/kg) produced a significant reduction in exploratory activity (rearings and transitions), without decreasing motility, in comparison with saline-treated mice. However, time spent in lit/dark compartments was not significantly affected by the drug, which could be a consequence of the anti-exploratory properties of MDMA. 4. Overall, the behavioral profile found in the light/dark test indicates an anxiogenic-like activity of MDMA in mice. It is suggested, however, that animal models of anxiety which emphasize a social interaction could be more sensitive to the effects of this substance.

  2. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM modelmore » will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.« less

  3. DarkSide search for dark matter

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Vincenzi, M.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-01

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  4. The Dark Energy Survey and Operations: Years 1 to 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, H. T.

    2016-01-01

    The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1”more » (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation« less

  5. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE PAGES

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; ...

    2017-07-10

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  6. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  7. Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli; Di, Haoran

    2017-04-01

    We explore a scenario that dark matter is a boson condensate created by the misalignment mechanism, in which a spin 0 boson (an axionlike particle) and a spin 1 boson (the dark photon) are considered, respectively. We find that although the sub-MeV dark matter boson is extremely stable, the huge number of dark matter particles in a galaxy halo makes the decaying signal detectable. A galaxy halo is a large structure bounded by gravity with a typical ˜1 012 solar mass, and the majority of its components are made of dark matter. For the axionlike particle case, it decays via ϕ →γ γ , therefore the photon spectrum is monochromatic. For the dark photon case, it is a three body decay A'→γ γ γ . However, we find that the photon spectrum is heavily peaked at M /2 and thus can facilitate observation. We also suggest a physical explanation for the three body decay spectrum by comparing the physics in the decay of orthopositronium. In addition, for both cases, the decaying photon flux can be measured for some regions of parameter space using current technologies.

  8. Abnormal dark-adapted electroretinogram in Best's vitelliform macular degeneration.

    PubMed

    Lachapelle, P; Quigley, M G; Polomeno, R C; Little, J M

    1988-10-01

    It is generally well accepted that in Best's vitelliform macular degeneration (BVMD) the electroretinogram (ERG) is normal whereas the electro-oculogram (EOG) is markedly abnormal. We describe a patient in whom BVMD was suspected on the basis of the clinical findings, EOG and family history (one of her daughters had the typical vitelliform lesion). However, her dark-adapted ERG was markedly abnormal. Similar anomalies were found in the dark-adapted ERG of the daughter. While the temporal features of the various ERG waves were well preserved, a substantial decrease in the amplitude of specific segments of the ERG signal was observed. A similar decrease in the amplitude of the oscillatory potentials was also found. We believe that this unusual combination of BVMD and abnormal dark-adapted ERG may be due to the reported reduced penetrance and variable expressivity of the BVMD gene(s).

  9. N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants.

    PubMed Central

    Gogorcena, Y.; Gordon, A. J.; Escuredo, P. R.; Minchin, F. R.; Witty, J. F.; Moran, J. F.; Becana, M.

    1997-01-01

    Common beans (Phaseolus vulgaris L.) were exposed to continuous darkness to induce nodule senescence, and several nodule parameters were investigated to identify factors that may be involved in the initial loss of N2 fixation. After only 1 d of darkness, total root respiration decreased by 76% and in vivo nitrogenase (N2ase) activity decreased by 95%. This decline coincided with the almost complete depletion (97%) of sucrose and fructose in nodules. At this stage, the O2 concentration in the infected zone increased to 1%, which may be sufficient to inactivate N2ase; however, key enzymes of carbon and nitrogen metabolism were still active. After 2 d of dark stress there was a significant decrease in the level of N2ase proteins and in the activities of enzymes involved in carbon and nitrogen assimilation. However, the general collapse of nodule metabolism occurred only after 4 d of stress, with a large decline in leghemoglobin and antioxidants. At this final senescent stage, there was an accumulation of oxidatively modified proteins. This oxidative stress may have originated from the decrease in antioxidant defenses and from the Fe-catalyzed generation of activated oxygen due to the increased availability of catalytic Fe and O2 in the infected region. PMID:12223669

  10. The DarkSide awakens

    DOE PAGES

    Davini, S.; Agnes, P.; Agostino, L.; ...

    2016-06-09

    Here, the DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 10 3 relative to atmospheric argon.more » The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.« less

  11. Current Status of the dark matter experiment DarkSide-50

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marini, L.; Pagani, Ioanna; Agnes, P.

    2016-07-12

    DarkSide-50 is a dark matter direct search experiment at LNGS, searching for rare nuclear recoils possibly induced by WIMPs. It has two nested vetoes and a dual phase liquid argon TPC as dark matter detector. Key features of this experiment are the use of underground argon as radio-pure target and of muon and neutron active vetoes to suppress the background. The first data-taking campaign was running from November 2013 to April 2015 with an atmospheric argon target and a reduced efficiency neutron veto due to internal contamination. However, an upper limit on the WIMP-nucleon cross section of 6.1×10-44 cm2 atmore » 90% CL was obtained for a WIMP mass of 100 GeV/c2 and an exposure of (1422 ± 67) kg·d. At present DarkSide-50 started a 3 years run, intended to be background-free because the neutron veto was successfully recovered and underground argon replaced the atmospheric one. Additionally calibration campaigns for both the TPC and the neutron veto were completed. Thanks to the good performance of the background rejection, the results obtained so far suggest the scalability of DarkSide-50 to a ton-scale detector, which will play a key role into the dark matter search scenario.« less

  12. Probes for dark matter physics

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  13. Dark adaptation in vitamin A-deficient adults awaiting liver transplantation: improvement with intramuscular vitamin A treatment.

    PubMed

    Abbott-Johnson, Winsome J; Kerlin, Paul; Abiad, Ghassan; Clague, Alan E; Cuneo, Ross C

    2011-04-01

    Although vitamin A deficiency is common in chronic liver disease, limited data exist on impairment of dark adaptation and response to therapy. The aims were (1) to assess dark adaptation in patients, (2) to assess the relationship between dark adaptation and vitamin A status, zinc and Child-Pugh score, (3) to compare perceived and measured dark adaptation and (4) to assess the dark adaptation response to intramuscular vitamin A. This was a prospective study of 20 patients (alcoholic liver disease 10, other parenchymal diseases six, cholestatic diseases four) awaiting liver transplantation. Selection was based on low serum retinol. There were 15 age-matched controls. Dark adaptation was measured with a SST-1 dark adaptometer and perception by questionnaire. Eight patients received 50, 000 IU of retinyl palmitate, and dark adaptation was repeated at 1 month. Forty per cent of patients had impaired dark adaptation. Patients with alcoholic liver disease were more impaired than those with other parenchymal diseases (p=0.015). No relationship was found between dark adaptation and the biochemical indicators or Child-Pugh score. Seventy-five per cent of patients with impairment did not perceive a problem. After intervention, light of half the previous intensity could be seen (p=0.05). Dark-adaptation impairment was common, was worse in alcoholic liver disease, was largely not appreciated by the patients and improved with vitamin A treatment.

  14. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  15. Direct detection constraints on dark photon dark matter

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2015-07-01

    Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons) in the 0.01- 100 keV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to O (10-15), assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity to dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. We also revisit indirect constraints from V → 3 γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.

  16. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  17. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.

    PubMed

    Manjappa, Manukumara; Turaga, Shuvan Prashant; Srivastava, Yogesh Kumar; Bettiol, Andrew Anthony; Singh, Ranjan

    2017-06-01

    Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.

  18. Teleparallel dark energy in a system of D0-branes

    NASA Astrophysics Data System (ADS)

    Sharma, Umesh Kumar; Sepehri, Alireza; Pradhan, Anirudh

    A new model which allows a non-minimal coupling between gravity and quintessence in the configuration of teleparallel gravity was recently proposed by Geng et al. [“Teleparallel” dark energy, Phys. Lett. B 704 (2011) 384-387] and they named it teleparallel dark energy. Now the main problem which arises is to know what is the source of this dark energy? The answer of this question is given by us in M-theory. This type of dark energy may be produced at three stages in our model. First, one six-dimensional universe is formed by combining and expanding D0-branes. We know that this universe-brane is polarized on two circles and our four-dimensional cosmos and two D1-branes are yielded. At third stage, two D1-branes glued to each other and one D2-brane is formed. This D2 connects our universe with another universe, gives its energy to them and causes the production of dark energy. Thus, the D2-brane is unstable and dissolves in our four-dimensional universes and supplies the needed teleparallel dark energy for expansion. These calculations are extended to M-theory and shown that the amount of teleparallel dark energy which is produced by compactification of universe-branes in M-theory is more than string theory.

  19. The dark cube: dark and light character profiles.

    PubMed

    Garcia, Danilo; Rosenberg, Patricia

    2016-01-01

    Background. Research addressing distinctions and similarities between people's malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger's character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger's "light" character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people's dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon's Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals' dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast

  20. NICMOS Temperature-specific Darks

    NASA Astrophysics Data System (ADS)

    Monroe, B.; Bergeron, E.

    1999-11-01

    The various components of NICMOS dark images have been modeled and combined to make synthetic dark calibration files which are intended for use with observations in a temperature range from 61 to ~75 K, currently available only for camera 2, with cameras 1 and 3 to follow in a few months. The amplifier glow and the true linear dark current have been constructed as temperature-independent quantities, while the “shading” component of the darks has been modeled as temperature-dependent. The data used to construct these models was taken with NIC 2, in a temperature range of 61 to 80 K during the recent warm-up of NICMOS due to cryogen exhaustion. The resulting synthetic darks are available through a web-based tool on the STScI NICMOS website http://www.stsci.edu/instruments/nicmos/NICMOS_tools/syndark.html.

  1. Direct detection constraints on dark photon dark matter

    DOE PAGES

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; ...

    2015-06-11

    Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons) in the 0.01–100KeV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to Ο(10 –15), assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity tomore » dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. As a result, we also revisit indirect constraints from V → 3γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.« less

  2. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    NASA Astrophysics Data System (ADS)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2017-09-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2Δ ln L=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2Δ ln L=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ Nfluid, will be improved by an order of magnitude compared to current bounds.

  3. Little Higgs dark matter after PandaX-II/LUX-2016 and LHC Run-1

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Yang, Bingfang; Zhang, Mengchao

    2016-12-01

    In the Littlest Higgs model with T-parity (LHT), the T-odd heavy photon ( A H ) is weakly interacting and can play the role of dark matter. We investigate the lower limit on the mass of A H dark matter under the constraints from Higgs data, EWPOs, R b , Planck 2015 dark matter relic abundance, PandaX-II/LUX 2016 direct detections and LHC-8 TeV monojet results. We find that (1) Higgs data, EWPOs and R b can exclude the mass of A H up to 99 GeV. To produce the correct dark matter relic abundance, A H has to co-annihilate with T-odd quarks ( q H ) or leptons ( ℓ H ); (2) the LUX (PandaX-II) 2016 data can further exclude {m}_{A_H} < 380(270) GeV for ℓ H - A H co-annihilation and {m}_{A_H} < 350(240) GeV for q H - A H co-annihilation; (3) LHC-8 TeV monojet result can give a strong lower limit, {m}_{A_H} > 540 GeV, for q H - A H co-annihilation; (4) future XENON1T(2017) experiment can fully cover the parameter space of ℓ H - A H co-annihilation and will push the lower limit of {m}_{A_H} up to about 640 GeV for q H - A H co-annihilation.

  4. Developmental pathways of childhood dark traits.

    PubMed

    De Clercq, Barbara; Hofmans, Joeri; Vergauwe, Jasmine; De Fruyt, Filip; Sharp, Carla

    2017-10-01

    The dark triad of personality has traditionally been defined by 3 interrelated constructs, defined as Narcissism, Machiavellianism, and Psychopathy. Although the content of each of these constructs is clearly represented in childhood maladaptive trait measures, no studies have jointly addressed the prospective developmental course of this core set of maladaptive characteristics throughout childhood and adolescence. The current study uses latent growth modeling to explore how early dark traits develop over time, relying on a selected set of 6 childhood maladaptive traits that conceptually cover the adult dark triad. Across a 5-wave multi-informant design spanning 10 years of childhood, adolescence, and emerging adulthood (Nwave 1 = 717, 54.4% girls, age range T1 = 8-14.7 years, mean age = 10.73), results indicate that childhood dark traits show to some extent shared growth across time, although notable unique growth variance was also observed. Early dark traits further demonstrate significant association patterns with an adult dark triad measure across informants and are increasingly able to discriminate among more and less prototypical profiles of adult dark triad scores. Findings are discussed from a developmental psychopathology framework, underscoring that the proposed set of childhood dark traits represents a meaningful developmental precursor of the adult dark triad. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Make dark matter charged again

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  6. Make dark matter charged again

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less

  7. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    PubMed

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p < 0.001) while it was increased in the chocolate group (104.1 ± 2.9 % of pre-dive values, p < 0.01). A decrease in the NO level was observed in the control group (86.76 ± 15.57 %, p < 0.05) whereas no difference was shown in the chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  8. Time threshold for second positive phototropism is decreased by a preirradiation with red light

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Apel, P.; Poff, K. L.

    1992-01-01

    A second positive phototropic response is exhibited by a plant after the time of irradiation has exceeded a time threshold. The time threshold of dark-grown seedlings is about 15 minutes for Arabidopsis thaliana. This threshold is decreased to about 4 minutes by a 669-nanometer preirradiation. Tobacco (Nicotiana tabacum) seedlings show a similar response. The time threshold of dark-grown seedlings is about 60 minutes for tobacco, and is decreased to about 15 minutes after a preirradiation with either 450- or 669- nanometer light. The existence of a time threshold for second positive phototropism and the dependence of this threshold on the irradiation history of the seedling contribute to the complexity of the fluence response relationship for phototropism.

  9. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  10. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  11. Classification by causes of dark circles and appropriate evaluation method of dark circles.

    PubMed

    Park, S R; Kim, H J; Park, H K; Kim, J Y; Kim, N S; Byun, K S; Moon, T K; Byun, J W; Moon, J H; Choi, G S

    2016-08-01

    Dark circles refer to a symptom that present darkness under the eyes. Because of improvement in the quality of life, the dark circles have been recognized as one of major cosmetic concerns. However, it is not easy to classify the dark circles because they have various causes. To select suitable instruments and detailed evaluation items, the dark circles were classified according to the causes through visual assessment, Wood's lamp test, and medical history survey for 100 subjects with dark circles. After the classification, were newly recruited for instrument conformity assessment. Through this, suitable instruments for dark circle evaluation were selected. We performed a randomized clinical trial for dark circles, a placebo-controlled double-blind study, using effective parameters of the instruments selected from the preliminary test. Dark circles of vascular type (35%) and mixed type (54%), a combination of pigmented and vascular types, were the most common. Twenty four subjects with the mixed type dark circles applied the test product (Vitamin C 3%, Vitamin A 0.1%, Vitamin E 0.5%) and placebo on randomized split-face for 8 weeks. The effective parameters (L*, a, M.I., E.I., quasi L*, quasi a* and dermal thickness) were measured during the study period. Result showed that the L* value of Chromameter(®) , Melanin index (M.I.) of Mexameter(®) and quasi L* value obtained by image analysis improved with statistical significance after applying the test product compared with the placebo product. We classified the dark circles according to the causes of the dark circles and verified the reliability of the parameter obtained by the instrument conformity assessment used in this study through the efficacy evaluation. Also based on this study, we were to suggest newly established methods which can be applied to the evaluation of efficacy of functional cosmetics for dark circles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Falsification of dark energy by fluid mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2011-11-01

    The 2011 Nobel Prize in Physics has been awarded for the discovery from observations of increased supernovae dimness interpreted as distance, so that the Universe expansion rate has changed from a rate decreasing since the big bang to one that is now increasing, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current stan- dard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts su- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

  13. Search for a dark photon in e(+)e(-) collisions at BABAR.

    PubMed

    Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Stugu, B; Brown, D N; Feng, M; Kerth, L T; Kolomensky, Yu G; Lee, M J; Lynch, G; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Khan, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Mandelkern, M; Dey, B; Gary, J W; Long, O; Campagnari, C; Franco Sevilla, M; Hong, T M; Kovalskyi, D; Richman, J D; West, C A; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Schumm, B A; Seiden, A; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Andreassen, R; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Bloom, P C; Ford, W T; Gaz, A; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Spaan, B; Bernard, D; Verderi, M; Playfer, S; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Piemontese, L; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Bhuyan, B; Prasad, V; Adametz, A; Uwer, U; Lacker, H M; Dauncey, P D; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Derkach, D; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Roudeau, P; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Fry, J R; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Bougher, J; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Hamilton, B; Jawahery, A; Roberts, D A; Cowan, R; Sciolla, G; Cheaib, R; Patel, P M; Robertson, S H; Neri, N; Palombo, F; Cremaldi, L; Godang, R; Sonnek, P; Summers, D J; Simard, M; Taras, P; De Nardo, G; Onorato, G; Sciacca, C; Martinelli, M; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Feltresi, E; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Leruste, Ph; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Pacetti, S; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Perez, A; Rizzo, G; Walsh, J J; Lopes Pegna, D; Olsen, J; Smith, A J S; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Hartmann, T; Hess, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Olaiya, E O; Wilson, F F; Emery, S; Vasseur, G; Anulli, F; Aston, D; Bard, D J; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Lewis, P; Lindemann, D; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Muller, D R; Neal, H; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Snyder, A; Su, D; Sullivan, M K; Va'vra, J; Wisniewski, W J; Wulsin, H W; Purohit, M V; White, R M; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Ruland, A M; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Villanueva-Perez, P; Albert, J; Banerjee, Sw; Beaulieu, A; Bernlochner, F U; Choi, H H F; King, G J; Kowalewski, R; Lewczuk, M J; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Band, H R; Dasu, S; Pan, Y; Prepost, R; Wu, S L

    2014-11-14

    Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A^{'}), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e^{+}e^{-}→γA^{'}, A^{'}→e^{+}e^{-}, μ^{+}μ^{-} using 514  fb^{-1} of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10^{-4}-10^{-3} for dark photon masses in the range 0.02-10.2  GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.

  14. Dark Energy and Dark Matter from Emergent Gravity Picture

    NASA Astrophysics Data System (ADS)

    Seok Yang, Hyun

    2018-01-01

    We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.

  15. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  16. The dark cube: dark and light character profiles

    PubMed Central

    2016-01-01

    Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger’s character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of

  17. A New Viewpoint (The expanding universe, Dark energy and Dark matter)

    NASA Astrophysics Data System (ADS)

    Cwele, Daniel

    2011-10-01

    Just as the relativity paradox once threatened the validity of physics in Albert Einstein's days, the cosmos paradox, the galaxy rotation paradox and the experimental invalidity of the theory of dark matter and dark energy threaten the stability and validity of physics today. These theories and ideas and many others, including the Big Bang theory, all depend almost entirely on the notion of the expanding universe, Edwin Hubble's observations and reports and the observational inconsistencies of modern day theoretical Physics and Astrophysics on related subjects. However, much of the evidence collected in experimental Physics and Astronomy aimed at proving many of these ideas and theories is ambiguous, and can be used to prove other theories, given a different interpretation of its implications. The argument offered here is aimed at providing one such interpretation, attacking the present day theories of dark energy, dark matter and the Big Bang, and proposing a new Cosmological theory based on a modification of Isaac Newton's laws and an expansion on Albert Einstein's theories, without assuming any invalidity or questionability on present day cosmological data and astronomical observations.

  18. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora, E-mail: rkrall@physics.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: dvorkin@physics.harvard.edu

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide nomore » support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N {sub fluid}, will be improved by an order of magnitude compared to current bounds.« less

  19. Fundus-controlled two-color dark adaptometry with the Microperimeter MP1.

    PubMed

    Bowl, Wadim; Stieger, Knut; Lorenz, Birgit

    2015-06-01

    The aim of this study was to provide fundus-controlled two-color adaptometry with an existing device. A quick and easy approach extends the application possibilities of a commercial fundus-controlled perimeter. An external filter holder was placed in front the objective lens of the MP1 (Nidek, Italy) and fitted with filters to modify background, stimulus intensity, and color. Prior to dark adaptometry, the subject's visual sensitivity profile was measured for red and blue stimuli to determine whether rods or cones or both mediated the absolute threshold. After light adaptation, 20 healthy subjects were investigated with a pattern covering six spots at the posterior pole of the retina up to 45 min of dark adaptation. Thresholds were determined using a 200 ms red Goldmann IV and a blue Goldmann II stimulus. The pre-test sensitivity showed a typical distribution of values along the meridian, with high peripheral light increment sensitivity (LIS) and low central LIS for rods and the reverse for cones. After bleach, threshold recovery had a classic biphasic shape. The absolute threshold was reached after approximately 10 min for the red and 15 min for the blue stimulus. Two-color fundus-controlled adaptometry with a commercial MP1 without internal changes to the device provides a quick and easy examination of rod and cone function during dark adaptation at defined retinal loci of the posterior pole. This innovative method will be helpful to measure rod vs. cone function at known loci of the posterior pole in early stages of retinal degenerations.

  20. Photosynthesis, Dark Respiration, and Growth of Rumex patientia L. Exposed to Ultraviolet Irradiance (288 to 315 Nanometers) Simulating a Reduced Atmospheric Ozone Column 1

    PubMed Central

    Sisson, William B.; Caldwell, Martyn M.

