Sample records for a2 receptor-deficient mice

  1. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  2. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  3. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  4. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.

    PubMed

    Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip

    2018-06-01

    PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.

  5. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  6. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  7. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  8. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  9. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    PubMed

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  10. Emotional response in dopamine D2L receptor-deficient mice

    PubMed Central

    Hranilovic, Dubravka; Bucan, Maja; Wang, Yanyan

    2008-01-01

    The dopamine D2 receptor (D2R) system has been implicated in emotional processing which is often impaired in neuropsychiatric disorders. The long (D2L) and the short (D2S) isoforms of D2R are generated by alternative splicing of the same gene. To study differential roles of the two D2R isoforms, D2L-deficient mice (D2L−/−) expressing functional D2S were previously generated. In this study the contribution of D2L isoform to emotional response was investigated by examining behaviors that reflect emotionality (exploratory behavior, anxiety-like behavior and learned helplessness) in D2L−/− and (wild-type) WT mice. While the thigmotactic, locomotor and general components of anxiety in zero maze did not differ among the genotypes, D2L−/− mice displayed significantly lower level of exploration in a hole board and zero maze, and significantly higher increase in latency to escape from a foot shock after the learned helplessness training, compared with WT mice. These results suggest that D2L may play a more prominent role than D2S in mediating emotional response, such as behavioral reactions to novelty and inescapable stress. Our findings contribute to a better understanding of the molecular and cellular mechanisms underlying emotional responses. PMID:18835570

  11. Increased ethanol preference and serotonin 1A receptor-dependent attenuation of ethanol-induced hypothermia in PACAP-deficient mice.

    PubMed

    Tanaka, Kazuhiro; Kunishige-Yamamoto, Akiko; Hashimoto, Hitoshi; Shintani, Norihito; Hayata, Atsuko; Baba, Akemichi

    2010-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice display remarkable behavioral changes including increased novelty-seeking behavior and reduced hypothermia induced by either serotonin (5-HT)(1A) receptor agonists or ethanol. Because 5-HT(1A) receptors have been implicated in the development of alcohol dependence, we have examined ethanol preference in PACAP-deficient mice using a two-bottle choice and a conditioned place preference test, as well as additive effects of ethanol and 5-HT(1A) receptor agents on hypothermia. PACAP-deficient mice showed an increased preference towards ethanol compared with wild-type mice. However, they showed no preference for the ethanol compartment after conditioning and neither preference nor aversion to sucrose or quinine. The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) restored the attenuated hypothermic response to ethanol in the mutants to similar levels in wild-type mice, with no effect in wild-types. In contrast, the 5-HT(1A) receptor antagonist WAY-100635 attenuated the ethanol-induced hypothermia in wild-type mice, with no effect in the mutants. These results demonstrate increased ethanol preference in PACAP-deficient mice that may be mediated by 5-HT(1A) receptor-dependent attenuation of ethanol-induced central inhibition. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    NASA Astrophysics Data System (ADS)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  13. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis.

    PubMed

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-10

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  14. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.

    PubMed

    Bale, T L; Contarino, A; Smith, G W; Chan, R; Gold, L H; Sawchenko, P E; Koob, G F; Vale, W W; Lee, K F

    2000-04-01

    Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh. Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.

  15. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.

  16. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl

    2018-04-01

    The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  18. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  19. Adenosine A2A receptor deficiency attenuates the somnogenic effect of prostaglandin D2 in mice

    PubMed Central

    Zhang, Bin-jia; Huang, Zhi-li; Chen, Jiang-fan; Urade, Yoshihiro; Qu, Wei-min

    2017-01-01

    Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep promoting substances. PGD2 activates the PGD2 receptor (DPR) and increases the extracellular level of adenosine in wild-type (WT) mice but not DPR knockout (KO) mice, suggesting that PGD2-induced sleep is DPR-dependent, and adenosine may be the signaling molecule that mediates the somnogenic effect of PGD2. The aim of this study was to determine the involvement of the adenosine A2A receptor (A2AR) in PGD2-induced sleep. We infused PGD2 into the lateral ventricle of WT and A2AR KO mice between 20:00 and 2:00 for 6 h, and electroencephalograms and electromyograms were simultaneously recorded. In WT mice, PGD2 infusion dose-dependently increased non-rapid eye movement (non-REM, NREM) sleep, which was 139.1%, 145.0% and 202.7% as large as that of vehicle-treated mice at doses of 10, 20 and 50 pmol/min, respectively. PGD2 infusion at doses of 20 and 50 pmol/min also increased REM sleep during the 6-h PGD2 infusion and 4-h post-dosing periods in WT mice to 148.9% and 166.7%, respectively. In A2AR KO mice, however, PGD2 infusion at 10 pmol/min did not change the sleep profile, whereas higher doses at 20 and 50 pmol/min increased the NREM sleep during the 6-h PGD2 infusion to 117.5% and 155.6%, respectively, but did not change the sleep in the post-dosing period. Moreover, PGD2 infusion at 50 pmol/min significantly increased the episode number in both genotypes but only enhanced the episode duration in WT mice. The results demonstrate that PGD2-induced sleep in mice is mediated by both adenosine A2AR-dependent and -independent systems. PMID:28112177

  20. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  1. T cell-independent and T cell-dependent immunoglobulin G responses to polyomavirus infection are impaired in complement receptor 2-deficient mice.

    PubMed

    Szomolanyi-Tsuda, Eva; Seedhom, Mina O; Carroll, Michael C; Garcea, Robert L

    2006-08-15

    Polyomavirus (PyV) infection induces protective T cell-independent (TI) IgM and IgG antibody responses in T cell-deficient mice, but these responses are not generated by immunization with viral proteins or virus like particles. We hypothesized that innate signals contribute to the generation of isotype-switched antiviral antibody responses. We studied the role of complement receptor (CR2) engagement in TI and T cell-dependent (TD) antibody responses to PyV using CR2-deficient mice. Antiviral IgG responses were reduced by 80-40% in CR2-/- mice compared to wild type. Adoptive transfer experiments demonstrated the need for CR2 not only in TD, but also in TI IgG responses to PyV. Transfer of CR2-/- B lymphocytes to SCID mice resulted in TI antiviral IgG responses that corresponded to 10% of that seen in wild-type B cell-reconstituted mice. Thus, our studies revealed a profound dependence of TI and TD antiviral antibody responses on CR2-mediated signals in PyV-infected mice, where the viral antigen is abundant and persistent.

  2. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice.

    PubMed

    Armando, Ines; Asico, Laureano D; Wang, Xiaoyan; Jones, John E; Serrão, Maria Paula; Cuevas, Santiago; Grandy, David K; Soares-da-Silva, Patricio; Jose, Pedro A

    2018-04-13

    Abnormalities of the D 2 R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D 2 -/- ) in mice increases blood pressure. The hypertension of D 2 -/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D 2 -/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D 2 -/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D 2 -/- mice, and D 2 +/+ littermates, and mice with the D 2 R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D 2 -/- mice and mice with renal-selective silencing of D 2 R to levels similar or close to those measured in D 2 +/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D 2 -/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D 1 R but not D 5 R in D 2 -/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D 2 -/- mice.

  3. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less

  4. Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice

    PubMed Central

    Guns, Pieter-Jan D F; Van Assche, Tim; Fransen, Paul; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2006-01-01

    Based on pharmacological criteria, we previously suggested that in the mouse aorta, endothelium-dependent relaxation by nucleotides is mediated by P2Y1 (adenosine diphosphate (ADP)), P2Y2 (adenosine triphosphate (ATP)) and P2Y6 (uridine diphosphate (UDP)) receptors. For UTP, it was unclear whether P2Y2, P2Y6 or yet another subtype was involved. Therefore, in view of the lack of selective purinergic agonists and antagonists, we used P2Y2-deficient mice to clarify the action of UTP. Thoracic aorta segments (width 2 mm) of P2Y2-deficient and wild-type (WT) mice were mounted in organ baths to measure isometric force development and intracellular calcium signalling. Relaxations evoked by ADP, UDP and acetylcholine were identical in knockout and WT mice, indicating that the receptors for these agonists function normally. P2Y2-deficient mice showed impaired ATP- and adenosine 5′[γ-thio] triphosphate (ATPγS)-evoked relaxation, suggesting that in WT mice, ATP and ATPγS activate predominantly the P2Y2 subtype. The ATP/ATPγS-evoked relaxation and calcium signals in the knockout mice were partially rescued by P2Y1, as they were sensitive to 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate (MRS2179), a P2Y1-selective antagonist. In contrast to ATP, the UTP-evoked relaxation was not different between knockout and WT mice. Moreover, the action of UTP was not sensitive to MRS2179. Therefore, the action of UTP is probably mediated mainly by a P2Y6(like) receptor subtype. In conclusion, we demonstrated that ATP-evoked relaxation of the murine aorta is mainly mediated by P2Y2. But this P2Y2 receptor has apparently no major role in UTP-evoked relaxation. The vasodilator effect of UTP is probably mediated mainly by a P2Y6(like) receptor. PMID:16415908

  5. Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling.

    PubMed

    Omodaka, Kazuko; Nishiguchi, Koji M; Yasuda, Masayuki; Tanaka, Yuji; Sato, Kota; Nakamura, Orie; Maruyama, Kazuichi; Nakazawa, Toru

    2014-10-24

    Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  7. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  8. The orphan nuclear receptor small heterodimer partner is required for thiazolidinedione effects in leptin-deficient mice.

    PubMed

    Tseng, Hsiu-Ting; Park, Young Joo; Lee, Yoon Kwang; Moore, David D

    2015-05-08

    Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.

  9. Vasodilator therapy with hydralazine induces angiotensin AT2 receptor-mediated cardiomyocyte growth in mice lacking guanylyl cyclase-A

    PubMed Central

    Li, Y; Saito, Y; Kuwahara, K; Rong, X; Kishimoto, I; Harada, M; Horiuchi, M; Murray, M; Nakao, K

    2010-01-01

    Background and purpose: Recent clinical guidelines advocate the use of the isosorbide dinitrate/hydralazine combination in treatment for heart failure. However, clinical and laboratory evidence suggest that some vasodilators may induce cardiac hypertrophy under uncertain conditions. This study investigated the effects and underlying mechanism of action of the vasodilator hydralazine on cardiac growth. Experimental approach: Wild-type mice and animals deficient in guanylyl cyclase-A (GCA) and/or angiotensin receptors (AT1 and AT2 subtypes) were treated with hydralazine (≈24 mg·kg−1·day−1 in drinking water) for 5 weeks. Cardiac mass and/or cardiomyocyte cross-sectional area, fibrosis (van Giessen-staining) and cardiac gene expression (real-time RT-PCR) were measured. Key results: Hydralazine lowered blood pressure in mice of all genotypes. However, this treatment increased the heart and left ventricular to body weight ratios, as well as cardiomyocyte cross-sectional area, and cardiac expression of atrial natriuretic peptide mRNA in mice lacking GCA. Hydralazine did not affect cardiac hypertrophy in wild-type mice and mice lacking either AT1 or AT2 receptors alone. However, the pro-hypertrophic effect of hydralazine was prevented in mice lacking both GCA and AT2, but not GCA and AT1 receptors. However, hydralazine did decrease cardiac collagen deposition and collagen I mRNA (signs of cardiac fibrosis) in mice that were deficient in GCA, or both GCA and AT2 receptors. Conclusions and implications: The vasodilator hydralazine induced AT2 receptor-mediated cardiomyocyte growth under conditions of GCA deficiency. However, attenuation of cardiac fibrosis by hydralazine could be beneficial in the management of cardiac diseases. PMID:20136844

  10. Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1

    PubMed Central

    Li, Hui; Wang, Dongmei; Singh, Lisam Shanjukumar; Berk, Michael; Tan, Haiyan; Zhao, Zhenwen; Steinmetz, Rosemary; Kirmani, Kashif; Wei, Gang; Xu, Yan

    2009-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases. PMID:19479052

  11. Estrogen receptor alpha deficiency modulates TLR ligand mediated PDC-TREM expression in plasmacytoid dendritic cells in lupus prone mice

    PubMed Central

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; EuDaly, Jackie G; Gilkeson, Gary S

    2016-01-01

    Female lupus prone NZM2410 estrogen receptor alpha (ERα) deficient mice are protected from renal disease and have prolonged survival compared to wild type (WT) littermates, however the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I interferon (IFN) drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in pre-disease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHCII+ pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of toll-like receptor (TLR) mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in pre-disease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupus like disease. PMID:26553076

  12. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  13. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice.

    PubMed

    Li, Chao; Zhang, Yu Yao; Frieler, Ryan A; Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.

  14. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors.

    PubMed

    Maekawa, Akiko; Kanaoka, Yoshihide; Xing, Wei; Austen, K Frank

    2008-10-28

    The cysteinyl leukotrienes (cys-LTs) are a family of potent lipid mediators of inflammation derived from arachidonic acid. Activation of certain cell types results in the biosynthesis and export of leukotriene (LT) C(4), which then undergoes extracellular metabolism to LTD(4) and LTE(4). LTE(4), the most stable cys-LT, is only a weak agonist for the defined type 1 and type 2 cys-LT receptors (CysLT(1)R and CysLT(2)R, respectively). We had recognized a greater potency for LTE(4) than LTC(4) or LTD(4) in constricting guinea pig trachea in vitro and comparable activity in eliciting a cutaneous wheal and flare response in humans. Thus, we hypothesized that a vascular permeability response to LTE(4) in mice lacking both the CysLT(1)R and CysLT(2)R could establish the existence of a separate LTE(4) receptor. We now report that the intradermal injection of LTE(4) into the ear of mice deficient in both CysLT(1)R and CysLT(2)R elicits a vascular leak that exceeds the response to intradermal injection of LTC(4) or LTD(4), and that this response is inhibited by pretreatment of the mice with pertussis toxin or a Rho kinase inhibitor. LTE(4) is approximately 64-fold more potent in the CysLT(1)R/CysLT(2)R double-deficient mice than in sufficient mice. The administration of a CysLT(1)R antagonist augmented the permeability response of the CysLT(1)R/CysLT(2)R double-deficient mice to LTC(4), LTD(4), and LTE(4). Our findings establish the existence of a third receptor, CysLT(E)R, that responds preferentially to LTE(4), the most abundant cys-LT in biologic fluids, and thus reveal a new target for therapeutic intervention.

  15. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    PubMed

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Leptin- and Leptin Receptor-Deficient Rodent Models: Relevance for Human Type 2 Diabetes

    PubMed Central

    Wang, Bingxuan; P., Charukeshi Chandrasekera; Pippin, John J.

    2014-01-01

    Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research. The purpose of this review is to analyze and comprehensively recapitulate the most common leptin/leptin receptor-based animal models with respect to their relevance and translatability to human T2DM. Our analysis revealed that, although these rodents develop obesity due to hyperphagia caused by abnormal leptin/leptin receptor signaling with the subsequent appearance of T2DM-like manifestations, these are in fact secondary to genetic mutations that do not reflect disease etiology in humans, for whom leptin or leptin receptor deficiency is not an important contributor to T2DM. A detailed comparison of the roles of genetic susceptibility, obesity, hyperglycemia, hyperinsulinemia, insulin resistance, and diabetic complications as well as leptin expression, signaling, and other factors that confound translation are presented here. There are substantial differences between these animal models and human T2DM that limit reliable, reproducible, and translatable insight into human T2DM. Therefore, it is imperative that researchers recognize and acknowledge the limitations of the leptin/leptin receptor-based rodent models and invest in research methods that would be directly and reliably applicable to humans in order to advance T2DM management. PMID:24809394

  17. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes.

    PubMed

    Wang, Bingxuan; Chandrasekera, P Charukeshi; Pippin, John J

    2014-03-01

    Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research. The purpose of this review is to analyze and comprehensively recapitulate the most common leptin/leptin receptor-based animal models with respect to their relevance and translatability to human T2DM. Our analysis revealed that, although these rodents develop obesity due to hyperphagia caused by abnormal leptin/leptin receptor signaling with the subsequent appearance of T2DM-like manifestations, these are in fact secondary to genetic mutations that do not reflect disease etiology in humans, for whom leptin or leptin receptor deficiency is not an important contributor to T2DM. A detailed comparison of the roles of genetic susceptibility, obesity, hyperglycemia, hyperinsulinemia, insulin resistance, and diabetic complications as well as leptin expression, signaling, and other factors that confound translation are presented here. There are substantial differences between these animal models and human T2DM that limit reliable, reproducible, and translatable insight into human T2DM. Therefore, it is imperative that researchers recognize and acknowledge the limitations of the leptin/leptin receptor- based rodent models and invest in research methods that would be directly and reliably applicable to humans in order to advance T2DM management.

  18. Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice

    PubMed Central

    Lawlor, Michael W.; Read, Benjamin P.; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R.; Stein, Matthew J.; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L.; Seehra, Jasbir S.; Beggs, Alan H.

    2011-01-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  19. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp; Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University; Kaji, Takao

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice.more » Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.« less

  20. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    PubMed

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  1. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  2. Myeloid interferon-γ receptor deficiency does not affect atherosclerosis in LDLR(-/-) mice.

    PubMed

    Boshuizen, Marieke C S; Neele, Annette E; Gijbels, Marion J J; van der Velden, Saskia; Hoeksema, Marten A; Forman, Ruth A; Muller, Werner; Van den Bossche, Jan; de Winther, Menno P J

    2016-03-01

    Atherosclerosis is a chronic lipid-driven inflammatory disease of the arterial wall. Interferon gamma (IFNγ) is an important immunomodulatory cytokine and a known pro-atherosclerotic mediator. However, cell-specific targeting of IFNγ or its signaling in atherosclerosis development has not been studied yet. As macrophages are important IFNγ targets, we here addressed the involvement of myeloid IFNγ signaling in murine atherosclerosis. Bone marrow was isolated from interferon gamma receptor 2 chain (IFNγR2) wildtype and myeloid IFNγR2 deficient mice and injected into lethally irradiated LDLR(-/-) mice. After recovery mice were put on a high fat diet for 10 weeks after which atherosclerotic lesion analysis was performed. In addition, the accompanying liver inflammation was assessed. Even though absence of myeloid IFNγ signaling attenuated the myeloid IFNγ response, no significant differences in atherosclerotic lesion size or phenotype were found. Also, when examining the liver inflammatory state no effects of IFNγR2 deficiency could be observed. Overall, our data argue against a role for myeloid IFNγR2 in atherosclerosis development. Since myeloid IFNγ signaling seems to be nonessential throughout atherogenesis, it is important to understand the mechanisms by which IFNγ acts in atherogenesis. In the future new studies should be performed considering other cell-specific targets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Is there altered sensitivity to ghrelin-receptor ligands in leptin-deficient mice?: importance of satiety state and time of day.

    PubMed

    Finger, Beate C; Schellekens, Harriët; Dinan, Timothy G; Cryan, John F

    2011-08-01

    Several fine-tuned and interconnected hypothalamic peptidergic systems orchestrate the regulation of energy homeostasis in the body. The orexigenic peptide ghrelin and the anorexigenic peptide leptin are among the most important, and both have been implicated in the development of eating disorders from obesity to anorexia nervosa. The goal of these studies was to examine the response of leptin-deficient ob/ob mice in ghrelin-receptor ligands in a food intake task. Changes in cumulative food intake were measured after peripheral administration of ghrelin (1 and 2 nmol/10 g) and the ghrelin-receptor antagonist (D-Lys(3))-GHRP-6 (66.6 and 133.3 nmol/10 g) in obese and lean control mice during the light and dark cycle as well as in a state of food restriction. Hypothalamic ghrelin and ghrelin-receptor expression was measured in ob/ob and lean mice at two different timepoints. Ghrelin increased food intake in lean and obese mice in the light and dark cycle, whereas the ghrelin-receptor antagonist caused significantly stronger reduction in food intake in obese mice only in the dark cycle. After fasting, ob/ob mice displayed decreased light cycle sensitivity to the anorexigenic effects of the ghrelin-receptor antagonist. Hypothalamic expression levels of ghrelin were unaltered during the light cycle but decreased during the dark cycle in ob/ob mice; whereas, although unchanged in the light cycle, ghrelin-receptor expression was increased in the dark cycle in obese mice. The functionality and sensitivity of the ghrelinergic system is dependent on the time of day and the satiety state in leptin-deficient ob/ob mice.

  5. G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis.

    PubMed

    Steury, Michael D; Kang, Ho Jun; Lee, Taehyung; Lucas, Peter C; McCabe, Laura R; Parameswaran, Narayanan

    2018-06-01

    G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2 +/+ ) and GRK2 heterozygous (GRK +/- ) mice in their drinking water for 7 days. As predicted, GRK2 +/- mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2 +/+ vs. 11% loss in GRK2 +/- ). lower disease activity index (GRK2 +/+ 9.1 vs GRK2 +/- 4.1), and increased colon lengths (GRK2 +/+ 4.7 cm vs GRK2 +/- 5.3 cm). To examine the mechanisms by which GRK2 +/- mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2 +/- mice compared with GRK2 +/+ . To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.

  6. Hydrocortisone reduces the beneficial effects of toll-like receptor 2 deficiency on survival in a mouse model of polymicrobial sepsis.

    PubMed

    Bergt, Stefan; Wagner, Nana-Maria; Heidrich, Manja; Butschkau, Antje; Nöldge-Schomburg, Gabriele E F; Vollmar, Brigitte; Roesner, Jan P

    2013-11-01

    Toll-like receptors (TLRs) play a crucial role in early host defense against microorganisms. Toll-like receptor 2 (TLR2) polymorphisms have a prevalence of 10%; functional defects of TLR2 are associated with higher susceptibility toward gram-positive bacteria, and TLR2 deficiency has been associated with an impaired adrenal stress response. In the present study, we compared endogenous corticosterone production of wild-type (WT) and TLR2-deficient (TLR2) mice and analyzed survival after hydrocortisone therapy during sepsis induced by cecal ligation and puncture (CLP). Male C57BL/6J (WT); and B6.129-Tlr2tm1Kir/J (TLR2) mice were subjected to CLP or sham operation and randomly assigned to postoperative treatment with either hydrocortisone (5 mg/kg) or vehicle (n = 10 mice/group). Survival was documented for an observation period of 48 h. Endogenous corticosterone production following hydrocortisone treatment and lipoteichoic acid (LTA) exposure, interleukin 6 (IL-6) and IL-1β plasma levels, and blood counts were determined following sham operation or CLP using another n = 5 mice/group. Statistical analysis was performed using analysis of variance/Bonferroni. TLR2 mice exhibited a lack of suppression and an attenuated increase in endogenous corticosterone production following hydrocortisone or LTA treatment, respectively. After CLP, TLR2 mice exhibited an uncompromised adrenal stress response, higher IL-6 levels, and increased survival compared with WT controls (75 vs. 35%; P < 0.05). Hydrocortisone therapy of TLR2 mice completely abolished this advantage (decrease in survival to 45%, P < 0.05 vs. vehicle-treated TLR2 mice) and was associated with decreased IL-1β plasma concentrations. Toll-like receptor 2 deficiency is associated with an uncompromised adrenal stress response and increased survival rates during polymicrobial sepsis. Hydrocortisone treatment increases mortality of septic TLR2 mice, suggesting that hydrocortisone therapy might be harmful for

  7. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages.

    PubMed

    Radigan, Kathryn A; Morales-Nebreda, Luisa; Soberanes, Saul; Nicholson, Trevor; Nigdelioglu, Recep; Cho, Takugo; Chi, Monica; Hamanaka, Robert B; Misharin, Alexander V; Perlman, Harris; Budinger, G R Scott; Mutlu, Gökhan M

    2014-01-01

    During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients. We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepR fl/fl) or macrophages and alveolar type II cells (LysM-Cre/Lepr fl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity. The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl mice exhibited improved survival. Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.

  8. The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse.

    PubMed

    Weiland, Tracey J; Voudouris, Nicholas J; Kent, Stephen

    2004-09-15

    The present study explored the contribution of type 2 cholecystokinin (CCK) receptors in energy regulation. A total of 78 CCK2 receptor-deficient mice and 80 wild-type controls were acclimated to a 12:12 light-dark cycle at 30 +/- 1 degrees C. Using a computer-monitored biotelemetry system, circadian patterns of body temperature, food intake, and activity were monitored for 4 days. Body weight and water consumption were manually recorded during this period. Results indicate that CCK2 receptor invalidation produces elevated body temperature during both the photophase and scotophase (by 0.38 and 0.12 degrees C, respectively), increased body weight (29.3 +/- 0.2 vs. 26.8 +/- 0.2 g) and water consumption (4.1 +/- 0.1 vs. 3.2 +/- 0.1 ml), and decreased scotophase locomotor activity (WT: 7.0 +/- 0.2 vs. KO: 6.1 +/- 0.2 counts/min). These findings suggest an important role for CCK2 receptors in processes underlying energy regulation during basal and possibly pathological states.

  9. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  10. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits

    PubMed Central

    Grønli, Janne; Clegern, William C.; Schmidt, Michelle A.; Nemri, Rahmi S.; Rempe, Michael J.; Gallitano, Amelia L.; Wisor, Jonathan P.

    2016-01-01

    Study Objective: The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Methods: Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Results: Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1–3 Hz power) and in quiet wakefulness (elevated 3–8 Hz and 15–35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1–4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Conclusion: Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. Citation: Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP. Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient

  11. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of zinc deficiency and supplementation on leptin and leptin receptor expression in pregnant mice.

    PubMed

    Ueda, Hidenori; Nakai, Taketo; Konishi, Tatsuya; Tanaka, Keiichi; Sakazaki, Fumitoshi; Min, Kyong-Son

    2014-01-01

    Leptin is an adipose-derived hormone that primarily regulates energy balance in response to nutrition. Human placental cells produce leptin, whereas murine placental cells produce soluble leptin receptors (Ob-R). However, the roles of these proteins during pregnancy have not been elucidated completely. As an essential metal, zinc (Zn) is central to insulin biosynthesis and energy metabolism. In the present study, the effects of Zn deficiency and supplementation on maternal plasma leptin and soluble Ob-R regulation in pregnant mice placentas were examined using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting. Nutritional Zn deficiency significantly reduced plasma insulin concentrations and fetal and placental weights in pregnant mice. Plasma leptin concentrations in pregnant mice also increased 20- to 40-fold compared with those in non-pregnant mice. Although dietary Zn deficiency and supplementation did not affect plasma leptin concentrations in non-pregnant mice, Zn-deficient pregnant mice had significantly reduced plasma leptin concentrations and adipose leptin mRNA expression. In contrast, Zn-supplemented pregnant mice had increased plasma leptin concentrations without increased adipose leptin mRNA expression. Placental soluble Ob-R mRNA expression also decreased in Zn-deficient mice and tended to increase in Zn-supplemented mice. These results indicate that Zn influences plasma leptin concentrations by modulating mRNA expression of soluble Ob-R in the placenta, and leptin in visceral fat during pregnancy. These data suggest that both adipose and placenta-derived leptin system are involved in the regulation of energy metabolism during fetal growth.

  13. Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids

    PubMed Central

    Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd

    2014-01-01

    Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660

  14. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-09

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Resistance of chemokine receptor 6-deficient mice to Yersinia enterocolitica infection: evidence of defective M-cell formation in vivo.

    PubMed

    Westphal, Sabine; Lügering, Andreas; von Wedel, Julia; von Eiff, Christof; Maaser, Christian; Spahn, Thomas; Heusipp, Gerhard; Schmidt, M Alexander; Herbst, Hermann; Williams, Ifor R; Domschke, Wolfram; Kucharzik, Torsten

    2008-03-01

    M cells, specialized cells within Peyer's patches (PPs), are reduced in number in chemokine receptor 6 (CCR6)-deficient mice. The pathogenic microorganism Yersinia enterocolitica exploits M cells for the purpose of mucosal tissue invasion exclusively through PPs. The aim of this study was to evaluate the course of yersiniosis in CCR6-deficient mice and to investigate whether these mice might be used as an in vivo model to determine M-cell function. After oral challenge with Y. enterocolitica, control mice suffered from lethal septic infection whereas CCR6-deficient mice showed very limited symptoms of infection. Immunohistochemical analysis demonstrated PP invasion by Y. enterocolitica in control mice whereas no bacteria could be found in CCR6-deficient mice. In addition, a significant induction of proinflammatory cytokines could be found in control mice whereas proinflammatory cytokine levels in CCR6-deficient mice remained unchanged. In contrast, intraperitoneal infection resulted in severe systemic yersiniosis in both mouse groups. Abrogated oral Y. enterocolitica infection in CCR6-deficient mice demonstrates the importance of CCR6 expression in the physiological and pathological immune responses generated within PPs by influencing M-cell differentiation, underscoring the important role of M cells in the process of microbial uptake. CCR6-deficient mice may therefore represent a suitable model for the study of M-cell function in vivo.

  16. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    PubMed

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  17. CB1 Receptor Antagonist SR141716A Inhibits Ca2+-Induced Relaxation in CB1 Receptor–Deficient Mice

    PubMed Central

    Bukoski, Richard D.; Bátkai, Sándor; Járai, Zoltán; Wang, Yanlin; Offertaler, Laszlo; Jackson, William F.; Kunos, George

    2006-01-01

    Mesenteric branch arteries isolated from cannabinoid type 1 receptor knockout (CB1−/−) mice, their wild-type littermates (CB1+/+ mice), and C57BL/J wild-type mice were studied to test the hypothesis that murine arteries undergo high sensitivity Ca2+-induced relaxation that is CB1 receptor dependent. Confocal microscope analysis of mesenteric branch arteries from wild-type mice showed the presence of Ca2+ receptor–positive periadventitial nerves. Arterial segments of C57 control mice mounted on wire myographs contracted in response to 5 μmol/L norepinephrine and responded to the cumulative addition of extracellular Ca2+ with a concentration-dependent relaxation that reached a maximum of 72.0±6.3% of the prerelaxation tone and had an EC50 for Ca2+ of 2.90±0.54 mmol/L. The relaxation was antagonized by precontraction in buffer containing 100 mmol/L K+ and by pretreatment with 10 mmol/L tetraethylammonium. Arteries from CB1−/− and CB1+/+ mice also relaxed in response to extracellular Ca2+ with no differences being detected between the knockout and their littermate controls. SR141716A, a selective CB1 antagonist, caused concentration-dependent inhibition of Ca2+-induced relaxation in both the knockout and wild-type strains (60% inhibition at 1 μmol/L). O-1918, a cannabidiol analog, had a similar blocking effect in arteries of both wild-type and CB1−/− mice at 10 μmol/L. In contrast, 1 μmol/L SR144538, a cannabinoid type 2 receptor antagonist, or 50 μmol/L 18α-glycyrrhetinic acid, a gap junction blocker, were without effect. SR141716A (1 to 30 μmol/L) was also assessed for nonspecific actions on whole-cell K+ currents in isolated vascular smooth muscle cells. SR141716A inhibited macroscopic K+ currents at concentrations higher than those required to inhibit Ca2+-induced relaxation, and appeared to have little effect on currents through large conductance Ca2+-activated K+ channels. These data indicate that arteries of the mouse relax in response to

  18. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice

    PubMed Central

    Blue, Mary E.; Kaufmann, Walter E.; Bressler, Joseph; Eyring, Charlotte; O’Driscoll, Cliona; Naidu, SakkuBai; Johnston, Michael V.