    1976-01-01

    Net photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to a ultraviolet irradiance (288-315 nanometers) simulating a 0.18 atm·cm stratospheric ozone column were determined. The ultraviolet irradiance corresponding to this 38% ozone decrease from normal was shown to be an effective inhibitor of photosynthesis and leaf growth. The repressive action on photosynthesis accumulated through time whereas leaf growth was retarded only during the initial few days of exposure. Small increases in dark respiration rates occurred but did not continue to increase with longer exposure periods. A reduction in total plant dry weight and leaf area of approximately 50% occurred after 22 days of treatment, whereas chlorophyll concentrations remained unaltered. PMID:16659718

  1. Ghost dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality,more » and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.« less

  2. Loop induced type-II seesaw model and GeV dark matter with U(1)B - L gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose a model with U(1) B - L gauge symmetry and several new fermions in no conflict with anomaly cancellation where the neutrino masses are given by the vacuum expectation value of Higgs triplet induced at the one-loop level. The new fermions are odd under discrete Z2 symmetry and the lightest one becomes dark matter candidate. We find that the mass of dark matter is typically O (1)- O (10) GeV. Then relic density of the dark matter is discussed.

  3. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  4. Superconducting Detectors for Superlight Dark Matter

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M.

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O (meV ) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, mX≳1 keV . We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  5. Dark matter and global symmetries

    DOE PAGES

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-08-03

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Sawmore » models. Here, assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O(1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime« less

  6. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender.

    PubMed

    Feiner, John R; Severinghaus, John W; Bickler, Philip E

    2007-12-01

    Pulse oximetry may overestimate arterial oxyhemoglobin saturation (Sao2) at low Sao2 levels in individuals with darkly pigmented skin, but other factors, such as gender and oximeter probe type, remain less studied. We studied the relationship between skin pigment and oximeter accuracy in 36 subjects (19 males, 17 females) of a range of skin tones. Clip-on type sensors and adhesive/disposable finger probes for the Masimo Radical, Nellcor N-595, and Nonin 9700 were studied. Semisupine subjects breathed air-nitrogen-CO2 mixtures via a mouthpiece to rapidly achieve 2- to 3-min stable plateaus of Sao2. Comparisons of Sao2 measured by pulse oximetry (Spo2) with Sao2 (by Radiometer OSM-3) were used in a multivariate model to assess the source of errors. The mean bias (Spo2 - Sao2) for the 70%-80% saturation range was 2.61% for the Masimo Radical with clip-on sensor, -1.58% for the Radical with disposable sensor, 2.59% for the Nellcor clip, 3.6% for the Nellcor disposable, -0.60% for the Nonin clip, and 2.43% for the Nonin disposable. Dark skin increased bias at low Sao2; greater bias was seen with adhesive/disposable sensors than with the clip-on types. Up to 10% differences in saturation estimates were found among different instruments in dark-skinned subjects at low Sao2. Multivariate analysis indicated that Sao2 level, sensor type, skin color, and gender were predictive of errors in Spo2 estimates at low Sao2 levels. The data suggest that clinically important bias should be considered when monitoring patients with saturations below 80%, especially those with darkly pigmented skin; but further study is needed to confirm these observations in the relevant populations.

  7. Light and dark: A survey of new physics ideas in the 1-100 MeV window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pospelov, Maxim

    2013-11-07

    I review the set of theoretical ideas motivating experimental searches of light physics beyond Standard Model using the high-intensity electron beams. While 'dark photon' is the chief example of such physics, the other 'light and dark' states (e.g. 'Dark Higgses') are also of interest. I discuss particle physics, cosmology and astrophysics applications.

  8. Dark energy: A brief review

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi

    2013-12-01

    The problem of dark energy is briefly reviewed in both theoretical and observational aspects. In the theoretical aspect, dark energy scenarios are classified into symmetry, anthropic principle, tuning mechanism, modified gravity, quantum cosmology, holographic principle, back-reaction and phenomenological types. In the observational aspect, we introduce cosmic probes, dark energy related projects, observational constraints on theoretical models and model independent reconstructions.

  9. Search for a dark matter candidate produced in association with a single top quark in pp collisions at √[s]=1.96  TeV.

    PubMed

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Anzá, F; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Fuks, B; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-05-18

    We report a new search for dark matter in a data sample of an integrated luminosity of 7.7  fb-1 of Tevatron pp[over ¯] collisions at √[s]=1.96  TeV, collected by the CDF II detector. We search for production of a dark-matter candidate, D, in association with a single top quark. We consider the hadronic decay mode of the top quark exclusively, yielding a final state of three jets with missing transverse energy. The data are consistent with the standard model; we thus set 95% confidence level upper limits on the cross section of the process pp[over ¯]→t+D as a function of the mass of the dark-matter candidate. The limits are approximately 0.5 pb for a dark-matter particle with mass in the range of 0-150  GeV/c2.

  10. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  11. Gravitational wave from dark sector with dark pion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsumura, Koji; Yamada, Masatoshi; Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiralmore » perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.« less

  12. A hydrodynamic approach to cosmology: The mixed dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum has a broad peak in the vicinity of M(sub B) = 10(exp 9.5) solar mass with a reasonable fit to the Schechter luminosity function if the ratio of baryon mass to blue light is approximately 4. In addition, one very large PM simulation was made in a box with size (320 h(exp - 1) Mpc) containing 3 x 200(exp 3) = 10(exp 7.4) particles. Utilizing this simulation we find that the model yields a cluster mass function which is about a factor of 4 higher than observed, but a cluster-cluster correlation length marginally lower than observed, but that both are closer to observations than in the (COBE) normalized CDM model. The one-dimensional pairwise velocity dispersion is 605 + or - 8 km/s at 1/h separation, lower than that of the DCM model normalized to COBE, but still significant higher than observations (Davis & Peebles 1983). A plausible velocity bias b(sub v) = 0.8 + or - 0.1 on this scale will reduce but not remove the discrepancy. The velocity auto-correlat ion function has a coherence length of 40/h Mpc, which is somewhat lower than the observed counterpart. In all these respects the model would be improved by decreasing the cold fraction of the dark OMEGA(sub CDM)/ (OMEGA(sub CDM) + OMEGA(sub HDB). But formation of galaxies and clusters of galaxies is much later in this model than in COBE-normalized CDM, perhaps too late. To improve on these constraints a larger ratio of OMEGA(sub CDM)/ (OMEGA(sub CDM) + OMEGA(sub HDM)) is required than the value of 0.67 adopted here. It does not seem possible to find a value for this ratio which would satisfy all tests. Overall, the model is similar both on large and intermediate scales to the standard CDM model normalized to the same value of sigma(sub B), but the problem with regard to late formation of galaxies is more severe in this model than in that CDM model. Adding hot dark matter, significantly improves the ability of

  13. Light sterile neutrinos, dark matter, and new resonances in a U(1) extension of the MSSM

    NASA Astrophysics Data System (ADS)

    Hebbar, A.; Lazarides, G.; Shafi, Q.

    2017-09-01

    We present ψ'MSSM, a model based on a U(1) ψ' extension of the minimal supersymmetric standard model. The gauge symmetry U(1)ψ', also known as U(1)N,is a linear combination of the U(1) χ and U(1)ψ subgroups of E6. The model predicts the existence of three sterile neutrinos with masses ≲0.1 eV , if the U(1)ψ' breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is Δ Nν≃0.29. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the U(1) ψ' breaking scale is increased to 1 03 TeV , the sterile neutrinos, which are stable on account of a Z2symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from U(1)ψ'. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known μ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of U(1)ψ' produces superconducting strings that may be present in our galaxy. A U(1) R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.

  14. Time threshold for second positive phototropism is decreased by a preirradiation with red light.

    PubMed Central

    Janoudi A-K; Konjevic, R; Apel, P; Poff, K L

    1992-01-01

    A second positive phototropic response is exhibited by a plant after the time of irradiation has exceeded a time threshold. The time threshold of dark-grown seedlings is about 15 minutes for Arabidopsis thaliana. This threshold is decreased to about 4 minutes by a 669-nanometer preirradiation. Tobacco (Nicotiana tabacum) seedlings show a similar response. The time threshold of dark-grown seedlings is about 60 minutes for tobacco, and is decreased to about 15 minutes after a preirradiation with either 450- or 669- nanometer light. The existence of a time threshold for second positive phototropism and the dependence of this threshold on the irradiation history of the seedling contribute to the complexity of the fluence response relationship for phototropism. PMID:11537887

  15. A Robust Approach to Constraining Dark Matter from Gamma-Ray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric J.; /Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott

    2011-03-01

    Photons produced in the annihilations of dark matter particles can be detected by gamma-ray telescopes; this technique of indirect detection serves as a cornerstone of the upcoming assault on the dark matter paradigm. The main obstacle to the extraction of information about dark matter from the annihilation photons is the presence of large and uncertain gamma-ray backgrounds. We present a new technique for using gamma-ray data to constrain the properties of dark matter that makes minimal assumptions about the dark matter and the backgrounds. The technique relies on two properties of the expected signal from annihilations of the smooth darkmore » matter component in our Galaxy: (1) it is approximately rotationally symmetric around the axis connecting us to the Galactic center, and (2) variations from the mean signal are uncorrelated from one pixel to the next. We apply this technique to recent data from the Fermi telescope to generate constraints on the dark matter mass and cross section for a variety of annihilation channels. We quantify the uncertainty introduced into our constraints by uncertainties in the halo profile and by the possibility that the halo is triaxial. The resultant constraint, the flux F {le} 4.5 x 10{sup -6} cm{sup -2} s{sup -1} sr{sup -1} for energies between 1 and 100 GeV at an angle 15{sup o} away from the Galactic center, translates into an upper limit on the velocity-weighted annihilation cross section of order 10{sup -25} cm{sup 3} s{sup -1}, depending on the annihilation mode.« less

  16. Acute Toxicity of TiO2 Nanoparticles to Ceriodaphnia dubia under Visible Light and Dark Conditions in a Freshwater System

    PubMed Central

    Dalai, Swayamprava; Pakrashi, Sunandan; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2013-01-01

    The ever increasing industrial and consumer applications of titanium dioxide nanoparticles (TiO2 NPs) raise concern over the possible risk associated with their environmental exposure. Still, the knowledge regarding nanoparticle behavior in a freshwater ecosystem is lacking. The current study focuses on the toxicity of TiO2 NPs towards Ceriodaphnia dubia (a dominant daphnid isolated from the freshwater) under two different conditions; (1) light and dark photoperiod (16:8 h) and (2) continuous dark conditions, for a period of 48 h. An increase in toxicity was observed with an increase in the concentration, until a certain threshold level (under both photoperiod and dark conditions), and beyond which, reduction was noted. The decrease in toxicity would have resulted from the aggregation and settling of NPs, making them less bioavailable. The oxidative stress was one of the major contributors towards cytotoxicity under both photoperiod and dark conditions. The slow depuration of TiO2 NPs under the photoperiod conditions confirmed a higher NP bioaccumulation and thus a higher bioconcentration factor (BCF) compared to dark conditions. The transmission electron micrographs confirmed the bioaccumulation of NPs and damage of tissues in the gut lining. PMID:23658658

  17. Dark matter haloes: a multistream view

    NASA Astrophysics Data System (ADS)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  18. Dynamical Dark Matter from thermal freeze-out

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Fennick, Jacob; Kumar, Jason; Thomas, Brooks

    2018-03-01

    In the Dynamical Dark-Matter (DDM) framework, the dark sector comprises a large number of constituent dark particles whose individual masses, lifetimes, and cosmological abundances obey specific scaling relations with respect to each other. In particular, the most natural versions of this framework tend to require a spectrum of cosmological abundances which scale inversely with mass, so that dark-sector states with larger masses have smaller abundances. Thus far, DDM model-building has primarily relied on nonthermal mechanisms for abundance generation such as misalignment production, since these mechanisms give rise to abundances that have this property. By contrast, the simplest versions of thermal freeze-out tend to produce abundances that increase, rather than decrease, with the mass of the dark-matter component. In this paper, we demonstrate that there exist relatively simple modifications of the traditional thermal freeze-out mechanism which "flip" the resulting abundance spectrum, producing abundances that scale inversely with mass. Moreover, we demonstrate that a far broader variety of scaling relations between lifetimes, abundances, and masses can emerge through thermal freeze-out than through the nonthermal mechanisms previously considered for DDM ensembles. The results of this paper thus extend the DDM framework into the thermal domain and essentially allow us to "design" our resulting DDM ensembles at will in order to realize a rich array of resulting dark-matter phenomenologies.

  19. A Possible Solution to the Smallness Problem of Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; /SLAC; Gu, Je-An

    2005-07-08

    The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.

  20. The DarkSide direct dark matter search with liquid argon

    NASA Astrophysics Data System (ADS)

    Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2017-11-01

    The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.

  1. Hydroxyl as a Tracer of Dark Gas in a Diffuse Molecular Cloud

    NASA Astrophysics Data System (ADS)

    White, Josh; Donate, Emmanuel; Magnani, Loris A.

    2017-06-01

    In an attempt to determine the extent of dark molecular gas at high Galactic latitudes, we have conducted a survey of OH at 18 cm in a region containing the diffuse molecular cloud MBM 53. Dark molecular gas is a term that refers to molecular hydrogen that is either difficult or impossible to detect by conventional spectroscopic means. While models of photo-dissociation regions predict that some molecular hydrogen is found under conditions where other species are too low in abundance to be detected by radio spectroscopy, recent estimates have predicted that as much dark molecular gas exists as that normally detected by CO(1-0) surveys. However, more sensitive surveys either in the CO(1-0) line or other tracers should detect some of this gas. We observed 44 lines of sight at 18 cm to see if very sensitive OH observations could detect some of the dark molecular gas in the Pegasus-Pisces region. Our data were taken with the 305 m Arecibo radiotelescope and have typical rms values of 6-7 mK. We compared our OH observations with the Georgia/Harvard-Smithsonian CfA high-latitude CO(1-0) survey. Of 8 OH detections at 1667 MHz, 5 were not detected by the CO survey and indicate that at least some of the dark molecular gas may be traced by sensitive OH observations.

  2. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.; Lee, Jin-Yi

    2014-01-01

    We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.

  3. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  4. Light versus Dark Carbon Metabolism in Cherry Tomato Fruits

    PubMed Central

    Laval-Martin, Danielle; Farineau, Jack; Diamond, Jeffrey

    1977-01-01

    The photosynthetic properties of the internal and peripheral tissues of the cherry tomato fruit (Lycopersicum esculentum var. cerasiforme Dun A. Gray) were investigated. Whole fruit and their isolated tissues evolve large amounts of CO2 in darkness. In the light, this evolution decreases but nevertheless remains a net evolution; 3-(3,4-dichlorophenyl)-1,1-dimethylurea abolishes the effects of light. Incorporation of 14CO2 by leaves and fruit tissues demonstrates that the outer region of the fruit has the highest photosynthetic efficiency on a chlorophyll basis; the internal fruit tissue, richer in chlorophyll, has a much lower efficiency. The identification of intermediates following short term incubations with 14CO2 shows that in darkness the fruit accumulates the majority of label in malate. In the light, leaf tissue exhibits a pattern of incorporation characteristic of C-3 metabolism, whereas fruit tissue exhibits a decreased labeling of malate with a concomitant appearance of label in Calvin cycle intermediates. This is in agreement with the levels and types of carboxylating activities demonstrated in vitro; especially noteworthy is the very low ribulose diphosphate carboxylase activity in the internal fruit tissue. The photosynthetic potential, phosphoenolpyruvate carboxylase activity, and quantities of malate accumulated by fruit tissues are parallel to their chlorophyll content during growth and maturation. PMID:16660204

  5. Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Doro, Michele; Fornasa, Mattia

    2009-01-01

    The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux in the high energies domain where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.

  6. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    NASA Astrophysics Data System (ADS)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  7. Holographic dark energy in braneworld models with moving branes and the w = -1 crossing

    NASA Astrophysics Data System (ADS)

    Saridakis, E. N.

    2008-04-01

    We apply the bulk holographic dark energy in general 5D two-brane models. We extract the Friedmann equation on the physical brane and we show that in the general moving-brane case the effective 4D holographic dark energy behaves as a quintom for a large parameter-space area of a simple solution subclass. We find that wΛ was larger than -1 in the past while its present value is wΛ0≈-1.05, and the phantom bound wΛ = -1 was crossed at zp≈0.41, a result in agreement with observations. Such a behavior arises naturally, without the inclusion of special fields or potential terms, but a fine-tuning between the 4D Planck mass and the brane tension has to be imposed.

  8. Dark photon search in the mass range between 1.5 and 3.4 GeV/c2

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Eren, E. E.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-11-01

    Using a data set of 2.93 fb-1 taken at a center-of-mass energy √{ s} = 3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. We examine the initial state radiation reactions e+e- →e+e-γISR and e+e- →μ+μ-γISR for this search, where the dark photon would appear as an enhancement in the invariant mass distribution of the leptonic pairs. We observe no obvious enhancement in the mass range between 1.5 and 3.4 GeV/c2 and set a 90% confidence level upper limit on the mixing strength of the dark photon and the Standard Model photon. We obtain a competitive limit in the tested mass range.

  9. Impeded Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  10. Impeded Dark Matter

    DOE PAGES

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; ...

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  11. Thermal Dark Matter Below a MeV.

    PubMed

    Berlin, Asher; Blinov, Nikita

    2018-01-12

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as light as a few keV, while remaining compatible with existing cosmological and astrophysical observations. This framework motivates new experiments in the direct search for sub-MeV thermal dark matter and light force carriers.

  12. Thermal Dark Matter Below a MeV

    DOE PAGES

    Berlin, Asher; Blinov, Nikita

    2018-01-08

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as light as a few keV, while remaining compatible with existing cosmological and astrophysical observations. This framework motivates new experiments in the direct search formore » sub-MeV thermal dark matter and light force carriers.« less

  13. Thermal Dark Matter Below a MeV

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Blinov, Nikita

    2018-01-01

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as light as a few keV, while remaining compatible with existing cosmological and astrophysical observations. This framework motivates new experiments in the direct search for sub-MeV thermal dark matter and light force carriers.

  14. Thermal Dark Matter Below a MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Blinov, Nikita

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as light as a few keV, while remaining compatible with existing cosmological and astrophysical observations. This framework motivates new experiments in the direct search formore » sub-MeV thermal dark matter and light force carriers.« less

  15. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus.

    PubMed

    Hood, Rachel D; Higgins, Sean A; Flamholz, Avi; Nichols, Robert J; Savage, David F

    2016-08-16

    The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.

  16. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus

    PubMed Central

    Hood, Rachel D.; Higgins, Sean A.; Flamholz, Avi; Nichols, Robert J.

    2016-01-01

    The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3′-diphosphate 5′-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle. PMID:27486247

  17. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; Batell, B.; Brown, B. C.; Carr, R.; Chatterjee, A.; Cooper, R. L.; deNiverville, P.; Dharmapalan, R.; Djurcic, Z.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, J. A.; Huelsnitz, W.; de Icaza Astiz, I. L.; Karagiorgi, G.; Katori, T.; Ketchum, W.; Kobilarcik, T.; Liu, Q.; Louis, W. C.; Marsh, W.; Moore, C. D.; Mills, G. B.; Mirabal, J.; Nienaber, P.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Shaevitz, M. H.; Shahsavarani, S.; Stancu, I.; Tayloe, R.; Taylor, C.; Thornton, R. T.; Van de Water, R.; Wester, W.; White, D. H.; Yu, J.; MiniBooNE-DM Collaboration

    2017-06-01

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 ×1 020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y =ɛ2αD(mχ/mV)4≲10-8 , for αD=0.5 and for dark matter masses of 0.01 a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  18. The positron excess as a smoking gun for dynamical dark matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dienes, Keith R.; Kumar, Jason; Thomas, Brooks

    One of the most puzzling aspects of recent data from the AMS-02 experiment is an apparent rise in the cosmic-ray positron fraction as a function of energy. This feature is observed out to energies of approximately 350 GeV. One explanation of these results interprets the extra positrons as arising from the decays of dark-matter particles. This in turn typically requires that such particles have rather heavy TeV-scale masses and not undergo simple two-body decays to leptons. In this talk, by contrast, we show that Dynamical Dark Matter (DDM) can not only match existing AMS-02 data on the positron excess, butmore » also accomplish this feat with significantly lighter dark-matter constituents undergoing simple two-body decays to leptons. We also demonstrate that the Dynamical Dark Matter framework makes a fairly robust prediction that the positron fraction should level off and then remain roughly constant out to approximately 1 TeV, without experiencing any sharp downturns. Thus, if we interpret the positron excess in terms of decaying dark matter, the existence of a plateau in the positron fraction at energies less than 1 TeV may be taken as a “smoking gun” of Dynamical Dark Matter.« less

  19. Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam, E-mail: oeb@phys.au.dk, E-mail: subinoy@physik.rwth-aachen.de, E-mail: Adam.Moss@nottingham.ac.uk

    2012-10-01

    Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decayingmore » into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.« less

  20. Massive graviton dark matter with environment dependent mass: A natural explanation of the dark matter-baryon ratio

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Mukohyama, Shinji

    2017-11-01

    We propose a scenario that can naturally explain the observed dark matter-baryon ratio in the context of bimetric theory with a chameleon field. We introduce two additional gravitational degrees of freedom, the massive graviton and the chameleon field, corresponding to dark matter and dark energy, respectively. The chameleon field is assumed to be nonminimally coupled to dark matter, i.e., the massive graviton, through the graviton mass terms. We find that the dark matter-baryon ratio is dynamically adjusted to the observed value due to the energy transfer by the chameleon field. As a result, the model can explain the observed dark matter-baryon ratio independently from the initial abundance of them.

  1. Search for a Dark Photon in e + e - Collisions at BaBar

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2014-11-10

    Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A'), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e +e -→γA', A'→e +e -, μ +μ - using 514 fb -1 of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photonmore » at the level of10 -4-10 -3 for dark photon masses in the range 0.02–10.2 GeV We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.« less

  2. The Dark Cube: dark character profiles and OCEAN.

    PubMed

    Garcia, Danilo; González Moraga, Fernando R

    2017-01-01

    The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger's biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Participants ( N  = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP "maleficent", MNp "manipulative narcissistic", MnP "anti-social", Mnp "Machiavellian", mNP "psychopathic narcissistic", mNp "narcissistic", mnP "psychopathic", and mnp "benevolent". High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism

  3. The Dark Cube: dark character profiles and OCEAN

    PubMed Central

    González Moraga, Fernando R.

    2017-01-01

    Background The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger’s biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Method Participants (N = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP “maleficent”, MNp “manipulative narcissistic”, MnP “anti-social”, Mnp “Machiavellian”, mNP “psychopathic narcissistic”, mNp “narcissistic”, mnP “psychopathic”, and mnp “benevolent”. Results High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). Conclusions We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach

  4. Signatures of dark radiation in neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  5. Head-on collision of ring dark solitons in Bose Einstein condensates

    NASA Astrophysics Data System (ADS)

    Xue, Ju-Kui; Peng, Ping

    2006-06-01

    The ring dark solitons and their head-on collisions in a Bose-Einstein condensates with thin disc-shaped potential are studied. It is shown that the system admits a solution with two concentric ring solitons, one moving inwards and the other moving outwards, which in small-amplitude limit, are described by the two cylindrical KdV equations in the respective reference frames. By using the extended Poincaré-Lighthill-Kuo perturbation method, the analytical phase shifts following the head-on collisions between two ring dark solitary waves are derived. It is shown that the phase shifts decrease with the radial coordinate r according to the r-1/3 law and depend on the initial soliton amplitude and radius.

  6. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Anirban; Gupta, Aritra

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other handmore » is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.« less

  7. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction.

    PubMed

    Koob, George F; Le Moal, Michel

    2005-11-01

    Drug seeking is associated with activation of reward neural circuitry. Here we argue that drug addiction also involves a 'dark side'--a decrease in the function of normal reward-related neurocircuitry and persistent recruitment of anti-reward systems. Understanding the neuroplasticity of the dark side of this circuitry is the key to understanding vulnerability to addiction.

  8. Macroscopic theory of dark sector

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).

  9. First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2015-04-01

    We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a (1422 ± 67) kgd exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1 ×10-44 cm2 for a WIMP mass of 100 Gev /c2.

  10. First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso

    DOE PAGES

    Agnes, P.

    2015-03-11

    We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter searchmore » for a (1422 ± 67) kg d exposure with an atmospheric argon fill. As a result, this is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1×10 -44 cm 2 for a WIMP mass of 100 Gev/c 2.« less

  11. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  12. Search for a Dark Matter Candidate Produced in Association with a Single Top Quark in pp̄ Collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-05-15

    We report a new search for dark matter in a data sample of an integrated luminosity of 7.7 fb⁻¹ of Tevatron pp¯ collisions at √s=1.96 TeV, collected by the CDF II detector. We search for production of a dark-matter candidate, D, in association with a single top quark. We consider the hadronic decay mode of the top quark exclusively, yielding a final state of three jets with missing transverse energy. The data are consistent with the standard model; we thus set 95% confidence level upper limits on the cross section of the process pp̄→t+D as a function of the massmore » of the dark-matter candidate. The limits are approximately 0.5 pb for a dark-matter particle with mass in the range of 0–150 GeV/c².« less

  13. Search for a Dark Matter Candidate Produced in Association with a Single Top Quark in pp̄ Collisions at √s=1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.

    We report a new search for dark matter in a data sample of an integrated luminosity of 7.7 fb⁻¹ of Tevatron pp¯ collisions at √s=1.96 TeV, collected by the CDF II detector. We search for production of a dark-matter candidate, D, in association with a single top quark. We consider the hadronic decay mode of the top quark exclusively, yielding a final state of three jets with missing transverse energy. The data are consistent with the standard model; we thus set 95% confidence level upper limits on the cross section of the process pp̄→t+D as a function of the massmore » of the dark-matter candidate. The limits are approximately 0.5 pb for a dark-matter particle with mass in the range of 0–150 GeV/c².« less

  14. PeV-scale dark matter as a thermal relic of a decoupled sector

    DOE PAGES

    Berlin, Asher; Hooper, Dan; Krnjaic, Gordan

    2016-06-21

    We consider a class of scenarios in which the dark matter is part of a heavy hidden sector that is thermally decoupled from the Standard Model in the early universe. The dark matter freezes-out by annihilating to a lighter, metastable state, whose subsequent abundance can naturally come to dominate the energy density of the universe. Moreover, when this state decays, it reheats the visible sector and dilutes all relic abundances, thereby allowing the dark matter to be orders of magnitude heavier than the weak scale. For concreteness, we consider a simple realization with a Dirac fermion dark matter candidate coupledmore » to a massive gauge boson that decays to the Standard Model through its kinetic mixing with hypercharge. Finally, we identify viable parameter space in which the dark matter can be as heavy as ~1-100 PeV without being overproduced in the early universe.« less

  15. Treatment of infraorbital dark circles using 694-nm fractional Q-switched ruby laser.

    PubMed

    Xu, Tian-Hua; Li, Yuan-Hong; Chen, John Z S; Gao, Xing-Hua; Chen, Hong-Duo

    2016-12-01

    The objective of this study was to evaluate the efficacy and safety of using a 694-nm fractional Q-switched ruby laser to treat infraorbital dark circles. Thirty women with infraorbital dark circles (predominant color: dark/brown) participated in this open-labeled study. The participants received eight sessions of 694-nm fractional Q-switched ruby laser treatment using a fluence of 3.0-3.5 J/cm 2 , at an interval of 7 days. The melanin deposition in the lesional skin was observed in vivo using reflectance confocal microscopy (RCM). The morphological changes were evaluated using a global evaluation, an overall self-assessment, and a Mexameter. Twenty-eight of the 30 patients showed global improvements that they rated as excellent or good. Twenty-six patients rated their overall satisfaction as excellent or good. The melanin index indicated a substantial decrease from 240.44 (baseline) to 194.56 (P < 0.05). The RCM results showed a dramatic decrease in melanin deposition in the upper dermis. The adverse effects were minimal. The characteristic finding of dark/brown infraorbital dark circles is caused by increased melanin deposition in the upper dermis. The treatment of these infraorbital dark circles using a 694-nm fractional QSR laser is safe and effective.

  16. Distinguishing cold dark matter dwarfs from self-interacting dark matter dwarfs in baryonic simulations

    NASA Astrophysics Data System (ADS)

    Strickland, Emily; Fitts, Alex; Boylan-Kolchin, Michael

    2018-01-01

    Our collaboration has simulated several high-resolution (mbaryon = 500Mo, mdm = 2500Mo) cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as a self-interacting dark matter (SIDM) (with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass (MFM) hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark matter dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (UFDs) (at ~105 M1">o) provides the clearest window for distinguishing between the two theories. Here our SIDM galaxies continue to display a cored inner profile unlike their CDM counterparts. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts.

  17. Supersymmetric resonant dark matter: A thermal model for the AMS-02 positron excess

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Berger, Joshua; Lu, Sida

    2018-06-01

    We construct a thermal dark matter model with annihilation mediated by a resonance to explain the positron excess observed by PAMELA, Fermi-LAT and AMS-02, while satisfying constraints from cosmic microwave background (CMB) measurements. The challenging requirement is that the resonance has twice the dark matter mass to one part in a million. We achieve this by introducing an S U (3 )f dark flavor symmetry that is spontaneously broken to S U (2 )f×U (1 )f . The resonance is the heaviest state in the dark matter flavor multiplet, and the required mass relation is protected by the vacuum structure and supersymmetry from radiative corrections. The pseudo-Nambu-Goldstone bosons (PNGBs) from the dark flavor symmetry breaking can be slightly lighter than one GeV and dominantly decay into two muons just from kinematics, with subsequent decay into positrons. The PNGBs are produced in resonant dark matter semiannihilation, where two dark matter particles annihilate into an anti-dark matter particle and a PNGB. The dark matter mass in our model is constrained to be below around 1.9 TeV from fitting thermal relic abundance, AMS-02 data and CMB constraints. The superpartners of Standard Model (SM) particles can cascade decay into a light PNGB along with SM particles, yielding a correlated signal of this model at colliders. One of the interesting signatures is a resonance of a SM Higgs boson plus two collimated muons, which has superb discovery potential at LHC Run 2.

  18. Spectroscopic study of a dark lane and a cool loop in a solar limb active region by Hinode/EIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.

    2014-01-10

    We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Femore » XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.« less

  19. Exotic dark spinor fields

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff

    2011-04-01

    Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.

  20. A Stab in the Dark?: A Research Note on Temporal Patterns of Street Robbery.

    PubMed

    Tompson, Lisa; Bowers, Kate

    2013-11-01

    Test the influence of darkness in the street robbery crime event alongside temperature. Negative binomial regression models tested darkness and temperature as predictors of street robbery. Units of analysis were four 6-hr time intervals in two U.K. study areas that have different levels of darkness and variations of temperature throughout the year. Darkness is a key factor related to robbery events in both study areas. Traversing from full daylight to full darkness increased the predicted volume of robbery by a multiple of 2.6 in London and 1.2 in Glasgow. Temperature was significant only in the London study area. Interaction terms did not enhance the predictive power of the models. Darkness is an important driving factor in seasonal variation of street robbery. A further implication of the research is that time of the day patterns are crucial to understanding seasonal trends in crime data.

  1. Dark Matter Coannihilation with a Lighter Species

    NASA Astrophysics Data System (ADS)

    Berlin, Asher

    2017-09-01

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, MGUT˜1016 GeV .

  2. Dark Matter Coannihilation with a Lighter Species.

    PubMed

    Berlin, Asher

    2017-09-22

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, M_{GUT}∼10^{16}  GeV.

  3. Observing a light dark matter beam with neutrino experiments

    NASA Astrophysics Data System (ADS)

    Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam

    2011-10-01

    We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.

  4. Cogenerating and pre-annihilating dark matter by a new gauge interaction in a unified model

    DOE PAGES

    Barr, S. M.; Scherrer, Robert J.

    2016-05-31

    Here, grand unified theories based on large groups (with rank ≥ 6) are a natural context for dark matter models. They contain Standard-Model-singlet fermions that could be dark matter candidates, and can contain new non-abelian interactions whose sphalerons convert baryons, leptons, and dark matter into each other, ''cogenerating" a dark matter asymmetry comparable to the baryon asymmetry. In this paper it is shown that the same non-abelian interactions can ''pre-annihilate" the symmetric component of heavy dark matter particles χ, which then decay late into light stable dark matter particles ζ that inherit their asymmetry. We derive cosmological constraints on themore » parameters of such models. The mass of χ must be < 3000 TeV and their decays must happen when 2 × 10 –7 < T dec/mχ < 10 –4. It is shown that such decays can come from d=5 operators with coefficients of order 1/MGUT or 1/M Pℓ. We present a simple realization of our model based on the group SU(7).« less

  5. Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario

    DOE PAGES

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia; ...

    2017-10-24

    The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less

  6. Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia

    The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less

  7. DELLA proteins negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis through interaction with the transcription factor WRKY6.

    PubMed

    Zhang, Yongqiang; Liu, Zhongjuan; Wang, Xiaoyun; Wang, Jianfeng; Fan, Kai; Li, Zhaowei; Lin, Wenxiong

    2018-03-24

    DELLA proteins' negative regulation of dark-induced senescence and chlorophyll degradation in Arabidopsis is through interaction with WRKY6 and thus repression of its transcriptional activities on senescence-related genes. Senescence is an intricate and highly orchestrated process regulated by numerous endogenous and environmental signals. Gibberellins (GAs) and their signaling components DELLA proteins have been known to participate in the regulation of senescence. However, the mechanism of the GA-DELLA system involved in the senescence process remains largely unclear. Darkness is a known environmental factor that induces plant senescence. In this study, exogenous GA 3 (an active form of GA) accelerated but paclobutrazol (a specific GA biosynthesis inhibitor) retarded dark-induced leaf yellowing in Arabidopsis. Moreover, the dark-triggered decrease in chlorophyll content, increase in cell membrane leakage, and upregulation of senescence-associated genes were notably impaired in both endogenous GA-decreased mutants ga3ox1/ga3ox2 and ga20ox1/ga20ox2 compared with those in wild-type Col-0. These effects of darkness were enhanced in the quintuple mutant of DELLA genes gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 and conversely attenuated in the gain-of-function mutant gai and transgenic plant 35S::TAP-RGAd17 compared with wild-type Ler. Subsequently, RGA interacted with the transcription factor WRKY6 in a yeast two-hybrid assay, as confirmed by bimolecular fluorescence complementation and pull-down analyses. In addition, mutation and overexpression of WRKY6 retarded and accelerated dark-induced senescence, respectively. Furthermore, transient expression assays in Arabidopsis protoplasts indicated that RGA and GAI weakened the transcriptional activities of WRKY6 on its downstream senescence-related genes, including SAG13 and SGR. Taken together, these results suggest that GAs positively and DELLAs negatively regulate dark-induced senescence and chlorophyll degradation in

  8. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    NASA Astrophysics Data System (ADS)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w < -1 and enhances the void size when w > -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  9. Time-varying q-deformed dark energy interacts with dark matter

    NASA Astrophysics Data System (ADS)

    Dil, Emre; Kolay, Erdinç

    We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.

  10. Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2016-02-01

    Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.

  11. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less

  12. A first walk on the DarkSide

    DOE PAGES

    Davini, S.; Agnes, P.; Alexander, T.; ...

    2016-05-31

    DarkSide-50 (DS-50) at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a TPC with liquid argon. DS-50 has completed its first dark matter run using atmospheric argon as target. Here, the DS-50 detector performances and the results of the first physics run are reviewed in this proceeding.

  13. A first walk on the DarkSide

    NASA Astrophysics Data System (ADS)

    Davini, S.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Calaprice, F.; Canci, N.; Candela, A.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kendziora, C.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Luitz, S.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Musico, P.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pantic, E.; Papp, L.; Parmeggiano, S.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saldanha, R.; Sands, W.; Segreto, E.; Shields, E.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Watson, A.; Westerdale, S.; Wojcik, M.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2016-04-01

    DarkSide-50 (DS-50) at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a TPC with liquid argon. DS-50 has completed its first dark matter run using atmospheric argon as target. The DS-50 detector performances and the results of the first physics run are reviewed in this proceeding.

  14. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease.

    PubMed

    Loffredo, Lorenzo; Perri, Ludovica; Catasca, Elisa; Pignatelli, Pasquale; Brancorsini, Monica; Nocella, Cristina; De Falco, Elena; Bartimoccia, Simona; Frati, Giacomo; Carnevale, Roberto; Violi, Francesco

    2014-07-02

    NOX-2, the catalytic subunit of NADPH oxidase, has a key role in the formation of reactive oxidant species and is implicated in impairing flow-mediated dilation (FMD). Dark chocolate exerts artery dilatation via down-regulating NOX2-mediated oxidative stress. The aim of this study was to investigate whether dark chocolate improves walking autonomy in peripheral artery disease (PAD) patients via an oxidative stress-mediated mechanism. FMD, serum levels of isoprostanes, nitrite/nitrate (NOx) and sNOX2-dp, a marker of blood NOX2 activity, maximal walking distance (MWD) and maximal walking time (MWT) were studied in 20 PAD patients (14 males and 6 females, mean age: 69±9 years) randomly allocated to 40 g of dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa) in a single blind, cross-over design. The above variables were assessed at baseline and 2 hours after chocolate ingestion. Dark chocolate intake significantly increased MWD (+11%; P<0.001), MWT (+15%; P<0.001), serum NOx (+57%; P<0.001) and decreased serum isoprostanes (-23%; P=0.01) and sNOX2-dp (-37%; P<0.001); no changes of the above variables were observed after milk chocolate intake. Serum epicatechin and its methylated metabolite significantly increased only after dark chocolate ingestion. Multiple linear regression analysis showed that Δ of MWD was independently associated with Δ of MWT (P<0.001) and Δ of NOx (P=0.018). In vitro study demonstrated that HUVEC incubated with a mixture of polyphenols significantly increased nitric oxide (P<0.001) and decreased E-selectin (P<0.001) and VCAM1 (P<0.001). In PAD patients dark but not milk chocolate acutely improves walking autonomy with a mechanism possibly related to an oxidative stress-mediated mechanism involving NOX2 regulation. http://www.clinicaltrials.gov. Unique identifier: NCT01947712. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Dark Chocolate Acutely Improves Walking Autonomy in Patients With Peripheral Artery Disease

    PubMed Central

    Loffredo, Lorenzo; Perri, Ludovica; Catasca, Elisa; Pignatelli, Pasquale; Brancorsini, Monica; Nocella, Cristina; De Falco, Elena; Bartimoccia, Simona; Frati, Giacomo; Carnevale, Roberto; Violi, Francesco

    2014-01-01

    Background NOX‐2, the catalytic subunit of NADPH oxidase, has a key role in the formation of reactive oxidant species and is implicated in impairing flow‐mediated dilation (FMD). Dark chocolate exerts artery dilatation via down‐regulating NOX2‐mediated oxidative stress. The aim of this study was to investigate whether dark chocolate improves walking autonomy in peripheral artery disease (PAD) patients via an oxidative stress‐mediated mechanism. Methods and Results FMD, serum levels of isoprostanes, nitrite/nitrate (NOx) and sNOX2‐dp, a marker of blood NOX2 activity, maximal walking distance (MWD) and maximal walking time (MWT) were studied in 20 PAD patients (14 males and 6 females, mean age: 69±9 years) randomly allocated to 40 g of dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa) in a single blind, cross‐over design. The above variables were assessed at baseline and 2 hours after chocolate ingestion. Dark chocolate intake significantly increased MWD (+11%; P<0.001), MWT (+15%; P<0.001), serum NOx (+57%; P<0.001) and decreased serum isoprostanes (−23%; P=0.01) and sNOX2‐dp (−37%; P<0.001); no changes of the above variables were observed after milk chocolate intake. Serum epicatechin and its methylated metabolite significantly increased only after dark chocolate ingestion. Multiple linear regression analysis showed that Δ of MWD was independently associated with Δ of MWT (P<0.001) and Δ of NOx (P=0.018). In vitro study demonstrated that HUVEC incubated with a mixture of polyphenols significantly increased nitric oxide (P<0.001) and decreased E‐selectin (P<0.001) and VCAM1 (P<0.001). Conclusion In PAD patients dark but not milk chocolate acutely improves walking autonomy with a mechanism possibly related to an oxidative stress‐mediated mechanism involving NOX2 regulation. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01947712. PMID:24990275

  16. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-12-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  17. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less

  18. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    DOE PAGES

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; ...

    2016-12-21

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less

  19. Propagation of a dark soliton in a disordered Bose-Einstein condensate.

    PubMed

    Bilas, Nicolas; Pavloff, Nicolas

    2005-09-23

    We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.

  20. Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilas, Nicolas; Pavloff, Nicolas

    2005-09-23

    We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.

  1. Wall Extensibility and Cell Hydraulic Conductivity Decrease in Enlarging Stem Tissues at Low Water Potentials 1

    PubMed Central

    Nonami, Hiroshi; Boyer, John S.

    1990-01-01

    Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response. PMID:16667664

  2. Central arterial hemodynamic effects of dark chocolate ingestion in young healthy people: a randomized and controlled trial.

    PubMed

    Pereira, T; Maldonado, J; Laranjeiro, M; Coutinho, R; Cardoso, E; Andrade, I; Conde, J

    2014-01-01

    Introduction. The aim of this study was to assess the vascular benefits of dark chocolate in healthy and young individuals. Methods. A randomized and controlled trial was carried out involving 60 healthy volunteers, randomized into two groups: control group (CG; n = 30) and intervention group (IG; n = 30). The IG ingested a daily dosage of 10 g of dark chocolate (>75% cocoa) for a month. Blood pressure (BP), flow-mediated dilation (FMD), arterial stiffness index (ASI), aortic pulse wave velocity (PWV), and pulse wave analysis (PWA) were assessed at baseline and one week after the one-month intervention period. Results. Arterial function improved after intervention in the IG, with PWV decreasing from 6.13 ± 0.41 m/s to 5.83 ± 0.53 m/s (P = 0.02), with no significant differences observed in the CG. A significant decrease in ASI (0.16 ± 0.01 to 0.13 ± 0.01; P < 0.001) and AiX (-15.88 ± 10.75 to -22.57 ± 11.16; P = 0.07) was also depicted for the IG. Endothelial function improved in the IG, with the FMD increasing 9.31% after the 1-month intervention (P < 0.001), with no significant variation in the CG. Conclusion. The daily ingestion of 10 g dark chocolate (>75% cocoa) during a month significantly improves vascular function in young and healthy individuals.

  3. Central Arterial Hemodynamic Effects of Dark Chocolate Ingestion in Young Healthy People: A Randomized and Controlled Trial

    PubMed Central

    Pereira, T.; Maldonado, J.; Laranjeiro, M.; Coutinho, R.; Cardoso, E.; Andrade, I.; Conde, J.