    2014-01-01

    Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of NMDA receptors in the prefrontal cortex of 2–8 year-old girls, while girls older than 10 years had reductions in NMDA receptors compared to age matched controls (Blue et al., 1999b). Using [3H]-CGP to label NMDA type glutamate receptors in 2 and 7 week old wildtype (WT), Mecp2-null and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age, but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at two weeks of age, but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice. PMID:21901842

  19. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells

    PubMed Central

    Akitsu, Aoi; Ishigame, Harumichi; Kakuta, Shigeru; Chung, Soo-hyun; Ikeda, Satoshi; Shimizu, Kenji; Kubo, Sachiko; Liu, Yang; Umemura, Masayuki; Matsuzaki, Goro; Yoshikai, Yasunobu; Saijo, Shinobu; Iwakura, Yoichiro

    2015-01-01

    Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4+ and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4+ T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6+ subset of CCR2+ γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6+ cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner. PMID:26108163

  20. Role of CCK-A receptor for pancreatic function in mice: a study in CCK-A receptor knockout mice.

    PubMed

    Takiguchi, Soichi; Suzuki, Shinji; Sato, Yuko; Kanai, Setsuko; Miyasaka, Kyoko; Jimi, Atsuo; Shinozaki, Hirotsugu; Takata, Yutaka; Funakoshi, Akihiro; Kono, Akira; Minowa, Osamu; Kobayashi, Tomoko; Noda, Tetsuo

    2002-04-01

    The cholecystokinin (CCK) family of peptides and receptors is present throughout the brain and gastrointestinal tract. The CCK receptors can be pharmacologically subdivided into two subtypes: CCK-A and CCK-B. CCK-A receptor is enriched in the pancreas of mice. To determine pancreatic functions in a CCK-A receptor deficient mouse mutant generated by gene targeting in embryonic stem cells. The targeting vector contained lacZ and neo insertions in exon 2. To examine exocrine functions, amylase release from the dispersed acini in vitro was examined. In the in vivo study, the mixture of bile-pancreatic juice was collected, and amylase, bicarbonate, and bile acid outputs were determined after the administration of various stimulants. The cystic duct of the gallbladder and the pylorus were ligated to exclude the involvement of gallbladder contraction and gastric acid. Pancreatic enzyme content was measured, and histologic examinations by HE and lacZ staining were conducted. To examine endocrine functions, oral glucose tolerance test (2 g/kg) was determined. The body weight, pancreatic wet weight, and enzyme content in the pancreas were similar among the three genotypes. Amylase release in vivo and in vitro and bicarbonate secretion in vivo were not stimulated by CCK-8 in CCK-AR (-/-) mice, whereas the responses to other stimulants were substantial in (-/-) mice. Administration of secretin did not increase bicarbonate secretion regardless of genotype. A normal glucose tolerance was observed in (-/-) mice. Acinar cells, islets, and duct cells were stained by lacZ, and HE staining revealed no pathologic findings. The CCK-A receptor is important for pancreatic exocrine secretion, but not essential for maintaining glucose concentration and pancreatic growth in mice.

  1. IFN-gamma receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses.

    PubMed

    Schijns, V E; Haagmans, B L; Rijke, E O; Huang, S; Aguet, M; Horzinek, M C

    1994-09-01

    The lymphokine IFN-gamma is a pleiotropic immunomodulator and possesses intrinsic antiviral activity. We studied its significance in the development of antiviral immune responses by using IFN-gamma receptor-deficient (IFN-gamma R-/-) mice. After inoculation with live attenuated pseudorabies virus (PRV), the mutant mice showed no infectivity titers in various tissues, and transient viral Ag expression only in the spleen, similar as in wild-type mice. However, the absence of the IFN-gamma R resulted in increased proliferative splenocyte responses. The PRV-immune animals showed a normal IFN-gamma and IL-2 production, without detectable IL-4, and with decreased IL-10 secretion in response to viral Ag or Con A. Immunohistochemically, an increased ratio of IFN-gamma:IL-4-producing spleen cells was found. After immunization with either live attenuated or inactivated PRV, IFN-gamma R-/- mice produced significantly less antiviral Ab, and more succumbed to challenge infection than the intact control animals. The reduction in Ab titers in the mutant mice correlated with lower protection by their sera in transfer experiments. Our data demonstrate that ablation of the IFN-gamma receptor surprisingly does not inhibit the generation of antiviral Th1-type and increase Th2-type cytokine responses. However, it profoundly impairs the generation of protective antiviral Ab.

  2. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice.

    PubMed

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; Eudaly, Jackie G; Gilkeson, Gary S

    2015-12-15

    Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice.

    PubMed

    Washino, Takuya; Moroda, Masataka; Iwakura, Yoichiro; Aosai, Fumie

    2012-04-01

    Interleukin 1 receptor antagonist (IL-1Ra)-deficient BALB/c mice develop spontaneous arthritis resembling human rheumatoid arthritis. We herein report that infection with Toxoplasma gondii, an intracellular protozoan, is capable of ameliorating the spontaneous development of arthritis in IL-1Ra-deficient mice. The onset of arthritis development was delayed and the severity score of arthritis was significantly suppressed in T. gondii-infected mice. Expression of IL-12p40 mRNA from CD11c(+) cells of mesenteric lymph nodes (mLN) and spleen markedly increased at 1 week after peroral infection. While CD11c(+) cells also produced IL-10, IL-1β, and IL-6, CD4(+) T cells from T. gondii-infected mice expressed significantly high levels of T-bet and gamma interferon (IFN-γ) mRNA in both mLN and spleen. Levels of GATA-3/IL-4 mRNA or RORγt/IL-17 mRNA decreased in the infected mice, indicating Th1 cell polarization and the reduction of Th2 and Th17 cell polarization. The severity of arthritis was related to Th1 cell polarization accompanied by Th17 cell reduction, demonstrating the protective role of the T. gondii-derived Th1 response against Th17 cell-mediated arthritis in IL-1Ra-deficient mice.

  4. Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains.

    PubMed

    Popova, Nina K; Naumenko, Vladimir S; Tibeikina, Marina A; Kulikov, Alexander V

    2009-12-01

    Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors. Copyright 2009 Wiley-Liss, Inc.

  5. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice

    PubMed Central

    Kutchukian, Candice; Lo Scrudato, Mirella; Tourneur, Yves; Poulard, Karine; Vignaud, Alban; Berthier, Christine; Allard, Bruno; Lawlor, Michael W.; Buj-Bello, Ana; Jacquemond, Vincent

    2016-01-01

    Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation–contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process. PMID:27911767

  6. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice

    PubMed Central

    Lee, Young; Wang, May-Yun; Du, Xiu Quan; Charron, Maureen J.; Unger, Roger H.

    2011-01-01

    OBJECTIVE To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency. RESEARCH DESIGN AND METHODS We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr−/−) mice and wild-type (Gcgr+/+) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction. RESULTS Gcgr+/+ mice became hyperglycemic (>500 mg/dL), hyperketonemic, polyuric, and cachectic and had to be killed after 6 weeks. Despite comparable β-cell destruction in Gcgr−/− mice, none of the foregoing clinical or laboratory manifestations of diabetes appeared. There was marked α-cell hyperplasia and hyperglucagonemia (∼1,200 pg/mL), but hepatic phosphorylated cAMP response element binding protein and phosphoenolpyruvate carboxykinase mRNA were profoundly reduced compared with Gcgr+/+ mice with diabetes—evidence that glucagon action had been effectively blocked. Fasting glucose levels and oral and intraperitoneal glucose tolerance tests were normal. Both fasting and nonfasting free fatty acid levels and nonfasting β-hydroxy butyrate levels were lower. CONCLUSIONS We conclude that blocking glucagon action prevents the deadly metabolic and clinical derangements of type 1 diabetic mice. PMID:21270251

  8. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  9. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  10. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory.

    PubMed

    Moraga-Amaro, Rodrigo; González, Hugo; Ugalde, Valentina; Donoso-Ramos, Juan Pablo; Quintana-Donoso, Daisy; Lara, Marcelo; Morales, Bernardo; Rojas, Patricio; Pacheco, Rodrigo; Stehberg, Jimmy

    2016-04-01

    Pharmacological evidence associates type I dopamine receptors, including subtypes D1 and D5, with learning and memory. Analyses using genetic approaches have determined the relative contribution of dopamine receptor D1 (D1R) in cognitive tasks. However, the lack of drugs that can discriminate between D1R and D5R has made the pharmacological distinction between the two receptors difficult. Here, we aimed to determine the role of D5R in learning and memory. In this study we tested D5R knockout mice and wild-type littermates in a battery of behavioral tests, including memory, attention, locomotion, anxiety and motivational evaluations. Our results show that genetic deficiency of D5R significantly impairs performance in the Morris water maze paradigm, object location and object recognition memory, indicating a relevant role for D5R in spatial memory and recognition memory. Moreover, the lack of D5R resulted in decreased exploration and locomotion. In contrast, D5R deficiency had no impact on working memory, anxiety and depressive-like behavior, measured using the spontaneous alternation, open-field, tail suspension test, and forced swimming test. Electrophysiological analyses performed on hippocampal slices showed impairment in long-term-potentiation in mice lacking D5R. Further analyses at the molecular level showed that genetic deficiency of D5R results in a strong and selective reduction in the expression of the NMDA receptor subunit NR2B in the hippocampus. These findings demonstrate the relevant contribution of D5R in memory and suggest a functional interaction of D5R with hippocampal glutamatergic pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    PubMed Central

    Pichon, Aurélien; Jeton, Florine; El Hasnaoui-Saadani, Raja; Hagström, Luciana; Launay, Thierry; Beaudry, Michèle; Marchant, Dominique; Quidu, Patricia; Macarlupu, Jose-Luis; Favret, Fabrice; Richalet, Jean-Paul; Voituron, Nicolas

    2016-01-01

    Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection. PMID:27800506

  12. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.

    PubMed

    Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian

    2014-08-21

    Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.

  13. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice.

    PubMed

    Matsuwaki, Takashi; Nishihara, Masugi; Sato, Tsuyoshi; Yoda, Tetsuya; Iwakura, Yoichiro; Chida, Dai

    2010-11-01

    Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.

  14. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice.

    PubMed

    Ma, Xiaojun; Lin, Yuezhen; Lin, Ligen; Qin, Guijun; Pereira, Fred A; Haymond, Morey W; Butte, Nancy F; Sun, Yuxiang

    2012-08-01

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.

  15. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

    PubMed

    Tsou, Ryan C; Zimmer, Derek J; De Jonghe, Bart C; Bence, Kendra K

    2012-09-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.

  16. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice

    PubMed Central

    Georg, Birgitte; Fahrenkrug, Jan

    2017-01-01

    The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) and their receptors, the PAC1 –and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT) and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP)(12:12 h light dark-cycles (LD)) and skeleton photo periods (SPP) at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO) (PAC1 and VPAC2) had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality. PMID:29155851

  18. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice.

    PubMed

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2017-01-01

    The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) and their receptors, the PAC1 -and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT) and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP)(12:12 h light dark-cycles (LD)) and skeleton photo periods (SPP) at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO) (PAC1 and VPAC2) had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality.

  19. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice.

    PubMed

    Gross, Adi; Benninger, Felix; Madar, Ravit; Illouz, Tomer; Griffioen, Kathleen; Steiner, Israel; Offen, Daniel; Okun, Eitan

    2017-04-01

    Epilepsy affects 60 million people worldwide. Despite the development of antiepileptic drugs, up to 35% of patients are drug refractory with uncontrollable seizures. Toll-like receptors (TLRs) are central components of the nonspecific innate inflammatory response. Because TLR3 was recently implicated in neuronal plasticity, we hypothesized that it may contribute to the development of epilepsy after status epilepticus (SE). To test the involvement of TLR3 in epileptogenesis, we used the pilocarpine model for SE in TLR3-deficient mice and their respective wild-type controls. In this model, a single SE event leads to spontaneous recurrent seizures (SRS). Two weeks after SE, mice were implanted with wireless electroencephalography (EEG) transmitters for up to 1 month. The impact of TLR3 deficiency on SE was assessed using separate cohorts of mice regarding EEG activity, seizure progression, hippocampal microglial distribution, and expression of the proinflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)β. Our data indicate that TLR3 deficiency reduced SRS, microglial activation, and the levels of the proinflammatory cytokines TNFα and IFNβ, and increased survival following SE. This study reveals novel insights into the pathophysiology of epilepsy and the contribution of TLR3 to disease progression. Our results identify the TLR3 pathway as a potential future therapeutic target in SE. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  20. Fetal hemorrhage and platelet dysfunction in SLP-76–deficient mice

    PubMed Central

    Clements, James L.; Lee, Jong Ran; Gross, Barbara; Yang, Baoli; Olson, John D.; Sandra, Alexander; Watson, Stephen P.; Lentz, Steven R.; Koretzky, Gary A.

    1999-01-01

    The adapter protein SLP-76 is expressed in T lymphocytes and hematopoietic cells of the myeloid lineage, and is known to be a substrate of the protein tyrosine kinases that are activated after ligation of the T-cell antigen receptor. Transient overexpression of SLP-76 in a T-cell line potentiates transcriptional activation after T-cell receptor ligation, while loss of SLP-76 expression abrogates several T-cell receptor–dependent signaling pathways. Mutant mice that lack SLP-76 manifest a severe block at an early stage of thymocyte development, implicating SLP-76 in signaling events that promote thymocyte maturation. While it is clear that SLP-76 plays a key role in development and activation of T lymphocytes, relatively little is understood regarding its role in transducing signals initiated after receptor ligation in other hematopoietic cell types. In this report, we describe fetal hemorrhage and perinatal mortality in SLP-76–deficient mice. Although megakaryocyte and platelet development proceeds normally in the absence of SLP-76, collagen-induced platelet aggregation and granule release is markedly impaired. Furthermore, treatment of SLP-76–deficient platelets with collagen fails to elicit tyrosine phosphorylation of phospholipase C-γ2 (PLC-γ2), suggesting that SLP-76 functions upstream of PLC-γ2 activation. These data provide one potential mechanism for the fetal hemorrhage observed in SLP-76–deficient mice and reveal that SLP-76 expression is required for optimal receptor-mediated signal transduction in platelets as well as T lymphocytes. PMID:9884330

  1. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  2. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  3. Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...

  4. Impaired natural killer cell self-education and "missing-self" responses in Ly49-deficient mice.

    PubMed

    Bélanger, Simon; Tu, Megan M; Rahim, Mir Munir Ahmed; Mahmoud, Ahmad B; Patel, Rajen; Tai, Lee-Hwa; Troke, Angela D; Wilhelm, Brian T; Landry, Josette-Renée; Zhu, Qinzhang; Tung, Kenneth S; Raulet, David H; Makrigiannis, Andrew P

    2012-07-19

    Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)-cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKC(KD)) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKC(KD) NK cells exhibit defective killing of MHC-I-deficient, but otherwise normal, target cells, resulting in defective rejection by NKC(KD) mice of transplants from various types of MHC-I-deficient mice. Self-MHC-I immunosurveillance by NK cells in NKC(KD) mice can be rescued by self-MHC-I-specific Ly49 transgenes. Although NKC(KD) mice display defective recognition of MHC-I-deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity-induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self-MHC-I molecules and that the absence of these receptors leads to loss of MHC-I-dependent "missing-self" immunosurveillance by NK cells.

  5. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation

  6. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulatingmore » glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in

  7. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent.

    PubMed

    Seiffert, Martina; Custodio, Joseph M; Wolf, Ingrid; Harkey, Michael; Liu, Yan; Blattman, Joseph N; Greenberg, Philip D; Rohrschneider, Larry R

    2003-04-01

    Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.

  8. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  9. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict.

    PubMed

    Li, Chunlu; Yan, Yixiu; Cheng, Jingjing; Xiao, Gang; Gu, Jueqing; Zhang, Luqi; Yuan, Siyu; Wang, Junlu; Shen, Yi; Zhou, Yu-Dong

    2016-04-01

    Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine (DA) system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4 (TLR4), an important pattern-recognition receptor in the innate immune system, can be directly activated by substances of abuse, resulting in an increase of the extracellular DA level in the nucleus accumbens. We thus hypothesized that TLR4-dependent signaling might regulate approach-avoidance behavior. To test this hypothesis, we compared the novelty-seeking and social interaction behaviors of TLR4-deficient (TLR4(-/-)) and wild-type (WT) mice in an approach-avoidance conflict situation in which the positive motivation to explore a novel object or interact with an unfamiliar mouse was counteracted by the negative motivation to hide in exposed, large spaces. We found that TLR4(-/-) mice exhibited reduced novelty-seeking and social interaction in the large open spaces. In less stressful test apparatuses similar in size to the mouse cage, however, TLR4(-/-) mice performed normally in both novelty-seeking and social interaction tests. The reduced exploratory behaviors under approach-avoidance conflict were not due to a high anxiety level or an enhanced fear response in the TLR4(-/-) mice, as these mice showed normal anxiety and fear responses in the open field and passive avoidance tests, respectively. Importantly, the novelty-seeking behavior in the large open field induced a higher level of c-Fos activation in the nucleus accumbens shell (NAcSh) in TLR4(-/-) mice than in WT mice. Partially inactivating the NAcSh via infusion of GABA receptor agonists restored the novelty-seeking behavior of TLR4(-/-) mice. These data suggested that TLR4 is crucial for positive motivational behavior under approach-avoidance conflict. TLR4-dependent activation of neurons in the NAcSh may contribute to this phenomenon.

  10. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-03-16

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  11. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking

    PubMed Central

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N.; Grossfeld, Paul D.; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  12. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    PubMed

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not alteredmore » in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.« less

  14. Gravity receptor function in mice with graded otoconial deficiencies.

    PubMed

    Jones, Sherri M; Erway, Lawrence C; Johnson, Kenneth R; Yu, Heping; Jones, Timothy A

    2004-05-01

    The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.

  15. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  16. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome.

    PubMed

    Quiroz, César; Gulyani, Seema; Ruiqian, Wan; Bonaventura, Jordi; Cutler, Roy; Pearson, Virginia; Allen, Richard P; Earley, Christopher J; Mattson, Mark P; Ferré, Sergi

    2016-12-01

    Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D 2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A 1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A 2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS. Published by Elsevier Ltd.

  17. Impact of CCL2 and CCR2 Chemokine / Receptor Deficiencies on Macrophage Recruitment and Continuous Glucose Monitoring in vivo

    PubMed Central

    Klueh, Ulrike; Czajkowski, Caroline; Ludzinska, Izabela; Qiao, Yi; Frailey, Jackman; Kreutzer, Donald L.

    2016-01-01

    The accumulation of macrophages (MΦ) at the sensor-tissue interface is thought to be a major player in controlling tissue reactions and sensor performance in vivo. Nevertheless until recently no direct demonstration of the causal relationship between MΦ aggregation and loss of sensor function existed. Using a Continuous Glucose Monitoring (CGM) murine model we previously demonstrated that genetic deficiencies of MΦ or depletion of MΦ decreased MΦ accumulation at sensor implantation sites, which led to significantly enhanced CGM performance, when compared to normal mice. Additional studies in our laboratories have also demonstrated that MΦ can act as “metabolic sinks” by depleting glucose levels at the implanted sensors in vitro and in vivo. In the present study we extended these observations by demonstrating that MΦ chemokine (CCL2) and receptor (CCR2) knockout mice displayed a decrease in inflammation and MΦ recruitment at sensor implantation sites, when compared to normal mice. This decreased MΦ recruitment significantly enhanced CGM performance when compared to control mice. These studies demonstrated the importance of the CCL2 family of chemokines and related receptors in MΦ recruitment and sensor performance and suggest chemokine targets for enhancing CGM in vivo. PMID:27376197

  18. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors.

    PubMed

    Rangel, Alejandra; Burgaya, Ferran; Gavín, Rosalina; Soriano, Eduardo; Aguzzi, Adriano; Del Río, José A

    2007-09-01

    Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI-anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA-mediated neurotransmission, parallel studies describe normal behavior of PrPc-mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc-deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA-treated mice. PrPc-deficient mice showed increased sensitivity to KA-induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell-specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc-expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real-time RT-PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA-induced neurotoxicity, probably by regulating the expression of KA receptor subunits. (c) 2007 Wiley-Liss, Inc.

  19. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  20. Energy homeostasis in leptin deficient Lepob/ob mice.

    PubMed

    Skowronski, Alicja A; Ravussin, Yann; Leibel, Rudolph L; LeDuc, Charles A

    2017-01-01

    Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.

  1. Metabolic characterization of a mouse deficient in all known leptin receptor isoforms.

    PubMed

    Osborn, Olivia; Sanchez-Alavez, Manuel; Brownell, Sara E; Ross, Brendon; Klaus, Joe; Dubins, Jeffrey; Beutler, Bruce; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db (333)/db (333) mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y(333)Stop) and gene product that lacks STAT signaling domains. db (333)/db (333) mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db (333)/db (333) mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db (333)/db (333) mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db (333)/db (333) mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.

  2. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  3. Impact of PACAP and PAC1 Receptor Deficiency on the Neurochemical and Behavioral Effects of Acute and Chronic Restraint Stress in Male C57BL/6 Mice

    PubMed Central

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M.; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E.

    2016-01-01

    Acute restraint stress (ARS) for 3 hours causes CORT elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following seven day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1 deficient mice. However, longer periods of daily restraint (14–21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of acute restraint stress and short-term (<7 days) chronic restraint stress on the HPA axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) chronic restraint stress. PMID:25853791

  4. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice.

    PubMed

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E

    2015-01-01

    Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.

  5. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  6. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases. Published by Elsevier B.V.

  7. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala.

    PubMed

    López-Cruz, Laura; Carbó-Gas, Maria; Pardo, Marta; Bayarri, Pilar; Valverde, Olga; Ledent, Catherine; Salamone, John D; Correa, Mercè

    2017-03-15

    Blockade of adenosine A 2A receptors can potentiate motivation to work for natural reinforcers such as food. Conspecific interaction is a potent natural reinforcer in social animals that can be manifested as preference for social exploration versus other sources of novel stimulation. Deficiencies in this type of motivated behavior (social withdrawal) have been seen in several pathologies such as autism and depression. However, the role of A 2A receptors in motivation for social interaction has not been widely explored. Social interaction paradigms evaluate the natural preference of animals for exploring other conspecifics, and the ability to differentiate between familiar versus novel ones. Anxiety is one of the factors that can induce avoidance of social interaction. In the present study, adenosine A 2A knockout (A 2A KO) and wild-type (WT) mice were assessed for social and anxiety-related behaviors. c-Fos immunoreactivity was evaluated as a measure of neuronal activation in brain areas involved in different aspects of motivation and emotional processes. Although A 2A KO mice showed an anxious profile, they displayed higher levels of sociability and were less sensitive to social novelty. WT mice displayed a typical pattern of social recognition 24h later, but not A 2A KO mice, which explored equally both conspecifics. There were no differences between strains in aggressiveness, perseverance or social odor preferences. c-Fos immunoreactivity in A 2A KO mice was higher in anterior cingulate and amygdala compared to WT mice. Thus, A 2A receptors appear to be potential targets for the improvement of pathologies related to social function. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Behavioral characterization of mice lacking histamine H(3) receptors.

    PubMed

    Toyota, Hiroshi; Dugovic, Christine; Koehl, Muriel; Laposky, Aaron D; Weber, China; Ngo, Karen; Wu, Ying; Lee, Doo Hyun; Yanai, Kazuhiko; Sakurai, Eiko; Watanabe, Takehiko; Liu, Changlu; Chen, Jingcai; Barbier, Ann J; Turek, Fred W; Fung-Leung, Wai-Ping; Lovenberg, Timothy W

    2002-08-01

    Brain histamine H(3) receptors are predominantly presynaptic and serve an important autoregulatory function for the release of histamine and other neurotransmitters. They have been implicated in a variety of brain functions, including arousal, locomotor activity, thermoregulation, food intake, and memory. The recent cloning of the H(3) receptor in our laboratory has made it possible to create a transgenic line of mice devoid of H(3) receptors. This paper provides the first description of the H(3) receptor-deficient mouse (H(3)(-/-)), including molecular and pharmacologic verification of the receptor deletion as well as phenotypic screens. The H(3)(-/-) mice showed a decrease in overall locomotion, wheel-running behavior, and body temperature during the dark phase but maintained normal circadian rhythmicity. H(3)(-/-) mice were insensitive to the wake-promoting effects of the H(3) receptor antagonist thioperamide. We also observed a slightly decreased stereotypic response to the dopamine releaser, methamphetamine, and an insensitivity to the amnesic effects of the cholinergic receptor antagonist, scopolamine. These data indicate that the H(3) receptor-deficient mouse represents a valuable model for studying histaminergic regulation of a variety of behaviors and neurotransmitter systems, including dopamine and acetylcholine.

  9. Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor.

    PubMed

    Tsou, Ryan C; Rak, Kimberly S; Zimmer, Derek J; Bence, Kendra K

    2014-06-01

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the metabolic effects of central PTP1B-deficiency are due to action within the hypothalamus remains unclear. Moreover, whether or not these effects are exclusively due to enhanced leptin signaling is unknown. Here we report that mice with hypothalamic PTP1B-deficiency (Nkx2.1-PTP1B(-/-)) display decreased body weight and adiposity on high-fat diet with no associated improvements in glucose tolerance. Consistent with previous reports, we find that hypothalamic deletion of the LepRb in mice (Nkx2.1-LepRb(-/-)) results in extreme hyperphagia and obesity. Interestingly, deletion of hypothalamic PTP1B and LepRb (Nkx2.1-PTP1B(-/-):LepRb(-/-)) does not rescue the hyperphagia or obesity of Nkx2.1-LepRb(-/-) mice, suggesting that hypothalamic PTP1B contributes to the central control of energy balance through a leptin receptor-dependent pathway.

  10. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    PubMed Central

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409

  11. Evidence for an interaction between leptin, T cell costimulatory antigens CD28, CTLA-4 and CD26 (dipeptidyl peptidase IV) in BCG-induced immune responses of leptin- and leptin receptor-deficient mice.

    PubMed

    Rüter, Jens; Hoffmann, Torsten; Demuth, Hans-Ulrich; Moschansky, Petra; Klapp, Burghard F; Hildebrandt, Martin

    2004-06-01

    We assessed changes of the enzyme dipeptidyl peptidase IV (DPP IV, CD26) in the context of leptin or leptin receptor deficiency. C57BL/6 mice, Leptin-deficient mice (ob/ob mice, B6.V-Lep) and Leptin-receptor-deficient mice (db/db mice, B6.Cg-m+/+Lepr) were infected with B. Calmette-Guerin (BCG) and sacrificed three days later. DPP IV activity in serum was higher in ob/ob mice and in db/db mice than in wild-type mice. The expression of DPP IV/CD26 on splenocytes was higher in ob/ob mice than in wild-type animals, and lower in db/db mice, and decreased upon stimulation with BCG in ob/ob mice only. Several T cell antigens including CTLA-4 were expressed aberrantly in ob/ob and in db/db mice. Our observations provide evidence for a relationship between DPP IV and leptin.

  12. Kinin B1 receptor deficiency leads to leptin hypersensitivity and resistance to obesity.

    PubMed

    Mori, Marcelo A; Araújo, Ronaldo C; Reis, Felipe C G; Sgai, Daniela G; Fonseca, Raphael G; Barros, Carlos C; Merino, Vanessa F; Passadore, Mariana; Barbosa, Ana M; Ferrari, Bernard; Carayon, Pierre; Castro, Charlles H M; Shimuta, Suma I; Luz, Jacqueline; Bascands, Jean-Loup; Schanstra, Joost P; Even, Patrick C; Oliveira, Suzana M; Bader, Michael; Pesquero, João B

    2008-06-01

    Kinins mediate pathophysiological processes related to hypertension, pain, and inflammation through the activation of two G-protein-coupled receptors, named B(1) and B(2). Although these peptides have been related to glucose homeostasis, their effects on energy balance are still unknown. Using genetic and pharmacological strategies to abrogate the kinin B(1) receptor in different animal models of obesity, here we present evidence of a novel role for kinins in the regulation of satiety and adiposity. Kinin B(1) receptor deficiency in mice (B(1)(-/-)) resulted in less fat content, hypoleptinemia, increased leptin sensitivity, and robust protection against high-fat diet-induced weight gain. Under high-fat diet, B(1)(-/-) also exhibited reduced food intake, improved lipid oxidation, and increased energy expenditure. Surprisingly, B(1) receptor deficiency was not able to decrease food intake and adiposity in obese mice lacking leptin (ob/ob-B(1)(-/-)). However, ob/ob-B(1)(-/-) mice were more responsive to the effects of exogenous leptin on body weight and food intake, suggesting that B(1) receptors may be dependent on leptin to display their metabolic roles. Finally, inhibition of weight gain and food intake by B(1) receptor ablation was pharmacologically confirmed by long-term administration of the kinin B(1) receptor antagonist SSR240612 to mice under high-fat diet. Our data suggest that kinin B(1) receptors participate in the regulation of the energy balance via a mechanism that could involve the modulation of leptin sensitivity.

  13. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Grimaldi, David; Zuber, Benjamin; Sauneuf, Bertrand; Rousseau, Christophe; El Hachem, Carole; Martin, Clémence; Belaïdouni, Nadia; Balloy, Viviane; Mira, Jean-Paul; Chiche, Jean-Daniel

    2012-09-15

    Sepsis is characterized by a dysregulated inflammatory response followed by immunosuppression that favors the development of secondary infections. Toll-like receptors (TLRs) are major regulators of the host's response to infections. How variability in TLR signaling may impact the development of sepsis-induced immune dysfunction has not been established. We sought to establish the role of TLR2, TLR4, and TLR5 in postseptic mice with Pseudomonas aeruginosa pneumonia. We used an experimental model of sublethal polymicrobial sepsis induced by cecal ligation and puncture (CLP). Wild-type, tlr2(-/-), tlr4(-/-), tlr5(-/-), tlr2 4(-/-) mice that underwent CLP were secondarily subjected to P. aeruginosa pulmonary infection. Postseptic wild-type and tlr4(-/-) and tlr5(-/-) mice displayed high susceptibility to P. aeruginosa pneumonia. In contrast, TLR2-deficient mice, either tlr2(-/-)or tlr2 4(-/-), that underwent CLP were resistant to the secondary pulmonary infection. As compared to wild-type mice, tlr2(-/-) mice displayed improvement in bacterial clearance, decreased bacteremic dissemination, and attenuated lung damage. Furthermore, tlr2(-/-) mice exhibited a pulmonary proinflammatory cytokine balance, with increased production of tumor necrosis factor α and decreased release of interleukin 10. In a model of secondary P. aeruginosa pneumonia in postseptic mice, TLR2 deficiency improves survival by promoting efficient bacterial clearance and restoring a proinflammatory cytokine balance in the lung.

  14. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method

    PubMed Central

    Bartko, Susan J.; Romberg, Carola; White, Benjamin; Wess, Jürgen; Bussey, Timothy J.; Saksida, Lisa M.

    2014-01-01

    Cholinergic receptors have been implicated in schizophrenia, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, to better target therapeutically the appropriate receptor subsystems, we need to understand more about the functions of those subsystems. In the current series of experiments, we assessed the functional role of M1 receptors in cognition by testing M1 receptor-deficient mice (M1R−/−) on the five-choice serial reaction time test of attentional and response functions, carried out using a computer-automated touchscreen test system. In addition, we tested these mice on several tasks featuring learning, memory and perceptual challenges. An advantage of the touchscreen method is that each test in the battery is carried out in the same task setting, using the same types of stimuli, responses and feedback, thus providing a high level of control and task comparability. The surprising finding, given the predominance of the M1 receptor in cortex, was the complete lack of effect of M1 deletion on measures of attentional function per se. Moreover, M1R−/− mice performed relatively normally on tests of learning, memory and perception, although they were impaired in object recognition memory with, but not without an interposed delay interval. They did, however, show clear abnormalities on a variety of response measures: M1R−/− mice displayed fewer omissions, more premature responses, and increased perseverative responding compared to wild-types. These data suggest that M1R−/− mice display abnormal responding in the face of relatively preserved attention, learning and perception. PMID:21903112

  15. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  16. A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy.