    2014-01-01

    Introduction. The aim of this study was to assess the vascular benefits of dark chocolate in healthy and young individuals. Methods. A randomized and controlled trial was carried out involving 60 healthy volunteers, randomized into two groups: control group (CG; n = 30) and intervention group (IG; n = 30). The IG ingested a daily dosage of 10 g of dark chocolate (>75% cocoa) for a month. Blood pressure (BP), flow-mediated dilation (FMD), arterial stiffness index (ASI), aortic pulse wave velocity (PWV), and pulse wave analysis (PWA) were assessed at baseline and one week after the one-month intervention period. Results. Arterial function improved after intervention in the IG, with PWV decreasing from 6.13 ± 0.41 m/s to 5.83 ± 0.53 m/s (P = 0.02), with no significant differences observed in the CG. A significant decrease in ASI (0.16 ± 0.01 to 0.13 ± 0.01; P < 0.001) and AiX (−15.88 ± 10.75 to −22.57 ± 11.16; P = 0.07) was also depicted for the IG. Endothelial function improved in the IG, with the FMD increasing 9.31% after the 1-month intervention (P < 0.001), with no significant variation in the CG. Conclusion. The daily ingestion of 10 g dark chocolate (>75% cocoa) during a month significantly improves vascular function in young and healthy individuals. PMID:24982813

  4. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    DOE PAGES

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; ...

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(N D) strongly coupled theory with even N D ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweakmore » precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass m B ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less

  5. Dark information of black hole radiation raised by dark energy

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  6. Charting the Unknown: A Hunt in the Dark

    NASA Astrophysics Data System (ADS)

    Mohlabeng, Gopolang Mokoka

    Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects

  7. Falsification of Dark Energy by Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  8. Earth Observing-1 Advanced Imager Flight Performance Assessment: Investigating Dark Current Stability Over One-Half Orbit Period during the First 60 Days

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.

  9. Dark chocolate: an obesity paradox or a culprit for weight gain?

    PubMed

    Farhat, Grace; Drummond, Sandra; Fyfe, Lorna; Al-Dujaili, E A S

    2014-06-01

    Obesity remains a major public health challenge, and its prevalence is dramatically increasing. Diet and exercise are typically recommended to prevent and manage obesity; however, the results are often conflicting. Polyphenols, a class of phytochemicals that have been shown to reduce the risk factors for diabetes type II and cardiovascular diseases, are recently suggested as complementary agents in the management of obesity through several mechanisms such as decreasing fat absorption and/or fat synthesis. Dark chocolate, a high source of polyphenols, and flavanols in particular, has lately received attention for its possible role in modulating obesity because of its potential effect on fat and carbohydrate metabolism, as well as on satiety. This outcome was investigated in animal models of obesity, cell cultures and few human observational and clinical studies. The research undertaken to date has shown promising results, with the possible implication of cocoa/dark chocolate in the modulation of obesity and body weight through several mechanisms including decreasing the expression of genes involved in fatty acid synthesis, reducing the digestion and absorption of fats and carbohydrates and increasing satiety. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Dark Sky Protection and Education - Izera Dark Sky Park

    NASA Astrophysics Data System (ADS)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  11. The 17 MeV anomaly in beryllium decays and U(1) portal to dark matter

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Shu; Lin, Guey-Lin; Lin, Yen-Hsun; Xu, Fanrong

    2017-11-01

    The experiment of Krasznahorkay et al. observed the transition of a 8Be excited state to its ground state and accompanied by an emission of an e+e‑ pair with 17 MeV invariant mass. This 6.8σ anomaly can be fitted by a new light gauge boson. We consider the new particle as a U(1) gauge boson, Z‧, which plays as a portal linking dark sector and visible sector. In particular, we study the new U(1) gauge symmetry as a hidden or nonhidden group separately. The generic hidden U(1) model, referred to as dark Z model, is excluded by imposing various experimental constraints. On the other hand, a nonhidden Z‧ is allowed due to the additional interactions between Z‧ and Standard Model fermions. We also study the implication of the dark matter direct search on such a scenario. We found that the search for the DM-nucleon scattering cannot probe the parameter space that is allowed by 8Be-anomaly for the range of DM mass above 500 MeV. However, the DM-electron scattering for DM between 20 MeV and 50 MeV can test the underlying U(1) portal model using the future Si and Ge detectors with the 5e‑ threshold charges.

  12. Substructure of fuzzy dark matter haloes

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.

    2017-02-01

    We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.

  13. Little composite dark matter

    NASA Astrophysics Data System (ADS)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  14. The Greening after Extended Darkness1 Is an N-End Rule Pathway Mutant with High Tolerance to Submergence and Starvation1[OPEN

    PubMed Central

    Riber, Willi; Müller, Jana T.; Visser, Eric J.W.; Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.; Mustroph, Angelika

    2015-01-01

    Plants respond to reductions in internal oxygen concentrations with adaptive mechanisms (for example, modifications of metabolism to cope with reduced supply of ATP). These responses are, at the transcriptional level, mediated by the group VII Ethylene Response Factor transcription factors, which have stability that is regulated by the N-end rule pathway of protein degradation. N-end rule pathway mutants are characterized by a constitutive expression of hypoxia response genes and abscisic acid hypersensitivity. Here, we identify a novel proteolysis6 (prt6) mutant allele, named greening after extended darkness1 (ged1), which was previously discovered in a screen for genomes uncoupled-like mutants and shows the ability to withstand long periods of darkness at the seedling stage. Interestingly, this ethyl methanesulfonate-derived mutant shows unusual chromosomal rearrangement instead of a point mutation. Furthermore, the sensitivity of N-end rule pathway mutants ged1 and prt6-1 to submergence was studied in more detail to understand previously contradicting experiments on this topic. Finally, it was shown that mutants for the N-end rule pathway are generally more tolerant to starvation conditions, such as prolonged darkness or submergence, which was partially associated with carbohydrate conservation. PMID:25667318

  15. Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2015-10-01

    We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.

  16. Flavan-3-ol-enriched dark chocolate and white chocolate improve acute measures of platelet function in a gender-specific way--a randomized-controlled human intervention trial.

    PubMed

    Ostertag, Luisa M; Kroon, Paul A; Wood, Sharon; Horgan, Graham W; Cienfuegos-Jovellanos, Elena; Saha, Shikha; Duthie, Garry G; de Roos, Baukje

    2013-02-01

    We examined whether flavan-3-ol-enriched dark chocolate, compared with standard dark and white chocolate, beneficially affects platelet function in healthy subjects, and whether this relates to flavan-3-ol bioavailability. A total of 42 healthy subjects received an acute dose of flavan-3-ol-enriched dark, standard dark or white chocolate, in random order. Blood and urine samples were obtained just before and 2 and 6 h after consumption for measurements of platelet function, and bioavailability and excretion of flavan-3-ols. Flavan-3-ol-enriched dark chocolate significantly decreased adenosine diphosphate-induced platelet aggregation and P-selectin expression in men (all p ≤ 0.020), decreased thrombin receptor-activating peptide-induced platelet aggregation and increased thrombin receptor-activating peptide-induced fibrinogen binding in women (both p ≤ 0.041), and increased collagen/epinephrine-induced ex vivo bleeding time in men and women (p ≤ 0.042). White chocolate significantly decreased adenosine diphosphate-induced platelet P-selectin expression (p = 0.002) and increased collagen/epinephrine-induced ex vivo bleeding time (p = 0.042) in men only. Differences in efficacy by which flavan-3-ols affect platelet function were only partially explained by concentrations of flavan-3-ols and their metabolites in plasma or urine. Flavan-3-ols in dark chocolate, but also compounds in white chocolate, can improve platelet function, dependent on gender, and may thus beneficially affect atherogenesis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cosmology with interaction in the dark sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.

    2009-06-15

    Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter {epsilon}. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z).more » For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.« less

  18. Dark matter freeze-out in a nonrelativistic sector

    NASA Astrophysics Data System (ADS)

    Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-08-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the cannibal dark matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of cannibal dark matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  19. Fermion dark matter in gauge-Higgs unification

    DOE PAGES

    Maru, Nobuhito; Miyaji, Takashi; Okada, Nobuchika; ...

    2017-07-11

    Here, we propose a Majorana fermion dark matter in the context of a s imple gauge-Higgs Unification (GHU) scenario based on the gauge group SU(3)×U(1)' in 5-dimensional Minkowski space with a compactification of the 5th dimension on S 1/Z 2 orbifold. The dark matter particle is identified with the lightest mode in SU(3) triplet fermions additionally introduced in the 5-dimensional bulk. We find an allowed parameter region for the dark matter mass around a half of the Standard Model Higgs boson mass, which is consistent with the observed dark matter density and the constraint from the LUX 2016 result formore » the direct dark matter search. The entire allowed region will be covered by, for example, the LUX-ZEPLIN dark matter experiment in the near future. We also show that in the presence of the bulk SU(3) triplet fermions the 125 GeV Higgs boson mas s is reproduced through the renormalization group evolution of Higgs quartic coupling with the compactification scale of around 10 8 GeV.« less

  20. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.

  1. Optical Kerr spatiotemporal dark extreme waves

    NASA Astrophysics Data System (ADS)

    Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio

    2018-02-01

    We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.

  2. Vector dark matter annihilation with internal bremsstrahlung

    DOE PAGES

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; ...

    2017-01-10

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less

  3. Singlet particles as cold dark matter in a noncommutative space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettefaghi, M. M.

    2009-03-15

    We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.

  4. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  5. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  6. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, Xi.; Xiao, X.; Xu, J.; Yang, C.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-12-01

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  7. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-12-18

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  8. A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation.

    PubMed

    Cheng, Tat Cheung; Akey, Ildikó V; Yuan, Shujun; Yu, Zhiheng; Ludtke, Steven J; Akey, Christopher W

    2017-01-03

    In Drosophila, the Apaf-1-related killer (Dark) forms an apoptosome that activates procaspases. To investigate function, we have determined a near-atomic structure of Dark double rings using cryo-electron microscopy. We then built a nearly complete model of the apoptosome that includes 7- and 8-blade β-propellers. We find that the preference for dATP during Dark assembly may be governed by Ser325, which is in close proximity to the 2' carbon of the deoxyribose ring. Interestingly, β-propellers in V-shaped domains of the Dark apoptosome are more widely separated, relative to these features in the Apaf-1 apoptosome. This wider spacing may be responsible for the lack of cytochrome c binding to β-propellers in the Dark apoptosome. Our structure also highlights the roles of two loss-of-function mutations that may block Dark assembly. Finally, the improved model provides a framework to understand apical procaspase activation in the intrinsic cell death pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  10. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE PAGES

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  11. Z-portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcadi, Giorgio; Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, Göttingen, D-37077; Mambrini, Yann

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio thatmore » respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.« less

  12. Three-wave resonant interactions: Multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2018-03-01

    We investigate three-wave resonant interactions through both the generalized Darboux transformation method and numerical simulations. Firstly, we derive a simple multi-dark-dark-dark-soliton formula through the generalized Darboux transformation. Secondly, we use the matrix analysis method to avoid the singularity of transformed potential functions and to find the general nonsingular breather solutions. Moreover, through a limit process, we deduce the general rogue wave solutions and give a classification by their dynamics including bright, dark, four-petals, and two-peaks rogue waves. Ever since the coexistence of dark soliton and rogue wave in non-zero background, their interactions naturally become a quite appealing topic. Based on the N-fold Darboux transformation, we can derive the explicit solutions to depict their interactions. Finally, by performing extensive numerical simulations we can predict whether these dark solitons and rogue waves are stable enough to propagate. These results can be available for several physical subjects such as fluid dynamics, nonlinear optics, solid state physics, and plasma physics.

  13. Dark Matter "Collider" from Inelastic Boosted Dark Matter.

    PubMed

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2017-10-20

    We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.

  14. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  15. Detecting Dark Photons with Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ <1.3 ×10-5 and ɛ <2.1 ×10-5, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.

  16. Bright-dark and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations in a twin-core nonlinear optical fiber

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Qiang; Tian, Bo; Liu, Lei; Chai, Han-Peng

    2017-11-01

    In this paper, we investigate the coupled cubic-quintic nonlinear Schrödinger equations, which can describe the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in a twin-core nonlinear optical fiber. Through the Kadomtsev-Petviashvili hierarchy reduction, we present the bright-dark and dark-dark soliton solutions in terms of the Grammian for such equations. With the help of analytic and graphic analysis, head-on and overtaking elastic interactions between the two solitons are presented, as well as the bound-state solitons. Particularly, we find the inelastic interaction between the bright-dark two solitons. One of the electromagnetic fields presents the V-shape profile, while the other one presents the Y-shape profile.

  17. Hypericin-mediated photocytotoxic effect on HT-29 adenocarcinoma cells is reduced by light fractionation with longer dark pause between two unequal light doses.

    PubMed

    Sacková, Veronika; Kuliková, Lucia; Mikes, Jaromír; Kleban, Ján; Fedorocko, Peter

    2005-01-01

    The present study demonstrates the in vitro effect of hypericin-mediated PDT with fractionated light delivery. Cells were photosensitized with unequal light fractions separated by dark intervals (1 or 6 h). We compared the changes in viability, cell number, survival, apoptosis and cell cycle on HT-29 cells irradiated with a single light dose (12 J/cm(2)) to the fractionated light delivery (1 + 11 J/cm(2)) 24 and 48 h after photodynamic treatment. We found that a fractionated light regime with a longer dark period resulted in a decrease of hypericin cytotoxicity. Both cell number and survival were higher after light sensitization with a 6-h dark interval. DNA fragmentation occurred after a single light-dose application, but in contrast no apoptotic DNA formation was detected with a 6-h dark pause. After fractionation the percentage of cells in the G1 phase of the cell cycle was increased, while the proportion of cells in the G2 phase decreased as compared to a single light-dose application, i.e. both percentage of cells in the G1 and G2 phase of the cell cycle were near control levels. We presume that the longer dark interval after the irradiation of cells by first light dose makes them resistant to the effect of the second illumination. These findings confirm that the light application scheme together with other photodynamic protocol components is crucial for the photocytotoxicity of hypericin.

  18. Interacting dark sector and precision cosmology

    NASA Astrophysics Data System (ADS)

    Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs

    2018-01-01

    We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.

  19. Effect of supersonic relative motion between baryons and dark matter on collapsed objects

    NASA Astrophysics Data System (ADS)

    Asaba, Shinsuke; Ichiki, Kiyotomo; Tashiro, Hiroyuki

    2016-01-01

    Great attention is given to the first star formation and the epoch of reionization as main targets of planned large radio interferometries (e.g. Square Kilometre Array). Recently, it is claimed that the supersonic relative velocity between baryons and cold dark matter can suppress the abundance of first stars and impact the cosmological reionization process. Therefore, in order to compare observed results with theoretical predictions it is important to examine the effect of the supersonic relative motion on the small-scale structure formation. In this paper, we investigate this effect on the nonlinear structure formation in the context of the spherical collapse model in order to understand the fundamental physics in a simple configuration. We show the evolution of the dark matter sphere with the relative velocity by both using N-body simulations and numerically calculating the equation of motion for the dark matter mass shell. The effects of the relative motion in the spherical collapse model appear as the delay of the collapse time of dark matter halos and the decrease of the baryon mass fraction within the dark matter sphere. Based on these results, we provide the fitting formula of the critical density contrast for collapses with the relative motion effect and calculate the mass function of dark matter halos in the Press-Schechter formalism. As a result, the relative velocity decreases the abundance of dark matter halos whose mass is smaller than 108M⊙/h .

  20. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  1. Electroweak Kaluza-Klein dark matter

    DOE PAGES

    Flacke, Thomas; Kang, Dong Woo; Kong, Kyoungchul; ...

    2017-04-07

    In models with universal extra dimensions (UED), the lightest Kaluza-Klein excitation of neutral electroweak gauge bosons is a stable, weakly interacting massive particle and thus is a candidate for dark matter thanks to Kaluza-Klein parity. We examine concrete model realizations of such dark matter in the context of non-minimal UED extensions. The boundary localized kinetic terms for the electroweak gauge bosons lead to a non-trivial mixing among the first Kaluza-Klein excitations of themore » $${\\rm SU}(2)_W$$ and $${\\rm U}(1)_Y$$ gauge bosons and the resultant low energy phenomenology is rich. We investigate implications of various experiments including low energy electroweak precision measurements, direct and indirect detection of dark matter particles and direct collider searches at the LHC. Furthermore, we show that the electroweak Kaluza-Klein dark matter can be as heavy as 2.4 TeV, which is significantly higher than $1.3$ TeV as is indicated as an upper bound in the minimal UED model.« less

  2. Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z~1.2

    DOE PAGES

    Zhang, Y.; Miller, C.; McKay, T.; ...

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.

  3. Results from the DarkSide-50 Dark Matter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Alden

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP darkmore » matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion curve in the WIMP mass vs. spin

  4. Iapetus Bright and Dark Terrains

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Saturn's outermost large moon, Iapetus, has a bright, heavily cratered icy terrain and a dark terrain, as shown in this Voyager 2 image taken on August 22, 1981. Amazingly, the dark material covers precisely the side of Iapetus that leads in the direction of orbital motion around Saturn (except for the poles), whereas the bright material occurs on the trailing hemisphere and at the poles. The bright terrain is made of dirty ice, and the dark terrain is surfaced by carbonaceous molecules, according to measurements made with Earth-based telescopes. Iapetus' dark hemisphere has been likened to tar or asphalt and is so dark that no details within this terrain were visible to Voyager 2. The bright icy hemisphere, likened to dirty snow, shows many large impact craters. The closest approach by Voyager 2 to Iapetus was a relatively distant 600,000 miles, so that our best images, such as this, have a resolution of about 12 miles. The dark material is made of organic substances, probably including poisonous cyano compounds such as frozen hydrogen cyanide polymers. Though we know a little about the dark terrain's chemical nature, we do not understand its origin. Two theories have been developed, but neither is fully satisfactory--(1) the dark material may be organic dust knocked off the small neighboring satellite Phoebe and 'painted' onto the leading side of Iapetus as the dust spirals toward Saturn and Iapetus hurtles through the tenuous dust cloud, or (2) the dark material may be made of icy-cold carbonaceous 'cryovolcanic' lavas that were erupted from Iapetus' interior and then blackened by solar radiation, charged particles, and cosmic rays. A determination of the actual cause, as well as discovery of any other geologic features smaller than 12 miles across, awaits the Cassini Saturn orbiter to arrive in 2004.

  5. Dark-matter admixed white dwarfs

    NASA Astrophysics Data System (ADS)

    Leung, Shing Chi; Chu, Ming Chung; Lin, Lap Ming; Wong, Ka Wing

    2014-03-01

    We study the equilibrium structures of white dwarfs (WD) with dark matter cores formed by non-self-annihilating dark matter (DM) particles with masses ranging from 1 GeV to 100 GeV, assuming in form of an ideal degenerate Fermi gas inside the stars. For DM particles of mass 10 GeV and 100 GeV, we find that stable stellar models exist only if the mass of the DM core inside the star is less than O and -3)Msun , respectively. The global properties of these stars, and the corresponding Chandrasekhar mass (CM) limits, are essentially the same as those of traditional WD models without DM. Nevertheless, in the 10 GeV case, the gravitational attraction of the DM core is strong enough to squeeze the normal matter in the core region to densities above neutron drip. For the 1 GeV case, the DM core inside the star can be as massive as O and affects the global structure of the star significantly. The radius of a stellar model with DM can be about two times smaller than that of a traditional WD. Furthermore, the CM limit can be decreased by as much as 40%. Our results may have implications on the extent to which type Ia supernovae can be regarded as standard candles. This work is partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 400910).

  6. Dark Matters

    ScienceCinema

    Joseph Silk

    2018-04-17

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  7. Dynamical system analysis for DBI dark energy interacting with dark matter

    NASA Astrophysics Data System (ADS)

    Mahata, Nilanjana; Chakraborty, Subenoy

    2015-01-01

    A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  8. Renormalization group study of the minimal Majoronic dark radiation and dark matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, We-Fu; Ng, John N.

    We study the 1-loop renormalization group equation running in the simplest singlet Majoron model constructed by us earlier to accommodate the dark radiation and dark matter content in the universe. A comprehensive numerical study was performed to explore the whole model parameter space. A smaller effective number of neutrinos △N{sub eff}∼0.05, or a Majoron decoupling temperature higher than the charm quark mass, is preferred. We found that a heavy scalar dark matter, ρ, of mass 1.5–4 TeV is required by the stability of the scalar potential and an operational type-I see-saw mechanism for neutrino masses. A neutral scalar, S, ofmore » mass in the 10–100 GeV range and its mixing with the standard model Higgs as large as 0.1 is also predicted. The dominant decay modes are S into bb-bar and/or ωω. A sensitive search will come from rare Z decays via the chain Z→S+ff-bar, where f is a Standard Model fermion, followed by S into a pair of Majoron and/or b-quarks. The interesting consequences of dark matter bound state due to the sizable Sρρ-coupling are discussed as well. In particular, shower-like events with an apparent neutrino energy at M{sub ρ} could contribute to the observed effective neutrino flux in underground neutrino detectors such as IceCube.« less

  9. Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Boudjemline, K.; Boulay, M. G.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Contreras, D.; Dering, K.; Duncan, F.; Ford, R.; Gagnon, R.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Harvey, P.; Hearns, C.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; Li, O.; Lidgard, J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, T.; O'Dwyer, E.; Olsen, K. S.; Ouellet, C.; Pasuthip, P.; Pollmann, T.; Rau, W.; Retiere, F.; Ronquest, M.; Skensved, P.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Ward, M.

    2015-03-01

    The DEAP-1 7 kg single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination, and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222 Rn decay rate in the liquid argon was measured to be between 16 and 26 μBq kg-1. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry.

  10. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGES

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; ...

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ ~0 1, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ ~ 1, stop t ~ 1 or chargino χ ~± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a largermore » Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /E T events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ ~± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ ~ ±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  11. Dark catalysis

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and bar X, with a small asymmetric component made up of X and C. As the universe cools, it undergoes asymmetric recombination binding the free Cs into (XC) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  12. Dark catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whosemore » charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.« less

  13. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    PubMed

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-18

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

  14. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  15. A History of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertone, Gianfranco; Hooper, Dan

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  16. Constraints on the coupling between dark energy and dark matter from CMB data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murgia, R.; Gariazzo, S.; Fornengo, N., E-mail: riccardo.murgia@sissa.it, E-mail: gariazzo@to.infn.it, E-mail: fornengo@to.infn.it

    2016-04-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H{sub 0} and σ{sub 8}, alreadymore » present for standard cosmology, increases: this model in fact predicts lower H{sub 0} and higher σ{sub 8}, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H{sub 0} and σ{sub 8} nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.« less

  17. Detecting Dark Photons with Reactor Neutrino Experiments.

    PubMed

    Park, H K

    2017-08-25

    We propose to search for light U(1) dark photons, A^{'}, produced via kinetically mixing with ordinary photons via the Compton-like process, γe^{-}→A^{'}e^{-}, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ε, the A^{'}-γ mixing parameter, ε, for dark-photon masses below 1 MeV of ε<1.3×10^{-5} and ε<2.1×10^{-5}, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.

  18. Supersymmetric dark matter after LHC run 1

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-01

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, tilde{χ }^01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau tilde{τ }1, stop tilde{t}1 or chargino tilde{χ }^± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the {tilde{τ }_1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for / E_T events and long-lived charged particles, whereas their H / A funnel, focus-point and tilde{χ }^± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is tilde{χ }^± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  19. Prospects for detecting a net photon circular polarization produced by decaying dark matter

    NASA Astrophysics Data System (ADS)

    Elagin, Andrey; Kumar, Jason; Sandick, Pearl; Teng, Fei

    2017-11-01

    If dark matter interactions with Standard Model particles are C P violating, then dark matter annihilation/decay can produce photons with a net circular polarization. We consider the prospects for experimentally detecting evidence for such a circular polarization. We identify optimal models for dark matter interactions with the Standard Model, from the point of view of detectability of the net polarization, for the case of either symmetric or asymmetric dark matter. We find that, for symmetric dark matter, evidence for net polarization could be found by a search of the Galactic center by an instrument sensitive to circular polarization with an efficiency-weighted exposure of at least 50 ,000 cm2 yr , provided the systematic detector uncertainties are constrained at the 1% level. Better sensitivity can be obtained in the case of asymmetric dark matter. We discuss the prospects for achieving the needed level of performance using possible detector technologies.

  20. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    PubMed

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  1. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system.

    PubMed

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  2. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system

    NASA Astrophysics Data System (ADS)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  3. Z-portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois, E-mail: giorgio.arcadi@th.u-psud.fr, E-mail: yann.mambrini@th.u-psud.fr, E-mail: richard@lal.in2p3.fr

    2015-03-01

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ} ∼> 200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio thatmore » respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV . The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sup SD}{sub χn} ≅ 10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.« less

  4. Height Dependence of Plasma Properties of a Dark Lane and a Cool Loop in a Solar Limb Active Region Observed by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2013-12-01

    We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  5. Median filters as a tool to determine dark noise thresholds in high resolution smartphone image sensors for scientific imaging

    NASA Astrophysics Data System (ADS)

    Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.

    2018-01-01

    An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.

  6. Dark energy properties from large future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Basse, Tobias; Eggers Bjælde, Ole; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(wp)σ(wa))-1, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w0 deviates from -1 by as much as is currently observationally allowed, models with hat cs2 = 10-6 and hat cs2 = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species Neffml is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of Neffml due to non-instantaneous decoupling and finite temperature effects can be probed with 1σ precision for the first time.

  7. Very heavy dark Skyrmions

    NASA Astrophysics Data System (ADS)

    Dick, Rainer

    2017-12-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ -ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter.

  8. Collapsed Dark Matter Structures

    NASA Astrophysics Data System (ADS)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  9. Collapsed Dark Matter Structures.

    PubMed

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  10. Dark-Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  11. Secretly asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  12. New Views on Dark Matter from Emergent Gravity

    NASA Astrophysics Data System (ADS)

    Sun, Sichun; Zhang, Yun-Long

    2018-01-01

    We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde's emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  13. Dark Matter signals at the LHC from a 3HDM

    NASA Astrophysics Data System (ADS)

    Cordero, A.; Hernandez-Sanchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokolowska, D.

    2018-05-01

    We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2. The other two doublets are inert and do not develop a VEV, leading to a dark scalar sector controlled by Z 2, with the lightest CP-even dark scalar H 1 being the DM candidate. This leads to the loop induced decay of the next-to-lightest scalar, {H}_2\\to {H}_1f\\overline{f}(f=u,d,c,s,b,e,μ, τ ) , mediated by both dark CP-odd and charged scalars. This is a smoking-gun signal of the 3HDM since it is not allowed in the 2HDM with one inert doublet and is expected to be important when H 2 and H 1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, h\\to {H}_1{H}_2\\to {H}_1{H}_1f\\overline{f} into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel q\\overline{q}\\to {H}_1{H}_1{Z}^{\\ast}\\to {H}_1{H}_1f\\overline{f} . We devise some benchmarks, compliant with collider, DM and cosmological data, for which the interplay between these modes is discussed. In particular, we show that the resulting detector signature, [InlineMediaObject not available: see fulltext.], with invariant mass of f\\overline{f} much smaller than m Z , can potentially be extracted already during Run 2 and 3. For example, the H 2 → H 1 γ * and γ * → e + e - case will give a spectacular QED mono-shower signal.

  14. Surface dark screening solitons.

    PubMed

    Chen, W Q; Yang, X; Zhong, S Y; Yan, Z; Zhang, T H; Tian, J G; Xu, J J

    2011-10-01

    We report on the existence of surface dark screening solitons at the interface between a dielectric medium (air) and a self-defocusing nonlinear material, taking advantage of photorefractive diffusion and drift nonlinearities. It is very interesting that a surface dark soliton is just like half of a dark soliton in bulk, but not a whole dark soliton propagating along surface. The excitation, propagation, and stability of this type of soliton are studied by using the beam-propagation method. Another interesting thing is that this type of dark soliton can be excited by a planar light beam without a necessary dark notch. © 2011 Optical Society of America

  15. Dark forces in the sky: signals from Z{sup ′} and the dark Higgs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K.

    2016-08-01

    We consider the indirect detection signals for a self-consistent hidden U(1) model containing a Majorana dark matter candidate, χ, a dark gauge boson, Z{sup ′}, and a dark Higgs, s. Compared with a model containing only a dark matter candidate and Z{sup ′} mediator, the addition of the scalar provides a mass generation mechanism for the dark sector particles and is required in order to avoid unitarity violation at high energies. We find that the inclusion of the two mediators opens up a new two-body s-wave annihilation channel, χχ→sZ{sup ′}. This new process, which is missed in the usual single-mediatormore » simplified model approach, can be the dominant annihilation channel. This provides rich phenomenology for indirect detection searches, allows indirect searches to explore regions of parameter space not accessible with other commonly considered s-wave annihilation processes, and enables both the Z{sup ′} and scalar couplings to be probed. We examine the phenomenology of the sector with a focus on this new process, and determine the limits on the model parameter space from Fermi data on dwarf spheriodal galaxies and other relevant experiments.« less

  16. MeV dark matter complementarity and the dark photon portal

    NASA Astrophysics Data System (ADS)

    Dutra, Maíra; Lindner, Manfred; Profumo, Stefano; Queiroz, Farinaldo S.; Rodejohann, Werner; Siqueira, Clarissa

    2018-03-01

    We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below ~ 10 MeV . Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.

  17. Dichromatic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excitedmore » state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.« less

  18. New limits on coupled dark energy model after Planck 2015

    NASA Astrophysics Data System (ADS)

    Li, Hang; Yang, Weiqiang; Wu, Yabo; Jiang, Ying

    2018-06-01

    We used the Planck 2015 cosmic microwave background anisotropy, baryon acoustic oscillation, type-Ia supernovae, redshift-space distortions, and weak gravitational lensing to test the model parameter space of coupled dark energy. We assumed the constant and time-varying equation of state parameter for dark energy, and treated dark matter and dark energy as the fluids whose energy transfer was proportional to the combined term of the energy densities and equation of state, such as Q = 3 Hξ(1 +wx) ρx and Q = 3 Hξ [ 1 +w0 +w1(1 - a) ] ρx, the full space of equation of state could be measured when we considered the term (1 +wx) in the energy exchange. According to the joint observational constraint, the results showed that wx = - 1.006-0.027+0.047 and ξ = 0.098-0.098>+0.026 for coupled dark energy with a constant equation of state, w0 = -1.076-0.076+0.085, w1 = - 0.069-0.319+0.361, and ξ = 0.210-0.210+0.048 for a variable equation of state. We did not get any clear evidence for the coupling in the dark fluids at 1 σ region.

  19. Primakoff Prize Talk: The Search for Dark Sectors

    NASA Astrophysics Data System (ADS)

    Essig, Rouven

    2015-04-01

    Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly interesting possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. Examples of dark sector particles include dark photons, axions, axion-like particles, and dark matter. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. This talk summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. Particular emphasis will be given to the search for dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model hypercharge, with masses in the MeV-to-GeV range. Experimental searches include low-energy e+e- colliders, new and old high-intensity fixed-target experiments, and high-energy colliders. The talk will highlight the APEX and HPS experiments at Jefferson Lab, which are pioneering, low-cost experiments to search for dark photons in fixed target electroproduction. Over the next few years, they have the potential for a transformative discovery.

  20. A Database of COBE-normalized Cold Dark Matter Simulations

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Matzner, Richard

    2000-02-01

    presence of a Gaussian factor in the initial conditions, and late-time nonlinear evolution. The first of these three effects is negligible. The second and third are comparable, and can both modify the value of σ8 by up to 10%. Nonlinear effects, however, are important only for models with σ8>0.6, and can result in either an increase or a decrease in σ8.2. The observed galaxy two-point correlation function is well reproduced (assuming an unbiased relation between galaxies and mass) by models with σ8~0.8, nearly independently of the values of the other parameters, Ω0, λ0, and H0. For models with σ8>0.8, the correlation function is too large and its slope is too steep. For models with σ8<0.8, the correlation function is too small and its slope is too shallow.3. At small separations, r<1 Mpc, the velocity moments indicate that small clusters have reached virial equilibrium, while still accreting matter from the field. The velocity moments depend essentially upon Ω0 and σ8, and not λ0 and H0. The pairwise particle velocity dispersions are much larger than the observed pairwise galaxy velocity dispersion, for nearly all models. Velocity bias between galaxies and dark matter is needed to reconcile the simulations with observations.4. The cluster multiplicity function is decreasing for models with σ8~0.3. It has a horizontal plateau for models with σ8 in the range 0.4-0.9. For models with σ8>0.9, it has a U shape, which is probably a numerical artifact caused by the finite number of particles used in the simulations. For all models, clusters have densities in the range 100-1000 times the mean background density, the spin parameters λ are in the range 0.008-0.2, with the median near 0.05, and about 2/3 of the clusters are prolate. Rotationally supported disks do not form in these simulations.

  1. Dark energy in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  2. Dark cosmic rays

    DOE PAGES

    Hu, Ping-Kai; Kusenko, Alexander; Takhistov, Volodymyr

    2017-02-22

    If dark matter particles have an electric charge, as in models of millicharged dark matter, such particles should be accelerated in the same astrophysical accelerators that produce ordinary cosmic rays, and their spectra should have a predictable rigidity dependence. Depending on the charge, the resulting “dark cosmic rays” can be detected as muon-like or neutrino-like events in Super-Kamiokande, IceCube, and other detectors. We present new limits and propose several new analyses, in particular, for the Super-Kamiokande experiment, which can probe a previously unexplored portion of the millicharged dark matter parameter space. Here, most of our results are fairly general andmore » apply to a broad class of dark matter models.« less

  3. Dark matter cosmic string in the gravitational field of a black hole

    NASA Astrophysics Data System (ADS)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  4. INTEGRAL and Light Dark Matter

    NASA Astrophysics Data System (ADS)

    Cassé, M.; Fayet, P.; Schanne, S.; Cordier, B.; Paul, J.

    2004-10-01

    The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (the hallmark of positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter (LDM) particle (at variance with the neutralino, in general considered as very heavy). We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π? decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between ≈ 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson U. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter. Key words: Galaxy center; dark matter; gamma rays. 0Corresponding author: m.casse@cea.fr 3 Institut d'Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris, France 4 Fédération de Recherche Astroparticule et Cosmologie, Coll`ege de France, 11 Place

  5. Direct probe of dark energy through gravitational lensing effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Hong-Jian; Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn

    We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident lightmore » rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.« less

  6. Effect of Light/Dark Regimens on Hydrogen Production by Tetraselmis subcordiformis Coupled with an Alkaline Fuel Cell System.

    PubMed

    Guo, Zhen; Li, Ying; Guo, Haiyan

    2017-12-01

    To improve the photoproduction of hydrogen (H 2 ) by a green algae-based system, the effect of light/dark regimens on H 2 photoproduction regulated by carbonyl cyanide m-chlorophenylhydrazone (CCCP) was investigated. A fuel cell was integrated into a photobioreactor to allow online monitoring of the H 2 evolution rate and decrease potential H 2 feedback inhibition by consuming the generated H 2 in situ. During the first 15 h of H 2 evolution, the system was subjected to dark treatment after initial light illumination (L/D = 6/9 h, 9/6 h, and 12/3 h). After the dark period, all systems were again exposed to light illumination until H 2 evolution stopped. Two peaks were observed in the H 2 evolution rate under all three light/dark regimens. Additionally, a high H 2 yield of 126 ± 10 mL L -1 was achieved using a light/dark regimen of L 9 h/D 6 h/L until H 2 production ceased, which was 1.6 times higher than that obtained under continuous illumination. H 2 production was accompanied by some physiological and morphological changes in the cells. The results indicated that light/dark regimens improved the duration and yield of H 2 photoproduction by the CCCP-regulated process of Tetraselmis subcordiformis.

  7. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-03-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout from free streaming. The enhanced small-scale structure is expected to survive today in the form of compact microhalos and can lead to significant boost factors for indirect-detection experiments, such as FERMI, where dark matter would appear as point sources.

  8. Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Feng, Lei; Guo, Xiaofei; Shang, Liangliang; Wang, Fei; Wu, Peiwen

    2018-05-01

    Recently, the Dark Matter Particle Explorer (DAMPE) experiment released the new measurement of the total cosmic e+e- flux between 25 GeV and 4.6 TeV, which indicates a spectral softening at around 0.9 TeV and a tentative peak at around 1.4 TeV. We utilize a scalar dark matter (DM) model to explain the DAMPE peak by χ χ →Z'Z'→ℓℓ ¯ ℓ'ℓ' ¯ with an additional anomaly-free gauged U (1 ) family symmetry, in which χ , Z', and ℓ(') denote, respectively, the scalar DM, the new gauge boson, and ℓ(')=e , μ , τ with mχ˜mZ'˜2 ×1.5 (TeV ) . We first illustrate that the minimal framework GSM×U (1 )Y' with the above mass choices can explain the DAMPE excess, which, however, be excluded by LHC constraints from the Z' searches. Then, we study a nonminimal framework GSM×U (1 )Y'×U (1 )Y'' in which U (1 )Y'' mixes with U (1)Y'. We show that such a framework can interpret the DAMPE data and at the same time survive all other constraints including the DM relic abundance, DM direct detection, and collider bounds. We also investigate the predicted e+e- spectrum in this framework and find that the mass splitting Δ m =mχ-mZ'' should be less than about 17 GeV to produce the peaklike structure.

  9. Correction of Atmospheric Haze in RESOURCESAT-1 LISS-4 MX Data for Urban Analysis: AN Improved Dark Object Subtraction Approach

    NASA Astrophysics Data System (ADS)

    Mustak, S.

    2013-09-01

    The correction of atmospheric effects is very essential because visible bands of shorter wavelength are highly affected by atmospheric scattering especially of Rayleigh scattering. The objectives of the paper is to find out the haze values present in the all spectral bands and to correct the haze values for urban analysis. In this paper, Improved Dark Object Subtraction method of P. Chavez (1988) is applied for the correction of atmospheric haze in the Resoucesat-1 LISS-4 multispectral satellite image. Dark object Subtraction is a very simple image-based method of atmospheric haze which assumes that there are at least a few pixels within an image which should be black (% reflectance) and such black reflectance termed as dark object which are clear water body and shadows whose DN values zero (0) or Close to zero in the image. Simple Dark Object Subtraction method is a first order atmospheric correction but Improved Dark Object Subtraction method which tends to correct the Haze in terms of atmospheric scattering and path radiance based on the power law of relative scattering effect of atmosphere. The haze values extracted using Simple Dark Object Subtraction method for Green band (Band2), Red band (Band3) and NIR band (band4) are 40, 34 and 18 but the haze values extracted using Improved Dark Object Subtraction method are 40, 18.02 and 11.80 for aforesaid bands. Here it is concluded that the haze values extracted by Improved Dark Object Subtraction method provides more realistic results than Simple Dark Object Subtraction method.

  10. The dark side of flipped trinification

    NASA Astrophysics Data System (ADS)

    Dong, P. V.; Huong, D. T.; Queiroz, Farinaldo S.; Valle, José W. F.; Vaquera-Araujo, C. A.

    2018-04-01

    We propose a model which unifies the Left-Right symmetry with the SU(3) L gauge group, called flipped trinification, and based on the SU(3) C ⊗ SU(3) L ⊗ SU(3) R ⊗ U(1) X gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W P = (-1)3( B- L)+2 s , and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.

  11. Dark personality traits and impulsivity among adolescents: Differential links to problem behaviors and family relations.

    PubMed

    Dubas, Judith Semon; Baams, Laura; Doornwaard, Suzan M; van Aken, Marcel A G

    2017-10-01

    Research on how dark personality traits develop and relate to risky behaviors and family relations during adolescence is scarce. This study used a person-oriented approach to examine (a) whether distinct groups of adolescents could be identified based on their developmental profiles of callous-unemotional (CU), grandiose manipulative (GM), and dysfunctional impulsivity (DI) traits and (b) whether these groups differ in their problem behaviors and parent-adolescent relationship quality. Latent class growth analyses on 4-wave data of 1,131 Dutch adolescents revealed 3 personality profiles: (1) a dark impulsive group (13.9%), with high scores on all 3 traits (CU, GM, and DI) that were stable over time; (2) an impulsive group (26.1%), with high and increasing levels of impulsivity and relatively low scores on CU and GM; and (3) and a low risk group (60.0%), with relatively low levels on all 3 personality characteristics, with impulsivity decreasing over time. Compared with adolescents in the low risk group, adolescents in the dark impulsive and impulsive groups reported higher initial levels of substance use, sexual risk behaviors, permissive sexual attitudes, parent-adolescent conflict, and lower parent-adolescent satisfaction, as well as greater increases in sexual risk behavior over time. Compared with adolescents in the impulsive group, those in the dark impulsive group showed the highest levels of risk behaviors. Hence, dark personality traits coupled with impulsivity may be indicative of an earlier and more severe trajectory of problem behaviors that may differ from the trajectory of youth who are only impulsive. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Gupta, Aritra

    2017-03-01

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1)B-L model. The U(1)B-L model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y. Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.

  13. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Anirban; Gupta, Aritra, E-mail: anirbanbiswas@hri.res.in, E-mail: aritra@hri.res.in

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle,more » then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1){sub B−L} model. The U(1){sub B−L} model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y . Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.« less

  14. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    PubMed

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeVa 125 GeV Higgs mass are estimated, the abundance becomes 10%-80% for 80 GeVa significant decrease in the dark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the M(s)>80 GeV detection region of the next generation XENON experiment.

  15. A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.

    2014-01-01

    Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column

  16. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Xin

    2011-09-01

    The CPL parametrization is very important for investigating the property of dark energy with observational data. However, the CPL parametrization only respects the past evolution of dark energy but does not care about the future evolution of dark energy, since w ( z ) diverges in the distant future. In a recent paper [J.Z. Ma, X. Zhang, Phys. Lett. B 699 (2011) 233], a robust, novel parametrization for dark energy, w ( z ) = w + w ( l n ( 2 + z ) 1 + z - l n 2 ) , has been proposed, successfully avoiding the future divergence problem in the CPL parametrization. On the other hand, an oscillating parametrization (motivated by an oscillating quintom model) can also avoid the future divergence problem. In this Letter, we use the two divergence-free parametrizations to probe the dynamics of dark energy in the whole evolutionary history. In light of the data from 7-year WMAP temperature and polarization power spectra, matter power spectrum of SDSS DR7, and SN Ia Union2 sample, we perform a full Markov Chain Monte Carlo exploration for the two dynamical dark energy models. We find that the best-fit dark energy model is a quintom model with the EOS across -1 during the evolution. However, though the quintom model is more favored, we find that the cosmological constant still cannot be excluded.