    PubMed

    Bot, Ilze; Ortiz Zacarías, Natalia V; de Witte, Wilhelmus E A; de Vries, Henk; van Santbrink, Peter J; van der Velden, Daniël; Kröner, Mara J; van der Berg, Dirk-Jan; Stamos, Dean; de Lange, Elizabeth C M; Kuiper, Johan; IJzerman, Adriaan P; Heitman, Laura H

    2017-03-03

    CC Chemokine Receptor 2 (CCR2) and its endogenous ligand CCL2 are involved in a number of diseases, including atherosclerosis. Several CCR2 antagonists have been developed as potential therapeutic agents, however their in vivo clinical efficacy was limited. In this report, we aimed to determine whether 15a, an antagonist with a long residence time on the human CCR2, is effective in inhibiting the development of atherosclerosis in a mouse disease model. First, radioligand binding assays were performed to determine affinity and binding kinetics of 15a on murine CCR2. To assess the in vivo efficacy, western-type diet fed apoE -/- mice were treated daily with 15a or vehicle as control. Treatment with 15a reduced the amount of circulating CCR2 + monocytes and the size of the atherosclerotic plaques in both the carotid artery and the aortic root. We then showed that the long pharmacokinetic half-life of 15a combined with the high drug concentrations ensured prolonged CCR2 occupancy. These data render 15a a promising compound for drug development and confirms high receptor occupancy as a key parameter when targeting chemokine receptors.

  17. Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    PubMed Central

    Pasieka, Tracy Jo; Collins, Lynne; O'Connor, Megan A.; Chen, Yufei; Parker, Zachary M.; Berwin, Brent L.; Piwnica-Worms, David R.; Leib, David A.

    2011-01-01

    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons

  18. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    USDA-ARS?s Scientific Manuscript database

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  19. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  20. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  1. Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice

    PubMed Central

    Liedert, Astrid; Röntgen, Viktoria; Schinke, Thorsten; Benisch, Peggy; Ebert, Regina; Jakob, Franz; Klein-Hitpass, Ludger; Lennerz, Jochen K.; Amling, Michael; Ignatius, Anita

    2014-01-01

    The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5−/−) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5−/− mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5−/− mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis. PMID:25061805

  2. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration

    PubMed Central

    Williams, Julie C.; Lee, Rebecca D.; Doerschuk, Claire M.; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages. PMID:22175012

  3. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration.

    PubMed

    Williams, Julie C; Lee, Rebecca D; Doerschuk, Claire M; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.

  4. CRF2 Receptor Deficiency Eliminates the Long-Lasting Vulnerability of Motivational States Induced by Opiate Withdrawal

    PubMed Central

    Morisot, Nadège; Rouibi, Khalil; Contarino, Angelo

    2015-01-01

    Vulnerability to stressful life events is a hallmark of drug dependence that may persist long after cessation of drug intake and dramatically fuel key clinical features, such as deregulated up-shifted motivational states and craving. However, to date, no effective therapy is available for reducing vulnerability to stressful events in former drug users and drug-dependent patients, mostly because of poor knowledge of the mechanisms underlying it. In this study, we report that genetic inactivation of the stress-responsive corticotropin-releasing factor receptor-2 (CRF2−/−) completely eliminates the reemergence of increased nonrewarded nose-pokes, reflecting up-shifted motivational states, triggered by ethological environmental stressors long after cessation of morphine administration in mice. Accordingly, CRF2 receptor deficiency completely abolishes the increase in biomarkers of synthesis of major brain motivational substrates, such as ventral tegmental area (VTA) dopamine (DA) and amygdala γ-aminobutyric acid (GABA) systems, associated with the stress-induced reemergence of up-shifted motivational states long after opiate withdrawal. Nevertheless, neither CRF2 receptor deficiency nor long-term opiate withdrawal affects amygdala CRF or hypothalamus CRF expression, indicating preserved brain stress-coping systems. Moreover, CRF2 receptor deficiency does not influence the locomotor or the anxiety-like effect of long-term opiate withdrawal. Thus, the present results reveal an essential and specific role for the CRF2 receptor in the stress-induced reemergence of up-shifted motivational states and related alterations in brain motivational systems long after opiate withdrawal. These findings suggest new strategies for the treatment of the severe and long-lasting vulnerability that inexorably follows drug withdrawal and hinder drug abstinence. PMID:25672976

  5. Attenuated EAN in TNF-α Deficient Mice Is Associated with an Altered Balance of M1/M2 Macrophages

    PubMed Central

    Zhang, Hong-Liang; Hassan, Mohammed Y.; Zheng, Xiang-Yu; Azimullah, Sheikh; Quezada, Hernan Concha; Amir, Naheed; Elwasila, Mohamed; Mix, Eilhard; Adem, Abdu; Zhu, Jie

    2012-01-01

    The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α’s mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180–199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180–199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages. PMID:22666471

  6. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    PubMed Central

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  7. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice.

    PubMed

    Yamamoto, Hideko; Kamegaya, Etsuko; Hagino, Yoko; Takamatsu, Yukio; Sawada, Wakako; Matsuzawa, Maaya; Ide, Soichiro; Yamamoto, Toshifumi; Mishina, Masayoshi; Ikeda, Kazutaka

    2017-01-01

    The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT 2C ) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT 2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT 2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT 2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special

  8. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  9. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice.

    PubMed

    Yu, K C; Chen, W; Cooper, A D

    2001-06-01

    It has been proposed that in the liver, chylomicron remnants (lipoproteins carrying dietary lipid) may be sequestered before being internalized by hepatocytes. To study this, chylomicron remnants labeled with a fluorescent dye were perfused into isolated livers of LDL receptor-deficient (LDLR-deficient) mice (Ldlr(-/-)) and examined by confocal microscopy. In contrast to livers from normal mice, there was clustering of the chylomicron remnants on the cell surface in the space of DISSE: These remnant clusters colocalized with clusters of LDLR-related protein (LRP) and could be eliminated by low concentrations of receptor-associated protein, an inhibitor of LRP. When competed with ligands of heparan sulfate proteoglycans (HSPGs), the remnant clusters still appeared but were fewer in number, although syndecans (membrane HSPGs) colocalized with the remnant clusters. This suggests that the clustering of remnants is not dependent on syndecans but that the syndecans may modify the binding of remnants. These results establish that sequestration is a novel process, the clustering of remnants in the space of DISSE: The clustering involves remnants binding to the LRP, and this may be stabilized by binding with syndecans, eventually followed by endocytosis.

  10. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration ofmore » sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.« less

  11. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Both Cerebral and Hematopoietic Deficiencies in CCR2 Result in Uncontrolled Herpes Simplex Virus Infection of the Central Nervous System in Mice.

    PubMed

    Menasria, Rafik; Canivet, Coraline; Piret, Jocelyne; Gosselin, Jean; Boivin, Guy

    2016-01-01

    CCR2 is a chemokine receptor expressed on the surface of blood leukocytes, particularly «Ly6Chi» inflammatory monocytes and microglia. Signaling through this receptor is thought to influence the immune activity of microglia as well as monocytes egress from the bone marrow (BM) and their trafficking into the central nervous system (CNS) in several neurological diseases. During experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE), CCR2 deficiency has been reported to exacerbate the outcome of the disease. However, the precise contribution of CCR2 expressed in cells of the CNS or peripheral monocytes in the protection against HSE remains unclear. To dissect the differential role of CCR2 during HSE, chimeric mice with receptor deficiency in the brain or blood cells were generated by transplanting wild-type (WT) C57BL/6 or CCR2-/- BM-derived cells in CCR2-/- (WT→CCR2-/-) and WT (CCR2-/-→WT) mice, respectively. Our results indicate that following intranasal infection with 1.2x106 plaque forming units of HSV-1, CCR2 deficiency in hematopoietic cells and, to a lesser extent, in CNS exacerbates the outcome of HSE. Mortality rates of CCR2-/- (71.4%) and CCR2-/-→WT (57.1%) mice were significantly higher than that of WT (15.3%; P<0.01 and P<0.05, respectively) but the difference did not reach statistical significance for WT→CCR2-/- animals (42.8%; P = 0.16). Both peripheral and CNS deficiencies in CCR2 resulted in increased infectious viral titers and wider dissemination of HSV antigens in the brain as well as an overproduction of inflammatory cytokines and chemokines including IL-1β, IL-6, CCL2, CCL3 and CCL5. Furthermore, CCR2 deficiency in the hematopoietic system altered monocytes egress from the BM and their recruitment to the CNS, which may contribute to the failure in HSV-1 containment. Collectively, these data suggest that CCR2 expressed on cells of CNS and especially on peripheral monocytes is important for the control of HSV-1 replication and

  13. Both Cerebral and Hematopoietic Deficiencies in CCR2 Result in Uncontrolled Herpes Simplex Virus Infection of the Central Nervous System in Mice

    PubMed Central

    Menasria, Rafik; Canivet, Coraline; Piret, Jocelyne; Gosselin, Jean; Boivin, Guy

    2016-01-01

    CCR2 is a chemokine receptor expressed on the surface of blood leukocytes, particularly «Ly6Chi» inflammatory monocytes and microglia. Signaling through this receptor is thought to influence the immune activity of microglia as well as monocytes egress from the bone marrow (BM) and their trafficking into the central nervous system (CNS) in several neurological diseases. During experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE), CCR2 deficiency has been reported to exacerbate the outcome of the disease. However, the precise contribution of CCR2 expressed in cells of the CNS or peripheral monocytes in the protection against HSE remains unclear. To dissect the differential role of CCR2 during HSE, chimeric mice with receptor deficiency in the brain or blood cells were generated by transplanting wild-type (WT) C57BL/6 or CCR2-/- BM-derived cells in CCR2-/- (WT→CCR2-/-) and WT (CCR2-/-→WT) mice, respectively. Our results indicate that following intranasal infection with 1.2x106 plaque forming units of HSV-1, CCR2 deficiency in hematopoietic cells and, to a lesser extent, in CNS exacerbates the outcome of HSE. Mortality rates of CCR2-/- (71.4%) and CCR2-/-→WT (57.1%) mice were significantly higher than that of WT (15.3%; P<0.01 and P<0.05, respectively) but the difference did not reach statistical significance for WT→CCR2-/- animals (42.8%; P = 0.16). Both peripheral and CNS deficiencies in CCR2 resulted in increased infectious viral titers and wider dissemination of HSV antigens in the brain as well as an overproduction of inflammatory cytokines and chemokines including IL-1β, IL-6, CCL2, CCL3 and CCL5. Furthermore, CCR2 deficiency in the hematopoietic system altered monocytes egress from the BM and their recruitment to the CNS, which may contribute to the failure in HSV-1 containment. Collectively, these data suggest that CCR2 expressed on cells of CNS and especially on peripheral monocytes is important for the control of HSV-1 replication and

  14. Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Receptor 8 Knockout Mice

    PubMed Central

    Chensue, Stephen W.; Lukacs, Nicholas W.; Yang, Tong-Yuan; Shang, Xiaozhou; Frait, Kirsten A.; Kunkel, Steven L.; Kung, Ted; Wiekowski, Maria T.; Hedrick, Joseph A.; Cook, Donald N.; Zingoni, Alessandra; Narula, Satwant K.; Zlotnik, Albert; Barrat, Franck J.; O'Garra, Anne; Napolitano, Monica; Lira, Sergio A.

    2001-01-01

    Chemokine receptors transduce signals important for the function and trafficking of leukocytes. Recently, it has been shown that CC chemokine receptor (CCR)8 is selectively expressed by Th2 subsets, but its functional relevance is unclear. To address the biological role of CCR8, we generated CCR8 deficient (−/−) mice. Here we report defective T helper type 2 (Th2) immune responses in vivo in CCR8−/− mice in models of Schistosoma mansoni soluble egg antigen (SEA)-induced granuloma formation as well as ovalbumin (OVA)- and cockroach antigen (CRA)-induced allergic airway inflammation. In these mice, the response to SEA, OVA, and CRA showed impaired Th2 cytokine production that was associated with aberrant type 2 inflammation displaying a 50 to 80% reduction in eosinophils. In contrast, a prototypical Th1 immune response, elicited by Mycobacteria bovis purified protein derivative (PPD) was unaffected by CCR8 deficiency. Mechanistic analyses indicated that Th2 cells developed normally and that the reduction in eosinophil recruitment was likely due to systemic reduction in interleukin 5. These results indicate an important role for CCR8 in Th2 functional responses in vivo. PMID:11238588

  15. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 attenuates Neointima Formation Following Vascular Injury

    PubMed Central

    Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis

    2009-01-01

    Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266

  16. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  17. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury.

    PubMed

    Saber, Maha; Kokiko-Cochran, Olga; Puntambekar, Shweta S; Lathia, Justin D; Lamb, Bruce T

    2017-01-15

    Traumatic brain injury (TBI) affects 1.7 million persons annually in the United States (Centers for Disease Control and Prevention). There is increasing evidence that persons exposed to TBI have increased risk of the development of multiple neurodegenerative conditions, including Alzheimer disease (AD). TBI triggers a strong neuroinflammatory response characterized by astrogliosis, activation of microglia, and infiltration of peripheral monocytes. Recent evidence suggests that alterations in innate immunity promote neurodegeneration. This includes genetic studies demonstrating that mutations in triggering receptor expressed on myeloid cells 2 (TREM2) is associated with a higher risk for not only AD but also multiple neurodegenerative diseases. To examine whether TREM2 deficiency affects pathological outcomes of TBI, Trem2 knockout (Trem2 -/- ) and C57BL/6J (B6) mice were given a lateral fluid percussion injury (FPI) and sacrificed at 3 and 120 days post-injury (DPI) to look at both acute and chronic consequences of TREM2 deficiency. Notably, at 3 DPI, B6 mice exposed to TBI exhibited increased expression of TREM2 in the brain. Further, Trem2 -/- mice exposed to TBI exhibited enhanced macrophage activation near the lesion, but significantly less macrophage activation away from the lesion when compared with B6 mice exposed to TBI. In addition, at 120 DPI, Trem2 -/- mice exposed to TBI demonstrated reduced hippocampal atrophy and rescue of TBI-induced behavioral changes when compared with B6 mice exposed to TBI. Taken together, this study suggests that TREM2 deficiency influences both acute and chronic responses to TBI, leading to an altered macrophage response at early time points, and improved pathological and functional outcomes at later time points.

  18. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    PubMed Central

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  19. Exaggerated Hepatic Injury Due to Acetaminophen Challenge in Mice Lacking C-C Chemokine Receptor 2

    PubMed Central

    Hogaboam, Cory M.; Bone-Larson, Cynthia L.; Steinhauser, Matthew L.; Matsukawa, Akihiro; Gosling, Jennifa; Boring, Landin; Charo, Israel F.; Simpson, Kenneth J.; Lukacs, Nicholas W.; Kunkel, Steven L.

    2000-01-01

    Monocyte chemoattractant protein-1 is one of the major C-C chemokines that has been implicated in liver injury. The C-C chemokine receptor, CCR2, has been identified as the primary receptor that mediates monocyte chemoattractant protein-1 (MCP-1) responses in the mouse. Accordingly, the present study addressed the role of CCR2 in mice acutely challenged with acetaminophen (APAP). Mice genetically deficient in CCR2 (CCR2−/−) and their wild-type counterparts (CCR2+/+) were fasted for 10 hours before receiving an intraperitoneal injection of APAP (300 mg/kg). Liver and serum samples were removed from both groups of mice before and at 24 and 48 hours post APAP. Significantly elevated levels of MCP-1 were detected in liver samples from CCR2+/+ and CCR2−/− mice at 24 hours post-APAP. Although CCR2+/+ mice exhibited no liver injury at any time after receiving APAP, CCR2−/− mice exhibited marked evidence of necrotic and TUNEL-positive cells in the liver, particularly at 24 hours post-APAP. Enzyme-linked immunosorbent assay analysis of liver homogenates from both groups of mice at the 24 hours time point revealed that liver tissue from CCR2−/− mice contained significantly greater amounts of immunoreactive IFN-γ and TNF-α. The in vivo immunoneutralization of IFN-γ or TNF-α significantly attenuated APAP-induced liver injury in CCR2−/− mice and increased hepatic IL-13 levels. Taken together, these findings demonstrate that CCR2 expression in the liver provides a hepatoprotective effect through its regulation of cytokine generation during APAP challenge. PMID:10751350

  20. Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation.

    PubMed

    Deckert-Schlüter, M; Rang, A; Weiner, D; Huang, S; Wiestler, O D; Hof, H; Schlüter, D

    1996-12-01

    Toxoplasma gondii may cause severe infections in immunocompromised patients including fetuses and those with AIDS. Among the factors mediating protection against T. gondii, IFN-gamma has gained special attention. To analyze the role of IFN-gamma in the early phase of toxoplasmosis, IFN-gamma receptor-deficient (IFN-gamma R0/0) mice were orally infected with low-virulent toxoplasms. IFN-gamma R0/0 mice died of the disease up to day 10 postinfection, whereas immunocompetent wild-type (WT) mice developed a chronic toxoplasmosis. Histopathology revealed that in IFN-gamma R0/0 mice, the parasite multiplied unrestrictedly in the small intestine, the intestinal lymphatic tissue, the liver, and the spleen. Ultimately, animals died of a necrotizing hepatitis. In WT mice, the same organs were effected, but multiplication of the parasite was effectively limited. Compared with WT mice, immunohistochemistry and flow cytometry demonstrated that in IFN-gamma R0/0 mice, macrophages were only marginally activated in response to the infection, as evidenced by a reduced expression of major histocompatability complex class II antigens. In addition, immunohistochemistry and RT-PCR showed a reduced production of the macrophage-derived cytokines tumor necrosis factor-alpha, inducible nitric oxide synthase, and IL-1 beta in the liver of IFN-gamma R0/0 mice. In contrast, activation of T cells, recruitment of immune cells to inflammatory foci, and anti-T. gondii IgM antibody production were unaffected by the mutation of the IFN-gamma R. Moreover, induction of IL-2, IL-4, and IL-10 mRNA transcripts in the liver was normal in IFN-gamma R0/0 mice. Adoptive transfer experiments revealed that the immune T cells of WT animals did not protect IFN-gamma R0/0 mice from lethal infection with highly virulent toxoplasms, whereas WT mice were significantly protected by the adoptive transfer. Based on these studies, we conclude that IFN-gamma is absolutely required for an efficient activation of

  1. Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice.

    PubMed

    Moscoso-Castro, Maria; López-Cano, Marc; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2017-11-01

    The study of psychiatric disorders usually focuses on emotional symptoms assessment. However, cognitive deficiencies frequently constitute the core symptoms, are often poorly controlled and handicap individual's quality of life. Adenosine receptors, through the control of both dopamine and glutamate systems, have been implicated in the pathophysiology of several psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder. Indeed, clinical data indicate that poorly responsive schizophrenia patients treated with adenosine adjuvants show improved treatment outcomes. The A 2A adenosine receptor subtype (A 2A R) is highly expressed in brain areas controlling cognition and motivational responses including the striatum, hippocampus and cerebral cortex. Accordingly, we study the role of A 2A R in the regulation of cognitive processes based on a complete cognitive behavioural analysis coupled with the assessment of neurogenesis and sub-synaptic protein expression in adult and middle-aged A 2A R constitutional knockout mice and wild-type littermates. Our results show overall cognitive impairments in A 2A R knockout mice associated with a decrease in new-born hippocampal neuron proliferation and concomitant changes in synaptic protein expression, in both the prefrontal cortex and the hippocampus. These results suggest a deficient adenosine signalling in cognitive processes, thus providing new opportunities for the therapeutic management of cognitive deficits associated with psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kenta; Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588; Hirata, Michiko

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as amore » pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.« less

  3. β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype

    PubMed Central

    Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.

    2013-01-01

    There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672

  4. RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner.

    PubMed

    Wezel, Anouk; van der Velden, Daniël; Maassen, Johanna M; Lagraauw, H Maxime; de Vries, Margreet R; Karper, Jacco C; Kuiper, Johan; Bot, Ilze; Quax, Paul H A

    2015-01-01

    Toll like receptor 4 (TLR4) plays a key role in inflammation and previously it was established that TLR4 deficiency attenuates atherosclerosis. RadioProtective 105 (RP105) is a structural homolog of TLR4 and an important regulator of TLR4 signaling, suggesting that RP105 may also be an important effector in atherosclerosis. We thus aimed to determine the role of RP105 in atherosclerotic lesion development using RP105 deficient mice on an atherosclerotic background. Atherosclerosis was induced in Western-type diet fed low density lipoprotein receptor deficient (LDLr(-/-)) and LDLr/RP105 double knockout (LDLr(-/-)/RP105(-/-)) mice by means of perivascular carotid artery collar placement. Lesion size was significantly reduced by 58% in LDLr(-/-)/RP105(-/-) mice, and moreover, plaque macrophage content was markedly reduced by 40%. In a model of acute peritonitis, monocyte influx was almost 3-fold reduced in LDLr(-/-)/RP105(-/-) mice (P = 0.001), while neutrophil influx remained unaltered, suggestive of an altered migratory capacity of monocytes upon deletion of RP105. Interestingly, in vitro stimulation of monocytes with LPS induced a downregulation of CCR2, a chemokine receptor crucially involved in monocyte influx to atherosclerotic lesions, which was more pronounced in LDLr(-/-)/RP105(-/-) monocytes as compared to LDLr(-/-) monocytes. We here show that RP105 deficiency results in reduced early atherosclerotic plaque development with a marked decrease in lesional macrophage content, which may be due to disturbed migration of RP105 deficient monocytes resulting from CCR2 downregulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses psychomotor abnormalities and recognition memory deficits in mice lacking the pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Ago, Yukio; Hiramatsu, Naoki; Ishihama, Toshihiro; Hazama, Keisuke; Hayata-Takano, Atsuko; Shibasaki, Yasuhiro; Shintani, Norihito; Hashimoto, Hitoshi; Kawasaki, Toshiyuki; Onoe, Hirotaka; Chaki, Shigeyuki; Nakazato, Atsuro; Baba, Akemichi; Takuma, Kazuhiro; Matsuda, Toshio

    2013-02-01

    Previous studies suggest that metabotropic glutamate 2/3 receptors are involved in psychiatric disorders. In this study, we examined the effects of the selective metabotropic glutamate 2/3 (mGlu2/3) receptor agonist MGS0028 on behavioral abnormalities in mice lacking the pituitary adenylate cyclase-activating polypeptide (PACAP), an experimental model of psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder. We found that PACAP-deficient mice showed impairments in the novel object recognition test and these impairments were improved by MGS0028 (0.1 mg/kg). Similarly, MGS0028 improved hyperactivity and jumping behaviors, but did not reverse increased immobility times in the forced swim test in PACAP-deficient mice. These results suggest that MGS0028 may be a potential, novel treatment for psychiatric disorders.

  6. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    PubMed

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  7. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    PubMed Central

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  8. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    PubMed

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p < 0.01). Enalapril increased ACE2 levels (p < 0.01), but did not affect Mas receptor in the heart. Plasma renin activity (PRA) and Ang II decreased in hydronephrotic mice, but significantly increased after treatment with losartan or enalapril. Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  9. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  10. Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice.

    PubMed

    Harmon, Gregory S; Dumlao, Darren S; Ng, Damian T; Barrett, Kim E; Dennis, Edward A; Dong, Hui; Glass, Christopher K

    2010-03-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.

  11. Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    PubMed Central

    Wu, Chiping; Bardakjian, Berj L.; Zhang, Liang; Eubanks, James H.

    2012-01-01

    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities. PMID:22523589

  12. Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor

    PubMed Central

    Calvo-Pinilla, Eva; Rodríguez-Calvo, Teresa; Anguita, Juan; Sevilla, Noemí; Ortego, Javier

    2009-01-01

    Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV. PMID:19357779

  13. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice.

    PubMed

    Sasaki, Keita; Omotuyi, Olaposi Idowu; Ueda, Mutsumi; Shinohara, Kazuyuki; Ueda, Hiroshi

    2015-12-04

    Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.

  14. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review.

    PubMed

    Gautam, Dinesh; Jeon, Jongrye; Li, Jian Hua; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Lu, Huiyan; Deng, Chuxia; Gavrilova, Oksana; Wess, Jürgen

    2008-01-01

    The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.

  16. The Effect of Low-Dose Proteasome Inhibition on Pre-Existing Atherosclerosis in LDL Receptor-Deficient Mice

    PubMed Central

    Wilck, Nicola; Fechner, Mandy; Dan, Cristian; Stangl, Verena; Stangl, Karl; Ludwig, Antje

    2017-01-01

    Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in atherosclerosis development. However, the nature of UPS dysfunction has been proposed to be specific to certain stages of atherosclerosis development, which has implications for proteasome inhibition as a potential treatment option. Recently, low-dose proteasome inhibition with bortezomib has been shown to attenuate early atherosclerosis in low-density lipoprotein receptor-deficient (LDLR−/−) mice. The present study investigates the effect of low-dose proteasome inhibition with bortezomib on pre-existing advanced atherosclerosis in LDLR−/− mice. We found that bortezomib treatment of LDLR−/− mice with pre-existing atherosclerosis does not alter lesion burden. Additionally, macrophage infiltration of aortic root plaques, total plasma cholesterol levels, and pro-inflammatory serum markers were not influenced by bortezomib. However, plaques of bortezomib-treated mice exhibited larger necrotic core areas and a significant thinning of the fibrous cap, indicating a more unstable plaque phenotype. Taking recent studies on favorable effects of proteasome inhibition in early atherogenesis into consideration, our data support the hypothesis of stage-dependent effects of proteasome inhibition in atherosclerosis. PMID:28387708

  17. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a

  18. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone

    PubMed Central

    Tan, H. Y.; Huang, L.; Cowley, M.; Veldhuis, J. D.; Chen, C.

    2016-01-01

    Key points Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth.Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth.We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone–insulin‐like growth factor‐1 (GH–IGF‐1) axis.We propose that hyperinsulinaemia promotes growth while suppressing the GH–IGF‐1 axis.It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Abstract Defects in melanocortin‐4‐receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)‐mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin‐like growth factor‐1 (IGF‐1) production and/or release relative to pubertal growth. We demonstrate early‐onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH–IGF‐1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia‐associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild‐type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair‐fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs

  19. Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice.

    PubMed

    Zhou, Libin; Chen, Tingting; Li, Guoxi; Wu, Chaoming; Wang, Conghui; Li, Lin; Sha, Sha; Chen, Lei; Liu, George; Chen, Ling

    2016-01-27

    A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin

  20. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy

    PubMed Central

    Gant, John C.; Thibault, Oliver; Blalock, Eric M.; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E.; Hauser, Kurt F.; Smith, George M.; Mervis, Ron; Li, YanFang; Barnes, Gregory N.

    2010-01-01

    Summary Purpose Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. Methods In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. Results NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. Discussion These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype. PMID:18657176

  1. Infusion of oxytocin induces successful delivery in prostanoid FP-receptor-deficient mice.

    PubMed

    Kawamata, Masaki; Yoshida, Masahide; Sugimoto, Yukihiko; Kimura, Tadashi; Tonomura, Yutaka; Takayanagi, Yuki; Yanagisawa, Teruyuki; Nishimori, Katsuhiko

    2008-02-13

    The dramatic increase of oxytocin (OT) receptor (OTR) in the myometrium as well as circulating progesterone withdrawal has been thought to be the most important factor in the induction and accomplishment of parturition since delivery fails in prostaglandin F2alpha receptor (FP) knockout (FP KO) mice. The expression levels of OTR mRNA/protein were not dramatically increased in the near-term uteri of FP KO mice. However, OT-induced myometrial contractions and the concentration-response curves in FP KO in vitro were almost similar to those in wild-type (WT) mice. OT-infusion (0.3 U/day) enabled FP KO mice to experience successful delivery, and furthermore the duration until the onset was hastened by a higher dose of OT (3 U/day). The plasma progesterone levels of FP KO females were maintained at high levels, but decreased during labor by OT-infusion (3 U/day). These results suggest that OT has potentials to induce strong myometrial contractions in uterus with low expression levels of OTR and luteolysis in ovary, which enabled FP KO females to undergo successful delivery.

  2. Adenosine A2B Receptor Deficiency Promotes Host Defenses against Gram-Negative Bacterial Pneumonia

    PubMed Central

    Barletta, Kathryn E.; Cagnina, R. Elaine; Burdick, Marie D.; Linden, Joel

    2012-01-01

    Rationale: Activation of the adenosine A2B receptor (A2BR) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. Objectives: To test the hypothesis that absence of adenosine A2B receptor signaling promotes host defense against bacterial pneumonia. Methods: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A2BR. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. Measurements and Main Results: A2BR–/– mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow–derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A2BR–/– and wild-type mice, but A2BR–/– neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A2BR–/– mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. Conclusions: These data suggest that the absence of A2BR signaling enhances antimicrobial activity in gram-negative bacterial pneumonia. PMID:22997203

  3. Metabotropic Glutamate2 Receptors Play a Key Role in Modulating Head Twitches Induced by a Serotonergic Hallucinogen in Mice

    PubMed Central

    Benvenga, Mark J.; Chaney, Stephen F.; Baez, Melvyn; Britton, Thomas C.; Hornback, William J.; Monn, James A.; Marek, Gerard J.

    2018-01-01

    There is substantial evidence that glutamate can modulate the effects of 5-hydroxytryptamine2A (5-HT2A) receptor activation through stimulation of metabotropic glutamate2/3 (mGlu2/3) receptors in the prefrontal cortex. Here we show that constitutive deletion of the mGlu2 gene profoundly attenuates an effect of 5-HT2A receptor activation using the mouse head twitch response (HTR). MGlu2 and mGlu3 receptor knockout (KO) as well as age-matched ICR (CD-1) wild type (WT) mice were administered (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and observed for head twitch activity. DOI failed to produce significant head twitches in mGlu2 receptor KO mice at a dose 10-fold higher than the peak effective dose in WT or mGlu3 receptor KO mice. In addition, the mGlu2/3 receptor agonist LY379268, and the mGlu2 receptor positive allosteric modulator (PAM) CBiPES, potently blocked the HTR to DOI in WT and mGlu3 receptor KO mice. Conversely, the mGlu2/3 receptor antagonist LY341495 (10 mg/kg) increased the HTR produced by DOI (3 mg/kg) in mGlu3 receptor KO mice. Finally, the mGlu2 receptor potentiator CBiPES was able to attenuate the increase in the HTR produced by LY341495 in mGlu3 receptor KO mice. Taken together, all of these results are consistent with the hypothesis that that DOI-induced head twitches are modulated by mGlu2 receptor activation. These results also are in keeping with a critical autoreceptor function for mGlu2 receptors in the prefrontal cortex with differential effects of acute vs. chronic perturbation (e.g., constitutive mGlu2 receptor KO mice). The robust attenuation of DOI-induced head twitches in the mGlu2 receptor KO mice appears to reflect the critical role of glutamate in ongoing regulation of 5-HT2A receptors in the prefrontal cortex. Future experiments with inducible knockouts for the mGlu2 receptor and/or selective mGlu3 receptor agonists/PAMs/antagonists could provide an important tools in understanding glutamatergic modulation of prefrontal

  4. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  5. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  6. Pituitary-adrenal responses to oxotremorine and acute stress in male and female M1 muscarinic receptor knockout mice: comparisons to M2 muscarinic receptor knockout mice.

    PubMed

    Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K

    2008-05-01

    Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The

  7. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors

    PubMed Central

    Oka, Takakazu; Oka, Kae; Kobayashi, Takuya; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Narumiya, Shuh; Saper, Clifford B

    2003-01-01

    Previous studies have disagreed about whether prostaglandin EP1 or EP3 receptors are critical for producing febrile responses. We therefore injected lipopolysaccharide (LPS) at a variety doses (1 μg kg−1−1 mg kg−1) intraperitoneally (I.P.) into wild-type (WT) mice and mice lacking the EP1 or the EP3 receptors and measured changes in core temperature (Tc) by using telemetry. In WT mice, I.P. injection of LPS at 10 μg kg−1 increased Tc about 1 °C, peaking 2 h after injection. At 100 μg kg−1, LPS increased Tc, peaking 5–8 h after injection. LPS at 1 mg kg−1 decreased Tc, reaching a nadir at 5–8 h after injection. In EP1 receptor knockout (KO) mice injected with 10 μg kg−1 LPS, only the initial (< 40 min) increase in Tc was lacking; with 100 μg kg−1 LPS the mice showed no febrile response. In EP3 receptor KO mice, LPS decreased Tc in a dose- and time-dependent manner. Furthermore, in EP3 receptor KO mice subcutaneous injection of turpentine did not induce fever. Both EP1 and EP3 receptor KO mice showed a normal circadian cycle of Tc and brief hyperthermia following psychological stress (cage-exchange stress and buddy-removal stress). The present study suggests that both the EP1 and the EP3 receptors play a role in fever induced by systemic inflammation but neither EP receptor is involved in the circadian rise in Tc or psychological stress-induced hyperthermia in mice. PMID:12837930

  8. Aberrant expression of IFN-γ in Th2 cells from Th2 LCR-deficient mice.

    PubMed

    Hwang, Soo Seok; Kim, Kiwan; Lee, Wonyong; Lee, Gap Ryol

    2012-08-03

    The Th2 locus control region (LCR) has been shown to be a crucial cis-acting element for Th2 cytokine expression and Th2 cell differentiation. To study the role of Th2 LCR in ifng locus regulation, we examined the expression of IFN-γ in Th2 cells from Th2 LCR-deficient mice. We found IFN-γ to be aberrantly up-regulated. In addition, histone 3(H3)-acetylation and histone 3 lysine 4 (H3-K4)-methylation greatly increased at the ifng locus of the Th2 cells. GATA-3 and STAT6 bound to the ifng promoter in Th2 cells from the wild type but not from the Th2 LCR-deficient mice, and they directly repressed ifng expression in transient reporter assay. Moreover, ectopic expression of GATA-3 and STAT6-VT repressed the aberrant expression of the ifng gene and restored repressive chromatin state at the ifng locus in Th2 cells from Th2 LCR-deficient mice. These results suggest that expression of the ifng gene and chromatin remodeling of the ifng locus are under the control of a Th2 LCR-mediated Th2 differentiation program. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    PubMed

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  10. Antiatherosclerotic effects of Artemisia princeps Pampanini cv. Sajabal in LDL receptor deficient mice.

    PubMed

    Han, Jong-Min; Kim, Min-Jung; Baek, Seung-Hwa; An, Sojin; Jin, Yue-Yan; Chung, Hae-Gon; Baek, Nam-In; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook

    2009-02-25

    Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.

  11. Adipose Deficiency of Nrf2 in ob/ob Mice Results in Severe Metabolic Syndrome

    PubMed Central

    Xue, Peng; Hou, Yongyong; Chen, Yanyan; Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Yarborough, Kathy; Woods, Courtney G.; Liu, Dianxin; Yamamoto, Masayuki; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Nuclear factor E2–related factor 2 (Nrf2) is a transcription factor that functions as a master regulator of the cellular adaptive response to oxidative stress. Our previous studies showed that Nrf2 plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β and peroxisome proliferator–activated receptor γ. To determine the role of Nrf2 in the development of obesity and associated metabolic disorders, the incidence of metabolic syndrome was assessed in whole-body or adipocyte-specific Nrf2-knockout mice on a leptin-deficient ob/ob background, a model with an extremely positive energy balance. On the ob/ob background, ablation of Nrf2, globally or specifically in adipocytes, led to reduced white adipose tissue (WAT) mass, but resulted in an even more severe metabolic syndrome with aggravated insulin resistance, hyperglycemia, and hypertriglyceridemia. Compared with wild-type mice, WAT of ob/ob mice expressed substantially higher levels of many genes related to antioxidant response, inflammation, adipogenesis, lipogenesis, glucose uptake, and lipid transport. Absence of Nrf2 in WAT resulted in reduced expression of most of these factors at mRNA or protein levels. Our findings support a novel role for Nrf2 in regulating adipose development and function, by which Nrf2 controls the capacity of WAT expansion and insulin sensitivity and maintains glucose and lipid homeostasis. PMID:23238296

  12. T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice.

    PubMed

    Loh, K; Merry, T L; Galic, S; Wu, B J; Watt, M J; Zhang, S; Zhang, Z-Y; Neel, B G; Tiganis, T

    2012-02-01

    Insulin activates insulin receptor protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The insulin receptor can serve as a substrate for the protein tyrosine phosphatase (PTP) 1B and T cell protein tyrosine phosphatase (TCPTP), which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the insulin receptor in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates insulin receptor signalling and gluconeogenesis in the liver. In this study we assessed for the first time the role of TCPTP in the regulation of insulin receptor signalling in muscle. We generated muscle-specific TCPTP-deficient (Mck-Cre;Ptpn2(lox/lox)) mice (Mck, also known as Ckm) and assessed the impact on glucose homeostasis and muscle insulin receptor signalling in chow-fed versus high-fat-fed mice. Blood glucose and insulin levels, insulin and glucose tolerance, and insulin-induced muscle insulin receptor activation and downstream PI3K/Akt signalling remained unaltered in chow-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. In addition, body weight, adiposity, energy expenditure, insulin sensitivity and glucose homeostasis were not altered in high-fat-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. These results indicate that TCPTP deficiency in muscle has no effect on insulin signalling and glucose homeostasis, and does not prevent high-fat diet-induced insulin resistance. Thus, despite their high degree of sequence identity, PTP1B and TCPTP contribute differentially to insulin receptor regulation in muscle. Our results are consistent with the notion that these two highly related PTPs make distinct contributions to insulin receptor regulation in different tissues.

  13. THE REELIN RECEPTORS VLDLR AND ApoER2 REGULATE SENSORIMOTOR GATING IN MICE

    PubMed Central

    Barr, Alasdair M.; Fish, Kenneth N.; Markou, Athina

    2007-01-01

    Summary Postmortem brain loss of reelin is noted in schizophrenia patients. Accordingly, heterozygous reeler mutant mice have been proposed as a putative model of this disorder. Little is known, however, about the involvement of the two receptors for reelin, Very-Low-Density Lipoprotein Receptor (VLDLR) and Apolipoprotein E Receptor 2 (ApoER2), on pre-cognitive processes of relevance to deficits seen in schizophrenia. Thus, we evaluated sensorimotor gating in mutant mice heterozygous or homozygous for the two reelin receptors. Mutant mice lacking one of these reelin receptors were tested for prepulse inhibition (PPI) of the acoustic startle reflex prior to and following puberty, and on a crossmodal PPI task, involving the presentation of acoustic and tactile stimuli. Furthermore, because schizophrenia patients show increased sensitivity to N-methyl-D-aspartate (NMDA) receptor blockade, we assessed the sensitivity of these mice to the PPI-disruptive effects of the NMDA receptor antagonist phencyclidine. The results demonstrated that acoustic PPI did not differ between mutant and wildtype mice. However, VLDLR homozygous mice displayed significant deficits in crossmodal PPI, while ApoER2 heterozygous and homozygous mice displayed significantly increased crossmodal PPI. Both ApoER2 and VLDLR heterozygous and homozygous mice exhibited greater sensitivity to the PPI-disruptive effects of phencyclidine than wildtype mice. These results indicate that partial or complete loss of either one of the reelin receptors results in a complex pattern of alterations in PPI function that include alterations in crossmodal, but not acoustic, PPI and increased sensitivity to NMDA receptor blockade. Thus, reelin receptor function appears to be critically involved in crossmodal PPI and the modulation of the PPI response by NMDA receptors. These findings have relevance to a range of neuropsychiatric disorders that involve sensorimotor gating deficits, including schizophrenia.. PMID:17261317

  14. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.

    PubMed

    Yamaguchi, Masahiko; Matsui, Masakazu; Higa, Ryoko; Yamazaki, Yasuhiro; Ikari, Akira; Miyake, Masaki; Miwa, Masao; Ishii, Satoshi; Sugatani, Junko; Shimizu, Takao

    2015-02-15

    Platelet-activating factor (PAF) is a well-known phospholipid that mediates acute inflammatory responses. In the present study, we investigated whether PAF/PAF receptor signaling contributed to chronic inflammation in the white adipose tissue (WAT) of PAF receptor-knockout (PAFR-KO) mice. Body and epididymal WAT weights were higher in PAFR-KO mice fed a high-fat diet (HFD) than in wild-type (WT) mice. TNF-α mRNA expression levels in epididymal WAT and the infiltration of CD11c-positive macrophages into epididymal WAT, which led to chronic inflammation, were also elevated in HFD-fed PAFR-KO mice. HFD-fed PAFR-KO mice had higher levels of fasting serum glucose than HFD-fed WT mice as well as impaired glucose tolerance. Although PAF receptor signaling up-regulated the expression of TNF-α and lipopolysaccharide induced the expression of acyl-CoA:lysophosphatidylcholine acyltransferase 2 (LPCAT2) mRNA in bone marrow-derived macrophages, no significant differences were observed in the expression of LPCAT2 mRNA and PAF levels in epididymal WAT between HFD-fed mice and normal diet-fed mice. In addition to our previous finding in which energy expenditure in PAF receptor (PAFR)-deficient mice was low due to impaired brown adipose tissue function, the present study demonstrated that PAF/PAF receptor signaling up-regulated the expression of Ucp1 mRNA, which is essential for cellular thermogenesis, in 3T3-L1 adipocytes. We concluded that the marked accumulation of abdominal fat due to HFD feeding led to more severe chronic inflammation in WAT, which is associated with glucose metabolism disorders, in PAFR-KO mice than in WT mice, and PAF/PAF receptor signaling may regulate energy expenditure and adiposity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  16. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  17. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

    PubMed

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-05-16

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.

  18. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential.

    PubMed

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2014-12-30

    We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. © The Author 2015. Published by Oxford University

  19. Melatonin Attenuates Memory Impairment Induced by Klotho Gene Deficiency Via Interactive Signaling Between MT2 Receptor, ERK, and Nrf2-Related Antioxidant Potential

    PubMed Central

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2015-01-01

    Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Results: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Conclusions: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. PMID

  20. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2.

    PubMed

    Rossi, Jari; Herzig, Karl-Heinz; Võikar, Vootele; Hiltunen, Païvi H; Segerstråle, Mikael; Airaksinen, Matti S

    2003-09-01

    Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.

  1. Crybb2 deficiency impairs fertility in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Sun, Li-Li; Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2more » deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.« less

  2. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2+ and CCR5+ IFNγ-producing γδT cells in mice.

    PubMed

    Russo, Remo Castro; Savino, Benedetta; Mirolo, Massimiliano; Buracchi, Chiara; Germano, Giovanni; Anselmo, Achille; Zammataro, Luca; Pasqualini, Fabio; Mantovani, Alberto; Locati, Massimo; Teixeira, Mauro M

    2018-02-22

    Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. Investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras and antibody-mediated leukocyte depletion. ACKR2 was up-regulated acutely in response to bleomycin and normalized over time. ACKR2-/- mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (non-hematopoietic) cells but not on leukocytes. ACKR2-/- mice exhibited decreased expression of tissue remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2-/- mice had early-increased levels of CCL5, CCL12, CCL17 and IFNγ, and increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17 lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2-/- and CCR5-/- mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2-/- mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells tuning the Th17 response that mediate pulmonary fibrosis triggered by bleomycin instillation.

  3. Iron Overload and Heart Fibrosis in Mice Deficient for Both β2-Microglobulin and Rag1

    PubMed Central

    Santos, Manuela M.; de Sousa, Maria; Rademakers, Luke H. P. M.; Clevers, Hans; Marx, J. J. M.; Schilham, Marco W.

    2000-01-01

    Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, a β2-microglobulin (β2m)-associated major histocompatibility complex class I-like protein. Accordingly, mutant β2m−/− mice have increased intestinal iron absorption and develop parenchymal iron overload in the liver. In humans, other genetic and environmental factors have been suggested to influence the pathology and severity of HH. Previously, an association has been reported between low numbers of lymphocytes and the severity of clinical expression of the iron overload in HH. In the present study, the effect of a total absence of lymphocytes on iron overload was investigated by crossing β2m−/− mice (which develop iron overload resembling human disease) with mice deficient in recombinase activator gene 1 (Rag1), which is required for normal B and T lymphocyte development. Iron overload was more severe in β2mRag1 double-deficient mice than in each of the single deficient mice, with iron accumulation in parenchymal cells of the liver, in acinar cells of the pancreas, and in heart myocytes. With increasing age β2mRag1−/− mice develop extensive heart fibrosis, which could be prevented by reconstitution with normal hematopoietic cells. Thus, the development of iron-mediated cellular damage is substantially enhanced when a Rag1 mutation, which causes a lack of mature lymphocytes, is introduced into β2m−/− mice. Mice deficient in β2m and Rag1 thus offer a new experimental model of iron-related cardiomyopathy. PMID:11106561

  4. Cardiac remodeling in response to chronic iron deficiency: role of the erythropoietin receptor.

    PubMed

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru

    2015-06-01

    Anemia is a common comorbidity of patients with heart failure, and iron deficiency is known as one of the causes of anemia in heart failure. Recent studies have shown that iron deficiency alone, without overt anemia, is associated with poor outcomes in patients with heart failure. Thus, to minimize the mortality in patients with heart failure, it is important to understand the link between iron deficiency and cardiac function. Chronic untreated iron deficiency results in cardiac remodeling, and we have previously reported that erythropoietin (Epo) and cardiac Epo receptor (EpoR) signaling may be associated with its remodeling. However, the link between EpoR signaling and its remodeling remains to be elucidated. Herein, we investigated the role of EpoR signaling on cardiac remodeling in response to chronic iron deficiency. Wild-type mice and transgene-rescued EpoR-null mutant mice, which express EpoR only in the hematopoietic lineage (EpoR-restricted mice), were fed with either a normal or an iron-restricted diet, and the molecular mechanisms were investigated. Dietary iron restriction gradually induced anemia, Epo secretion, and cardiac hypertrophy in wild-type mice. In contrast, EpoR-restricted mice fed with an iron-restricted diet exhibited anemia, left ventricular dilatation, and cardiac dysfunction compared with wild-type mice. Interestingly, altered cardiac mitochondrial biogenesis was observed in EpoR-restricted mice following iron deficiency. Moreover, cardiac p53 expression was increased in EpoR-restricted mice compared with wild-type mice following iron deficiency. These data indicate that EpoR signaling is associated with cardiac remodeling following chronic iron deficiency.

  5. Differential expression of glutamate transporters EAAT1 and EAAT2 in mice deficient for PACAP-type I receptor.

    PubMed

    Zink, M; Schmitt, A; Henn, F A; Gass, P

    2004-12-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.

  6. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  7. staggerer phenotype in retinoid-related orphan receptor α-deficient mice

    PubMed Central

    Steinmayr, Markus; André, Elisabeth; Conquet, François; Rondi-Reig, Laure; Delhaye-Bouchaud, Nicole; Auclair, Nathalie; Daniel, Hervé; Crépel, Francis; Mariani, Jean; Sotelo, Constantino; Becker-André, Michael

    1998-01-01

    Retinoid-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily. To study its physiological role we generated null-mutant mice by targeted insertion of a lacZ reporter gene encoding the enzyme β-galactosidase. In heterozygous RORα+/− mice we found β-galactosidase activity, indicative of RORα protein expression, confined to the central nervous system, skin and testis. In the central nervous system, the RORα gene is expressed in cerebellar Purkinje cells, the thalamus, the suprachiasmatic nuclei, and retinal ganglion cells. In skin, RORα is strongly expressed in the hair follicle, the epidermis, and the sebaceous gland. Finally, the peritubular cells of the testis and the epithelial cells of the epididymis also strongly express RORα. Recently, it was reported that the ataxic mouse mutant staggerer (sg/sg) is caused by a deletion in the RORα gene. The analysis of the cerebellar and the behavioral phenotype of homozygous RORα−/− mice proves identity to sg/sg mice. Although the absence of RORα causes dramatic developmental effects in the cerebellum, it has no apparent morphological effect on thalamus, hypothalamus, and retina. Similarly, testis and skin of RORα−/− mice display a normal phenotype. However, the pelage hair of both sg/sg and RORα−/− is significantly less dense and when shaved shows reluctance to regrow. PMID:9520475

  8. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice.

    PubMed

    Stranahan, Alexis M; Hao, Shuai; Dey, Aditi; Yu, Xiaolin; Baban, Babak

    2016-12-01

    Accumulating evidence indicates that obesity accelerates the onset of cognitive decline. While mechanisms are still being identified, obesity promotes peripheral inflammation and increases blood-brain barrier (BBB) permeability. However, no studies have manipulated vascular permeability in obesity to determine whether BBB breakdown underlies memory deficits. Protein kinase Cβ (PKCβ) activation destabilizes the BBB, and we used a PKCβ inhibitor (Enzastaurin) to block BBB leakiness in leptin receptor-deficient (db/db) mice. Enzastaurin reversed BBB breakdown in db/db mice and normalized hippocampal function without affecting obesity or metabolism. Flow cytometric analysis of forebrain mononuclear cells (FMCs) from db/db mice revealed macrophage infiltration and induction of the activation marker MHCII in microglia and macrophages. Enzastaurin eliminated macrophage infiltration and MHCII induction, and protein array profiling revealed parallel reductions in IL1β, IL6, MCP1, and TNFα. To investigate whether these signals attract peripheral monocytes, FMCs from Wt and db/db mice were plated below migration inserts containing peritoneal macrophages. Peritoneal macrophages from db/db mice exhibit increases in transmigration that were blocked by recombinant IL1RA. These studies indicate that BBB breakdown impairs cognition in obesity and diabetes by allowing macrophage infiltration, with a potential role for IL1β in trafficking of peripheral monocytes into the brain. © The Author(s) 2016.

  9. Hypocretin Receptor Expression in Canine and Murine Narcolepsy Models and in Hypocretin-Ligand Deficient Human Narcolepsy

    PubMed Central

    Mishima, Kazuo; Fujiki, Nobuhiro; Yoshida, Yasushi; Sakurai, Takeshi; Honda, Makoto; Mignot, Emmanuel; Nishino, Seiji

    2008-01-01

    Study Objective: To determine whether hypocretin receptor gene (hcrtR1 and hcrtR2) expression is affected after long-term hypocretin ligand loss in humans and animal models of narcolepsy. Design: Animal and human study. We measured hcrtR1 and hcrtR2 expression in the frontal cortex and pons using the RT-PCR method in murine models (8-week-old and 27-week-old orexin/ataxin-3 transgenic (TG) hypocretin cell ablated mice and wild-type mice from the same litter, 10 mice for each group), in canine models (8 genetically narcoleptic Dobermans with null mutations in the hcrtR2, 9 control Dobermans, 3 sporadic ligand-deficient narcoleptics, and 4 small breed controls), and in humans (5 narcolepsy-cataplexy patients with hypocretin deficiency (average age 77.0 years) and 5 control subjects (72.6 years). Measurement and Results: 27-week-old (but not 8-week-old) TG mice showed significant decreases in hcrtR1 expression, suggesting the influence of the long-term ligand loss on the receptor expression. Both sporadic narcoleptic dogs and human narcolepsy-cataplexy subjects showed a significant decrease in hcrtR1 expression, while declines in hcrtR2 expression were not significant in these cases. HcrtR2-mutated narcoleptic Dobermans (with normal ligand production) showed no alteration in hcrtR1 expression. Conclusions: Moderate declines in hcrtR expressions, possibly due to long-term postnatal loss of ligand production, were observed in hypocretin-ligand deficient narcoleptic subjects. These declines are not likely to be progressive and complete. The relative preservation of hcrtR2 expression also suggests that hypocretin based therapies are likely to be a viable therapeutic options in human narcolepsy-cataplexy. Citation: Mishima K; Fujiki N; Yoshida Y; Sakurai T; Honda M; Mignot E; Nishino S. Hypocretin receptor expression in canine and murine narcolepsy models and in hypocretin-ligand deficient human narcolepsy. SLEEP 2008;31(8):1119-1126. PMID:18714784

  10. Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6.

    PubMed

    Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M

    2006-12-01

    Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.

  11. β-Adrenergic Receptor Mediation of Stress-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Roles for β1 and β2 Adrenergic Receptors

    PubMed Central

    Vranjkovic, Oliver; Hang, Shona; Baker, David A.

    2012-01-01

    Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress

  12. Neurochemical, behavioral and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice

    PubMed Central

    Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.

    2008-01-01

    Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364

  13. Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice.

    PubMed

    Boeuf, Julien; Trigo, José Manuel; Moreau, Pierre-Henri; Lecourtier, Lucas; Vogel, Elise; Cassel, Jean-Cristophe; Mathis, Chantal; Klosen, Paul; Maldonado, Rafael; Simonin, Frédéric

    2009-09-01

    G protein-coupled receptor (GPCR) associated sorting protein 1 (GASP-1) interacts with GPCRs and is implicated in their postendocytic sorting. Recently, GASP-1 has been shown to regulate dopamine (D(2)) and cannabinoid (CB1) receptor signalling, suggesting that preventing GASP-1 interaction with GPCRs might provide a means to limit the decrease in receptor signalling upon sustained agonist treatment. In order to test this hypothesis, we have generated and behaviourally characterized GASP-1 knockout (KO) mice and have examined the consequences of the absence of GASP-1 on chronic cocaine treatments. GASP-1 KO and wild-type (WT) mice were tested for sensitization to the locomotor effects of cocaine. Additional mice were trained to acquire intravenous self-administration of cocaine on a fixed ratio 1 schedule of reinforcement, and the motivational value of cocaine was then assessed using a progressive ratio schedule of reinforcement. The dopamine and muscarinic receptor densities were quantitatively evaluated in the striatum of WT and KO mice tested for sensitization and self-administration. Acute and sensitized cocaine-locomotor effects were attenuated in KO mice. A decrease in the percentage of animals that acquired cocaine self-administration was also observed in GASP-1-deficient mice, which was associated with pronounced down-regulation of dopamine and muscarinic receptors in the striatum. These data indicate that GASP-1 participates in acute and chronic behavioural responses induced by cocaine and are in agreement with a role of GASP-1 in postendocytic sorting of GPCRs. However, in contrast to previous studies, our data suggest that upon sustained receptor stimulation GASP-1 stimulates recycling rather than receptor degradation.

  14. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP

    PubMed Central

    Cockayne, Debra A; Dunn, Philip M; Zhong, Yu; Rong, Weifang; Hamilton, Sara G; Knight, Gillian E; Ruan, Huai-Zhen; Ma, Bei; Yip, Ping; Nunn, Philip; McMahon, Stephen B; Burnstock, Geoffrey; Ford, Anthony PDW

    2005-01-01

    Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2−/−) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3Dbl−/−), and compare these with previously characterized P2X3−/− mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2−/− mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3Dbl−/− mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2−/− and P2X2/P2X3Dbl−/− mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3−/−, P2X2−/−, and P2X2/P2X3Dbl−/− mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2−/− mice. Taken together, these data extend our findings for P2X3−/− mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder. PMID:15961431

  15. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice.

    PubMed

    Nakamura, Haruko; Yamashita, Naoya; Kimura, Ayuko; Kimura, Yayoi; Hirano, Hisashi; Makihara, Hiroko; Kawamoto, Yuko; Jitsuki-Takahashi, Aoi; Yonezaki, Kumiko; Takase, Kenkichi; Miyazaki, Tomoyuki; Nakamura, Fumio; Tanaka, Fumiaki; Goshima, Yoshio

    2016-10-01

    Collapsin response mediator protein 2 (CRMP2) plays a key role in axon guidance, dendritic morphogenesis and cell polarization. CRMP2 is implicated in various neurological and psychiatric disorders. However, in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2 -/- ) mice and examined their behavioral phenotypes. During 24-h home cage monitoring, the activity level during the dark phase of crmp2 -/- mice was significantly higher than that of wild-type (WT) mice. Moreover, the time during the open arm of an elevated plus maze was longer for crmp2 -/- mice than for WT mice. The duration of social interaction was shorter for crmp2 -/- mice than for WT mice. Crmp2 -/- mice also showed mild impaired contextual learning. We then examined the methamphetamine-induced behavioral change of crmp2 -/- mice. Crmp2 -/- mice showed increased methamphetamine-induced ambulatory activity and serotonin release. Crmp2 -/- mice also showed altered expression of proteins involved in GABAergic synapse, glutamatergic synapse and neurotrophin signaling pathways. In addition, SNAP25, RAB18, FABP5, ARF5 and LDHA, which are related genes to schizophrenia and methamphetamine sensitization, are also decreased in crmp2 -/- mice. Our study implies that dysregulation of CRMP2 may be involved in pathophysiology of neuropsychiatric disorders. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  16. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE−/− mice

    PubMed Central

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O.; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-01-01

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (−/−) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)−/− mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system. PMID:28380440

  17. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts

    PubMed Central

    Nacu, Viorel; Charles, Julia F.; Henne, William M.; McMahon, Harvey T.; Nandi, Sayan; Ketchum, Halley; Harris, Renee; Nakamura, Mary C.

    2012-01-01

    Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)–dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis. PMID:22923495

  18. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    PubMed Central

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  19. Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    PubMed Central

    Haase, Volker H.; King, Rhonda; Polyak, Erzsebet; Selak, Mary; Yudkoff, Marc; Hancock, Wayne W.; Meade, Ray; Saiki, Ryoichi; Lunceford, Adam L.; Clarke, Catherine F.; Gasser, David L.

    2008-01-01

    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment. PMID:18437205

  20. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  2. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  3. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  4. A myostatin and activin decoy receptor enhances bone formation in mice.

    PubMed

    Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J

    2014-03-01

    Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. Copyright © 2013 The Authors

  5. Relative adrenal insufficiency in mice deficient in 5α-reductase 1

    PubMed Central

    Livingstone, Dawn E W; Di Rollo, Emma M; Yang, Chenjing; Codrington, Lucy E; Mathews, John A; Kara, Madina; Hughes, Katherine A; Kenyon, Christopher J; Walker, Brian R; Andrew, Ruth

    2014-01-01

    Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as ‘relative adrenal insufficiency’. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic–pituitary–adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause ‘relative adrenal insufficiency’ in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease. PMID:24872577

  6. Disruption of estrogen receptor signaling enhances intestinal neoplasia in Apc(Min/+) mice.

    PubMed

    Cleveland, Alicia G; Oikarinen, Seija I; Bynoté, Kimberly K; Marttinen, Maija; Rafter, Joseph J; Gustafsson, Jan-Ake; Roy, Shyamal K; Pitot, Henry C; Korach, Kenneth S; Lubahn, Dennis B; Mutanen, Marja; Gould, Karen A

    2009-09-01

    Estrogen receptors (ERs) [ERalpha (Esr1) and ERbeta (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERalpha and ERbeta is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERalpha knockout and Apc(Min) mouse strains, we demonstrate that ERalpha deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in Apc(Min/+) mice. Within the normal intestinal epithelium of Apc(Min/+) mice, ERalpha deficiency is associated with an accumulation of nuclear beta-catenin, an indicator of activation of the Wnt-beta-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERalpha deficiency is associated with activation of Wnt-beta-catenin signaling, ERalpha deficiency in the intestinal epithelium of Apc(Min/+) mice also correlated with increased expression of Wnt-beta-catenin target genes. Through crosses between an ERbeta knockout and Apc(Min) mouse strains, we observed some evidence that ERbeta deficiency is associated with an increased incidence of colon tumors in Apc(Min/+) mice. This effect of ERbeta deficiency does not involve modulation of Wnt-beta-catenin signaling. Our studies suggest that ERalpha and ERbeta signaling modulate colorectal carcinogenesis, and ERalpha does so, at least in part, by regulating the activity of the Wnt-beta-catenin pathway.

  7. Disruption of estrogen receptor signaling enhances intestinal neoplasia in ApcMin/+ mice

    PubMed Central

    Cleveland, Alicia G.; Oikarinen, Seija I.; Bynoté, Kimberly K.; Marttinen, Maija; Rafter, Joseph J.; Gustafsson, Jan-Åke; Roy, Shyamal K.; Pitot, Henry C.; Korach, Kenneth S.; Lubahn, Dennis B.; Mutanen, Marja; Gould, Karen A.

    2009-01-01

    Estrogen receptors (ERs) [ERα (Esr1) and ERβ (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERα and ERβ is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERα knockout and ApcMin mouse strains, we demonstrate that ERα deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in ApcMin/+ mice. Within the normal intestinal epithelium of ApcMin/+ mice, ERα deficiency is associated with an accumulation of nuclear β-catenin, an indicator of activation of the Wnt–β-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERα deficiency is associated with activation of Wnt–β-catenin signaling, ERα deficiency in the intestinal epithelium of ApcMin/+ mice also correlated with increased expression of Wnt–β-catenin target genes. Through crosses between an ERβ knockout and ApcMin mouse strains, we observed some evidence that ERβ deficiency is associated with an increased incidence of colon tumors in ApcMin/+ mice. This effect of ERβ deficiency does not involve modulation of Wnt–β-catenin signaling. Our studies suggest that ERα and ERβ signaling modulate colorectal carcinogenesis, and ERα does so, at least in part, by regulating the activity of the Wnt–β-catenin pathway. PMID:19520794

  8. Distinct Contributions of TNF Receptor 1 and 2 to TNF-Induced Glomerular Inflammation in Mice

    PubMed Central

    Taubitz, Anela; Schwarz, Martin; Eltrich, Nuru; Lindenmeyer, Maja T.; Vielhauer, Volker

    2013-01-01

    TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF. PMID:23869211

  9. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice

    PubMed Central

    Bouillon, Roger; Carmeliet, Geert; Verlinden, Lieve; van Etten, Evelyne; Verstuyf, Annemieke; Luderer, Hilary F.; Lieben, Liesbet; Mathieu, Chantal; Demay, Marie

    2008-01-01

    The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)2D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1α-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)2D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1α-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status. PMID:18694980

  10. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors.

    PubMed

    Wu, Xin; Zhang, Jie-Ting; Li, Di; Zhou, Jun; Yang, Jun; Zheng, Hui-Ling; Chen, Jian-Guo; Wang, Fang

    2017-01-01

    Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

    PubMed

    Grønli, Janne; Clegern, William C; Schmidt, Michelle A; Nemri, Rahmi S; Rempe, Michael J; Gallitano, Amelia L; Wisor, Jonathan P

    2016-12-01

    The expression of the immediate early gene early growth response 3 ( Egr3 ) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3 -/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Egr3 -/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1-3 Hz power) and in quiet wakefulness (elevated 3-8 Hz and 15-35 Hz power) differed in comparison to WT-mice. Egr3 -/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1-4 Hz power) relative to WT-mice. Egr3 -/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3 -/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3 -/- mice. Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. © 2016 Associated Professional Sleep Societies, LLC.

  12. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system.

    PubMed

    Ratzka, Andreas; Baron, Olga; Grothe, Claudia

    2011-01-01

    Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in

  13. Ghrelin-Related Peptides Exert Protective Effects in the Cerebral Circulation of Male Mice Through a Nonclassical Ghrelin Receptor(s)

    PubMed Central

    Ku, Jacqueline M.; Andrews, Zane B.; Barsby, Tom; Reichenbach, Alex; Lemus, Moyra B.; Drummond, Grant R.; Sleeman, Mark W.; Spencer, Sarah J.; Sobey, Christopher G.