  17. Extraordinary plasticity of an inorganic semiconductor in darkness.

    PubMed

    Oshima, Yu; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2018-05-18

    Inorganic semiconductors generally tend to fail in a brittle manner. Here, we report that extraordinary "plasticity" can take place in an inorganic semiconductor if the deformation is carried out "in complete darkness." Room-temperature deformation tests of zinc sulfide (ZnS) were performed under varying light conditions. ZnS crystals immediately fractured when they deformed under light irradiation. In contrast, it was found that ZnS crystals can be plastically deformed up to a deformation strain of ε t = 45% in complete darkness. In addition, the optical bandgap of the deformed ZnS crystals was distinctly decreased after deformation. These results suggest that dislocations in ZnS become mobile in complete darkness and that multiplied dislocations can affect the optical bandgap over the whole crystal. Inorganic semiconductors are not necessarily intrinsically brittle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Dark matter heating in strange stars

    NASA Astrophysics Data System (ADS)

    Huang, Xi; Wang, Wen; Zheng, XiaoPing

    2014-04-01

    We study the effect of dark matter heating on the temperature of typical strange star (SS hereafter) ( M = 1.4 M⊙, R = 10 km) in normal phase (NSS hereafter) and in a possible existing colour-flavour locked (CFL)phase (CSS hereafter). For NSS, the influence of dark matter heating is ignored until roughly 107 yr. After 107 yr, the dark matter heating is dominant that significantly delays the star cooling, which maintains a temperature much higher than that predicted by standard cooling model for old stars. Especially for CSS, the emissivity of dark matter will play a leading role after roughly 104 yr, which causes the temperature to rise. This leads to the plateau of surface temperature appearing in ˜106.5 yr which is earlier than that of NSS (˜107 yr).

  19. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  20. Association between light-to-dark changes in angle width and iris parameters in light, dark and changes from light-to-dark conditions.

    PubMed

    Lee, Roland Y; Lin, Shuai-Chun; Chen, Rebecca I; Barbosa, Diego T; Lin, Shan C

    2016-09-01

    To evaluate the association between light-to-dark changes in angle width parameters and iris parameters in light, dark and changes from light-to-dark conditions. In this prospective, cross-sectional study, anterior segment optical coherence tomography images, obtained under light and dark conditions, were analysed to determine angle opening distance measured at 500 μm from the scleral spur (AOD500), trabecular-iris space area at 500 μm from the scleral spur (TISA500), iris thickness measured at 750 μm from the scleral spur (IT750), iris thickness measured at 2000 μm from the scleral spur (IT2000), iris area (IArea) and pupil diameter (PD). Multivariable linear mixed-effect regression models were used to evaluate the association between light-to-dark changes in angle width parameters (AOD500, TISA500) and iris parameters (IT750, IT2000, IArea, PD) in light, dark and changes from light-to-dark conditions. 534 eyes from 314 non-glaucomatous subjects were analysed. IT750, IT2000, IArea and PD in light conditions were significantly associated with light-to-dark changes in AOD500 (p<0.05). IT750, IT2000 and IArea in light conditions were significantly associated with light-to-dark changes in TISA500 (p<0.05). IT750 in dark conditions was significantly associated with light-to-dark changes in AOD500 and TISA500 (p<0.05). Light-to-dark changes in IT2000, IArea and PD were significantly associated with light-to-dark changes in AOD500 (p<0.05). Light-to-dark changes in IArea were significantly associated with light-to-dark changes in TISA500 (p<0.05). Evaluation of iris parameters in light, dark and changes from light-to-dark conditions demonstrated that IT750, IT2000, IArea and PD in light conditions are significant predictors of light-to-dark changes in angle width. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2017-02-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.

  2. Lyman-α forest constraints on decaying dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Croft, Rupert A. C.; Peter, Annika H. G.; Zentner, Andrew R.; Purcell, Chris W.

    2013-12-01

    We present an analysis of high-resolution N-body simulations of decaying dark matter cosmologies focusing on the statistical properties of the transmitted Lyman-α (Lyα) forest flux in the high-redshift intergalactic medium (IGM). In this type of model a dark matter particle decays into a slightly less massive stable dark matter daughter particle and a comparably light particle. The small mass splitting provides a nonrelativistic kick velocity Vk=cΔM/M to the daughter particle resulting in free-streaming and subsequent damping of small-scale density fluctuations. Current Lyα forest power spectrum measurements probe comoving scales up to ˜2-3h-1Mpc at redshifts z˜2-4, providing one of the most robust ways to probe cosmological density fluctuations on relatively small scales. The suppression of structure growth due to the free-streaming of dark matter daughter particles also has a significant impact on the neutral hydrogen cloud distribution, which traces the underlying dark matter distribution well at high redshift. We exploit Lyα forest power spectrum measurements to constrain the amount of free-streaming of dark matter in such models and thereby place limits on decaying dark matter based only on the dynamics of cosmological perturbations without any assumptions about the interactions of the decay products. We use a suite of dark-matter-only simulations together with the fluctuating Gunn-Peterson approximation to derive the Lyα flux distribution. We argue that this approach should be sufficient for our main purpose, which is to demonstrate the power of the Lyα forest to constrain decaying dark matter models. We find that Sloan Digital Sky Survey 1D Lyα forest power spectrum data place a lifetime-dependent upper limit Vk≲30-70km/s for decay lifetimes ≲10Gyr. This is the most stringent model-independent bound on invisible dark matter decays with small mass splittings. For larger mass splittings (large Vk), Lyα forest data restrict the dark matter

  3. Phantom energy: dark energy with w <--1 causes a cosmic doomsday.

    PubMed

    Caldwell, Robert R; Kamionkowski, Marc; Weinberg, Nevin N

    2003-08-15

    We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."

  4. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  5. A power-law coupled three-form dark energy model

    NASA Astrophysics Data System (ADS)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  6. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    DOE PAGES

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; ...

    2017-05-31

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less

  7. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less

  8. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  9. Dark energy properties from large future galaxy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming amore » ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling

  10. THE NATURE OF FOVEAL DARK ADAPTATION

    PubMed Central

    Hecht, Selig

    1921-01-01

    1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of measuring the threshold of the fovea after different intervals in the dark. 2. The results show that dark adaptation of the eye as measured by foveal vision proceeds at a very precipitous rate during the first few seconds, that most of the adaptation takes place during the first 30 seconds, and that the process practically ceases after 10 minutes. These findings explain much of the irregularity of the older data. 3. The changes which correspond to those in the fovea alone are secured by correcting the above results in terms of the movements of the pupil during dark adaptation. 4. On the assumption that the photochemical effect of the light is a linear function of the intensity, it is shown that the dark adaptation of the fovea itself follows the course of a bimolecular reaction. This is interpreted to mean that there are two photolytic products in the fovea; that they are disappearing because they are recombining to form anew the photosensitive substance of the fovea; and that the concentration of these products of photolysis in the sense cell must be increased by a definite fraction in order to produce a visual effect. 5. It is then suggested that the basis of the initial event in foveal light perception is some mechanism that involves a reversible photochemical reaction of which the "dark" reaction is bimolecular. Dark adaptation follows the "dark" reaction; sensory equilibrium is represented by the stationary state; and light adaptation by the shifting of the stationary state to a fresh point of equilibrium toward the "dark" side of the reaction. PMID:19871919

  11. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata

    PubMed Central

    2011-01-01

    Background In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles. PMID:22269024

  12. Dilaton-assisted dark matter.

    PubMed

    Bai, Yang; Carena, Marcela; Lykken, Joseph

    2009-12-31

    A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.

  13. Dissipative dark matter halos: The steady state solution

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  14. Stereopsis and positional acuity under dark adaptation.

    PubMed

    Livingstone, M S; Hubel, D H

    1994-03-01

    Though experience tells us we can perceive depth in dim light, it is not so obvious that one of the chief mechanisms for depth perception, stereopsis, is possible under scotopic conditions. The only studies on human stereopsis in the dark adapted state seem to be those of Nagel [(1902) Zeitschrift für Psychologie, 27, 264-266] and Mueller and Lloyd [(1948) Proceedings of the National Academy of Science, U.S.A., 34, 223-227], both of which used real objects or line stereograms. We tested stereopsis using both random-dot and line stereograms and, in agreement with these studies, found that stereopsis is indeed possible in dark adaptation. We also measured stereo acuity and positional acuity (both of which are examples of hyperacuity) and compared these with grating acuity at several levels of light and dark adaptation. At all illumination levels tested, acuities for stereopsis and relative line position were both higher than for grating acuity. As light levels decreased, positional and grating acuity declined in parallel fashion, whereas stereoacuity declined more steeply.

  15. QCD Axion Dark Matter with a Small Decay Constant

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Hall, Lawrence J.; Harigaya, Keisuke

    2018-05-01

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant fa˜O (1011) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires fa˜(108- 1011) GeV . The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  16. Large-scale dark diversity estimates: new perspectives with combined methods.

    PubMed

    Ronk, Argo; de Bello, Francesco; Fibich, Pavel; Pärtel, Meelis

    2016-09-01

    Large-scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co-occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies

  17. Modelling non-linear effects of dark energy

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  18. Asymmetric Higgsino dark matter.

    PubMed

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  19. Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing

    2017-04-01

    We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.

  20. Severely Reduced Gravitropism in Dark-Grown Hypocotyls of a Starch-Deficient Mutant of Nicotiana sylvestris1

    PubMed Central

    Kiss, John Z.; Sack, Fred D.

    1990-01-01

    Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10° for NS 458 and about 70° for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots. Images Figure 2 Figure 3 Figure 4 PMID:11537476

  1. A geometric measure of dark energy with pairs of galaxies.

    PubMed

    Marinoni, Christian; Buzzi, Adeline

    2010-11-25

    Observations indicate that the expansion of the Universe is accelerating, which is attributed to adark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.

  2. Lost in the Dark: A proto-history of dark matter

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.; History 1

    2016-01-01

    The Greeks were probably not the first to think of everything, but they were quite often the first to write about it. Thus the first dark matter candidate was the counter-earth of Philolaus (c. 460 BCE), with its illuminated face forever turned away from us. The eclipsing binary interpretation of Algol brought forward the idea (Pigott & Goodricke 1780s) of stars not yet lit up, while the incorporation of thermodynamics into the astronomical tool kit suggested dark, dead stars. Jeans reported a number for these about three times the number of illuminated stars in 1922, the same year that Kapteyn set a comparable limit to what he called dark matter. The phrase appears as an index item in Russell et al.'s 1927 Astronomy and cannot, therefore, have been invented any later. The first extragalactic investigation seems to have been that by Knut Lundmark, writing in German in the Meddelande of the Lund Observatory in 1930. One of the columns of his Tabelle 4 is headed: (Leuchtende + dunkle Materia)/(Leuchtende Materie) and lists values from six up to 100 for six galaxies, e.g. Messier 51 (10), Andromedanebel (20), and NGC 4594 (30). Binary galaxies came from Holmberg (1937), Virgo from Sinclair Smith (1936), and flat rotation curves from Babcock (1939, Andromeda) and Oort (1940, NGC 3115), the latter writing cautiously that the distribution of mass seemed to be very different from that of the light. Then there was a war, but by the time of a 1961 symposium in Santa Barbara focused on the large velocity dispersions in clusters of galaxies, the votes for dark matter slightly outnumbered those for unbound clusters and other alternatives. The idea of a constant of gravity increasing with distance came a smidge later from Arigo Finzi in 1963. The tipping point was arguably 1974 with a pair of short papers summarizing M/L ratios vs. distance scale (which could, of course, have been plotted before WWII). I mention only the slightly earlier and much less often cited one by

  3. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  4. QCD Axion Dark Matter with a Small Decay Constant.

    PubMed

    Co, Raymond T; Hall, Lawrence J; Harigaya, Keisuke

    2018-05-25

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11})  GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11})  GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  5. Observations of SO in dark and molecular clouds

    NASA Technical Reports Server (NTRS)

    Rydbeck, O. E. H.; Hjalmarson, A.; Rydbeck, G.; Ellder, J.; Kollberg, E.; Irvine, W. M.

    1980-01-01

    The 1(0)-0(1) transition of SO at 30 GHz has been observed in several sources, including the first detection of sulfur monoxide in cold dark clouds without apparent internal energy sources. The SO transition appears to be an excellent tracer of structure in dark clouds, and the data support suggestions that self-absorption is important in determining emission profiles in such regions for large line-strength transitions. Column densities estimated from a comparison of the results for the two isotopic species indicate a high fractional abundance of SO in dark clouds.

  6. Charming dark matter

    NASA Astrophysics Data System (ADS)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  7. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% con dence level upper limits range from about 10 -26 cm3s -1 at 5 GeV to about 5 X10 -23 cm3smore » -1 at 1 TeV, depending on the dark matter annihilation nal state. For the rst time, using gamma rays, we are able to rule out models with the most generic cross section (~ 3 X 10 -26 cm 3s -1 for a purely s-wave cross section), without assuming additional boost factors.« less

  8. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2011-12-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% con dence level upper limits range from about 10 -26 cm3s -1 at 5 GeV to about 5 X10 -23 cm3smore » -1 at 1 TeV, depending on the dark matter annihilation nal state. For the rst time, using gamma rays, we are able to rule out models with the most generic cross section (~ 3 X 10 -26 cm 3s -1 for a purely s-wave cross section), without assuming additional boost factors.« less

  9. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cañadas, B.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jeltema, T. E.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Profumo, S.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strigari, L.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.; Kaplinghat, M.; Martinez, G. D.

    2011-12-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10-26cm3s-1 at 5 GeV to about 5×10-23cm3s-1 at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (˜3×10-26cm3s-1 for a purely s-wave cross section), without assuming additional boost factors.

  10. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  11. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  12. [Effects of Pseudomonas syringae pv. tabaci infection on tobacco photosynthetic apparatus under light or dark conditions.

    PubMed

    Cheng, Dan Dan; Sun, Jian Ping; Chai, Yuan; Zhu, Yi Yong; Zhao, Min; Sun, Guang Yu; Sun, Xing Bin

    2016-08-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemi-biotrophic bacterial pathogen that causes the formation of brown spots named wildfire disease. Pst has received considerable attention in recent years. However, most of the studies focused on the tolerance and defense mechanisms of the host and non-host plants against Pst infection and a toxin originally described as being from Pst named tabtoxin, little information is available on the photosynthetic performance of tobacco leaves after Pst infection. Exploring the effects of Pst on the photosystem Ⅱ (PSⅡ) will not only help in clarifying tobacco-Pst interaction mechanisms, but also deepen the understanding of bacterial pathogen disease from a physiological perspective. By analyzing chlorophyll a fluorescence transient, performing western blot of thylakoid membrane and measuring the content of reactive oxygen species (ROS) and total chlorophyll, the effects of Pst on PS2 in tobacco were studied under light (200 μmol·m -2 ·s -1 ) or dark conditions. The results showed that chlorophyll content significantly decreased and significant chlorosis of the infiltrated zone was observed compared to the untreated ones, and tobacco leaves exhibited a visible and overt wildfire symptom at 3 days post Pst infection (dpi) under light and dark conditions. The H 2 O 2 content increased at 3 dpi compared to untreated ones in tobacco leaves under light and dark conditions, and was much higher under light than dark condition. Besides, markedly increase of the normalized relative variable fluorescence at the K step (W K ) and the relative variable fluorescence at the J step (V J ), significant decrease of maximal quantum yield of PS2 (F v /F m ) and density of Q A - reducing PS2 reaction centers per cross section (RC/CSm) were observed in tobacco leaves after Pst infection at 3 dpi under light and dark conditions. Moreover, inhibition of the K and J steps was more pronounced in the dark, as indicated by the greater increase of W K

  13. Effect of dark chocolate on arterial function in healthy individuals.

    PubMed

    Vlachopoulos, Charalambos; Aznaouridis, Konstantinos; Alexopoulos, Nikolaos; Economou, Emmanuel; Andreadou, Ioanna; Stefanadis, Christodoulos

    2005-06-01

    Epidemiologic studies suggest that high flavonoid intake confers a benefit on cardiovascular outcome. Endothelial function, arterial stiffness, and wave reflections are important determinants of cardiovascular performance and are predictors of cardiovascular risk. The effect of flavonoid-rich dark chocolate (100 g) on endothelial function, aortic stiffness, wave reflections, and oxidant status were studied for 3 h in 17 young healthy volunteers according to a randomized, single-blind, sham procedure-controlled, cross-over protocol. Flow-mediated dilation (FMD) of the brachial artery, aortic augmentation index (AIx), and carotid-femoral pulse wave velocity (PWV) were used as measures of endothelial function, wave reflections, and aortic stiffness, respectively. Plasma oxidant status was evaluated with measurement of plasma malondialdehyde (MDA) and total antioxidant capacity (TAC). Chocolate led to a significant increase in resting and hyperemic brachial artery diameter throughout the study (maximum increase by 0.15 mm and 0.18 mm, respectively, P < .001 for both). The FMD increased significantly at 60 min (absolute increase 1.43%, P < .05). The AIx was significantly decreased with chocolate throughout the study (maximum absolute decrease 7.8%, P < .001), indicating a decrease in wave reflections, whereas PWV did not change to a significant extent. Plasma MDA and TAC did not change after chocolate, indicating no alterations in plasma oxidant status. Our study shows for the first time that consumption of dark chocolate acutely decreases wave reflections, that it does not affect aortic stiffness, and that it may exert a beneficial effect on endothelial function in healthy adults. Chocolate consumption may exert a protective effect on the cardiovascular system; further studies are warranted to assess any long-term effects.

  14. James Webb Space Telescope Studies of Dark Energy

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a

  15. Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cline, D.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghag, C.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Shields, E.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Maricic, J.; Martoff, C. J.; Meng, Y.; Meroni, E.; Meyers, P. D.; Mohayai, T.; Montanari, D.; Montuschi, M.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, N.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Teymourian, A.; Thompson, J.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-09-01

    As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.

  16. Comprehensive asymmetric dark matter model

    NASA Astrophysics Data System (ADS)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  17. Emergence of a dark force in corpuscular gravity

    NASA Astrophysics Data System (ADS)

    Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M.

    2018-02-01

    We investigate the emergent laws of gravity when dark energy and the de Sitter space-time are modeled as a critical Bose-Einstein condensate of a large number of soft gravitons NG. We argue that this scenario requires the presence of various regimes of gravity in which NG scales in different ways. Moreover, the local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons pulled out from this dark energy condensate (DEC). We then explain the additional component of the acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from the DEC and correctly reproduces the modified Newtonian dynamics (MOND) acceleration. It also allows for an effective description in terms of general relativity sourced by an anisotropic fluid. We finally calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a region of size r at galactic scales and show that it is consistent with the Λ CDM predictions.

  18. Fishing for Northern Pike in Minnesota: A comparison of anglers and dark house spearers

    USGS Publications Warehouse

    Schroeder, Susan A.; Fulton, David C.

    2014-01-01

    In order to project fishing effort and demand of individuals targeting Northern Pike Esox lucius in Minnesota, it is important to understand the catch orientations, management preferences, and site choice preferences of those individuals. Northern Pike are specifically targeted by about 35% of the approximately 1.5 million licensed anglers in Minnesota and by approximately 14,000–15,000 dark house spearers. Dark house spearing is a traditional method of harvesting fish through the ice in winter. Mail surveys were distributed to three research strata: anglers targeting Northern Pike, dark house spearing license holders spearing Northern Pike, and dark house spearing license holders angling for Northern Pike. Dark house spearers, whether spearing or angling, reported a stronger orientation toward keeping Northern Pike than did anglers. Anglers reported a stronger orientation toward catching large Northern Pike than did dark house spearers when spearing or angling. Northern Pike regulations were the most important attribute affecting site choice for respondents in all three strata. Models for all strata indicated a preference for lakes without protected slot limits. However, protected slot limits had a stronger negative influence on lake preference for dark house spearing licensees (whether spearing or angling) than for anglers.

  19. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z≲0.03), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, thesemore » extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N-body cosmological simulation and demonstrate that the limits are robust, at O(1) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Lastly, our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.« less

  20. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Wechsler, Risa H.

    2018-03-01

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z ≲0.03 ), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, these extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N -body cosmological simulation and demonstrate that the limits are robust, at O (1 ) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.

  1. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    DOE PAGES

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; ...

    2018-03-09

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z≲0.03), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, thesemore » extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N-body cosmological simulation and demonstrate that the limits are robust, at O(1) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Lastly, our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.« less

  2. Decreased Time from 9-1-1 Call to PCI among Patients Experiencing STEMI Results in a Decreased One Year Mortality.

    PubMed

    Studnek, Jonathan R; Infinger, Allison; Wilson, Hadley; Niess, Gary; Jackson, Patrick; Swanson, Doug

    2018-03-29

    The impact on mortality due to prompt recognition of ST-segment Elevation Myocardial Infarction (STEMI) patients by EMS has not been well described. The objective of this study was to describe the association between the time interval, 9-1-1 call to percutaneous intervention (PCI), and mortality at one year. This retrospective analysis included patients that were transported by EMS as a "code STEMI" and underwent PCI.  Total time from 9-1-1 call to PCI was calculated for each patient and was the independent variable of interest. Each patient's mortality status at one year was the outcome variable, collected by querying medical records and the national death index. Confounding variables were abstracted from hospital records. Logistic regression was conducted to determine the likelihood of survival given differences in time to PCI. A total of 550 patients were included in the analyses of which 68% were male with an average age 59.8 (SD 12.8). Mean reperfusion time was 81.8 min (SD 20.0) and was significantly lower in patients alive at one year (80.8 min, SD 19.7) vs. deceased at one year (93.9 min, SD 19.6), respectively. Odds of survival at one year decreased by 3% (OR 0.97; 95% CI 0.96-0.99) for every one minute increase in time to PCI. This relationship practically represents a 30% increase in mortality for every 10 minute delay from 9-1-1 call to PCI. The model produced suggests that a linear relationship exists between time to PCI and mortality in the prehospital environment with the probability of survival decreasing significantly as time to PCI increases.