    2015-01-01

    The ghrelin-related peptides, acylated ghrelin, des-acylated ghrelin, and obestatin, are novel gastrointestinal hormones. We firstly investigated whether the ghrelin gene, ghrelin O-acyltransferase, and the ghrelin receptor (GH secretagogue receptor 1a [GHSR1a]) are expressed in mouse cerebral arteries. Secondly, we assessed the cerebrovascular actions of ghrelin-related peptides by examining their effects on vasodilator nitric oxide (NO) and superoxide production. Using RT-PCR, we found the ghrelin gene and ghrelin O-acyltransferase to be expressed at negligible levels in cerebral arteries from male wild-type mice. mRNA expression of GHSR1a was also found to be low in cerebral arteries, and GHSR protein was undetectable in GHSR-enhanced green fluorescent protein mice. We next found that exogenous acylated ghrelin had no effect on the tone of perfused cerebral arteries or superoxide production. By contrast, exogenous des-acylated ghrelin or obestatin elicited powerful vasodilator responses (EC50 < 10 pmol/L) that were abolished by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester. Furthermore, exogenous des-acylated ghrelin suppressed superoxide production in cerebral arteries. Consistent with our GHSR expression data, vasodilator effects of des-acylated ghrelin or obestatin were sustained in the presence of YIL-781 (GHSR1a antagonist) and in arteries from Ghsr-deficient mice. Using ghrelin-deficient (Ghrl−/−) mice, we also found that endogenous production of ghrelin-related peptides regulates NO bioactivity and superoxide levels in the cerebral circulation. Specifically, we show that NO bioactivity was markedly reduced in Ghrl−/− vs wild-type mice, and superoxide levels were elevated. These findings reveal protective actions of exogenous and endogenous ghrelin-related peptides in the cerebral circulation and show the existence of a novel ghrelin receptor(s) in the cerebral endothelium. PMID:25322462

  14. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice.

    PubMed

    Frei, R B; Luschnig, P; Parzmair, G P; Peinhaupt, M; Schranz, S; Fauland, A; Wheelock, C E; Heinemann, A; Sturm, E M

    2016-07-01

    Accumulation of activated eosinophils in tissue is a hallmark of allergic inflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) has been proposed to elicit eosinophil migration in a CB2 receptor/Gi/o -dependent manner. However, it has been claimed recently that this process may also involve other mechanisms such as cytokine priming and the metabolism of 2-AG into eicosanoids. Here, we explored the direct contribution of specific CB2 receptor activation to human and mouse eosinophil effector function in vitro and in vivo. In vitro studies including CB2 expression, adhesion and migratory responsiveness, respiratory burst, degranulation, and calcium mobilization were conducted in human peripheral blood eosinophils and mouse bone marrow-derived eosinophils. Allergic airway inflammation was assessed in mouse models of acute OVA-induced asthma and directed eosinophil migration. CB2 expression was significantly higher in eosinophils from symptomatic allergic donors. The selective CB2 receptor agonist JWH-133 induced a moderate migratory response in eosinophils. However, short-term exposure to JWH-133 potently enhanced chemoattractant-induced eosinophil shape change, chemotaxis, CD11b surface expression, and adhesion as well as production of reactive oxygen species. Receptor specificity of the observed effects was confirmed in eosinophils from CB2 knockout mice and by using the selective CB2 antagonist SR144528. Of note, systemic application of JWH-133 clearly primed eosinophil-directed migration in vivo and aggravated both AHR and eosinophil influx into the airways in a CB2 -specific manner. This effect was completely absent in eosinophil-deficient ∆dblGATA mice. Our data indicate that CB2 may directly contribute to the pathogenesis of eosinophil-driven diseases. Moreover, we provide new insights into the molecular mechanisms underlying the CB2 -mediated priming of eosinophils. Hence, antagonism of CB2 receptors may represent a novel pharmacological approach

  15. Gαi2- and Gαi3-Deficient Mice Display Opposite Severity of Myocardial Ischemia Reperfusion Injury

    PubMed Central

    Köhler, David; Devanathan, Vasudharani; Bernardo de Oliveira Franz, Claudia; Eldh, Therese; Novakovic, Ana; Roth, Judith M.; Granja, Tiago; Birnbaumer, Lutz; Rosenberger, Peter; Beer-Hammer, Sandra; Nürnberg, Bernd

    2014-01-01

    G-protein-coupled receptors (GPCRs) are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent. PMID:24858945

  16. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2013-04-15

    The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.

  17. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

    PubMed Central

    Hong, J; Sha, S; Zhou, L; Wang, C; Yin, J; Chen, L

    2015-01-01

    Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of

  18. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  19. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  20. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    PubMed

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  1. Gene Expression Deregulation in Postnatal Skeletal Muscle of TK2 Deficient Mice Reveals a Lower Pool of Proliferating Myogenic Progenitor Cells

    PubMed Central

    Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978

  2. Simvastatin reduces neointimal thickening in low-density lipoprotein receptor-deficient mice after experimental angioplasty without changing plasma lipids.

    PubMed

    Chen, Zhiping; Fukutomi, Tatsuya; Zago, Alexandre C; Ehlers, Raila; Detmers, Patricia A; Wright, Samuel D; Rogers, Campbell; Simon, Daniel I

    2002-07-02

    Statins exert antiinflammatory and antiproliferative actions independent of cholesterol lowering. To determine whether these actions might affect neointimal formation, we investigated the effect of simvastatin on the response to experimental angioplasty in LDL receptor-deficient (LDLR-/-) mice, a model of hypercholesterolemia in which changes in plasma lipids are not observed in response to simvastatin. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDLR-/- mice treated with low-dose (2 mg/kg) or high-dose (20 mg/kg) simvastatin or vehicle subcutaneously 72 hours before and then daily after injury. After 7 and 28 days, intimal and medial sizes were measured and the intima to media area ratio (I:M) was calculated. Total plasma cholesterol and triglyceride levels were similar in simvastatin- and vehicle-treated mice. Intimal thickening and I:M were reduced significantly by low- and high-dose simvastatin compared with vehicle alone. Simvastatin treatment was associated with reduced cellular proliferation (BrdU), leukocyte accumulation (CD45), and platelet-derived growth factor-induced phosphorylation of the survival factor Akt and increased apoptosis after injury. Simvastatin modulates vascular repair after injury in the absence of lipid-lowering effects. Although the mechanisms are not yet established, additional research may lead to new understanding of the actions of statins and novel therapeutic interventions for preventing restenosis.

  3. Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice

    PubMed Central

    You, Hanning; Gao, Ting; Raup-Konsavage, Wesley M.; Cooper, Timothy K.; Bronson, Sarah K.; Reeves, W. Brian; Awad, Alaa S.

    2016-01-01

    Inflammation is a central pathophysiologic mechanism that contributes to diabetes mellitus and diabetic nephropathy. Recently, we showed that macrophages directly contribute to diabetic renal injury, and that pharmacological blockade or genetic deficiency of chemokine (C-C motif) receptor 2 (CCR2) confers kidney protection in diabetic nephropathy. However, the direct role of CCR2 in kidney-derived cells such as podocytes in diabetic nephropathy remains unclear. To study this, we developed a transgenic mouse model expressing CCR2 specifically in podocytes (Tg(NPHS2-Ccr2)) on a nephropathy prone (DBA/2J) and CCR2 deficient (Ccr2−/−) background with heterozygous Ccr2+/− littermate controls. Diabetes was induced by streptozotocin. As expected, absence of CCR2 conferred kidney protection after nine weeks of diabetes. In contrast, transgenic CCR2 over expression in the podocytes of Ccr2−/− mice resulted in significantly increased albuminuria, blood urea nitrogen, histopathologic changes, kidney fibronectin and type-1 collagen expression, podocyte loss, and glomerular apoptosis after nine weeks of streptozotocin-induced diabetes. Interestingly, there was no concurrent increase in kidney macrophage recruitment or inflammatory cytokine levels in the mice. These findings support a direct role for CCR2 expression in podocytes to mediate diabetic renal injury, independent of monocyte/macrophage recruitment. Thus, targeting the CCR2 signaling cascade in podocytes could be a novel therapeutic approach for treatment of diabetic nephropathy. PMID:27914709

  4. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice.

    PubMed

    Sophocleous, A; Börjesson, A E; Salter, D M; Ralston, S H

    2015-09-01

    Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout.

    PubMed

    Ehlken, H; Krishna-Subramanian, S; Ochoa-Callejero, L; Kondylis, V; Nadi, N E; Straub, B K; Schirmacher, P; Walczak, H; Kollias, G; Pasparakis, M

    2014-11-01

    Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving

  6. Impaired steroidogenesis in the testis of leptin-deficient mice (ob/ob -/-).

    PubMed

    Martins, Fabiane Ferreira; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-06-01

    The obesity and its comorbidities, including resistance to leptin, impacts the reproductive function. Testes express leptin receptors in the germ cells and Leydig cells. Then, leptin-deficient animals are obese and infertile. We aimed to evaluate the structure and steroidogenic pathway of the testis of deficient leptin mice. Three months old male C57BL/6 mice (wild-type, WT) and deficient leptin (ob/ob) mice had their testes dissected and prepared for analyses. Compared to the WT group, the ob/ob group showed a greater body mass with smaller testes, and alterations in the germinative epithelium: fewer spermatogonia, spermatocytes, and spermatids. The Sertoli cells and the germ cells showed condensed nuclei and nuclear fragmentation indicating cell death, in agreement with a low expression of the proliferating cell nuclear antigen and a high expression of Caspase3. In the ob/ob group, the sperm was absent in the seminiferous tubules, and the steroidogenic pathway was compromised (low 3Beta hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein). Further, all hormone receptors involved in the testicular function were down expressed (androgen, estrogen, follicle-stimulating, luteinizing, aromatase, and nicotinamide adenine dinucleotide phosphate). In conclusion, the findings indicate significant morphological, hormonal and enzymatic changes in the testis of the ob/ob mice. The shifts in the enzymatic steroidogenic pathway and the enzymes related to spermatic activity support the insights about the failures in the fertility of these animals. The study provides new evidence and contributes to the understanding of how the lack of leptin and obesity might negatively modulate the testicular function leading to infertility. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    PubMed Central

    Barathi, Veluchamy A.; Kwan, Jia Lin; Tan, Queenie S. W.; Weon, Sung Rhan; Seet, Li Fong; Goh, Liang Kee; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error. PMID:23649821

  8. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    PubMed

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  9. Protease activated receptor 2 in diabetic nephropathy: a double edged sword

    PubMed Central

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, Arnold C

    2017-01-01

    Diabetic nephropathy is a major microvascular complication of diabetes mellitus, and the leading cause of end stage renal disease worldwide. The pathogenesis of diabetic nephropathy is complex, making the development of novel treatments that stop or reverse the progression of microalbuminuria into end stage renal disease a challenge. Protease activated receptor (PAR)-2 has recently been shown to aggravate disease progression in diabetic nephropathy based upon which it was suggested that PAR-2 would be a potential target for the treatment of diabetic nephropathy. To fully appreciate the translational potential of PAR-2 in diabetic nephropathy, we evaluated the effect of PAR-2 deficiency on the development of diabetic nephropathy in a streptozotocin-induced diabetes model characteristic of type 1 diabetes. Although diabetic PAR-2 deficient mice showed reduced albuminuria compared to diabetic wild type mice, an increase in mesangial expansion was evident in the PAR-2 deficient mice. No differences were observed in blood glucose levels, podocyte numbers or in glomerular vascular density. These results show that PAR-2 plays a dual role in the development of streptozotocin-induced diabetic nephropathy and may thus not be the eagerly awaited novel target to combat diabetic nephropathy. Targeting PAR-2 should consequently only be pursued with great care in a clinical setting. PMID:29118913

  10. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  11. CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice

    PubMed Central

    Shimokawa, Noriaki; Haglund, Kaisa; Hölter, Sabine M; Grabbe, Caroline; Kirkin, Vladimir; Koibuchi, Noriyuki; Schultz, Christian; Rozman, Jan; Hoeller, Daniela; Qiu, Chun-Hong; Londoño, Marina B; Ikezawa, Jun; Jedlicka, Peter; Stein, Birgit; Schwarzacher, Stephan W; Wolfer, David P; Ehrhardt, Nicole; Heuchel, Rainer; Nezis, Ioannis; Brech, Andreas; Schmidt, Mirko H H; Fuchs, Helmut; Gailus-Durner, Valerie; Klingenspor, Martin; Bogler, Oliver; Wurst, Wolfgang; Deller, Thomas; de Angelis, Martin Hrabé; Dikic, Ivan

    2010-01-01

    Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice. PMID:20551902

  12. Losartan Decreases Cardiac Muscle Fibrosis and Improves Cardiac Function in Dystrophin-Deficient Mdx Mice

    PubMed Central

    Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  13. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    PubMed

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  14. Helicobacter cinaedi Induced Typhlocolitis in Rag-2-Deficient Mice

    PubMed Central

    Shen, Zeli; Feng, Yan; Rickman, Barry; Fox, James G.

    2015-01-01

    Background Helicobacter cinaedi, an enterohepatic helicobacter species (EHS), is an important human pathogen and is associated with a wide range of diseases, especially in immunocompromised patients. It has been convincingly demonstrated that innate immune response to certain pathogenic enteric bacteria is sufficient to initiate colitis and colon carcinogenesis in recombinase-activating gene (Rag)-2-deficient mice model. To better understand the mechanisms of human IBD and its association with development of colon cancer, we investigated whether H. cinaedi could induce pathological changes noted with murine enterohepatic helicobacter infections in the Rag2−/− mouse model. Materials and Methods Sixty 129SvEv Rag2−/− mice mouse were experimentally or sham infected orally with H. cinaedi strain CCUG 18818. Gastrointestinal pathology and immune responses in infected and control mice were analyzed at 3, 6 and 9 months postinfection (MPI). H. cinaedi colonized the cecum, colon, and stomach in infected mice. Results H. cinaedi induced typhlocolitis in Rag2−/− mice by 3 MPI and intestinal lesions became more severe by 9 MPI. H. cinaedi was also associated with the elevation of proinflammatory cytokines, interferon-γ, tumor-necrosis factor-α, IL-1β, IL-10; iNOS mRNA levels were also upregulated in the cecum of infected mice. However, changes in IL-4, IL-6, Cox-2, and c-myc mRNA expressions were not detected. Conclusions Our results indicated that the Rag2−/− mouse model will be useful to continue investigating the pathogenicity of H. cinaedi, and to study the association of host immune responses in IBD caused by EHS. PMID:25381744

  15. Serotonin systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors and induce anorexia via a leptin-independent pathway in mice.

    PubMed

    Nonogaki, Katsunori; Ohba, Yukie; Sumii, Makiko; Oka, Yoshitomo

    2008-07-18

    NEFA/nucleobindin2 (NUCB2), a novel satiety molecule, is associated with leptin-independent melanocortin signaling in the central nervous system. Here, we show that systemic administration of m-chlorophenylpiperazine (mCPP), a serotonin 5-HT1B/2C receptor agonist, significantly increased the expression of hypothalamic NUCB2 in wild-type mice. The increases in hypothalamic NUCB2 expression induced by mCPP were attenuated in 5-HT2C receptor mutant mice. Systemic administration of mCPP suppressed food intake in db/db mice with leptin receptor mutation as well as lean control mice. On the other hand, the expression of hypothalamic NUCB2 and proopiomelanocortin (POMC) was significantly decreased in hyperphagic and non-obese 5-HT2C receptor mutants compared with age-matched wild-type mice. Interestingly, despite increased expression of hypothalamic POMC, hypothalamic NUCB2 expression was decreased in 5-HT2C receptor mutant mice with heterozygous mutation of beta-endorphin gene. These findings suggest that 5-HT systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors, and induce anorexia via a leptin-independent pathway in mice.

  16. Circadian clock-deficient mice as a tool for exploring disease etiology.

    PubMed

    Doi, Masao

    2012-01-01

    One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

  17. Testis development, fertility, and survival in Ethanolamine kinase 2-deficient mice.

    PubMed

    Gustin, Sonja E; Western, Patrick S; McClive, Peter J; Harley, Vincent R; Koopman, Peter A; Sinclair, Andrew H

    2008-12-01

    Ethanolamine kinase 2 (Eki2) was previously isolated from a differential expression screen designed to identify candidate genes involved in testis development and differentiation. In mouse, Eki2 is specifically up-regulated in Sertoli cells of the developing testis at the time of sex determination. Based on this expression profile, Eki2 was considered a good candidate testis-determining gene. To investigate a possible role of Eki2 in testis development, we have generated a mouse with targeted disruption of the Eki2 gene by using an EGFP replacement strategy. No abnormalities were detected in the Eki2-deficient mice with regard to embryonic and adult testis morphology, differentiation, function, or fertility. Furthermore, no significant differences were observed in litter sizes, pup mortality rates, or distribution of the sexes among the offspring. Ethanolamine kinases are involved in the biosynthesis of phosphatidylethanolamine, a major membrane phospholipid. Expression analysis indicates that the absence of an apparent phenotype in the Eki2-deficient mice may be due to compensation by Eki2-family members or the activation of an alternative pathway to generate phosphatidylethanolamine. Expression of EGFP in this mouse model enabled the isolation of gonad cell populations, providing a useful resource from which to obtain relatively pure early steroidogenic cells for further studies.

  18. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling.

    PubMed

    McMillen, T S; Minami, E; Leboeuf, R C

    2013-06-24

    Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called 'yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.

  19. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition.

    PubMed

    Mueller, Kristina M; Hartmann, Kerstin; Kaltenecker, Doris; Vettorazzi, Sabine; Bauer, Mandy; Mauser, Lea; Amann, Sabine; Jall, Sigrid; Fischer, Katrin; Esterbauer, Harald; Müller, Timo D; Tschöp, Matthias H; Magnes, Christoph; Haybaeck, Johannes; Scherer, Thomas; Bordag, Natalie; Tuckermann, Jan P; Moriggl, Richard

    2017-02-01

    Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice. © 2017 by the American Diabetes Association.

  20. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  1. Preservation of Eumelanin Hair Pigmentation in Proopiomelanocortin-Deficient Mice on a Nonagouti (a/a) Genetic Background

    PubMed Central

    Slominski, Andrzej; Plonka, Przemyslaw M.; Pisarchik, Alexander; Smart, James L.; Tolle, Virginie; Wortsman, Jacobo; Low, Malcolm J.

    2005-01-01

    The original strain of proopiomelanocortin (POMC)-deficient mice (Pomc−/− ) was generated by homologous recombination in 129X1/SvJ (Aw/Aw)-derived embryonic stem cells using a targeting construct that deleted exon 3, encoding all the known functional POMC-derived peptides including αMSH, from the Pomc gene. Although these Pomc−/− mice exhibited adrenal hypoplasia and obesity similar to the syndrome of POMC deficiency in children, their agouti coat color was only subtly altered. To further investigate the mechanism of hair pigmentation in the absence of POMC peptides, we studied wild-type (Pomc+/+), heterozygous (Pomc+/−), and homozygous (Pomc−/−) mice on a nonagouti (a/a) 129;B6 hybrid genetic background. All three genotypes had similar black fur pigmentation with yellow hairs behind the ears, around the nipples, and in the perianal area characteristic of inbred C57BL/6 mice. Histologic and electron paramagnetic resonance spectrometry examination demonstrated that hair follicles in back skin of Pomc−/− mice developed with normal structure and eumelanin pigmentation; corresponding molecular analyses, however, excluded local production of αMSH and ACTH because neither Pomc nor putative Pomc pseudogene mRNAs were detected in the skin. Thus, 129;B6 Pomc null mutant mice produce abundant eumelanin hair pigmentation despite their congenital absence of melanocortin ligands. These results suggest that either the mouse melanocortin receptor 1 has sufficient basal activity to trigger and sustain eumelanogenesis in vivo or that redundant nonmelanocortin pathway(s) compensate for the melanocortin deficiency. Whereas the latter implies feedback control of melanogenesis, it is also possible that the two mechanisms operate jointly in hair follicles. PMID:15564334

  2. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  3. Involvement of Smad3 phosphoisoform-mediated signaling in the development of colonic cancer in IL-10-deficient mice.

    PubMed

    Hachimine, Daisaku; Uchida, Kazushige; Asada, Masanori; Nishio, Akiyoshi; Kawamata, Seiji; Sekimoto, Go; Murata, Miki; Yamagata, Hideo; Yoshida, Katsunori; Mori, Shigeo; Tahashi, Yoshiya; Matsuzaki, Koichi; Okazaki, Kazuichi

    2008-06-01

    Chronic inflammation predisposes to cancer. Transforming growth factor (TGF)-beta, a multifunctional protein, suppresses the growth of normal colonic epithelial cells, whereas it stimulates the proliferation of cancer cells. Interleukin (IL)-10-deficient mice, which develop colitis and colorectal cancer, show an increased level of plasma TGF-beta. Although TGF-beta may be a key molecule in the development of colon cancer arising from chronic colitis in IL-10-deficient mice, the role of TGF-beta still remains unclear. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which converts the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). We studied C57BL/6-IL-10-deficient mice (n=18) at 4 to 32 weeks of age. We investigated histology, and pSmad2/3L, pSmad2/3C, and p53 by immunohistochemistry. pSmad3L staining was detected in the cancer cells in all 10 mice with colonic cancer and in the epithelial cells in 7 of 12 mice with colonic dysplasia, but not in the normal or colitic mice. pSmad3c was detected without any significant difference between stages. p53 was weakly stained in a few cancer cells in 5 out of 10 mice. Smad3L signaling plays an important role in the carcinogenesis of chronic colitis in IL-10-deficient mice.

  4. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg.

    PubMed

    Reliene, Ramune; Yamamoto, Mitsuko L; Rao, P Nagesh; Schiestl, Robert H

    2010-12-01

    Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.

  5. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding.

    PubMed

    Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.

  6. Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice.

    PubMed

    DeOliveira, Caroline Candida; Paiva Caria, Cintia Rabelo E; Ferreira Gotardo, Erica Martins; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-03-15

    Adenosine receptors are expressed in adipose tissue and control physiological and pathological events such as lipolysis and inflammation. The aim of this study was to evaluate the activity of N 6 -cyclopentyladenosine (CPA), a potent and selective A 1 adenosine receptor agonist; 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine hydrochloride (CGS-21680), an A 2A adenosine receptor agonist; and 5'-N-ethylcarboxamidoadenosine (NECA), a potent non-selective adenosine receptor agonist on adipose tissue inflammatory alterations induced by obesity in mice. Swiss mice were fed with a high-fat diet for 12 weeks and agonists were administered in the last two weeks. Body weight, adiposity and glucose homeostasis were evaluated. Inflammation in adipose tissue was assessed by evaluation of adipokine production and macrophage infiltration. Adenosine receptor signaling in adipose tissue was also evaluated. Mice that received CGS21680 presented an improvement in glucose homeostasis in association with systemically reduced inflammatory markers (TNF-α, PAI-1) and in the visceral adipose tissue (TNF-α, MCP-1, macrophage infiltration). Activation of p38 signaling was found in adipose tissue of this group of mice. NECA-treated mice presented some improvements in glucose homeostasis associated with an observed weight loss. Mice that received CPA presented only a reduction in the ex vivo basal lipolysis rate measured within visceral adipose tissue. In conclusion, administration of the A 2A receptor agonist to obese mice resulted in improvements in glucose homeostasis and adipose tissue inflammation, corroborating the idea that new therapeutics to treat obesity could emerge from these compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Antiatherosclerotic Effects of 1-Methylnicotinamide in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice: A Comparison with Nicotinic Acid.

    PubMed

    Mateuszuk, Lukasz; Jasztal, Agnieszka; Maslak, Edyta; Gasior-Glogowska, Marlena; Baranska, Malgorzata; Sitek, Barbara; Kostogrys, Renata; Zakrzewska, Agnieszka; Kij, Agnieszka; Walczak, Maria; Chlopicki, Stefan

    2016-02-01

    1-Methylnicotinamide (MNA), the major endogenous metabolite of nicotinic acid (NicA), may partially contribute to the vasoprotective properties of NicA. Here we compared the antiatherosclerotic effects of MNA and NicA in apolipoprotein E (ApoE)/low-density lipoprotein receptor (LDLR)-deficient mice. ApoE/LDLR(-/-) mice were treated with MNA or NicA (100 mg/kg). Plaque size, macrophages, and cholesterol content in the brachiocephalic artery, endothelial function in the aorta, systemic inflammation, platelet activation, as well as the concentration of MNA and its metabolites in plasma and urine were measured. MNA and NicA reduced atherosclerotic plaque area, plaque inflammation, and cholesterol content in the brachiocephalic artery. The antiatherosclerotic actions of MNA and NicA were associated with improved endothelial function, as evidenced by a higher concentration of 6-keto-prostaglandin F1 α and nitrite/nitrate in the aortic ring effluent, inhibition of platelets (blunted thromboxane B2 generation), and inhibition of systemic inflammation (lower plasma concentration of serum amyloid P, haptoglobin). NicA treatment resulted in an approximately 2-fold higher concentration of MNA and its metabolites in urine and a 4-fold higher nicotinamide/MNA ratio in plasma, compared with MNA treatment. In summary; MNA displays pronounced antiatherosclerotic action in ApoE/LDLR(-/-) mice, an effect associated with an improvement in prostacyclin- and nitric oxide-dependent endothelial function, inhibition of platelet activation, inhibition of inflammatory burden in plaques, and diminished systemic inflammation. Despite substantially higher MNA availability after NicA treatment, compared with an equivalent dose of MNA, the antiatherosclerotic effect of NicA was not stronger. We suggest that detrimental effects of NicA or its metabolites other than MNA may limit beneficial effects of NicA-derived MNA. Copyright © 2016 by The American Society for Pharmacology and Experimental

  8. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis

    PubMed Central

    Zhu, Yan; Li, Guodong; Williams, Jessica A.; Buckley, Kyle; Tawfik, Ossama; Luyendyk, James P.

    2016-01-01

    Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXRhep−/−) in liver tumor formation. The results showed that FXRhep−/− mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXRhep−/− mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXRhep−/− mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXRhep−/− mice presented with severe liver injury and tumors. Interestingly, FXRhep−/− mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXRhep−/− mice. However, cholic acid feeding reversed these effects in FXRhep−/− mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation. PMID:26744468

  9. Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

    PubMed Central

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck

    2009-01-01

    OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358

  10. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.

    PubMed

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck

    2009-10-01

    We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.

  11. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    PubMed Central

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  12. Sphingosine kinase 2-deficiency mediated changes in spinal pain processing.

    PubMed

    Canlas, Jastrow; Holt, Phillip; Carroll, Alexander; Rix, Shane; Ryan, Paul; Davies, Lorena; Matusica, Dusan; Pitson, Stuart M; Jessup, Claire F; Gibbins, Ian L; Haberberger, Rainer V

    2015-01-01

    Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined), and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P) and its receptors have recently been shown to modulate nociceptive signaling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2), in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord (SC) with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2(-/-)) showed in contrast to mice deficient in Sphk1 (Sphk1(-/-)) substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2(-/-) mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2(-/-) and wild-type mice. Chronic peripheral inflammation (CPI) caused a bilateral increase in mechanical sensitivity in Sphk2(-/-) mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral SC of wild-type but not Sphk2(-/-) mice. Similarly, Sphk2(-/-) mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker Glial fibrillary acidic protein (GFAP). Our results suggest that the tightly regulated cell signaling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.

  13. INTERACTION BETWEEN DELTA OPIOID RECEPTORS AND BENZODIAZEPINES IN CO2- INDUCED RESPIRATORY RESPONSES IN MICE

    PubMed Central

    Borkowski, Anne H.; Barnes, Dylan C.; Blanchette, Derek R.; Castellanos, F. Xavier; Klein, Donald F.; Wilson, Donald A.

    2011-01-01

    The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic. PMID:21561601

  14. Prostaglandin E2 is critical for the development of niacin-deficiency-induced photosensitivity via ROS production

    NASA Astrophysics Data System (ADS)

    Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji

    2013-10-01

    Pellagra is a photosensitivity syndrome characterized by three ``D's'': diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.

  15. Overexpression of 15-lipoxygenase in the vascular endothelium is associated with increased thymic apoptosis in LDL receptor-deficient mice.

    PubMed

    Afek, A; Zurgil, N; Bar-Dayan, Y; Polak-Charcon, S; Goldberg, I; Deutsch, M; Kopolovich, J; Keren, G; Harats, D; George, J

    2004-01-01

    15-Lipoxygenase (15-LO) is a nonheme iron-containing enzyme that catalyzes the peroxidation of fatty acids. Herein, we studied the effect of 15-LO overexpression in the vascular endothelium on thymocyte apoptosis by evaluating thymuses from low-density lipoprotein receptor-deficient (LDL-RD) mice and LDL-RD/15-LO mice. Thymuses were evaluated by immunohistochemistry and by TUNEL whereas in vitro studies were carried out by employing freshly isolated thymocytes from the respective mice and evaluation of apoptosis by propidium iodide and annexin V cytometry. The apoptotic index in LDL-RD/15-LO mice was significantly higher than in the LDL-RD mice. In the thymic medulla the difference was smaller, although still significant. Freshly isolated thymus cells from LDL-RD/15-LO mice exhibited a higher rate of spontaneous cell death than controls. Incubation of thymus cells in the presence of the cell-permeable caspase-3 inhibitor DEVD-CMK resulted in a decrease in the frequency of apoptotic cells in LDL-RD/15-LO thymocytes, whereas no effect was evident in control thymocytes. The antioxidant N-acetylcysteine causes the increase in apoptosis in both groups. LDL-RD/15-LO mice exhibit increased thymocyte apoptosis both in vivo and in vitro. These findings may suggest a role for 15-LO in the natural selection of thymocytes.

  16. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    PubMed Central

    Li, Yong; Kim, Jimok

    2016-01-01

    Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779

  17. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    PubMed

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  18. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  19. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. © 2016. Published by The Company of Biologists Ltd.

  20. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators.

    PubMed

    Duffney, Lara J; Zhong, Ping; Wei, Jing; Matas, Emmanuel; Cheng, Jia; Qin, Luye; Ma, Kaijie; Dietz, David M; Kajiwara, Yuji; Buxbaum, Joseph D; Yan, Zhen

    2015-06-09

    Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    PubMed Central

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  2. Activation of spinal cannabinoid CB2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice.

    PubMed

    Ikeda, H; Ikegami, M; Kai, M; Ohsawa, M; Kamei, J

    2013-10-10

    The role of spinal cannabinoid systems in neuropathic pain of streptozotocin (STZ)-induced diabetic mice was studied. In normal mice, injection of the cannabinoid receptor agonist WIN-55,212-2 (1 and 3μg, i.t.) dose-dependently prolonged the tail-flick latency, whereas there were no changes with the injection of either cannabinoid CB1 (AM 251, 1 μg, i.t.) or CB2 (AM 630, 4 μg, i.t.) receptor antagonists. AM 251 (1 μg, i.t.), but not AM 630 (4 μg, i.t.), significantly inhibited the prolongation of the tail-flick latency induced by WIN-55,212-2 (3 μg, i.t.). In STZ-induced diabetic mice, the tail-flick latency was significantly shorter than that in normal mice. A low dose of WIN-55,212-2 (1 μg, i.t.) significantly recovered the tail-flick latency in STZ-induced diabetic mice. The effect of WIN-55,212-2 (1 μg, i.t.) in STZ-induced diabetic mice was significantly inhibited by AM 630 (4 μg, i.t.), but not AM 251 (1 μg). The selective cannabinoid CB2 receptor agonist L-759,656 (19 and 38 μg, i.t.) also dose-dependently recovered the tail-flick latency in STZ-induced diabetic mice, and this recovery was inhibited by AM 630 (4 μg, i.t.). The protein levels of cannabinoid CB1 receptors, CB2 receptors and diacylglycerol lipase α (DGL-α), the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the spinal cord were examined using Western blotting. The protein levels of both cannabinoid CB1 and CB2 receptors were increased in STZ-induced diabetic mice, whereas the protein level of DGL-α was significantly decreased. These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Endogenous Siderophore 2,5-Dihydroxybenzoic Acid Deficiency Promotes Anemia and Splenic Iron Overload in Mice

    PubMed Central

    Liu, Zhuoming; Ciocea, Alieta

    2014-01-01

    Eukaryotes produce a siderophore-like molecule via a remarkably conserved biosynthetic pathway. 3-OH butyrate dehydrogenase (BDH2), a member of the short-chain dehydrogenase (SDR) family of reductases, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA). Depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of intracellular iron and mitochondrial iron deficiency in cultured mammalian cells, as well as in yeast cells and zebrafish embryos We disrupted murine bdh2 by homologous recombination to analyze the effect of bdh2 deletion on erythropoiesis and iron metabolism. bdh2 null mice developed microcytic anemia and tissue iron overload, especially in the spleen. Exogenous supplementation with 2,5-DHBA alleviates splenic iron overload in bdh2 null mice. Additionally, bdh2 null mice exhibit reduced serum iron. Although BDH2 has been proposed to oxidize ketone bodies, we found that BDH2 deficiency did not alter ketone body metabolism in vivo. In sum, our findings demonstrate a key role for BDH2 in erythropoiesis. PMID:24777603

  4. Immunity to Trichinella spiralis infection in vitamin A-deficient mice

    PubMed Central

    1992-01-01

    Vitamin A-deficient (A-) mice make strikingly poor IgG responses when they are immunized with purified protein antigens. Previously, we showed that A- T cells overproduce interferon gamma (IFN-gamma), which then could inhibit interleukin 4 (IL-4)-stimulated B cell IgG responses. To determine if the altered IFN-gamma regulation pattern and its immunological consequences would extend to a natural infection, we studied mice infected with the parasitic helminth Trichinella spiralis. The course of the infection was similar in A- and A-sufficient (A+) mice. These mice did not differ with respect to newborn larvae/female/hour produced in the intestine, or muscle larvae burden 5 wk postinfection. They also did not differ in the intestinal worm expulsion rate until day 15, when A- mice still harbored parasites, whereas A+ mice had cleared intestinal worms. Vitamin A deficiency reduced both the frequency of B lymphocytes secreting IgG1 antibodies to parasite antigens, and the bone marrow eosinophilia associated with helminth infection. The cytokine secretion patterns in infected mice were consistent with these observations and with previous studies. Mesenteric lymph node cells from infected A- mice secreted significantly more IFN-gamma, and significantly less IL-2, IL-4, and IL- 5 than infected A+ controls. A- splenocytes secreted significantly more IFN-gamma, and equivalent amounts of IL-2, IL-4, and IL-5 compared with A+ controls. Interestingly, CD4-CD8- cells secreted the majority of the IL-4 produced in the spleen. The IL-2, IL-4, and IL-5 steady-state transcript levels correlated with secreted protein levels, but IFN- gamma transcripts did not. Although they secreted more protein, A- cells contained fewer IFN-gamma transcripts than A+ cells. These results suggest two vitamin A-mediated regulation steps in IFN-gamma gene expression: positive regulation of IFN-gamma transcript levels, and negative regulation posttranscriptionally. The essentially unaltered outcome of T

  5. Decreased Cocaine Motor Sensitization and Self-Administration in Mice Overexpressing Cannabinoid CB2 Receptors

    PubMed Central

    Aracil-Fernández, Auxiliadora; Trigo, José M; García-Gutiérrez, María S; Ortega-Álvaro, Antonio; Ternianov, Alexander; Navarro, Daniela; Robledo, Patricia; Berbel, Pere; Maldonado, Rafael; Manzanares, Jorge

    2012-01-01

    The potential involvement of the cannabinoid CB2 receptors (CB2r) in the adaptive responses induced by cocaine was studied in transgenic mice overexpressing the CB2r (CB2xP) and in wild-type (WT) littermates. For this purpose, the acute and sensitized locomotor responses to cocaine, conditioned place preference, and cocaine intravenous self-administration were evaluated. In addition, we assessed whether CB2r were localized in neurons and/or astrocytes, and whether they colocalized with dopamine D1 and D2 receptors (D1Dr and D2Dr). Dopamine (DA) extracellular levels in the nucleus accumbens (NAcc), and gene expression of tyrosine hydroxylase (TH) and DA transporter (DAT) in the ventral tegmental area (VTA), and μ-opioid and cannabinoid CB1 receptors in the NAcc were also studied in both genotypes. CB2xP mice showed decreased motor response to acute administration of cocaine (10–20 mg/kg) and cocaine-induced motor sensitization compared with WT mice. CB2xP mice presented cocaine-induced conditioned place aversion and self-administered less cocaine than WT mice. CB2r were found in neurons and astrocytes and colocalized with D2Dr in the VTA and NAcc. No significant differences in extracellular DA levels in the NAcc were observed between genotypes after cocaine administration. Under baseline conditions, TH and DAT gene expression was higher and μ-opioid receptor gene expression was lower in CB2xP than in WT mice. However, both genotypes showed similar changes in TH and μ-opioid receptor gene expression after cocaine challenge independently of the pretreatment received. Importantly, the cocaine challenge decreased DAT gene expression to a lesser extent in cocaine-pretreated CB2xP than in cocaine-pretreated WT mice. These results revealed that CB2r are involved in cocaine motor responses and cocaine self-administration, suggesting that this receptor could represent a promising target to develop novel treatments for cocaine addiction. PMID:22414816

  6. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    PubMed

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and

  7. Calpain-2 Compensation Promotes Angiotensin II-Induced Ascending and Abdominal Aortic Aneurysms in Calpain-1 Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Moorleghen, Jessica J.; Balakrishnan, Anju; Howatt, Deborah A.; Chishti, Athar H.; Uchida, Haruhito A.

    2013-01-01

    Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an

  8. Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice.

    PubMed

    Kim, Harry K W; Aruwajoye, Olumide; Sucato, Daniel; Richards, B Stephens; Feng, Gen-Sheng; Chen, Di; King, Philip D; Kamiya, Nobuhiro

    2013-10-01

    Genetic engineering techniques were used to develop an animal model of juvenile scoliosis during a postnatal skeletal-growth stage. To investigate the effect of targeted SHP2 (Src homology-2) deficiency in chondrocytes on the development of scoliosis during a juvenile growth stage in mice. Juvenile idiopathic scoliosis can lead to progressive severe spinal deformity. The pathophysiology and molecular mechanisms responsible for the deformity are unknown. Here, we investigated the role of SHP2 deficiency in chondrocytes as a potential cause of juvenile scoliosis. Genetically engineered mice with inducible deletion of SHP2 in chondrocytes were generated. The SHP2 function in chondrocytes was inactivated during a juvenile growth stage from the mouse age of 4 weeks. Radiographical, micro-computed tomographic, and histological assessments were used to analyze spinal changes. When SHP2 deficiency was induced during the juvenile stage, a progressive kyphoscoliotic deformity (thoracic lordosis and thoracolumbar kyphoscoliosis) developed within 2 weeks of the initiation of SHP2 deficiency. The 3-dimensional micro-computed tomography analysis confirmed the kyphoscoliotic deformity with a rotational deformity of the spine and osteophyte formation. The histological analysis revealed disorganization of the vertebral growth plate cartilage. Interestingly, when SHP2 was disrupted during the adolescent to adult stages, no spinal deformity developed. SHP2 plays an important role in normal spine development during skeletal maturation. Chondrocyte-specific deletion of SHP2 at a juvenile stage produced a kyphoscoliotic deformity. This new mouse model will be useful for future investigations of the role of SHP2 deficiency in chondrocytes as a mechanism leading to the development of juvenile scoliosis. N/A.

  9. PTGS-2-PTGER2/4 signaling pathway partially protects from diabetogenic toxicity of streptozotocin in mice.

    PubMed

    Vennemann, Antje; Gerstner, Anemone; Kern, Niklas; Ferreiros Bouzas, Nerea; Narumiya, Shuh; Maruyama, Takayuki; Nüsing, Rolf M

    2012-07-01

    Prostanoids are suggested to participate in diabetes pathology, but their roles are controversially discussed. The purpose of the current study was to examine the role of cyclooxygenase (prostaglandin synthase [PTGS]) enzymes and prostaglandin (PG) E(2) signaling pathways in streptozotocin (STZ)-induced type 1 diabetes. Blood glucose, insulin, and survival rate were studied in mice with targeted disruption of the genes for PTGS and PGE receptors (PTGERs). PGE(2) was found as the main prostanoid formed by the pancreas. Contrarily to PTGS-1, deficiency of PTGS-2 activity significantly amplified STZ effect, causing dramatic loss of insulin production and rise in blood glucose and death rate. STZ metabolism was unaffected by PTGS deficiency. Diabetogenicity of STZ in PTGER1(-/-), PTGER2(-/-), PTGER3(-/-), and PTGER4(-/-) mice was comparable to control mice. In striking contrast, combined knockout of PTGER2 and PTGER4 by blocking PTGER4 in PTGER2(-/-) mice strongly enhanced STZ pathology. Treatment of PTGS-2(-/-) and wild-type mice with PTGER2/PTGER4 agonists partially protected against STZ-induced diabetes and restored β-cell function. Our data uncover a previously unrecognized protective role of PTGS-2-derived PGE(2) in STZ-induced diabetes mediated by the receptor types PTGER2 and PTGER4. These findings offer the possibility to intervene in early progression of type 1 diabetes by using PTGER-selective agonists.

  10. Increased anxiety and synaptic plasticity in estrogen receptor -deficient mice

    NASA Astrophysics Data System (ADS)

    Krel, Wojciech; Dupont, Sonia; Krust, Andrée; Chambon, Pierre; Chapman, Paul F.

    2001-10-01

    Estrogens are powerful modulators of neuronal physiology and in humans may affect a broad range of functions, including reproductive, emotional, and cognitive behaviors. We studied the contribution of estrogen receptors (ERs) in modulation of emotional processes and analyzed the effects of deleting ER or ER in mice. Behavior consistent with increased anxiety was observed principally in ER mutant females and was associated with a reduced threshold for the induction of synaptic plasticity in the basolateral amygdala. Local increase of 5-hydroxytryptamine 1a receptor expression inmedial amygdala may contribute to these changes. Our data show that, particularly in females, there is an important role for ERβ-mediated estrogen signaling in the processing of emotional behavior.

  11. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    PubMed

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  12. Impaired removal of Vβ8(+) lymphocytes aggravates colitis in mice deficient for B cell lymphoma-2-interacting mediator of cell death (Bim).

    PubMed

    Leucht, K; Caj, M; Fried, M; Rogler, G; Hausmann, M

    2013-09-01

    We investigated the role of B cell lymphoma (BCL)-2-interacting mediator of cell death (Bim) for lymphocyte homeostasis in intestinal mucosa. Lymphocytes lacking Bim are refractory to apoptosis. Chronic colitis was induced in Bim-deficient mice (Bim(-/-) ) with dextran sulphate sodium (DSS). Weight loss and colonoscopic score were increased significantly in Bim(-/-) mice compared to wild-type mice. As Bim is induced for the killing of autoreactive cells we determined the role of Bim in the regulation of lymphocyte survival at mucosal sites. Upon chronic dextran sulphate sodium (DSS)-induced colitis, Bim(-/-) animals exhibited an increased infiltrate of lymphocytes into the mucosa compared to wild-type mice. The number of autoreactive T cell receptor (TCR) Vβ8(+) lymphocytes was significantly higher in Bim(-/-) mice compared to wild-type controls. Impaired removal of autoreactive lymphocytes in Bim(-/-) mice upon chronic DSS-induced colitis may therefore contribute to aggravated mucosal inflammation. © 2013 British Society for Immunology.

  13. SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation

    PubMed Central

    Mohanty, Joy G.; Nagababu, Enika; Friedman, Jeffrey S.; Rifkind, Joseph M.

    2013-01-01

    Among the three types of super oxide dismutases (SODs) known, SOD2 deficiency is lethal in neonatal mice owing to cardiomyopathy caused by severe oxidative damage. SOD2 is found in red blood cell (RBC) precursors, but not in mature RBCs. To investigate the potential damage to mature RBCs resulting from SOD2 deficiency in precursor cells, we studied RBCs from mice in which fetal liver stem cells deficient in SOD2 were capable of efficiently rescuing lethally irradiated host animals. These transplanted animals lack SOD2 only in hematopoietically generated cells and live longer than SOD2 knockouts. In these mice, approximately 2.8% of their total RBCs in circulation are iron-laden reticulocytes, with numerous siderocytic granules and increased protein oxidation similar to that seen in sideroblastic anemia. We have studied the RBC deformability and oxidative stress in these animals and the control group by measuring them with a microfluidic ektacytometer and assaying fluorescent heme degradation products with a fluorimeter, respectively. In addition, the rate of hemoglobin oxidation in RBCs from these mice and the control group were measured spectrophotometrically. The results show that RBCs from these SOD2-deficient mice have reduced deformability, increased heme degradation products, and an increased rate of hemoglobin oxidation compared with control animals, indicative of increased RBC oxidative stress. PMID:23142655

  14. Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice.

    PubMed

    Patchev, Alexandre V; Fischer, Dieter; Wolf, Siegmund S; Herkenham, Miles; Götz, Franziska; Gehin, Martine; Chambon, Pierre; Patchev, Vladimir K; Almeida, Osborne F X

    2007-01-01

    The transcription-intermediary-factor-2 (TIF-2) is a coactivator of the glucocorticoid receptor (GR), and its disruption would be expected to influence glucocorticoid-mediated control of the hypothalamo-pituitary-adrenal (HPA) axis. Here, we show that its targeted deletion in mice is associated with altered expression of several glucocorticoid-dependent components of HPA regulation (e.g., corticotropin-releasing hormone, vasopressin, ACTH, glucocorticoid receptors), suggestive of hyperactivity under basal conditions. At the same time, TIF-2(-/-) mice display significantly lower basal corticosterone levels and a sluggish and blunted initial secretory response to brief emotional and prolonged physical stress. Subsequent analysis revealed this discrepancy to result from pronounced aberrations in the structure and function of the adrenal gland, including the cytoarchitectural organization of the zona fasciculata and basal and stress-induced expression of key elements of steroid hormone synthesis, such as the steroidogenic acute regulatory (StAR) protein and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). In addition, altered expression levels of two nuclear receptors, DAX-1 and steroidogenic factor 1 (SF-1), in the adrenal cortex strengthen the view that TIF-2 deletion disrupts adrenocortical development and steroid biosynthesis. Thus, hyperactivity of the hypothalamo-pituitary unit is ascribed to insidious adrenal insufficiency and impaired glucocorticoid feedback.

  15. Chronic estrogen deficiency leads to molecular aberrations related to neurodegenerative changes in follitropin receptor knockout female mice.

    PubMed

    Tam, J; Danilovich, N; Nilsson, K; Sairam, M R; Maysinger, D

    2002-01-01

    The follitropin receptor knockout (FORKO) mouse undergoes ovarian failure, thereby providing an animal model to investigate the consequences of the depletion of circulating estrogen in females. The estrogen deficiency causes marked defects in the female reproductive system, obesity, and skeletal abnormalities. In light of estrogen's known pleiotropic effects in the nervous system, our study examined the effects of genetically induced estrogen-testosterone imbalance on this system in female FORKO mice. Circulating concentrations of 17-beta-estradiol (E2) in FORKO mice are significantly decreased (FORKO -/-: 1.13+/-0.34 pg/ml; wild-type +/+: 17.6+/-3.5 pg/ml, P<0.0001, n=32-41); in contrast, testosterone levels are increased (-/-: 37.7+/-2.3 pg/ml; wild-type +/+: 3.9+/-1.7 pg/ml, P<0.005, n=25-33). The focus was on the activities of key enzymes in the central cholinergic and peripheral nervous systems, on dorsal root ganglia (DRGs) capacity for neurite outgrowth, and on the phosphorylation state of structural neurofilament (NF) proteins. Choline acetyltransferase activity was decreased in several central cholinergic structures (striatum 50+/-3%, hippocampus 24+/-2%, cortex 12+/-3%) and in DRGs (11+/-6%). Moreover, we observed aberrations in the enzymatic activities of mitogen-activated protein kinases (extracellular-regulated kinase and c-Jun N-terminal kinase) in the hippocampus, DRGs, and sciatic nerves. Hippocampal and sensory ganglia samples from FORKO mice contained hyper-phosphorylated NFs. Finally, explanted ganglia of FORKO mice displayed decreased neurite outgrowth (20-50%) under non-treated conditions and when treated with E2 (10 nM). Our results demonstrate that genetic depletion of circulating estrogen leads to biochemical and morphological changes in central and peripheral neurons, and underlie the importance of estrogen in the normal development and functioning of the nervous system. In particular, the findings suggest that an early and persisting

  16. Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor.

    PubMed

    Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W

    2006-09-15

    Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.

  17. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism

    PubMed Central

    Labrador, Juan Pablo; Azcoitia, Valeria; Tuckermann, Jan; Lin, Calvin; Olaso, Elvira; Mañes, Santos; Brückner, Katja; Goergen, Jean-Louis; Lemke, Greg; Yancopoulos, George; Angel, Peter; Martínez-A, Carlos; Klein, Rüdiger

    2001-01-01

    The discoidin domain receptor 2 (DDR2) is a member of a subfamily of receptor tyrosine kinases whose ligands are fibrillar collagens, and is widely expressed in postnatal tissues. We have generated DDR2-deficient mice to establish the in vivo functions of this receptor, which have remained obscure. These mice exhibit dwarfism and shortening of long bones. This phenotype appears to be caused by reduced chondrocyte proliferation, rather than aberrant differentiation or function. In a skin wound healing model, DDR2–/– mice exhibit a reduced proliferative response compared with wild-type littermates. In vitro, fibroblasts derived from DDR2–/– mutants proliferate more slowly than wild-type fibroblasts, a defect that is rescued by introduction of wild-type but not kinase-dead DDR2 receptor. Together our results suggest that DDR2 acts as an extracellular matrix sensor to modulate cell proliferation. PMID:11375938

  18. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    PubMed

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  19. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  20. Dopamine D2 receptor over-expression alters behavior and physiology in Drd2-EGFP mice

    PubMed Central

    Kramer, Paul F.; Christensen, Christine H.; Hazelwood, Lisa A.; Dobi, Alice; Bock, Roland; Sibley, David R.; Mateo, Yolanda; Alvarez, Veronica A.

    2011-01-01

    BAC transgenic mice expressing the fluorescent reporter protein EGFP under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological function of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display a ~40% increase in membrane expression of the dopamine D2 receptor (D2R) and a two-fold increase in D2R mRNA levels in the striatum when compared to wild-type and Drd1-EGFP mice D2R over-expression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. DA transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice over-express D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice. PMID:21209197

  1. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism.

    PubMed

    Mayeur, Claire; Leyton, Patricio A; Kolodziej, Starsha A; Yu, Binglan; Bloch, Kenneth D

    2014-09-25

    Expression of hepcidin, the hepatic hormone controlling iron homeostasis, is regulated by bone morphogenetic protein (BMP) signaling. We sought to identify which BMP type II receptor expressed in hepatocytes, ActR2a or BMPR2, is responsible for regulating hepcidin gene expression. We studied Bmpr2 heterozygous mice (Bmpr2(+/-)), mice with hepatocyte-specific deficiency of BMPR2, mice with global deficiency of ActR2a, and mice in which hepatocytes lacked both BMPR2 and ActR2a. Hepatic hepcidin messenger RNA (mRNA) levels, serum hepcidin and iron levels, and tissue iron levels did not differ in wild-type mice, Bmpr2(+/-) mice, and mice in which either BMPR2 or ActR2a was deficient. Deficiency of both BMP type II receptors markedly reduced hepatic hepcidin gene expression and serum hepcidin levels leading to severe iron overload. Iron injection increased hepatic hepcidin mRNA levels in mice deficient in either BMPR2 or ActR2a, but not in mice deficient in both BMP type II receptors. In addition, in mouse and human primary hepatocytes, deficiency of both BMPR2 and ActR2a profoundly decreased basal and BMP6-induced hepcidin gene expression. These results suggest that BMP type II receptors, BMPR2 and ActR2a, have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. © 2014 by The American Society of Hematology.

  2. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice.

    PubMed

    Zong, Haihong; Bastie, Claire C; Xu, Jun; Fassler, Reinhard; Campbell, Kevin P; Kurland, Irwin J; Pessin, Jeffrey E

    2009-02-13

    Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.

  3. An investigation into "two hit" effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice.

    PubMed

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [(3)H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male "two hit" mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [(3)H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential "two hit" neurodevelopmental mechanisms in schizophrenia.

  4. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    PubMed Central

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  5. GAL3 receptor KO mice exhibit an anxiety-like phenotype

    PubMed Central

    Brunner, Susanne M.; Farzi, Aitak; Locker, Felix; Holub, Barbara S.; Drexel, Meinrad; Reichmann, Florian; Lang, Andreas A.; Mayr, Johannes A.; Vilches, Jorge J.; Navarro, Xavier; Lang, Roland; Sperk, Günther; Holzer, Peter; Kofler, Barbara

    2014-01-01

    The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1–3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders. PMID:24782539

  6. Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency

    PubMed Central

    Gewirtz, Andrew T.

    2018-01-01

    Background Inability to maintain a stable and beneficial microbiota is associated with chronic gut inflammation, which classically manifests as colitis but may more commonly exist as low-grade inflammation that promotes metabolic syndrome. Alterations in microbiota, and associated inflammation, can originate from dysfunction in host proteins that manage the microbiota, such as the flagellin receptor TLR5. That the complete absence of a microbiota (i.e. germfree conditions) eliminates all evidence of inflammation in TLR5-deficient mice demonstrates that this model of gut inflammation is microbiota-dependent. We hypothesize that such microbiota dependency reflects an inability to manage pathobionts, such as Adherent-Invasive E. coli (AIEC). Herein, we examined the extent to which microbiota mismanagement and associated inflammation in TLR5-deficient mice would manifest in a limited and pathobiont-free microbiota. For this purpose, WT and TLR5-deficient mice were generated and maintained with the 8-member consortium of bacteria referred to as “Altered Schaedler Flora” (ASF). Such ASF animals were subsequently inoculated with AIEC reference strain LF82. Feces were assayed for bacterial loads, fecal lipopolysaccharide and flagellin loads, fecal inflammatory marker lipocalin-2 and microbiota composition. Results Relative to similarly maintained WT mice, mice lacking TLR5 (T5KO) did not display low-grade intestinal inflammation nor metabolic syndrome under ASF conditions. Concomitantly, the ASF microbial community was similar between WT and T5KO mice, while inoculation with AIEC strain LF82 resulted in alteration of the ASF community in T5KO mice compared to WT control animals. AIEC LF82 inoculation in ASF T5KO mice resulted in microbiota components having elevated levels of bioactive lipopolysaccharide and flagellin, a modest level of low-grade inflammation and increased adiposity. Conclusions In a limited-complexity pathobiont-free microbiota, loss of the flagellin

  7. The Impact of CB2 Receptor Ligands on the MK-801-Induced Hyperactivity in Mice.

    PubMed

    Kruk-Slomka, Marta; Banaszkiewicz, Izabela; Biala, Grazyna

    2017-04-01

    It has been known that there is a relationship between cannabis use and schizophrenia-related symptoms; however, it can be a subject of controversy. The involvement of CB1 receptor ligands in the schizophrenia has already been revealed and confirmed. However, there is still lack of information concerning the role of CB2 receptors in the psychosis-like effects in mice and the further studies are needed.The aim of the present research was to study the role of the CB2 receptor ligands in the symptoms typical for schizophrenia. We provoked hyperlocomotion in mice which is analogous to positive psychosis-like effects in humans, by an acute administration of a NMDA receptor antagonist, MK-801 (0.3 and 0.6 mg/kg), a pharmacological model of schizophrenia. An acute administration of MK-801 induced the increase in locomotor activity (hyperactivity) in rodents, measured in actimeters.We revealed that an acute injection of CB2 receptor agonist JWH 133 at the dose range (0.05-1.0 mg/kg) and CB2 receptor antagonist, AM 630 at the dose range (0.1-1.0 mg/kg) decreased locomotion of mice. An acute injection of JWH 133 (2.0 mg/kg) and AM 630 (2.0 mg/kg) had no statistical significant influence on the locomotor activity of mice. However, an acute injection of both CB2 receptor ligands (agonist and antagonist), JWH 133, at the non-effective dose of 2.0 mg/kg and AM 630 at the non-effective dose of 2.0 mg/kg, potentiated the MK-801-induced hyperactivity.The present findings have confirmed that endocannabinoid system, not only via CB1, but also via CB2 receptors, may be involved in the schizophrenia-like responses, including hyperlocomotion in mice.

  8. Deficits in cognitive function and hippocampal plasticity in GM2/GD2 synthase knockout mice.

    PubMed

    Sha, Sha; Zhou, Libin; Yin, Jun; Takamiya, Koga; Furukawa, Keiko; Furukawa, Koichi; Sokabe, Masahiro; Chen, Ling

    2014-04-01

    In this study, we used GM2/GD2 synthase knockout (GM2/GD2−/−) mice to examine the influence of deficiency in ganglioside “a-pathway” and “b-pathway” on cognitive performances and hippocampal synaptic plasticity. Eight-week-old GM2/GD2−/− male mice showed a longer escape-latency in Morris water maze test and a shorter latency in step-down inhibitory avoidance task than wild-type (WT) mice. Schaffer collateral-CA1 synapses in the hippocampal slices from GM2/GD2−/− mice showed an increase in the slope of EPSPs with reduced paired-pulse facilitation, indicating an enhancement of their presynaptic glutamate release. In GM2/GD2−/− mice, NMDA receptor (NMDAr)-dependent LTP could not be induced by high-frequency (100–200 Hz) tetanus or θ-burst conditioning stimulation (CS), whereas NMDAr-independent LTP was induced by medium-frequency CS (20–50 Hz). The application of mono-sialoganglioside GM1 in the slice from GM2/GD2−/− mice, to specifically recover the a-pathway, prevented the increased presynaptic glutamate release and 20 Hz-LTP induction, whereas it could not rescue the impaired NMDAr-dependent LTP. These findings suggest that b-pathway deficiency impairs cognitive function probably through suppression of NMDAr-dependent LTP, while a-pathway deficiency may facilitate NMDAr-independent LTP through enhancing presynaptic glutamate release. As both of the NMDAr-independent LTP and increased presynaptic glutamate release were sensitive to the blockade of L-type voltage-gated Ca2+ channels (L-VGCC), a-pathway deficiency may affect presynaptic L-VGCC.

  9. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice

    PubMed Central

    Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan

    2009-01-01

    Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153

  10. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice.

    PubMed

    Quinzii, Catarina M; Garone, Caterina; Emmanuele, Valentina; Tadesse, Saba; Krishna, Sindu; Dorado, Beatriz; Hirano, Michio

    2013-02-01

    Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.

  11. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guodong; Kong, Bo; Zhu, Yan

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, wemore » generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.« less

  12. Absence of Nucleotide-Oligomerization-Domain-2 Is Associated with Less Distinct Disease in Campylobacter jejuni Infected Secondary Abiotic IL-10 Deficient Mice.

    PubMed

    Heimesaat, Markus M; Grundmann, Ursula; Alutis, Marie E; Fischer, André; Bereswill, Stefan

    2017-01-01

    Human Campylobacter jejuni -infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10 -/- (Nod2 -/- IL-10 -/- ) mice and IL-10 -/- counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81-176 infection, Nod2 mRNA was down-regulated in the colon of secondary abiotic IL-10 -/- and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and systemic translocation properties of C. jejuni . Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni -infection of both Nod2 -/- IL-10 -/- and IL-10 -/- mice, whereas expression levels were lower in infected, but also naive Nod2 -/- IL-10 -/- mice as compared to respective IL-10 -/- controls. Remarkably, C. jejuni -infected Nod2 -/- IL-10 -/- mice were less compromised than IL-10 -/- counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2 -/- IL-10 -/- as compared to IL-10 -/- mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2 -/- IL-10 -/- as compared to IL10 -/- counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels were up-regulated, IL

  13. Impaired social recognition memory in Recombination Activating Gene 1-deficient mice

    PubMed Central

    McGowan, Patrick O.; Hope, Thomas A.; Meck, Warren H.; Kelsoe, Garnett; Williams, Christina L.

    2012-01-01

    The Recombination Activating Genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation. PMID:21354115

  14. Differential Actions of the Endocytic Collagen Receptor uPARAP/Endo180 and the Collagenase MMP-2 in Bone Homeostasis

    PubMed Central

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe; Melander, Maria C.; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process. PMID:23940733

  15. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    PubMed

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  16. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination

    PubMed Central

    Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.

    2001-01-01

    Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399

  17. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor–Deficient Mice

    PubMed Central

    McGee-Lawrence, Meghan E.; Wenger, Karl H.; Misra, Sudipta; Davis, Catherine L.; Pollock, Norman K.; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M.; Hamrick, Mark W.; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P.; Cutler, Roy G.; Yu, Jack C.

    2017-01-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor–deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes. PMID:28323991

  18. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  19. Deficiency of MIP phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis

    PubMed Central

    Shen, Jinhua; Yu, Wen-Mei; Brotto, Marco; Scherman, Joseph A.; Guo, Caiying; Stoddard, Christopher; Nosek, Thomas M.; Valdivia, Héctor H.; Qu, Cheng-Kui

    2009-01-01

    The intracellular Ca2+ ([Ca2+]i) level of skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process 1. However, the signaling components involved in such rapid Ca2+ movement are not fully understood. Here, we report that mice deficient in the novel phosphatidylinositol phosphate (PIP) phosphatase MIP displayed muscle weakness and fatigue. Muscles isolated from MIP−/− mice produced less contractile force, markedly prolonged relaxation, and exhibited exacerbated fatigue. Further analyses revealed that MIP deficiency resulted in spontaneous Ca2+ leak from the internal store — the sarcoplasmic reticulum (SR). This was attributed to the decreased metabolism/dephosphorylation and the subsequent accumulation of MIP substrates, especially PI(3,5)P2 and PI(3,4)P2. Furthermore, we found that PI(3,5)P2 and PI(3,4)P2 bound to and directly activated the Ca2+ release channel/ryanodine receptor (RyR1) of the SR. These studies provide the first evidence that finely controlled PIP levels in muscle cells are essential for maintaining Ca2+ homeostasis and muscle performance. PMID:19465920

  20. Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice

    PubMed Central

    Halberstadt, Adam L.; Powell, Susan B.; Geyer, Mark A.

    2014-01-01

    The 5-HT2A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT2A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT2A/2C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT2A knockout mice, indicating the effect is a consequence of 5-HT2A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT2A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT2A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT2A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT2A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT2A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5-HT2A activation and

  1. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    PubMed

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  2. B-vitamin deficiency is protective against DSS-induced colitis in mice

    PubMed Central

    Benight, Nancy M.; Stoll, Barbara; Chacko, Shaji; da Silva, Vanessa R.; Marini, Juan C.; Gregory, Jesse F.; Stabler, Sally P.