  3. Hubble tracks down a galaxy cluster's dark matter

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Unique mass map hi-res Size hi-res: 495 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Unique mass map This is a mass map of galaxy cluster Cl0024+1654 derived from an extensive Hubble Space Telescope campaign. The colour image is made from two images: a dark-matter map (the blue part of the image) and a 'luminous-matter' map determined from the galaxies in the cluster (the red part of the image). They were constructed by feeding Hubble and ground-based observations into advanced mathematical mass-mapping models. The map shows that dark matter is present where the galaxies clump together. The mass of the galaxies is shown in red, the mass of the dark matter in blue. The dark matter behaves like a 'glue', holding the cluster together. The dark-matter distribution in the cluster is not spherical. A secondary concentration of dark-matter mass is shown in blue to the upper right of the main concentration. Sky around galaxy cluster Cl0024+1654 hi-res Size hi-res: 3742 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Sky around galaxy cluster Cl0024+1654 This is a 2.5-degree field around galaxy cluster Cl0024+1654. The cluster galaxies are visible in the centre of the image in yellow. The image is a colour composite constructed from three Digitized Sky Survey 2 images: Blue (shown in blue), Red (shown in green), and Infrared (shown in red). HST observes shapes of more than 7000 faint background galaxies hi-res Size hi-res: 5593 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Hubble observes shapes of more than 7000 faint background galaxies Five days of observations produced the altogether 39 Hubble Wide Field and Planetary Camera 2 (WFPC2) images required to map the mass of the galaxy cluster Cl0024+1654. Each WFPC2 image has a size of about 1/150 the diameter of the full Moon. In

  4. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  5. A Novel Dark-Inducible Protein, LeDI-2, and Its Involvement in Root-Specific Secondary Metabolism in Lithospermum erythrorhizon1

    PubMed Central

    Yazaki, Kazufumi; Matsuoka, Hideaki; Shimomura, Koichiro; Bechthold, Andreas; Sato, Fumihiko

    2001-01-01

    Lithospermum erythrorhizon produces red naphthoquinone pigments that are shikonin derivatives. They are accumulated exclusively in the roots of this plant. The biosynthesis of shikonin is strongly inhibited by light, even though other environmental conditions are optimized. Thus, L. erythrorhizon dark-inducible genes (LeDIs) were isolated to investigate the regulatory mechanism of shikonin biosynthesis. LeDI-2, showing the strict dark-specific expression, was further characterized by use of cell suspension cultures and hairy root cultures as model systems. Its mRNA accumulation showed a similar pattern with that of shikonin. In the intact plants LeDI-2 expression was observed solely in the root, and the longitudinal distribution of its mRNA was also in accordance to that of shikonin. LeDI-2 encoded a very hydrophobic polypeptide of 114 amino acids that shared significant similarities with some root-specific polypeptides such as ZRP3 (maize) and RcC3 (rice). Reduction of LeDI-2 expression by its antisense DNA in hairy roots of L. erythrorhizon decreased the shikonin accumulation, whereas other biosynthetic enzymes, e.g. p-hydroxybenzoic acid:geranyltransferase, which catalyzed a critical biosynthetic step, showed similar activity as the wild-type clone. This is the first report of the gene that is involved in production of secondary metabolites without affecting biosynthetic enzyme activities. PMID:11299363

  6. Electroweak baryogenesis from a dark sector

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Kainulainen, Kimmo; Tucker-Smith, David

    2017-06-01

    Adding an extra singlet scalar S to the Higgs sector can provide a barrier at tree level between a false vacuum with restored electroweak symmetry and the true one. This has been demonstrated to readily give a strong phase transition as required for electroweak baryogenesis. We show that with the addition of a fermionic dark matter particle χ coupling to S , a simple UV-complete model can realize successful electroweak baryogenesis. The dark matter gets a C P asymmetry that is transferred to the standard model through a C P portal interaction, which we take to be a coupling of χ to τ leptons and an inert Higgs doublet. The C P asymmetry induced in left-handed τ leptons biases sphalerons to produce the baryon asymmetry. The model has promising discovery potential at the LHC, while robustly providing a large enough baryon asymmetry and correct dark matter relic density with reasonable values of the couplings.

  7. A fresh look into the interacting dark matter scenario

    NASA Astrophysics Data System (ADS)

    Escudero, Miguel; Lopez-Honorez, Laura; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo

    2018-06-01

    The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of σγ DM < 8 × 10‑10 σT (mDM/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.

  8. k-essence model of inflation, dark matter, and dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Nilok; Majumdar, A. S.

    We investigate the possibility for k-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic k-essence model the late-time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another k-essence model in which the Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term. We show that such a model generates the basicmore » features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.« less

  9. Beyond vanilla dark matter: New channels in the multifaceted search for dark matter

    NASA Astrophysics Data System (ADS)

    Yaylali, David E.

    Though we are extremely confident that non-baryonic dark matter exists in our universe, very little is known about its fundamental nature or its relationship with the Standard Model. Guided by theoretical motivations, a desire for generality in our experimental strategies, and a certain amount of hopeful optimism, we have established a basic framework and set of assumptions about the dark sector which we are now actively testing. After years of probing the parameter spaces of these vanilla dark-matter scenarios, through a variety of different search channels, a conclusive direct (non-gravitational) discovery of dark matter eludes us. This very well may suggest that our first-order expectations of the dark sector are too simplistic. This work describes two ways in which we can expand the experimental reach of vanilla dark-matter scenarios while maintaining the model-independent generality which is at this point still warranted. One way in which this is done is to consider coupling structures between the SM and the dark sector other than the two canonical types --- scalar and axial-vector --- leading to spin dependent and independent interactions at direct-detection experiments. The second way we generalize the vanilla scenarios is to consider multi-component dark sectors. We find that both of these generalizations lead to new and interesting phenomenology, and provide a richer complementarity structure between the different experimental probes we are using to search for dark matter.

  10. Results from the first use of low radioactivity argon in a dark matter search

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  11. Vector SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Hochberg, Yonit; Kuflik, Eric; Lee, Hyun Min; Mambrini, Yann; Murayama, Hitoshi; Pierre, Mathias

    2017-10-01

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.

  12. Results from the first use of low radioactivity argon in a dark matter search

    DOE PAGES

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10 3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data,more » accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10 -44 cm 2 (8.6 x 10 -44 cm 2, 8.0 x 10 -43 cm 2) for a WIMP mass of 100 GeV/c 2 (1 TeV/c 2 , 10 TeV/c 2).« less

  13. A SQUID-Based RF Cavity Search for Dark Matter Axions

    NASA Astrophysics Data System (ADS)

    Hotz, Michael T.

    The axion is a hypothetical elementary particle resulting from a solution to the "Strong-CP" problem. This serious problem in the standard model of particle physics is manifested as a 1010 discrepancy between the measured upper limit and the calculated value of the neutron's electric dipole moment. Furthermore, a light (~mueV) axion is an ideal dark matter candidate: axions would have been copiously produced during the Big Bang and would be the primary component of the dark matter in the universe. The resolution of the Strong-CP problem and the discovery of the composition of dark matter are two of the most pressing problems in physics. The observation of a light, dark-matter axion would resolve both of these problems. The Axion Dark Matter eXperiment (ADMX) is the most sensitive search for dark-matter axions. Axions in our Milky Way Galaxy may scatter off a magnetic field and convert into microwave photons. ADMX consists of a tunable high-Q RF cavity within the bore of a large, 8.5 Tesla superconducting solenoidal magnet. When the cavity's resonant frequency matches the axion's total energy, the probability of axion-to-photon conversion is enhanced. The cavity's narrow bandwidth requires ADMX to slowly scan possible axion masses. A receiver amplifies, mixes, and digitizes the power developed in the cavity from possible axion-to-photon conversions. This is the most sensitive spectral receiver of microwave radiation in the world. The resulting data is scrutinized for an axion signal above the thermal background. ADMX first operated from 1995-2005 and produced exclusion limits on the energy of dark-matter axions from 1.9 mueV to 3.3 mueV. In order to improve on these limits and continue the search for plausible dark-matter axions, the system was considerably upgraded from 2005 until 2008. In the upgrade, the key technical advance was the use of a dc Superconducting QUantum Interference Device (SQUID) as a microwave amplifier. The SQUID amplifier's noise level is near

  14. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  15. DESTINY, The Dark Energy Space Telescope

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  16. Illuminated to dark ratio improvement in lateral SOI PIN photodiodes at high temperatures

    NASA Astrophysics Data System (ADS)

    Novo, C.; Giacomini, R.; Doria, R.; Afzalian, A.; Flandre, D.

    2014-07-01

    This work presents a study of the illuminated to dark ratio (IDR) of lateral SOI PIN photodiodes. Measurements performed on fabricated devices show a fivefold improvement of the IDR when the devices are biased in accumulation mode and under high temperatures of operation, independently of the anode voltage. The obtained results show that the doping concentration of the intrinsic region has influence on the sensitivity of the diodes: the larger the doping concentration, the smaller the IDR. Furthermore, the photocurrent and dark current present lower values as the silicon film thickness is decreased, resulting in a further increase in the illuminated to dark ratio.

  17. Can tonne-scale direct detection experiments discover nuclear dark matter?

    NASA Astrophysics Data System (ADS)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.

    2017-10-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.

  18. Radial oscillations of strange quark stars admixed with condensed dark matter

    NASA Astrophysics Data System (ADS)

    Panotopoulos, G.; Lopes, Ilídio

    2017-10-01

    We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.

  19. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    DOE PAGES

    Aprile, E.; Agostini, F.; Alfonsi, M.; ...

    2015-11-23

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, wemore » detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.« less

  20. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis.

    PubMed

    Tokede, O A; Gaziano, J M; Djoussé, L

    2011-08-01

    Cocoa products, which are rich sources of flavonoids, have been shown to reduce blood pressure and the risk of cardiovascular disease. Dark chocolate contains saturated fat and is a source of dietary calories; consequently, it is important to determine whether consumption of dark chocolate adversely affects the blood lipid profile. The objective was to examine the effects of dark chocolate/cocoa product consumption on the lipid profile using published trials. A detailed literature search was conducted via MEDLINE (from 1966 to May 2010), CENTRAL and ClinicalTrials.gov for randomized controlled clinical trials assessing the effects of flavanol-rich cocoa products or dark chocolate on lipid profile. The primary effect measure was the difference in means of the final measurements between the intervention and control groups. In all, 10 clinical trials consisting of 320 participants were included in the analysis. Treatment duration ranged from 2 to 12 weeks. Intervention with dark chocolate/cocoa products significantly reduced serum low-density lipoprotein (LDL) and total cholesterol (TC) levels (differences in means (95% CI) were -5.90 mg/dl (-10.47, -1.32 mg/dl) and -6.23 mg/dl (-11.60, -0.85 mg/dl), respectively). No statistically significant effects were observed for high-density lipoprotein (HDL) (difference in means (95% CI): -0.76 mg/dl (-3.02 to 1.51 mg/dl)) and triglyceride (TG) (-5.06 mg/dl (-13.45 to 3.32 mg/dl)). These data are consistent with beneficial effects of dark chocolate/cocoa products on total and LDL cholesterol and no major effects on HDL and TG in short-term intervention trials.

  1. Are the circular, dark features on Comet Borrelly's surface albedo variations or pits?

    USGS Publications Warehouse

    Nelson, R.M.; Soderblom, L.A.; Hapke, B.W.

    2004-01-01

    The highest resolution images of Comet 19P/Borrelly show many dark features which, upon casual inspection, appear to be low albedo markings, but which may also be shadows or other photometric variations caused by a depression in the local topography. In order to distinguish between these two possible interpretations we conducted a photometric analysis of three of the most prominent of these features using six of the highest quality images from the September 22, 2001 Deep Space 1 (DS1) flyby. We find that: 1. The radiance in the darkest parts of each feature increases as phase angle decreases, similarly to the radiance behavior of the higher albedo surrounding terrain. The dark features could be either fully illuminated low albedo spots or, alternatively, they could be depressions. No part of any of the three regions was in full shadow. 2. One of the regions has a radiance profile consistent with a rimmed depression, the second, with a simple depression with no rim, and the third with a low albedo spot. 3. The regolith particles are backscattering and carbon black is one of the few candidate regolith materials that might explain this low albedo. We conclude that Borrelly's surface is geologically complex to the limit of resolution of the images with a combination complex topography, pits, troughs, peaks and ridges, and some very dark albedo markings, perhaps a factor of two to three darker than the average 3-4% albedo of the surrounding terrains. Our technique utilizing measured radiance profiles through the dark regions is able to discriminate between rimmed depressions, rimless depressions and simple albedo changes not associated with topography. ?? 2003 Elsevier Inc. All rights reserved.

  2. Can tonne-scale direct detection experiments discover nuclear dark matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with amore » decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .« less

  3. [Dark matter and dark energy of the universe].

    PubMed

    Aguilar Peris, José

    2005-01-01

    At the turn of the 20th Century, the Universe was thought to consist of our solar system, the Sun, planets, satellites and comets, floating under the Milky Way. The astronomers were ignorant of the existence of galaxies, clusters, quasars and black holes. Over the last ten years the Cosmology has made remarkable progress in our understanding of the composition of the Universe: 23 per cent is in an unknown form called dark matter; 73 per cent in another form called dark energy; 3 per cent is made of free hydrogen and helium atoms; 0.5 per cent makes up all the light we see in the night including the stars, clusters and superclusters; 0.3 per cent is in free neutrino particles; and finally, 0.03 per cent is in the heavier nuclei of which the Sun, the Earth and ourselves are made. In this work we study specially the dark matter and the dark energy. The first one appears to be attached to galaxies, and astronomers agree that it is cold, meaning that the particles that make up that matter are not moving fast. Very recently astronomers discovered that a tremendous amount of the so-cahled dark energy exists and that it is pushing and accelerating the expansion of the Universe. Should this expansion continue for another 14,000 million years, the sky will darken with only a handful of galaxies remaining visible.

  4. Prospects of direct search for dark photon and dark Higgs in SeaQuest/E1067 experiment at the Fermilab main injector

    NASA Astrophysics Data System (ADS)

    Liu, Ming Xiong

    2017-03-01

    In this review, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Two of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton-nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2-10 GeV/c2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ˜1 MeV/c2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.

  5. Prospects of direct search for dark photon and dark Higgs in SeaQuest/E1067 experiment at the Fermilab main injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ming Xiong

    In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less

  6. Prospects of direct search for dark photon and dark Higgs in SeaQuest/E1067 experiment at the Fermilab main injector

    DOE PAGES

    Liu, Ming Xiong

    2017-03-14

    In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less

  7. q -deformed statistics and the role of light fermionic dark matter in SN1987A cooling

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; J, Selvaganapathy; Das, Prasanta Kumar

    2017-01-01

    The light dark matter (≃1 - 30 MeV ) particles pair produced in electron-positron annihilation e-e+→ γ χ χ ¯ inside the supernova core can take away the energy released in the supernova SN1987A explosion. Working within the formalism of q -deformed statistics [with the average value of the supernovae core temperature (fluctuating) being TS N=30 MeV ] and using the Raffelt's criterion on the emissivity for any new channel ɛ ˙ (e+e-→χ χ ¯ )≤1 019 erg g-1 s-1 , we find that as the deformation parameter q changes from 1.0 (undeformed scenario) to 1.1 (deformed scenario), the lower bound on the scale Λ of the dark matter effective theory varies from 3.3 ×1 06 TeV to 3.2 ×1 07 TeV for a dark matter fermion of mass mχ=30 MeV . Using the optical depth criteria on the free streaming of the dark matter fermion, we find the lower bound on Λ ˜1 08 TeV for mχ=30 MeV . In a scenario, where the dark matter fermions are pair produced in the outermost sector of the supernova core [with radius 0.9 Rc≤r ≤Rc , Rc(=10 km ) being the supernova core radius or the radius of protoneutron star], we find that the bound on Λ (˜3 ×1 07 TeV ) obtained from SN cooling criteria (Raffelt's criteria) is comparable with the bound obtained from free streaming (optical depth criterion) for light fermion dark matter of mass mχ=10 - 30 MeV .

  8. Neutrino mass and dark energy from weak lensing.

    PubMed

    Abazajian, Kevork N; Dodelson, Scott

    2003-07-25

    Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09.

  9. A New Target Object for Constraining Annihilating Dark Matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2017-07-01

    In the past decade, gamma-ray observations and radio observations of our Milky Way and the Milky Way dwarf spheroidal satellite galaxies put very strong constraints on annihilation cross sections of dark matter. In this paper, we suggest a new target object (NGC 2976) that can be used for constraining annihilating dark matter. The radio and X-ray data of NGC 2976 can put very tight constraints on the leptophilic channels of dark matter annihilation. The lower limits of dark matter mass annihilating via {e}+{e}-, {μ }+{μ }-, and {τ }+{τ }- channels are 200 GeV, 130 GeV, and 110 GeV, respectively, with the canonical thermal relic cross section. We suggest that this kind of large nearby dwarf galaxy with a relatively high magnetic field can be a good candidate for constraining annihilating dark matter in future analyses.

  10. Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating

    Science.gov Websites

    , Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional nature of dark energy.'1 'The accelerating expansion means that the universe could expand forever until , in the distant future, it is cold and dark. The teams' discovery led to speculation that there is a

  11. The Dark Triad Traits from a Life History Perspective in Six Countries.

    PubMed

    Jonason, Peter K; Foster, Joshua D; Egorova, Marina S; Parshikova, Oksana; Csathó, Árpád; Oshio, Atsushi; Gouveia, Valdiney V

    2017-01-01

    Work on the Dark Triad traits has benefited from the use of a life history framework but it has been limited to primarily Western samples and indirect assessments of life history strategies. Here, we examine how the Dark Triad traits (i.e., psychopathy, Machiavellianism, and narcissism) relate to two measures of individual differences in life history strategies. In Study 1 ( N = 937), we replicated prior observed links between life history strategies, as measured by the Mini- K , and the Dark Triad traits using samples recruited from three countries. In Study 2 ( N = 1032), we measured life history strategies using the Consideration of Future Consequences Scale and correlated it with the Dark Triad traits in samples recruited from three additional countries. While there was some variability across participants' sex and country, the results were generally consistent in that psychopathy and (to a lesser extent) Machiavellianism were related to faster life history strategies and narcissism was related to slower life history strategies. These results add cross-cultural data and the use of two measures of life history speed to understand the Dark Triad traits from a life history perspective.

  12. Holographic vortices in the presence of dark matter sector

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-12-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  13. Dark Matter Hairs Around Earth

    NASA Image and Video Library

    2015-11-23

    This illustration shows Earth surrounded by filaments of dark matter called "hairs," which are proposed in a study in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California. A hair is created when a stream of dark matter particles goes through the planet. According to simulations, the hair is densest at a point called the "root." When particles of a dark matter stream pass through the core of Earth, they form a hair whose root has a particle density about a billion times greater than average. The hairs in this illustration are not to scale. Simulations show that the roots of such hairs can be 600,000 miles (1 million kilometers) from Earth, while Earth's radius is only about 4,000 miles (6,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20176

  14. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{supmore » -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.« less

  15. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Cañadas, B; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, R P; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lionetto, A M; Llena Garde, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Profumo, S; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Roth, M; Sadrozinski, H F-W; Sbarra, C; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Kaplinghat, M; Martinez, G D

    2011-12-09

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26)  cm3  s(-1) at 5 GeV to about 5×10(-23)   cm3  s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26)  cm3  s(-1) for a purely s-wave cross section), without assuming additional boost factors.

  16. Dark matter influence on black objects thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  17. Vector SIMP dark matter

    DOE PAGES

    Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric; ...

    2017-10-24

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less

  18. Vector SIMP dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less

  19. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepin, Mark David

    An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) projectmore » operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their

  20. Comment on 'Dark pulse emission of a fiber laser'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coen, Stephane; Sylvestre, Thibaut; Institut FEMTO-ST, Universite de Franche-Comte, CNRS UMR 6174, F-25030 Besancon

    A recent Brief Report [Zhang et al., Phys. Rev. A 80, 045803 (2009)] presents experimental results in which dark pulses are generated in a fiber laser. Contrary to what is presented, the data published in that Brief Report do not support the claim that the duration of the dark dips are in the 8 ps range and that these pulses are related to genuine dark solitons.

  1. Gravitational waves from dark first order phase transitions and dark photons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

  2. Dark chocolate for children's blood pressure: randomised trial.

    PubMed

    Chan, Eunice K; Quach, Jon; Mensah, Fiona K; Sung, Valerie; Cheung, Michael; Wake, Melissa

    2012-07-01

    Higher adult blood pressure, even without hypertension, predicts cardiovascular outcomes, and is predicted by childhood blood pressure. Regular dark chocolate intake lowers blood pressure in adults, but effects in children are unknown. To examine the feasibility of school-based provision of dark chocolate and its short-term efficacy in reducing mean group blood pressure. 194 children (aged 10-12 years) were randomised by class to intervention (7 g dark chocolate daily for 7 weeks, n=124) or control (n=70) groups; 98% and 93% provided baseline and follow-up measurements, respectively. Intervention and control students had similar systolic (mean difference 1.7 mm Hg, 95% CI -0.6 to 4.1) and diastolic (-1.2 mm Hg, 95% CI -3.6 to 1.3) blood pressure, anthropometry and well-being at outcome. Results show that providing dark chocolate is feasible and acceptable in the school setting. For a definitive trial, the authors recommend a larger sample, endovascular function measures, and consideration of higher antioxidant 'dose' by virtue of duration and/or content.

  3. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  4. Axino LSP baryogenesis and dark matter

    DOE PAGES

    Monteux, Angelo; Shin, Chang Sub

    2015-05-01

    We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitinomore » can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.« less

  5. Illuminating dark photons with high-energy colliders

    NASA Astrophysics Data System (ADS)

    Curtin, David; Essig, Rouven; Gori, Stefania; Shelton, Jessie

    2015-02-01

    High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ ZZ D →4 ℓ, and in Drell-Yan events, pp→ Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4 ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ɛ ≳ 9 × 10-4 (4 × 10-4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ɛ ≳ 10-9 - 10-6 (10-10 - 10-7) for the mass range by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ɛ as low as 3 × 10-2. Sensitivity can be improved by up to a factor of ˜ 2 with HL-LHC data, and an additional factor of ˜ 4 with ILC/GigaZ data.