    2011-01-01

    Vitamin deficiencies are common in patients with inflammatory bowel disease (IBD). Homocysteine (Hcys) is a thrombogenic amino acid produced from methionine (Met), and its increase in patients with IBD indicates a disruption of Met metabolism; however, the role of Hcys and Met metabolism in IBD is not well understood. We hypothesized that disrupted Met metabolism from a B-vitamin-deficient diet would exacerbate experimental colitis. Mice were fed a B6-B12-deficient or control diet for 2 wk and then treated with dextran sodium sulfate (DSS) to induce colitis. We monitored disease activity during DSS treatment and collected plasma and tissue for analysis of inflammatory tissue injury and Met metabolites. We also quantified Met cycle activity by measurements of in vivo Met kinetics using [1-13C-methyl-2H3]methionine infusion in similarly treated mice. Unexpectedly, we found that mice given the B-vitamin-deficient diet had improved clinical outcomes, including increased survival, weight maintenance, and reduced disease scores. We also found lower histological disease activity and proinflammatory gene expression (TNF-α and inducible nitric oxide synthase) in the colon in deficient-diet mice. Metabolomic analysis showed evidence that these effects were associated with deficient B6, as markers of B12 function were only mildly altered. In vivo methionine kinetics corroborated these results, showing that the deficient diet suppressed transsulfuration but increased remethylation. Our findings suggest that disrupted Met metabolism attributable to B6 deficiency reduces the inflammatory response and disease activity in DSS-challenged mice. These results warrant further human clinical studies to determine whether B6 deficiency and elevated Hcys in patients with IBD contribute to disease pathobiology. PMID:21596995

  3. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  4. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  5. The rewarding action of acute cocaine is reduced in β-endorphin deficient but not in μ opioid receptor knockout mice.

    PubMed

    Nguyen, Alexander T; Marquez, Paul; Hamid, Abdul; Kieffer, Brigitte; Friedman, Theodore C; Lutfy, Kabirullah

    2012-07-05

    We have previously shown that β-endorphin plays a functional role in the rewarding effect of acute cocaine. Considering that β-endorphin has high affinity for the μ opioid receptor, we determined the role of this receptor in the rewarding action of acute cocaine. For comparison, we assessed the role of the μ opioid receptor in the rewarding effect of acute morphine. We also examined the effect of intracerebroventricular (i.c.v.) administration of β-funaltrexamine (β-FNA), an irreversible μ opioid receptor antagonist, on the rewarding action of acute cocaine as well as that of morphine. Using the conditioned place preference (CPP) paradigm as an animal model of reward, we first assessed the rewarding action of cocaine in mice lacking β-endorphin or the μ opioid receptor and their respective wild-type littermates/controls. Mice were tested for preconditioning place preference on day 1, conditioned once daily with saline/cocaine (30mg/kg, i.p.) or cocaine/saline on days 2 and 3, and then tested for postconditioning place preference on day 4. We next studied the rewarding action of acute morphine in μ knockout mice and their wild-type controls. The CPP was induced by single alternate-day saline/morphine (10mg/kg, s.c.) or morphine/saline conditioning. We finally determined the effect of β-FNA on CPP induced by cocaine or morphine in wild-type mice, in which mice were treated with saline or β-FNA (9ug/3μl; i.c.v.) a day prior to the preconditioning test day. Our results revealed that morphine induced a robust CPP in wild-type mice but not in mice lacking the μ opioid receptor or in wild-type mice treated with β-FNA. In contrast, cocaine induced CPP in μ knockout mice as well as in wild-type mice treated with β-FNA. On the other hand, cocaine failed to induce CPP in mice lacking β-endorphin. These results illustrate that β-endorphin is essential for the rewarding action of acute cocaine, but the μ opioid receptor may not mediate the regulatory action

  6. Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice.

    PubMed

    Falk, Marni J; Polyak, Erzsebet; Zhang, Zhe; Peng, Min; King, Rhonda; Maltzman, Jonathan S; Okwuego, Ezinne; Horyn, Oksana; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; Xie, Letian X; Chen, Jia Yan; Marbois, Beth; Nissim, Itzhak; Clarke, Catherine F; Gasser, David L

    2011-07-01

    Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy-like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high-dose CoQ(10) supplementation and uniquely restores CoQ(9) content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator-activated receptor (PPAR) pathway signaling. Probucol's beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ(9) content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy. Copyright © 2011 EMBO Molecular Medicine.

  7. Lipoprotein lipase gene-deficient mice with hypertriglyceridaemia associated with acute pancreatitis.

    PubMed

    Tang, Maochun; Zong, Pengfei; Zhang, Ting; Wang, Dongyan; Wang, Yuhui; Zhao, Yan

    2016-10-01

    To investigate the severity of pancreatitis in lipoprotein lipase (LPL)-deficient hypertriglyceridaemic (HTG) heterozygous mice and to establish an experimental animal model for HTG pancreatitis study. LPL-deficient HTG heterozygous mice were rescued by somatic gene transfer and mated with wild-type mice. The plasma amylase, triglyceride, and pathologic changes in the pancreas of the LPL-deficient HTG heterozygous mice were compared with those of wild-type mice to assess the severity of pancreatitis. In addition, acute pancreatitis (AP) was induced by caerulein (50 µg/kg) for further assessment. The levels of plasma amylase and triglyceride were significantly higher in the LPL-deficient HTG heterozygous mice. According to the pancreatic histopathologic scores, the LPL-deficient HTG heterozygous mice showed more severe pathologic damage than the wild-type mice. Lipoprotein lipase deficient heterozygous mice developed severe caerulein-induced pancreatitis. In addition, their high triglyceride levels were stable. Therefore, LPL-deficient HTG heterozygous mice are a useful experimental model for studying HTG pancreatitis.

  8. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  9. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  10. Enhanced Venous Thrombus Resolution in Plasminogen Activator Inhibitor Type-2 Deficient Mice

    PubMed Central

    Siefert, Suzanne A; Chabasse, Christine; Mukhopadhyay, Subhradip; Hoofnagle, Mark H; Strickland, Dudley K; Sarkar, Rajabrata; Antalis, Toni M

    2014-01-01

    Background The resolution of deep vein thrombosis (DVT) requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. PAI-2 is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. Objective To investigate the role of PAI-2 in venous thrombus formation and resolution. Methods Venous thrombus resolution was compared in wild type C57BL/6, PAI-2 -/- and PAI-1 -/- mice using the stasis model of DVT. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA, and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. Results We found that absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2 -/- mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2 deficient thrombi had increased levels of the neutrophil chemoattractant, CXCL2, which was associated with early enhanced neutrophil recruitment. Conclusions These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. PMID:25041188

  11. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury

    PubMed Central

    LaBarge, Samuel; McDonald, Marisa; Smith-Powell, Leslie; Auwerx, Johan; Huss, Janice M.

    2014-01-01

    The estrogen-related receptor-α (ERRα) regulates mitochondrial biogenesis and glucose and fatty acid oxidation during differentiation in skeletal myocytes. However, whether ERRα controls metabolic remodeling during skeletal muscle regeneration in vivo is unknown. We characterized the time course of skeletal muscle regeneration in wild-type (M-ERRαWT) and muscle-specific ERRα−/− (M-ERRα−/−) mice after injury by intramuscular cardiotoxin injection. M-ERRα−/− mice exhibited impaired regeneration characterized by smaller myofibers with increased centrally localized nuclei and reduced mitochondrial density and cytochrome oxidase and citrate synthase activities relative to M-ERRαWT. Transcript levels of mitochondrial transcription factor A, nuclear respiratory factor-2a, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1β, were downregulated in the M-ERRα−/− muscles at the onset of myogenesis. Furthermore, coincident with delayed myofiber recovery, we observed reduced muscle ATP content (−45% vs. M-ERRαWT) and enhanced AMP-activated protein kinase (AMPK) activation in M-ERRα−/− muscle. We subsequently demonstrated that pharmacologic postinjury AMPK activation was sufficient to delay muscle regeneration in WT mice. AMPK activation induced ERRα transcript expression in M-ERRαWT muscle and in C2C12 myotubes through induction of the Esrra promoter, indicating that ERRα may control gene regulation downstream of the AMPK pathway. Collectively, these results suggest that ERRα deficiency during muscle regeneration impairs recovery of mitochondrial energetic capacity and perturbs AMPK activity, resulting in delayed myofiber repair.—LaBarge, S., McDonald, M., Smith-Powell, L., Auwerx, J., Huss, J. M. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury. PMID:24277576

  12. Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2.

    PubMed

    Jones, Victoria C; Birrell, Mark A; Maher, Sarah A; Griffiths, Mark; Grace, Megan; O'Donnell, Valerie B; Clark, Stephen R; Belvisi, Maria G

    2016-03-01

    Airway microvascular leak (MVL) involves the extravasation of proteins from post-capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX-mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway MVL and the receptor/s that mediate this have not been described. Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP receptor-deficient mice to define the receptor subtype involved. PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2-induced MVL was demonstrated in Ptger2−/− and Ptger4−/− mice and in wild-type mice pretreated simultaneously with EP2 (PF-04418948) and EP4 (ER-819762) receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this change was absent in Ptger2−/− and Ptger4−/− mice. PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2.

  13. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice

    PubMed Central

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053

  14. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice.

    PubMed

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.

  15. Type I interleukin-1 receptor is required for pulmonary responses to subacute ozone exposure in mice.

    PubMed

    Johnston, Richard A; Mizgerd, Joseph P; Flynt, Lesley; Quinton, Lee J; Williams, Erin S; Shore, Stephanie A

    2007-10-01

    Interleukin (IL)-1, a proinflammatory cytokine, is expressed in the lung after ozone (O(3)) exposure. IL-1 mediates its effects through the type I IL-1 receptor (IL-1RI), the only signaling receptor for both IL-1alpha and IL-1beta. The purpose of this study was to determine the role of IL-1RI in pulmonary responses to O(3.) To that end, wild-type, C57BL/6 (IL-1RI(+/+)) mice and IL-1RI-deficient (IL-1RI(-/-)) mice were exposed to O(3) either subacutely (0.3 ppm for 72 h) or acutely (2 ppm for 3 h). Subacute O(3) exposure increased bronchoalveolar lavage fluid (BALF) protein, interferon-gamma-inducible protein (IP)-10, soluble tumor necrosis factor receptor 1 (sTNFR1), and neutrophils in IL-1RI(+/+) and IL-1RI(-/-) mice. With the exception of IP-10, all outcome indicators were reduced in IL-1RI(-/-) mice. Furthermore, subacute O(3) exposure increased IL-6 mRNA expression in IL-1RI(+/+), but not IL-1RI(-/-) mice. Acute (2 ppm) O(3) exposure increased BALF protein, IL-6, eotaxin, KC, macrophage inflammatory protein (MIP)-2, IP-10, monocyte chemotactic protein-1, sTNFR1, neutrophils, and epithelial cells in IL-1RI(+/+) and IL-1RI(-/-) mice. For IL-6, eotaxin, MIP-2, and sTNFR1, there were small but significant reductions of these outcome indicators in IL-1RI(-/-) versus IL-1RI(+/+) mice at 6 hours after exposure, but not at other time points, whereas other outcome indicators were unaffected by IL-1RI deficiency. These results suggest that IL-1RI is required for O(3)-induced pulmonary inflammation during subacute O(3) exposure, but plays a more minor role during acute O(3) exposure. In addition, these results suggest that the induction of IL-6 via IL-1RI may be important in mediating the effects of O(3) during subacute exposure.

  16. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  17. Vitamin D deficiency decreases adiposity in rats and causes altered expression of uncoupling proteins and steroid receptor coactivator3.

    PubMed

    Bhat, Mehrajuddin; Noolu, Bindu; Qadri, Syed S Y H; Ismail, Ayesha

    2014-10-01

    The vitamin D endocrine system is functional in the adipose tissue, as demonstrated in vitro, in cultured adipocytes, and in vivo in mutant mice that developed altered lipid metabolism and fat storage in the absence of either 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or the vitamin D receptor. The aim of the present study was to examine the role of vitamin D and calcium on body adiposity in a diet-induced vitamin D deficient rat model. Vitamin D-deficient rats gained less weight and had lower amounts of visceral fat. Consistent with reduced adipose tissue mass, the vitamin D-deficient rats had low circulating levels of leptin, which reflects body fat stores. Expression of vitamin D and calcium sensing receptors, and that of genes involved in adipogenesis such as peroxisome proliferator-activated receptor, fatty acid synthase and leptin were significantly reduced in white adipose tissue of deficient rats compared to vitamin D-sufficient rats. Furthermore, the expression of uncoupling proteins (Ucp1 and Ucp2) was elevated in the white adipose tissue of the deficient rat indicative of higher energy expenditure, thereby leading to a lean phenotype. Expression of the p160 steroid receptor coactivator3 (SRC3), a key regulator of adipogenesis in white adipose tissue was decreased in vitamin D-deficient state. Interestingly, most of the changes observed in vitamin D deficient rats were corrected by calcium supplementation alone. Our data demonstrates that dietary vitamin D and calcium regulate adipose tissue function and metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. In vivo involvement of cytochrome P450 4A family in the oxidative metabolism of the lipid peroxidation product trans-4-hydroxy-2-nonenal, using PPARalpha-deficient mice.

    PubMed

    Guéraud, F; Alary, J; Costet, P; Debrauwer, L; Dolo, L; Pineau, T; Paris, A

    1999-01-01

    Trans-4-hydroxy-2-nonenal (HNE) is a potent cytotoxic and genotoxic compound originating from the peroxidation of n-6 polyunsaturated fatty acids. Its metabolism has been previously studied in the rat (Alary et al. 1995. Chem. Res. Toxicol., 8: 35-39). In addition to major urinary mercapturic derivatives, some polar urinary metabolites were isolated and could correspond to hydroxylated compounds. 4-Hydroxynonenoic acid (HNA), resulting from the oxidation of the HNE carbonyl group, is a medium chain fatty acid and its omega-hydroxylation might be hypothesized. Therefore, the involvement of the CYP 4A family isoenzymes in the metabolism of [3H]HNE has been investigated in vivo using inducer treatments (fibrates) in wild-type or in peroxisome proliferator-activated receptor alpha (PPARalpha)-deficient mice. In wild-type mice, but not in PPARalpha (-/-) mice, fibrate treatments resulted in an increase of two urinary metabolites characterized, after HPLC purifications and mass spectrometry analyses, as the omega-hydroxylated metabolite of HNA, i.e., 4,9-dihydroxy-2-nonenoic acid, and its oxidized form, 4-hydroxy-2-nonene-1,9-dicarboxylic acid. The formation of the latter is correlated accurately to laurate hydroxylase activity studied concurrently in microsomes prepared from the liver of these animals. Basal levels of these two metabolites were measured in urine of normal and PPARalpha-deficient mice. These results are in accord with an implication of the P450 4A family in the extended oxidative metabolism of 4-HNE.

  19. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  20. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  1. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice

    PubMed Central

    Sharara-Chami, Rana I.; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A.

    2016-01-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. PMID:22405854

  2. An investigation into “two hit” effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice

    PubMed Central

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [3H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male “two hit” mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [3H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential “two hit” neurodevelopmental mechanisms in schizophrenia. PMID:24155701

  3. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    PubMed Central

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  4. Uncoupling protein-2 deficient mice are not protected against warm ischemia/reperfusion injury of the liver.

    PubMed

    Le Minh, Khoi; Berger, Andreas; Eipel, Christian; Kuhla, Angela; Minor, Thomas; Stegemann, Judith; Vollmar, Brigitte

    2011-12-01

    Uncoupling protein-2 (UCP2) might play an important role in mediating ischemia/reperfusion (I/R) injury due to its function in uncoupling of oxidative phosphorylation and in the proton leak-associated increase of reactive oxygen species (ROS) production. The aim of this study was to elucidate the role of UCP2 in hepatic I/R injury. UCP2 wild type and UCP2 deficient mice were subjected to I/R of the left liver lobe. Sham-operated animals without I/R served as controls. Intravital fluorescence microscopy was used for assessing postischemic microcirculatory dysfunction. Indicators of hepatic inflammatory response, oxidative stress, and bioenergetic status as well as histomorphology were investigated. Under sham conditions UCP2-/-mice presented slightly but not significantly higher levels of hepatic ATP and energy charge than wild type mice. In addition, they exhibited higher systemic IL-6 levels and intrahepatic leukocyte adherence. After exposure to I/R, the extent of reperfusion injury did not differ between UCP2+/+ and UCP2-/-mice, as indicated by a comparable loss of sinusoidal perfusion, hepatic ATP, and energy charge levels, as well as rise of transaminases and disintegration of liver structures. Intrahepatic leukocyte adherence and plasma IL-6 levels of postischemic UCP2-/-mice still exceeded those of UCP2+/+mice. UCP2 appears to be of minor relevance for the manifestation and extent of postischemic reperfusion injury in nondiseased livers with the increased ATP availability being counteracted by the higher pro-inflammatory IL-6 levels in UCP2 deficient mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice

    PubMed Central

    Zhao, Dong; Tong, Lufang; Zhang, Lixin; Li, Hong; Wan, Yingxin; Zhang, Tiezhong

    2016-01-01

    Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti-oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix-metalloproteinases (MMPs) expression, and nuclear factor-κB (NF-κB) activation were examined in apolipoprotein E (apoE)-deficient mice treated with TSIIA. Eight-week-old apoE−/− mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE-deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and MMP-2, −3, and −9, suppressed RAGE, and inhibited NF-κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF-κB activation, and downregulation of downstream inflammatory factors, including ICAM-1, VCAM-1, and MMP-2, −3 and −9 in apoE−/− mice. PMID:27840935

  6. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but themore » functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal

  7. Altered behaviour and cognitive function following combined deletion of Toll-like receptors 2 and 4 in mice.

    PubMed

    Too, Lay Khoon; McGregor, Iain S; Baxter, Alan G; Hunt, Nicholas H

    2016-04-15

    Activation of the immune system due to infection or aging is increasingly linked to impaired neuropsychological function. Toll-like receptors 2 and 4 (TLR2, TLR4) are well-characterised for their role in inflammatory events, and their combined activation has been implicated in neurological diseases. We therefore determined whether TLR2 and TLR4 double gene knockout (GKO) mice showed modified behaviour and cognitive function during a 16-day test sequence that employed the automated IntelliCage test system. The IntelliCage features a home cage environment in which groups of mice live and where water reward is gained through performing various tasks centred on drinking stations in each corner of the apparatus. All mice were tested twice, one month apart (the first sequence termed "R1"and the second "R2"). There were fewer corner visits and nosepokes in TLR2/4 GKO compared to wild-type mice during early exploration in R1, suggesting elevated neophobia in GKO mice. Reduced exploration persisted over subsequent test modules during the dark phase. TLR2/4 GKO mice also displayed increased corner visits during drinking sessions compared to non-drinking sessions, but this was not associated with increased drinking. In subsequent, more complex test modules, TLR2/4 GKO mice had unimpaired spatial learning, but showed markedly poorer performance in a visual discrimination reversal task compared to wild-type mice. These results indicated subtle impairments in behaviour and cognitive functions due to double deficiency in TLR2 and TLR4. These finding are highly relevant to understanding the combined actions of TLR2 and TLR4 on neurological status in a range of different disease conditions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    PubMed

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  9. Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning

    PubMed Central

    Barre, Alexander; Berthoux, Coralie; De Bundel, Dimitri; Valjent, Emmanuel; Bockaert, Joël; Marin, Philippe; Bécamel, Carine

    2016-01-01

    Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions. PMID:26903620

  10. Mice lacking Faim2 show increased cell death in the MPTP mouse model of Parkinson disease.

    PubMed

    Komnig, Daniel; Schulz, Jörg B; Reich, Arno; Falkenburger, Björn H

    2016-12-01

    The death receptor Fas/CD95 mediates apoptotic cell death in response to external stimuli. In neurons, Fas-induced apoptosis is prevented by Fas-apoptotic inhibitory molecule 2 (Faim2). Mice lacking Faim2 showed increased neurodegeneration in animal models of stroke and bacterial meningitis. We therefore tested the relevance of Faim2 in a classical animal model of Parkinson disease and determined the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Faim2-deficient mice. Without MPTP treatment, there was no difference in the dopaminergic system between Faim2-deficient mice and control mice. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. Fourteen days after the last MPTP injection, the number of dopaminergic neurons in the lateral substantia nigra, assayed by stereological counting, was reduced by 39% in control mice and 53% in Faim2-deficient mice. The density of dopaminergic fibers in the dorsal striatum was reduced by 36% in control mice and 69% in Faim2-deficient mice, in the ventral striatum 44% in control mice and 76% in Faim2-deficient mice. Fiber density recovered at 90 days after MPTP with similar density in both groups. Striatal catecholamine levels were reduced by 81-84% in both groups and recovered at 90 days. Faim2 expression was documented in mouse midbrain using quantitative reverse transcription-PCR (qRT-PCR) and found decreased after MPTP administration. Taken together, our findings demonstrate increased degeneration of dopaminergic neurons with Faim2 deficiency, indicating that Fas-induced apoptosis contributes to cell death in the MPTP mouse model. Along with the decreased expression of Faim2 after MPTP, this finding indicates that boosting Faim2 function might represent a therapeutic strategy for Parkinson disease. © 2016 International Society for Neurochemistry.

  11. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  12. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice.

    PubMed

    Bortolato, Marco; Godar, Sean C; Davarian, Shieva; Chen, Kevin; Shih, Jean C

    2009-12-01

    Monoamine oxidase (MAO) B catalyzes the degradation of beta-phenylethylamine (PEA), a trace amine neurotransmitter implicated in mood regulation. Although several studies have shown an association between low MAO B activity in platelets and behavioral disinhibition in humans, the nature of this relation remains undefined. To investigate the impact of MAO B deficiency on the emotional responses elicited by environmental cues, we tested MAO B knockout (KO) mice in a set of behavioral assays capturing different aspects of anxiety-related manifestations, such as the elevated plus maze, defensive withdrawal, marble burying, and hole board. Furthermore, MAO B KO mice were evaluated for their exploratory patterns in response to unfamiliar objects and risk-taking behaviors. In comparison with their wild-type (WT) littermates, MAO B KO mice exhibited significantly lower anxiety-like responses and shorter latency to engage in risk-taking behaviors and exploration of unfamiliar objects. To determine the neurobiological bases of the behavioral differences between WT and MAO B KO mice, we measured the brain-regional levels of PEA in both genotypes. Although PEA levels were significantly higher in all brain regions of MAO B KO in comparison with WT mice, the most remarkable increments were observed in the striatum and prefrontal cortex, two key regions for the regulation of behavioral disinhibition. However, no significant differences in transcript levels of PEA's selective receptor, trace amine-associated receptor 1 (TAAR1), were detected in either region. Taken together, these results suggest that MAO B deficiency may lead to behavioral disinhibition and decreased anxiety-like responses partially through regional increases of PEA levels.

  13. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    PubMed Central

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  14. Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers

    PubMed Central

    Pappas, Andrea L.; Bey, Alexandra L.; Wang, Xiaoming; Rossi, Mark; Kim, Yong Ho; Yan, Haidun; Porkka, Fiona; Duffney, Lara J.; Phillips, Samantha M.; Cao, Xinyu; Ding, Jin-dong; Rodriguiz, Ramona M.; Yin, Henry H.; Wetsel, William C.

    2017-01-01

    Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24–/– mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted. PMID:29046483

  15. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells

    PubMed Central

    1993-01-01

    To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208

  16. Gender Affects Skin Wound Healing in Plasminogen Deficient Mice

    PubMed Central

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge; Hald, Andreas

    2013-01-01

    The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin thickness and

  17. PTGS-2–PTGER2/4 Signaling Pathway Partially Protects From Diabetogenic Toxicity of Streptozotocin in Mice

    PubMed Central

    Vennemann, Antje; Gerstner, Anemone; Kern, Niklas; Ferreiros Bouzas, Nerea; Narumiya, Shuh; Maruyama, Takayuki; Nüsing, Rolf M.

    2012-01-01

    Prostanoids are suggested to participate in diabetes pathology, but their roles are controversially discussed. The purpose of the current study was to examine the role of cyclooxygenase (prostaglandin synthase [PTGS]) enzymes and prostaglandin (PG) E2 signaling pathways in streptozotocin (STZ)-induced type 1 diabetes. Blood glucose, insulin, and survival rate were studied in mice with targeted disruption of the genes for PTGS and PGE receptors (PTGERs). PGE2 was found as the main prostanoid formed by the pancreas. Contrarily to PTGS-1, deficiency of PTGS-2 activity significantly amplified STZ effect, causing dramatic loss of insulin production and rise in blood glucose and death rate. STZ metabolism was unaffected by PTGS deficiency. Diabetogenicity of STZ in PTGER1−/−, PTGER2−/−, PTGER3−/−, and PTGER4−/− mice was comparable to control mice. In striking contrast, combined knockout of PTGER2 and PTGER4 by blocking PTGER4 in PTGER2−/− mice strongly enhanced STZ pathology. Treatment of PTGS-2−/− and wild-type mice with PTGER2/PTGER4 agonists partially protected against STZ-induced diabetes and restored β-cell function. Our data uncover a previously unrecognized protective role of PTGS-2–derived PGE2 in STZ-induced diabetes mediated by the receptor types PTGER2 and PTGER4. These findings offer the possibility to intervene in early progression of type 1 diabetes by using PTGER-selective agonists. PMID:22522619

  18. Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets.

    PubMed

    Dhawan, Puneet; Veldurthy, Vaishali; Yehia, Ghassan; Hsaio, Connie; Porta, Angela; Kim, Ki-In; Patel, Nishant; Lieben, Liesbet; Verlinden, Lieve; Carmeliet, Geert; Christakos, Sylvia

    2017-11-01

    Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency. Copyright © 2017 Endocrine Society.

  19. Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance.

    PubMed

    Böhland, Martin; Kress, Eugenia; Stope, Matthias B; Pufe, Thomas; Tauber, Simone C; Brandenburg, Lars-Ove

    2016-10-15

    Bacterial meningitis is - despite therapeutical progress during the last decades - still characterized by high mortality and severe permanent neurogical sequelae. The brain is protected from penetrating pathogens by both the blood-brain barrier and the innate immune system. Invading pathogens are recognized by so-called pattern recognition receptors including the Toll-like receptors (TLR) which are expressed by glial immune cells in the central nervous system. Among these, TLR2 is responsible for the detection of Gram-positive bacteria such as the meningitis-causing pathogen Streptococcus pneumoniae. Here, we used TLR2-deficient mice to investigate the effects on mortality, bacterial growth and inflammation in a mouse model of pneumococcal meningitis. Our results revealed a significantly increased mortality rate and higher bacterial burden in TLR2-deficient mice with pneumococcal meningitis. Furthermore, infected TLR2-deficient mice suffered from a significantly increased pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and Chemokine (C-C motif) ligand 2 (CCL2) or CCL3 chemokine expression and decreased expression of anti-inflammatory cytokines and antimicrobial peptides. In contrast, glial cell activation assessed by glial cell marker expression was comparable to wildtype mice. Taken together, the results suggest that TLR2 is essential for an efficient immune response against Streptococcus pneumoniae meningitis since lack of the receptor led to a worse outcome by higher mortality due to increased bacterial burden, weakened innate immune response and reduced expression of antimicrobial peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits.

    PubMed

    Jaworski, Diane M; Soloway, Paul; Caterina, John; Falls, William A

    2006-01-01

    The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP-2(-/-) mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2(-/-) mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2(-/-) mice. Juvenile TIMP-2(-/-) mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2(-/-) endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2(-/-) motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2(-/-) motor phenotype.

  1. BH3-Only Molecule Bim Mediates β-Cell Death in IRS2 Deficiency

    PubMed Central

    Ren, Decheng; Sun, Juan; Mao, Liqun; Ye, Honggang

    2014-01-01

    Irs2-deficient mice develop type 2–like diabetes due to a reduction in β-cell mass and a failure of pancreatic islets to undergo compensatory hyperplasia in response to insulin resistance. In order to define the molecular mechanisms, we knocked down Irs2 gene expression in mouse MIN6 insulinoma cells. Insulin receptor substrate 2 (IRS2) suppression induced apoptotic cell death, which was associated with an increase in expression of the BH3-only molecule Bim. Knockdown (KD) of Bim reduced apoptotic β-cell death induced by IRS2 suppression. In Irs2-deficient mice, Bim ablation restored β-cell mass, decreased the number of TUNEL-positive cells, and restored normal glucose tolerance after glucose challenge. FoxO1 mediates Bim upregulation induced by IRS2 suppression, and FoxO1 KD partially inhibits β-cell death induced by IRS2 suppression. These results suggest that Bim plays an important role in mediating the increase in β-cell apoptosis and the reduction in β-cell mass that occurs in IRS2-deficient diabetes. PMID:24760140

  2. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    PubMed

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  3. GABA and Glutamate Pathways Are Spatially and Developmentally Affected in the Brain of Mecp2-Deficient Mice

    PubMed Central

    Matagne, Valérie; Ghata, Adeline; Villard, Laurent; Roux, Jean-Christophe

    2014-01-01

    Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder. PMID:24667344

  4. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    PubMed Central

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  5. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    PubMed

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  6. Role of CB2 receptors in social and aggressive behavior in male mice.

    PubMed

    Rodríguez-Arias, Marta; Navarrete, Francisco; Blanco-Gandia, M Carmen; Arenas, M Carmen; Aguilar, María A; Bartoll-Andrés, Adrián; Valverde, Olga; Miñarro, José; Manzanares, Jorge

    2015-08-01

    Male CB1KO mice exhibit stronger aggressive responses than wild-type mice. This study was designed to examine the role of cannabinoid CB2r in social and aggressive behavior. The social interaction test and resident-intruder paradigm were performed in mice lacking CB2r (CB2KO) and in wild-type (WT) littermates. The effects of the CB2r selective agonist JWH133 (1 and 2 mg/kg) on aggression were also evaluated in Oncins France 1 (OF1) mice. Gene expression analyses of monoamine oxidase-A (MAO-A), catechol-o-methyltransferase (COMT), 5-hydroxytryptamine transporter (5-HTT), and 5-HT1B receptor (5HT1Br) in the dorsal raphe nuclei (DR) and the amygdala (AMY) were carried out using real-time PCR. Group-housed CB2KO mice exhibited higher levels of aggression in the social interaction test and displayed more aggression than resident WT mice. Isolation increased aggressive behavior in WT mice but did not affect CB2KO animals; however, the latter mice exhibited higher levels of social interaction with their WT counterparts. MAO-A and 5-HTT gene expression was significantly higher in grouped CB2KO mice. The expression of 5HT1Br, COMT, and MAO-A in the AMY was more pronounced in CB2KO mice than in WT counterparts. Acute administration of the CB2 agonist JWH133 significantly reduced the level of aggression in aggressive isolated OF1 mice, an effect that decreased after pretreatment with the CB2 receptor antagonist AM630. Our results suggest that CB2r is implicated in social interaction and aggressive behavior and deserves further consideration as a potential new target for the management of aggression.

  7. Deficiency of prolyl oligopeptidase in mice disturbs synaptic plasticity and reduces anxiety-like behaviour, body weight, and brain volume.

    PubMed

    Höfling, Corinna; Kulesskaya, Natalia; Jaako, Külli; Peltonen, Iida; Männistö, Pekka T; Nurmi, Antti; Vartiainen, Nina; Morawski, Markus; Zharkovsky, Alexander; Võikar, Vootele; Roßner, Steffen; García-Horsman, J Arturo

    2016-06-01

    Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out. This work indicates that the lack of PREP in mice causes reduced anxiety but also hyperactivity. The cortical volumes of PREP knockout mice were smaller than those of wild type littermates. Additionally, we found increased expression of diazepam binding inhibitor protein in the cortex and of the somatostatin receptor-2 in the hippocampus of PREP knockout mice. Furthermore, immunohistochemistry and tail suspension test revealed lack of response of PREP knockout mice to lipopolysaccharide insult. Further analysis revealed significantly increased levels of polysialylated-neural cell adhesion molecule in PREP deficient mice. These findings might be explained as possible alteration in brain plasticity caused by PREP deficiency, which in turn affect behaviour and brain development. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors

    PubMed Central

    Inoue, Isao; Yanai, Kazuhiko; Kitamura, Daisuke; Taniuchi, Ichiro; Kobayashi, Takashi; Niimura, Kaku; Watanabe, Takehiko; Watanabe, Takeshi

    1996-01-01

    From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter. PMID:8917588

  9. SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts

    PubMed Central

    Xu, Zhan; Greenblatt, Matthew B.; Yan, Guang; Feng, Heng; Sun, Jun; Lotinun, Sutada; Brady, Nicholas; Baron, Roland; Glimcher, Laurie H.; Zou, Weiguo

    2017-01-01

    Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1. PMID:28216630

  10. Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin.