  6. Relationship between phenotype, carcass characteristics and the incidence of dark cutting in heifers.

    PubMed

    Mahmood, S; Basarab, J A; Dixon, W T; Bruce, H L

    2016-11-01

    Previous research has suggested that cattle predisposed to dark cutting can be identified from live animal or carcass characteristics. This hypothesis was tested using production and phenotype data from an existing data set collected from heifers (n=467) on study at three farms. Carcasses in the data set graded Canada AAA (n=136), AA (n=296), A (n=14), and B4 (dark cutting, n=21). Farm was identified as significant (P=0.0268) by CATMOD analysis and slaughter weight and carcass weight accounted for the variation in dark cutting frequency across the farms. Analysis of variance indicated that dark cutting heifers had reduced weight at weaning (P<0.0001) and at slaughter (P<0.0001), and produced reduced weight carcasses (P<0.0001). Results of logistic regression indicated that the probability of dark cutting was decreased in heifers slaughtered at live weight greater than 550kg and in carcasses weighing greater than 325kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dark CO2 Fixation in Gladiolus Cormels and Its Regulation during the Break of Dormancy 1

    PubMed Central

    Ginzburg, Chen

    1975-01-01

    The increase in dark CO2 fixation during cold storage of Gladiolus x gandavensis van Houtte-type grandiflorus cormels is used to monitor changes in their state of dormancy. Dark fixation is also promoted by benzyladenine, which breaks cormel dormancy, and is inhibited by abscisic acid and gibberellin A3, which inhibit cormel germination. The rate of dark fixation by nondormant cormels is five times higher than that in dormant ones. Dark fixation is not due to microorganisms. It is temperature-dependent and can be measured stoichiometrically in vivo. The apex and base of the cormels accumulate more label than the central part. Dark fixation of both dormant and nondormant cormels is also promoted by imbibition in water. The fate of the labeled assimilates was followed by ion exchange chromatography. PMID:16659256

  8. The DarkSide experiment

    NASA Astrophysics Data System (ADS)

    Bottino, B.; Aalseth, C. E.; Acconcia, G.; Acerbi, F.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A.; Ampudia, P.; Ardito, R.; Arisaka, K.; Arnquist, I. J.; Asner, D. M.; Back, H. O.; Baldin, B.; Batignani, G.; Biery, K.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Bunker, R.; Bussino, S.; Buttafava, M.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Calandri, N.; Calaprice, F.; Calvo, J.; Campajola, L.; Canci, N.; Candela, A.; Cantini, C.; Cao, H.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Citterio, M.; Cocco, A. G.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Angelo, D.; D'Incecco, M.; Daniel, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Guido, G.; De Vincenzi, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dromia, I.; Dussoni, S.; Edkins, E.; Empl, A.; Fan, A.; Ferri, A.; Filip, C. O.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Gendotti, A.; Ghioni, M.; Ghisi, A.; Giagu, S.; Gibertoni, G.; Giganti, C.; Giorgi, M.; Giovannetti, G. K.; Gligan, M. L.; Gola, A.; Goretti, A.; Granato, F.; Grassi, M.; Grate, J. W.; Gromov, M.; Guan, M.; Guardincerri, Y.; Gulinatti, A.; Haaland, R. K.; Hackett, B.; Harrop, B.; Herner, K.; Hoppe, E. W.; Horikawa, S.; Hungerford, E.; Ianni, Al.; Ianni, An.; Ivashchuk, O.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M. W.; Lissia, M.; Li, X.; Lodi, G. U.; Lombardi, P.; Longo, G.; Loverre, P.; Luitz, S.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I.; Mais, L.; Mandarano, A.; Mapelli, L.; Marcante, M.; Mari, S.; Mariani, M.; Maricic, J.; Marinelli, M.; Marini, L.; Martoff, C. J.; Mascia, M.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Miller, J. D.; Moioli, S.; Monasterio, S.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Morrocchi, M.; Mosteiro, P.; Mount, B.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Napolitano, J.; Nelson, A.; Nosov, V.; Nurakhov, N. N.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pantic, E.; Paoloni, E.; Parmeggiano, S.; Paternoster, G.; Pazzona, F.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perasso, S.; Peronio, P.; Perotti, F.; Perruzza, R.; Piemonte, C.; Pilo, F.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Radics, B.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Rech, I.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A.; Rescigno, M.; Ricotti, M.; Riffard, Q.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rountree, D.; Rubbia, A.; Ruggeri, A.; Sablone, D.; Saggese, P.; Salatino, P.; Salemme, L.; Sands, W.; Sangiorgio, S.; Sant, M.; Santorelli, R.; Sanzaro, M.; Savarese, C.; Sechi, E.; Segreto, E.; Semenov, D.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Shields, E.; Simeone, M.; Singh, P. N.; Skorokhvatov, M.; Smallcomb, M.; Smirnov, O.; Sokolov, A.; Sotnikov, A.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tamborini, D.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E.; Vacca, A.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wilhelmi, J.; Wojcik, M.; Wu, S.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zappa, F.; Zappalà, G.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zullo, A.; Zullo, M.; Zuzel, G.

    2017-01-01

    DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m>10{ GeV}) and weakly interactive (WIMP). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10^{-44} cm ^2 for a WIMP mass of 100 GeV/ c^2 . The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ˜20 tons.

  9. Self-Destructing Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, Yuval; Harnik, Roni; Telem, Ofri

    We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of modelsmore » which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.« less

  10. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  11. Dark matter and dark energy from the solution of the strong CP problem.

    PubMed

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  12. Searching for dark matter-dark energy interactions: Going beyond the conformal case

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen

    2018-01-01

    We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.

  13. Interactive mixture of inhomogeneous dark fluids driven by dark energy: a dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-03-01

    We examine the evolution of an inhomogeneous mixture of non-relativistic pressureless cold dark matter (CDM), coupled to dark energy (DE) characterised by the equation of state parameter w<-1/3, with the interaction term proportional to the DE density. This coupled mixture is the source of a spherically symmetric Lemaître-Tolman-Bondi (LTB) metric admitting an asymptotic Friedman-Lemaître-Robertson-Walker (FLRW) background. Einstein's equations reduce to a 5-dimensional autonomous dynamical system involving quasi-local variables related to suitable averages of covariant scalars and their fluctuations. The phase space evolution around the critical points (past/future attractors and five saddles) is examined in detail. For all parameter values and both directions of energy flow (CDM to DE and DE to CDM) the phase space trajectories are compatible with a physically plausible early cosmic times behaviour near the past attractor. This result compares favourably with mixtures with interaction driven by the CDM density, whose past evolution is unphysical for DE to CDM energy flow. Numerical examples are provided describing the evolution of an initial profile that can be associated with idealised structure formation scenarios.

  14. On the dark matter as a geometric effect in f (R) gravity

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    2016-11-01

    A mysterious type of matter is supposed to exist because the observed rotational velocity curves of particles moving around the galactic center and the expected rotational velocity curves do not match. This type of matter is called dark matter. There are also a number of proposals in the modified gravity which are alternatives to the dark matter. In this contrast, in 2008, Christian G. Böhmer, Tiberiu Harko and Francisco S.N. Lobo presented an interesting idea in Böhmer et al. (Astropart Phys 29(6):386-392, 2008) where they showed that a f (R) gravity model could actually explain dark matter to be a geometric effect only. They solved the gravitational field equations in vacuum using generic f (R) gravity model for constant velocity regions (i.e. dark matter regions around the galaxy). They found that the resulting modifications in the Einstein Hilbert Lagrangian is of the form R^{1+m}, where m=V_{tg}^2/c^2; V_{tg} being the tangential velocity of the test particle moving around the galaxy in the dark matter regions and c being the speed of light. From observations it is known that m≈ O(10^{-6}) (Böhmer et al. 2008; Salucci et al. in Mon Not R Astron Soc 378(1):41-47, 2007; Persic et al. in Mon Not R Astron Soc 281:27-47, 1996; Borriello and Salucci in Mon Not R Astron Soc 323(2):285-292, 2001). In this article, we perform two things (1) We show that the form of f (R) they claimed is not correct. In doing the calculations, we found that when the radial component of the metric for constant velocity regions is a constant then the exact solutions for f (R) obtained is of the form of R^{1-α } which corresponds to a negative correction rather than positive claimed by the authors of Böhmer et al. (2008), where α is the function of m. (2) We also show that we can not have an analytic solution of f(R) for all values of tangential velocity including the observed value of tangential velocity 200-300 km/s (Salucci et al. 2007; Persic et al. 1996; Borriello and Salucci

  15. Effects of Dark Chocolate and Almonds on Cardiovascular Risk Factors in Overweight and Obese Individuals: A Randomized Controlled-Feeding Trial.

    PubMed

    Lee, Yujin; Berryman, Claire E; West, Sheila G; Chen, C-Y Oliver; Blumberg, Jeffrey B; Lapsley, Karen G; Preston, Amy G; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-11-29

    Consumption of almonds or dark chocolate and cocoa has favorable effects on markers of coronary heart disease; however, the combined effects have not been evaluated in a well-controlled feeding study. The aim of this study was to examine the individual and combined effects of consumption of dark chocolate and cocoa and almonds on markers of coronary heart disease risk. A randomized controlled, 4-period, crossover, feeding trial was conducted in overweight and obese individuals aged 30 to 70 years. Forty-eight participants were randomized, and 31 participants completed the entire study. Each diet period was 4 weeks long, followed by a 2-week compliance break. Participants consumed each of 4 isocaloric, weight maintenance diets: (1) no treatment foods (average American diet), (2) 42.5 g/d of almonds (almond diet [ALD]), (3) 18 g/d of cocoa powder and 43 g/d of dark chocolate (chocolate diet [CHOC]), or (4) all 3 foods (CHOC+ALD). Compared with the average American diet, total cholesterol, non-high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol after the ALD were lower by 4%, 5%, and 7%, respectively ( P <0.05). The CHOC+ALD decreased apolipoprotein B by 5% compared with the average American diet. For low-density lipoprotein subclasses, compared with the average American diet, the ALD showed a greater reduction in large buoyant low-density lipoprotein particles (-5.7±2.3 versus -0.3±2.3 mg/dL; P =0.04), whereas the CHOC+ALD had a greater decrease in small dense low-density lipoprotein particles (-12.0±2.8 versus -5.3±2.8 mg/dL; P =0.04). There were no significant differences between diets for measures of vascular health and oxidative stress. Our results demonstrate that consumption of almonds alone or combined with dark chocolate under controlled-feeding conditions improves lipid profiles. Incorporating almonds, dark chocolate, and cocoa into a typical American diet without exceeding energy needs may reduce the risk of coronary

  16. The DarkSide Program

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Calaprice, F.; Canci, N.; Candela, A.; Cariello, M.; Cavalcante, P.; Catalanotti, S.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kendziora, C.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Luitz, S.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Musico, P.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saldanha, R.; Sands, W.; Segreto, E.; Shields, E.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Watson, A.; Westerdale, S.; Wojcik, M.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2016-07-01

    DarkSide-50 at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a liquid argon TPC. DS-50 has completed its first dark matter run using atmospheric argon as target. The detector performances and the results of the first physics run are presented in this proceeding.

  17. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Kovetz, Ely D.; Dai, Liang; Kamionkowski, Marc

    2016-08-01

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20 - 100 M⊙ window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ˜20 M⊙ would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass ML induces two images, separated by a typical time delay ˜few×(ML/30 M⊙) msec . Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 1 04 FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 1 04 FRBs would constrain the fraction fDM of dark matter in MACHOs to fDM≲0.08 for ML≳20 M⊙ .

  18. Search for dark matter in events with one jet and missing transverse energy in pp¯ collisions at √s=1.96 TeV.

    PubMed

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Bai, Y; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Fox, P J; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harnik, R; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-05-25

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp[over ¯] collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb(-1) recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c(2), and on spin-dependent interactions up to masses of 200 GeV/c(2).

  19. A small amount of mini-charged dark matter could cool the baryons in the early Universe.

    PubMed

    Muñoz, Julian B; Loeb, Abraham

    2018-05-01

    The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.

  20. Skew-flavored dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  1. Skew-flavored dark matter

    DOE PAGES

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  2. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE PAGES

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; ...

    2017-03-15

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  3. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  4. Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2016-08-01

    We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.

  5. Dark Searches and γγ Physics at KLOE

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2017-04-01

    The search for a dark sector mediated by a new gauge boson, the dark photon, is motivated by many astrophysical anomalies and by the g - 2 discrepancy. The KLOE experiment, operating at the e+e- DAΦNE collider in Frascati, searched for a visibly-decaying dark photon by investigating the ϕ-Dalitz decay into the η meson, the dark photon production from continuum, and the Higgsstrahlung process. The KLOE-2 run started in November 2014, after the upgrade of both, DAΦNE and the KLOE apparatus. In particular, two high electron and positron tagger stations were installed in the DAΦNE layout to study γγ interactions at 1 GeV. Progress status of the project is given.

  6. The Higgs seesaw induced neutrino masses and dark matter

    DOE PAGES

    Cai, Yi; Chao, Wei

    2015-08-12

    In this study we propose a possible explanation of the active neutrino Majorana masses with the TeV scale new physics which also provide a dark matter candidate. We extend the Standard Model (SM) with a local U(1)' symmetry and introduce a seesaw relation for the vacuum expectation values (VEVs) of the exotic scalar singlets, which break the U(1)' spontaneously. The larger VEV is responsible for generating the Dirac mass term of the heavy neutrinos, while the smaller for the Majorana mass term. As a result active neutrino masses are generated via the modified inverse seesaw mechanism. The lightest of themore » new fermion singlets, which are introduced to cancel the U(1)' anomalies, can be a stable particle with ultra flavor symmetry and thus a plausible dark matter candidate. We explore the parameter space with constraints from the dark matter relic abundance and dark matter direct detection.« less

  7. DAEδALUS and dark matter detection

    DOE PAGES

    Kahn, Yonatan; Krnjaic, Gordan; Thaler, Jesse; ...

    2015-03-05

    Among laboratory probes of dark matter, fixed-target neutrino experiments are particularly well suited to search for light weakly coupled dark sectors. Here in this paper, we show that the DAEδALUS source setup$-$an 800 MeV proton beam impinging on a target of graphite and copper$-$can improve the present LSND bound on dark photon models by an order of magnitude over much of the accessible parameter space for light dark matter when paired with a suitable neutrino detector such as LENA. Interestingly, both DAEδALUS and LSND are sensitive to dark matter produced from off-shell dark photons. We show for the first timemore » that LSND can be competitive with searches for visible dark photon decays and that fixed-target experiments have sensitivity to a much larger range of heavy dark photon masses than previously thought. We review the mechanism for dark matter production and detection through a dark photon mediator, discuss the beam-off and beam-on backgrounds, and present the sensitivity in dark photon kinetic mixing for both the DAEδALUS/LENA setup and LSND in both the on- and off-shell regimes.« less

  8. Constraining particle dark matter using local galaxy distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, Shin’ichiro; Ishiwata, Koji

    It has been long discussed that cosmic rays may contain signals of dark matter. In the last couple of years an anomaly of cosmic-ray positrons has drawn a lot of attentions, and recently an excess in cosmic-ray anti-proton has been reported by AMS-02 collaboration. Both excesses may indicate towards decaying or annihilating dark matter with a mass of around 1–10 TeV. In this article we study the gamma rays from dark matter and constraints from cross correlations with distribution of galaxies, particularly in a local volume. We find that gamma rays due to inverse-Compton process have large intensity, and hencemore » they give stringent constraints on dark matter scenarios in the TeV scale mass regime. Taking the recent developments in modeling astrophysical gamma-ray sources as well as comprehensive possibilities of the final state products of dark matter decay or annihilation into account, we show that the parameter regions of decaying dark matter that are suggested to explain the excesses are excluded. We also discuss the constrains on annihilating scenarios.« less

  9. A galaxy lacking dark matter

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  10. A possible signature of annihilating dark matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  11. Dark Matter

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  12. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  13. Light higgsino dark matter from non-thermal cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less

  14. Light higgsino dark matter from non-thermal cosmology

    DOE PAGES

    Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar; ...

    2016-11-01

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less

  15. Dark-dark solitons for a coupled variable-coefficient higher-order nonlinear Schrödinger system in an inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong

    2017-12-01

    In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.

  16. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    PubMed

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  17. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth.

    PubMed

    Han, Yuyan; Meng, Fanyin; Venter, Julie; Wu, Nan; Wan, Ying; Standeford, Holly; Francis, Heather; Meininger, Cynthia; Greene, John; Trzeciakowski, Jerome P; Ehrlich, Laurent; Glaser, Shannon; Alpini, Gianfranco

    2016-06-01

    Disruption of circadian rhythm is associated with cancer development and progression. MicroRNAs (miRNAs) are a class of small non-coding RNAs that trigger mRNA translation inhibition. We aimed to evaluate the role of Per1 and related miRNAs in cholangiocarcinoma growth. The expression of clock genes was evaluated in human cholangiocarcinoma tissue arrays and cholangiocarcinoma lines. The rhythmic expression of clock genes was evaluated in cholangiocarcinoma cells and H69 (non-malignant cholangiocytes) by qPCR. We measured cell proliferation, cell cycle and apoptosis in Mz-ChA-1 cells after Per1 overexpression. We examined tumor growth in vivo after injection of Per1 overexpressing cells. We verified miRNAs that targets Per1. The circadian rhythm of miR-34a was evaluated in cholangiocarcinoma and H69 cells. We evaluated cell proliferation, apoptosis and invasion after inhibition of miR-34a in vitro, and the potential molecular mechanisms by mRNA profiling after overexpression of Per1. Expression of Per1 was decreased in cholangiocarcinoma. The circadian rhythm of Per1 expression was lost in cholangiocarcinoma cells. Decreased cell proliferation, lower G2/M arrest, and enhanced apoptosis were shown in Per1 overexpressing cells. An in vivo study revealed decreased tumor growth, decreased proliferation, angiogenesis and metastasis after overexpressing Per1. Per1 was verified as a target of miR-34a. miR-34a was rhythmically expressed in cholangiocarcinoma cells and H69. The inhibition of miR-34a decreased proliferation, migration and invasion in cholangiocarcinoma cells. mRNA profiling has shown that overexpression of Per1 inhibits cell growth through regulation of multiple cancer-related pathways, such as cell cycle, cell growth and apoptosis pathways. Disruption of circadian rhythms of clock genes contribute to the malignant phenotypes of human cholangiocarcinoma. The current study is about how biological clock and its regulators affect the bile duct tumor growth. The

  18. Sterile Neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Merle, Alexander

    2017-03-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground-based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  19. Search for Invisible Decays of a Dark Photon Produced in e^{+}e^{-} Collisions at BaBar.

    PubMed

    Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Brown, D N; Derdzinski, M; Giuffrida, A; Kolomensky, Yu G; Fritsch, M; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Gary, J W; Long, O; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Kim, J; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Röhrken, M; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Smith, J G; Wagner, S R; Bernard, D; Verderi, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rotondo, M; Zallo, A; Passaggio, S; Patrignani, C; Lacker, H M; Bhuyan, B; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Le Diberder, F; Lutz, A M; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Banerjee, Sw; Brown, D N; Davis, C L; Denig, A G; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Jawahery, A; Roberts, D A; Cowan, R; Robertson, S H; Dey, B; Neri, N; Palombo, F; Cheaib, R; Cremaldi, L; Godang, R; Summers, D J; Taras, P; De Nardo, G; Sciacca, C; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Gaz, A; Margoni, M; Posocco, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Calderini, G; Chauveau, J; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Rossi, A; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Rama, M; Rizzo, G; Walsh, J J; Smith, A J S; Anulli, F; Faccini, R; Ferrarotto, F; Ferroni, F; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Heß, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Wilson, F F; Emery, S; Vasseur, G; Aston, D; Cartaro, C; Convery, M R; Dorfan, J; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Luitz, S; MacFarlane, D B; Muller, D R; Neal, H; Ratcliff, B N; Roodman, A; Sullivan, M K; Va'vra, J; Wisniewski, W J; Purohit, M V; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Schwitters, R F; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Albert, J; Beaulieu, A; Bernlochner, F U; King, G J; Kowalewski, R; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Prepost, R; Wu, S L

    2017-09-29

    We search for single-photon events in 53  fb^{-1} of e^{+}e^{-} collision data collected with the BABAR detector at the PEP-II B-Factory. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with production of a spin-1 particle A^{'} through the process e^{+}e^{-}→γA^{'}; A^{'}→invisible. Such particles, referred to as "dark photons," are motivated by theories applying a U(1) gauge symmetry to dark matter. We find no evidence for such processes and set 90% confidence level upper limits on the coupling strength of A^{'} to e^{+}e^{-} in the mass range m_{A^{'}}≤8  GeV. In particular, our limits exclude the values of the A^{'} coupling suggested by the dark-photon interpretation of the muon (g-2)_{μ} anomaly, as well as a broad range of parameters for the dark-sector models.

  20. Dark blood late enhancement imaging.

    PubMed

    Kellman, Peter; Xue, Hui; Olivieri, Laura J; Cross, Russell R; Grant, Elena K; Fontana, Marianna; Ugander, Martin; Moon, James C; Hansen, Michael S

    2016-11-07

    Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate. In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface. The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n = 30 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13 % loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63 % of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the