    PubMed

    Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric

    2006-02-01

    Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.

  11. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. Copyright © 2015. Published by Elsevier Inc.

  12. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice

    PubMed Central

    Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.; Calabresi, L.; Franceschini, G.; Parolini, C.; Chiesa, G.

    2015-01-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  13. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    PubMed Central

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2011-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F2-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plas-minogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic adaptations

  14. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice.

    PubMed

    Fujita, Masaki; Ouchi, Hiroshi; Ikegame, Satoshi; Harada, Eiji; Matsumoto, Takemasa; Uchino, Junji; Nakanishi, Yoichi; Watanabe, Kentaro

    2016-01-01

    COPD is a major cause of chronic morbidity and mortality throughout the world. Although tumor necrosis factor-α (TNF-α) has a critical role in the development of COPD, the role of different TNF receptors (TNFRs) in pulmonary emphysema has not been resolved. We aimed to clarify the role of TNFRs in the development of pulmonary emphysema. TNF-α transgenic mice, a murine model of COPD in which the mice spontaneously develop emphysema with a large increase in lung volume and pulmonary hypertension, were crossed with either TNFR1-deficient mice or TNFR2-deficient mice. After 6 months, the gross appearance of the lung, lung histology, and pulmonary and cardiac physiology were determined. In addition, the relationship between apoptosis and emphysema was investigated. Pulmonary emphysema-like changes disappeared with deletion of TNFR1. However, slight improvements were attained with deletion of TNFR2. Apoptotic cells in the interstitium of the lung were observed in TNF-α transgenic mice. The apoptotic signals through TNFR1 appear critical for the pathogenesis of pulmonary emphysema. In contrast, the inflammatory process has a less important role for the development of emphysema.

  15. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory.

    PubMed

    Erkens, Mirthe; Bakker, Brenda; van Duijn, Lucette M; Hendriks, Wiljan J A J; Van der Zee, Catharina E E M

    2014-05-15

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal cortex but their precise role in these regions remains to be determined. Here, we evaluated phenotypic consequences of loss of PTPRR activity and found that basal smell was normal for Ptprr(-/-) mice. Also, spatial learning and fear-associated contextual learning were unaffected. PTPRR deficiency, however, resulted in impaired novel object recognition and a striking increase in exploratory activity in a new environment. The data corroborate the importance of proper control of MAPK signaling in cerebral functions and put forward PTPRR as a novel target to modulate synaptic processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    PubMed

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice.

    PubMed

    Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M

    2014-05-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis

    PubMed Central

    Silver, Adam C.; Dunne, Dana W.; Zeiss, Caroline J.; Bockenstedt, Linda K.; Radolf, Justin D.; Salazar, Juan C.; Fikrig, Erol

    2013-01-01

    Research on syphilis, a sexually transmitted infection caused by the non-cultivatable spirochete Treponema pallidum, has been hampered by the lack of an inbred animal model. We hypothesized that Toll-like receptor (TLR)-dependent responses are essential for clearance of T. pallidum and, consequently, compared infection in wild-type (WT) mice and animals lacking MyD88, the adaptor molecule required for signaling by most TLRs. MyD88-deficient mice had significantly higher pathogen burdens and more extensive inflammation than control animals. Whereas tissue infiltrates in WT mice consisted of mixed mononuclear and plasma cells, infiltrates in MyD88-deficient animals were predominantly neutrophilic. Although both WT and MyD88-deficient mice produced antibodies that promoted uptake of treponemes by WT macrophages, MyD88-deficient macrophages were deficient in opsonophagocytosis of treponemes. Our results demonstrate that TLR-mediated responses are major contributors to the resistance of mice to syphilitic disease and that MyD88 signaling and FcR-mediated opsonophagocytosis are linked to the macrophage-mediated clearance of treponemes. PMID:23940747

  19. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice.

    PubMed

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2014-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    PubMed

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  1. TLR9 deficiency breaks tolerance to RNA-associated antigens and upregulates TLR7 protein in Sle1 mice.

    PubMed

    Celhar, Teja; Yasuga, Hiroko; Lee, Hui-Yin; Zharkova, Olga; Tripathi, Shubhita; Thornhill, Susannah I; Lu, Hao K; Au, Bijin; Lim, Lina H K; Thamboo, Thomas P; Akira, Shizuo; Wakeland, Edward K; Connolly, John E; Fairhurst, Anna-Marie

    2018-04-24

    Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of Systemic Lupus Erythematosus (SLE). While multiple studies support a dependency on TLR7 for disease development, genetic ablation of TLR9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. The present study was designed to examine the suppressive role of TLR9 in the development of severe lupus. We crossed Sle1 lupus-prone mice with TLR9-deficient mice to generate Sle1TLR9 -/- . These mice were aged and evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total immunoglobulin profiles, kidney dendritic cell (DC) function and TLR7 protein expression. Young mice were used for functional B cell studies, immunoglobulin profiling and TLR7 expression. Sle1TLR9 -/- mice developed severe disease similar to TLR9-deficient MRL and Nba2 models. Sle1TLR9 -/- B cells produced more class-switched antibodies and the autoantibody repertoire was skewed towards RNA-containing antigens. GN in these mice was associated with DC infiltration and purified Sle1TLR9 -/- renal DCs were more efficient at TLR7-dependent antigen presentation and expressed higher levels of TLR7 protein. Importantly, this increase in TLR7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. The increase in TLR7-reactive immune complexes (IC) and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9 -/- mice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Nur77 deficiency leads to systemic inflammation in elderly mice.

    PubMed

    Li, Xiu-Ming; Lu, Xing-Xing; Xu, Qian; Wang, Jing-Ru; Zhang, Shen; Guo, Peng-Da; Li, Jian-Ming; Wu, Hua

    2015-01-01

    Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.

  3. Disruption of the CRF(2) receptor pathway decreases the somatic expression of opiate withdrawal.

    PubMed

    Papaleo, Francesco; Ghozland, Sandy; Ingallinesi, Manuela; Roberts, Amanda J; Koob, George F; Contarino, Angelo

    2008-11-01

    Escape from the extremely aversive opiate withdrawal symptoms powerfully motivates compulsive drug-seeking and drug-taking behaviors. The corticotropin-releasing factor (CRF) system is hypothesized to mediate the motivational properties of drug dependence. CRF signaling is transmitted by two receptor pathways, termed CRF(1) and CRF(2). To investigate the role for the CRF(2) receptor pathway in somatic opiate withdrawal, in the present study we used genetically engineered mice deficient in the CRF(2) receptor (CRF(2)-/-). We employed a novel, clinically relevant mouse model of 'spontaneous' opiate withdrawal as well as a classical opioid receptor antagonist (naloxone)-precipitated opiate withdrawal paradigm. To induce opiate dependence, mice were treated with intermittent escalating morphine doses (20-100 mg/kg, i.p.). We found that 8-128 h after the last opiate injection, CRF(2)-/- mice showed decreased levels of major somatic signs of spontaneous opiate withdrawal, such as paw tremor and wet dog shake, as compared to wild-type mice. Similarly, challenge with naloxone 2 h after the last morphine injection induced lower levels of paw tremor and wet dog shake in CRF(2)-/- mice as compared to wild-type mice. Despite the differences in somatic signs, wild-type and CRF(2)-/- mice displayed similar plasma corticosterone responses to opiate dosing and withdrawal, indicating a marginal role for the hypothalamus-pituitary-adrenal axis in the CRF(2) receptor mediation of opiate withdrawal. Our results unravel a novel role for the CRF(2) receptor pathway in opiate withdrawal. The CRF(2) receptor pathway might be a critical target of therapies aimed at alleviating opiate withdrawal symptoms and reducing relapse to drug intake.

  4. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  5. Haematopoietic leptin receptor deficiency does not affect macrophage accumulation in adipose tissue or systemic insulin sensitivity.

    PubMed

    Gutierrez, Dario A; Hasty, Alyssa H

    2012-03-01

    The adipokine leptin is primarily produced by white adipose tissue (AT) and is a potent monocyte/macrophage chemoattractant in vitro. The long form of the leptin receptor (LepR) is required for monocyte/macrophage chemotaxis towards leptin. In this study, we examined the effects of haematopoietic LepR as well as LepR with C-C chemokine receptor 2 (CCR2) deficiency (double knockout (DKO)) on macrophage recruitment to AT after two different periods of high fat diet (HFD) feeding. Briefly, 8-week-old C57BL/6 mice were transplanted with bone marrow (BM) from Lepr(+/+), Lepr(-/-) or DKO donors (groups named BM-Lepr(+/+), BM-Lepr(-/-) and BM-DKO respectively), and were placed on an HFD for 6 or 12 weeks. At the end of the study, macrophage infiltration and the inflammatory state of AT were evaluated by real-time RT-PCR, histology and flow cytometry. In addition, glucose and insulin tolerance were assessed at both time points. Our results showed no differences in macrophage accumulation or AT inflammatory state between the BM-Lepr(+/+) and BM-Lepr(-/-) mice after 6 or 12 weeks of HFD feeding; any effects observed in the BM-DKO were attributed to the haematopoietic deficiency of CCR2. In addition, no changes in glucose or insulin tolerance were observed between groups after either period of HFD feeding. Our findings suggest that although leptin is a potent chemoattractant in vitro, haematopoietic LepR deficiency does not affect macrophage accumulation in AT in early to moderate stages of diet-induced obesity.

  6. Adenosine A2A Receptor Blockade or Deletion Diminishes Fibrocyte Accumulation in the Skin in a Murine Model of Scleroderma, Bleomycin-induced Fibrosis

    PubMed Central

    Katebi, Majid; Fernandez, Patricia; Chan, Edwin S. L.; Cronstein, Bruce N.

    2015-01-01

    Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A2A receptor-deficient and A2A antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A2A receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A2A knockout and A2A antagonist-treated mice were stained for Procollagen α2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections. There were more fibrocytes in the dermis of bleomycin-treated mice than normal mice and the increase was abrogated by deletion or blockade of adenosine A2A receptors. Because fibrocytes play a central role in tissue fibrosis these results suggest that diminished adenosine A2A receptor-mediated recruitment of fibrocytes into tissue may play a role in the pathogenesis of fibrosing diseases of the skin. Moreover, these results provide further evidence that adenosine A2A receptors may represent a new target for the treatment of such fibrosing diseases as scleroderma or nephrogenic fibrosing dermopathy. PMID:18709547

  7. SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice.

    PubMed

    Cherpokova, Deya; Bender, Markus; Morowski, Martina; Kraft, Peter; Schuhmann, Michael K; Akbar, Sarah M; Sultan, Cheryl S; Hughes, Craig E; Kleinschnitz, Christoph; Stoll, Guido; Dragone, Leonard L; Watson, Steve P; Tomlinson, Michael G; Nieswandt, Bernhard

    2015-01-01

    Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke. © 2015 by The American Society of Hematology.

  8. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Canxiang; Yang Qingwu; Lv Fenglin

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} andmore » IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.« less

  9. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    PubMed

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru

    2016-01-01

    Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  10. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  11. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance.

    PubMed

    Luan, Bing; Zhao, Jian; Wu, Haiya; Duan, Baoyu; Shu, Guangwen; Wang, Xiaoying; Li, Dangsheng; Jia, Weiping; Kang, Jiuhong; Pei, Gang

    2009-02-26

    Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.

  12. Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice

    PubMed Central

    Manzke, Till; Niebert, Marcus; Koch, Uwe R.; Caley, Alex; Vogelgesang, Steffen; Hülsmann, Swen; Ponimaskin, Evgeni; Müller, Ulrike; Smart, Trevor G.; Harvey, Robert J.; Richter, Diethelm W.

    2010-01-01

    Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A–specific (5-HTR1A–specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A–GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A–GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction. PMID:20978350

  13. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2.

    PubMed

    Schmidt, Paul J; Fleming, Mark D

    2012-06-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2(Y245X/Y245X) mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, coimmunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. Copyright © 2012 Wiley Periodicals, Inc.

  14. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2

    PubMed Central

    Schmidt, Paul J.; Fleming, Mark D.

    2012-01-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2Y245X/Y245X mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, co-immunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. PMID:22460705

  15. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes.

    PubMed

    Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P

    2017-01-03

    The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer's disease, and Parkinson's disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number.

  16. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    PubMed

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  17. Leptin Deficiency and Diet-Induced Obesity Reduce Hypothalamic Kisspeptin Expression in Mice

    PubMed Central

    Howell, Christopher S.; Roa, Juan; Augustine, Rachael A.; Grattan, David R.; Anderson, Greg M.

    2011-01-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect. PMID:21325051

  18. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice.

    PubMed

    Quennell, Janette H; Howell, Christopher S; Roa, Juan; Augustine, Rachael A; Grattan, David R; Anderson, Greg M

    2011-04-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect.

  19. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase.

    PubMed

    Gao, Yuanqing; Vidal-Itriago, Andrés; Milanova, Irina; Korpel, Nikita L; Kalsbeek, Martin J; Tom, Robby Zachariah; Kalsbeek, Andries; Hofmann, Susanna M; Yi, Chun-Xia

    2018-01-01

    Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and α-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  1. Opposite Role of Tumor Necrosis Factor Receptors in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Wang, Yi; Liu, Guijun; Wang, Renxi; Xiao, He; Li, Xinying; Hou, Chunmei; Shen, Beifen; Guo, Renfeng; Li, Yan; Shi, Yanchun; Chen, Guojiang

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity. PMID:23285227

  2. Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Impact Atherosclerotic Lesions in ApoE-/- Mice

    PubMed Central

    De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C

    2014-01-01

    Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416

  3. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis.

    PubMed

    Li, Zhiping; Oben, Jude A; Yang, Shiqi; Lin, Huizhi; Stafford, Elizabeth A; Soloski, Mark J; Thomas, Steven A; Diehl, Anna Mae

    2004-08-01

    It is not known why natural killer T (NKT) cells, which modulate liver injury by regulating local cytokine production, are reduced in leptin-deficient ob/ob mice. NKT cells express adrenoceptors. Thus, we hypothesize that the low norepinephrine (NE) activity of ob/ob mice promotes depletion of liver NKT cells, thereby sensitizing ob/ob livers to lipopolysaccharide (LPS) toxicity. To evaluate this hypothesis, hepatic NKT cells were quantified in wild-type mice before and after treatment with NE inhibitors, and in dopamine beta-hydroxylase knockout mice (which cannot synthesize NE) and ob/ob mice before and after 4 weeks of NE supplementation. Decreasing NE activity consistently reduces liver NKT cells, while increasing NE has the opposite effect. Analysis of hepatic and thymic NKT cells in mice of different ages demonstrate an age-related accumulation of hepatic NKT cells in normal mice, while liver NKT cells become depleted after birth in ob/ob mice, which have increased apoptosis of hepatic NKT cells. NE treatment inhibits apoptosis and restores hepatic NKT cells. In ob/ob mice with reduced hepatic NKT cells, hepatic T and NKT cells produce excessive T helper (Th)-1 proinflammatory cytokines and the liver is sensitized to LPS toxicity. NE treatment decreases Th-1 cytokines, increases production of Th-2 cytokines, and reduces hepatotoxicity. Studies of CD1d-deficient mice, which lack the receptor required for NKT cell development, demonstrate that they are also unusually sensitive to LPS hepatotoxicity. In conclusion, low NE activity increases hepatic NKT cell apoptosis and depletes liver NKT cells, promoting proinflammatory polarization of hepatic cytokine production that sensitizes the liver to LPS toxicity. Copyright 2004 American Association for the Study of Liver Diseases

  4. Serotonin₂A/C receptors mediate the aggressive phenotype of TLX gene knockout mice.

    PubMed

    Juárez, Pablo; Valdovinos, Maria G; May, Michael E; Lloyd, Blair P; Couppis, Maria H; Kennedy, Craig H

    2013-11-01

    Deleting the tailless (TLX) gene in mice produces a highly aggressive phenotype yet to be characterized in terms of heterozygous animals or neurotransmitter mechanisms. We sought to establish pharmacological control over aggression and study the role of serotonin (5-HT)(2A/C) receptors in mediating changes in aggression. We analyzed aggression in mice heterozygous (+/-) or homozygous (-/-) for the TLX gene and wild-types (+/+) using a resident-intruder paradigm. No +/+ mice were aggressive, 36% of +/- TLX and 100% of -/- TLX mice showed aggression. Dose-effect functions were established for clozapine (0.1-1.5mg/kg, ip), ketanserin (0.3-1.25 mg/kg, ip), and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] (0.5-2.0 mg/kg, ip). Injecting clozapine decreased the frequency and duration of attacks for +/- TLX and -/- TLX mice. Clozapine did not decrease grooming in either +/- TLX or -/- TLX mice but may have increased locomotion for -/- TLX mice. Injecting ketanserin, a 5-HT(2A/C) receptor antagonist, produced differential decreases in frequency and latency to aggression between genotypes and corresponding increases in locomotor behavior. Injecting (±)DOI, a 5-HT(2A/C) receptor agonist, increased the frequency and duration of attacks, decreased the latency to attacks, and decreased locomotion in +/- and -/- TLX mice. Results of the current study suggest aggression displayed by TLX null and heterozygous mice involves 5-HT(2A/C) receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Inner ear dysfunction in caspase-3 deficient mice

    PubMed Central

    2011-01-01

    Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/-) mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P < 0.05) compared to Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P < 0.05) in Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule. PMID:21988729

  6. Female Nur77-Deficient Mice Show Increased Susceptibility to Diet-Induced Obesity

    PubMed Central

    Perez-Sieira, Sonia; Martinez, Gloria; Porteiro, Begoña; Lopez, Miguel; Vidal, Anxo; Nogueiras, Ruben; Dieguez, Carlos

    2013-01-01

    Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat) for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77. PMID:23342015

  7. Evidence Supporting a Role for Constitutive Ghrelin Receptor Signaling in Fasting-Induced Hyperphagia in Male Mice.

    PubMed

    Fernandez, Gimena; Cabral, Agustina; Andreoli, María F; Labarthe, Alexandra; M'Kadmi, Céline; Ramos, Jorge G; Marie, Jacky; Fehrentz, Jean-Alain; Epelbaum, Jacques; Tolle, Virginie; Perello, Mario

    2018-02-01

    Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor highly expressed in the hypothalamus. In vitro studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions, we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were evaluated in ghrelin- or GHSR-deficient mice, only the latter displayed an ∼15% smaller hyperphagia, compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice treated with vehicle, whereas it was unaffected in mice centrally treated with the GHSR antagonists D-Lys3-growth hormone-releasing peptide 6 or JMV2959. Taken together, genetic models and pharmacological results support the notion that constitutive GHSR activity modulates the magnitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR signaling system could affect the set point of daily food intake, independently of plasma ghrelin levels, in situations of negative energy balance. Copyright © 2018 Endocrine Society.

  8. Increased red cell turnover in a line of CD22-deficient mice is caused by Gpi1c: a model for hereditary haemolytic anaemia.

    PubMed

    Walker, Jennifer A; Hall, Andrew M; Kotsopoulou, Ekaterini; Espeli, Marion; Nitschke, Lars; Barker, Robert N; Lyons, Paul A; Smith, Kenneth G C

    2012-12-01

    CD22, an inhibitory co-receptor of the BCR, has been identified as a potential candidate gene for the development of autoimmune haemolytic anaemia in mice. In this study, we have examined Cd22(tm1Msn) CD22-deficient mice and identified an increase in RBC turnover and stress erythropoiesis, which might be consistent with haemolysis. We then, however, eliminated CD22 deficiency as the cause of accelerated RBC turnover and established that enhanced RBC turnover occurs independently of B cells and anti-RBC autoanti-bodies. Accelerated RBC turnover in this particular strain of CD22-deficient mice is red cell intrinsic and appears to be the consequence of a defective allele of glucose phosphate isomerase, Gpi1(c). This form of Gpi1 was originally derived from wild mice and results in a substantial reduction in enzyme activity. We have identified the polymorphism that causes impaired catalytic activity in the Gpi1(c) allele, and biochemically confirmed an approximate 75% reduction of GPI1 activity in Cd22(-/-) RBCs. The Cd22(-/-).Gpi1(c) congenic mouse provides a novel animal model of GPI1-deficiency, which is one of the most common causes of chronic non-spherocytic haemolytic anaemia in humans. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Body water balance and body temperature in vasopressin V1b receptor knockout mice.

    PubMed

    Daikoku, R; Kunitake, T; Kato, K; Tanoue, A; Tsujimoto, G; Kannan, H

    2007-10-30

    In an attempt to determine whether there is a specific vasopressin receptor (V(1b)) subtype involved in the regulation of body water balance and temperature, vasopressin V(1b) receptor knockout mice were used. Daily drinking behavior and renal excretory function were examined in V(1b)-deficient (V(1b)(-/-)) and control (V(1b)(+/+)) mice under the basal and stress-induced condition. In addition, body temperature and locomotor activity were measured with a biotelemetry system. The baseline daily water intake and urine volume were larger in V(1b)(-/-) mice than in V(1b)(+/+) mice. V(1b)(-/-) mice (V(1b)(-/-)) had significantly higher locomotor activity than wild-type, whereas the body temperature and oxygen consumption were lower in V(1b)(-/-) than in the V(1b)(+/+) mice. Next, the V(1b)(-/-) and V(1b)(+/+) mice were subjected to water deprivation for 48 hr. Under this condition, their body temperature decreased with the time course, which was significantly larger for V(1b)(-/-) than for V(1b)(+/+) mice. Central vasopressin has been reported to elicit drinking behavior and antipyretic action, and the V(1b) receptor has been reported to be located in the kidney. Thus, the findings suggest that the V(1b) receptor may be, at least in part, involved in body water balance and body temperature regulation.

  10. PKK deficiency in B cells prevents lupus development in Sle lupus mice

    PubMed Central

    Oleksyn, D.; Zhao, J.; Vosoughi, A.; Zhao, JC.; Misra, R; Pentland, AP; Ryan, D.; Anolik, J.; Ritchlin, C.; Looney, J.; Anandarajah, AP.; Schwartz, G.; Calvi, LM; Georger, M; Mohan, C.; Sanz, I.; Chen, L

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B- lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment. PMID:28274793

  11. Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity.

    PubMed

    Sandau, Ursula S; Colino-Oliveira, Mariana; Jones, Abbie; Saleumvong, Bounmy; Coffman, Shayla Q; Liu, Long; Miranda-Lourenço, Catarina; Palminha, Cátia; Batalha, Vânia L; Xu, Yiming; Huo, Yuqing; Diógenes, Maria J; Sebastião, Ana M; Boison, Detlev

    2016-11-30

    Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk fl/fl mice. These Adk Δbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A 1 receptor (A 1 R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A 2A receptor (A 2A R) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A 2A receptor activity in Adk Δbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A 2A R activity therapeutically can attenuate neurological symptoms in ADK deficiency. A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy

  12. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    PubMed

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  13. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    PubMed

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  14. VEGF Receptor-2 (Flk-1) Overexpression in Mice Counteracts Focal Epileptic Seizures

    PubMed Central

    Nikitidou, Litsa; Kanter-Schlifke, Irene; Dhondt, Joke; Carmeliet, Peter; Lambrechts, Diether; Kokaia, Mérab

    2012-01-01

    Vascular endothelial growth factor (VEGF) was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1). VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity. PMID:22808185

  15. piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice

    PubMed Central

    Rico-Leo, Eva M.; Moreno-Marín, Nuria; González-Rico, Francisco J.; Barrasa, Eva; Ortega-Ferrusola, Cristina; Martín-Muñoz, Patricia; Sánchez-Guardado, Luis O.; Llano, Elena; Alvarez-Barrientos, Alberto; Infante-Campos, Ascensión; Catalina-Fernández, Inmaculada; Hidalgo-Sánchez, Matías; de Rooij, Dirk G.; Pendás, Alberto M.; Peña, Fernando J.; Merino, Jaime M.

    2016-01-01

    Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR−/− mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR−/− than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR−/− males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR−/− ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements. PMID:28003471

  16. CD32a antibodies induce thrombocytopenia and type II hypersensitivity reactions in FCGR2A mice

    PubMed Central

    Robles-Carrillo, Liza; Davila, Monica; Brodie, Meghan; Desai, Hina; Rivera-Amaya, Mildred; Francis, John L.; Amirkhosravi, Ali

    2015-01-01

    The CD32a immunoglobulin G (IgG) receptor (Fcγ receptor IIa) is a potential therapeutic target for diseases in which IgG immune complexes (ICs) mediate inflammation, such as heparin-induced thrombocytopenia, rheumatoid arthritis, and systemic lupus erythematosus. Monoclonal antibodies (mAbs) are a promising strategy for treating such diseases. However, IV.3, perhaps the best characterized CD32a-blocking mAb, was recently shown to induce anaphylaxis in immunocompromised “3KO” mice. This anaphylactic reaction required a human CD32a transgene because mice lack an equivalent of this gene. The finding that IV.3 induces anaphylaxis in CD32a-transgenic mice was surprising because IV.3 had long been thought to lack the intrinsic capacity to trigger cellular activation via CD32a. Such an anaphylactic reaction would also limit potential therapeutic applications of IV.3. In the present study, we examine the molecular mechanisms by which IV.3 induces anaphylaxis. We now report that IV.3 induces anaphylaxis in immunocompetent CD32a-transgenic “FCGR2A” mice, along with the novel finding that IV.3 and 2 other well-characterized CD32a-blocking mAbs, AT-10 and MDE-8, also induce severe thrombocytopenia in FCGR2A mice. Using recombinant variants of these same mAbs, we show that IgG “Fc” effector function is necessary for the induction of anaphylaxis and thrombocytopenia in FCGR2A mice. Variants of these mAbs lacking the capacity to activate mouse IgG receptors not only failed to induce anaphylaxis or thrombocytopenia, but also very potently protected FCGR2A mice from near lethal doses of IgG ICs. Our findings show that effector-deficient IV.3, AT-10, and MDE-8 are promising candidates for developing therapeutic mAbs to treat CD32a-mediated diseases. PMID:26396093

  17. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice.

    PubMed

    Smith, Craig M; Walker, Lesley L; Leeboonngam, Tanawan; McKinley, Michael J; Denton, Derek A; Lawrence, Andrew J

    2016-11-29

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior.

  18. Acute treatment with cannabinoid receptor agonist WIN55212.2 improves prepulse inhibition in psychosocially stressed mice.

    PubMed

    Brzózka, Magdalena M; Fischer, André; Falkai, Peter; Havemann-Reinecke, Ursula

    2011-04-15

    Cannabis, similar to psychosocial stress, is well known to exacerbate psychotic experiences and can precipitate psychotic episodes in vulnerable individuals. Cannabinoid receptors 1 (CB1) are widely expressed in the brain and are particularly important to mediate the effects of cannabis. Chronic cannabis use in patients and chronic cannabinoids treatment in animals is known to cause reduced prepulse inhibition (PPI). Similarly, chronic psychosocial stress in mice impairs PPI. In the present study, we investigated the synergistic effects of substances modulating the CB1-receptors and chronic psychosocial stress on PPI. For this purpose, adult C57Bl/6J mice were exposed to chronic psychosocial stress using the resident-intruder paradigm. The cannabinoid receptor agonist WIN55212.2 served as a surrogate marker for the effects of cannabis in the brain. After exposure to stress mice were acutely injected with WIN55212.2 (3 mg/kg) with or without pre-treatment with Rimonabant (3 mg/kg), a specific CB1-receptor antagonist, and subjected to behavioral testing. Stressed mice displayed a higher vulnerability to WIN55212.2 in the PPI test than control animals. The effects of WIN55212.2 on PPI were antagonized by Rimonabant suggesting an involvement of CB1-receptors in sensorimotor gating. Interestingly, WIN55212.2 increased PPI in psychosocially stressed mice although previous studies in rats showed the opposite effects. It may thus be possible, that depending on the doses of cannabinoids/CB1-receptor agonists applied and environmental conditions (psychosocial stress), opposite effects can be evoked in different experimental animals. Taken together, our data imply that CB1-receptors might play a crucial role in the synergistic effects of psychosocial stress and cannabinoids in brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Disruption of the CRF2 Receptor Pathway Decreases the Somatic Expression of Opiate Withdrawal

    PubMed Central

    Papaleo, Francesco; Ghozland, Sandy; Ingallinesi, Manuela; Roberts, Amanda J; Koob, George F; Contarino, Angelo

    2009-01-01

    Escape from the extremely aversive opiate withdrawal symptoms powerfully motivates compulsive drug-seeking and drug-taking behaviors. The corticotropin-releasing factor (CRF) system is hypothesized to mediate the motivational properties of drug dependence. CRF signaling is transmitted by two receptor pathways, termed CRF1 and CRF2. To investigate the role for the CRF2 receptor pathway in somatic opiate withdrawal, in the present study we used genetically engineered mice deficient in the CRF2 receptor (CRF2−/−). We employed a novel, clinically relevant mouse model of ‘spontaneous’ opiate withdrawal as well as a classical opioid receptor antagonist (naloxone)-precipitated opiate withdrawal paradigm. To induce opiate dependence, mice were treated with intermittent escalating morphine doses (20–100 mg/kg, i.p.). We found that 8–128 h after the last opiate injection, CRF2−/− mice showed decreased levels of major somatic signs of spontaneous opiate withdrawal, such as paw tremor and wet dog shake, as compared to wild-type mice. Similarly, challenge with naloxone 2 h after the last morphine injection induced lower levels of paw tremor and wet dog shake in CRF2−/− mice as compared to wild-type mice. Despite the differences in somatic signs, wild-type and CRF2−/− mice displayed similar plasma corticosterone responses to opiate dosing and withdrawal, indicating a marginal role for the hypothalamus–pituitary–adrenal axis in the CRF2 receptor mediation of opiate withdrawal. Our results unravel a novel role for the CRF2 receptor pathway in opiate withdrawal. The CRF2 receptor pathway might be a critical target of therapies aimed at alleviating opiate withdrawal symptoms and reducing relapse to drug intake. PMID:18288089

  20. NO-dependent blood pressure regulation in RGS2-deficient mice

    PubMed Central

    Obst, Michael; Tank, Jens; Plehm, Ralph; Blumer, Kendall J.; Diedrich, Andrè; Jordan, Jens; Luft, Friedrich C.; Gross, Volkmar

    2009-01-01

    The regulator of G protein signaling (RGS) 2, a GTPase-activating protein, is activated via the nitric oxide (NO)-cGMP pathway and thereby may influence blood pressure regulation. To test that notion, we measured mean arterial blood pressure (MAP) and heart rate (HR) with telemetry in Nω-nitro-L-arginine methyl ester (L-NAME, 5 mg L-NAME/10 ml tap water)-treated RGS2-deficient (RGS2−/−) and RGS2-sufficient (RGS2+/+) mice and assessed autonomic function. Without L-NAME, RGS2−/− mice showed during day and night a similar increase of MAP compared with controls. L-NAME treatment increased MAP in both strains. nNOS is involved in this L-NAME-dependent blood pressure increase, since 7-nitroindazole increased MAP by 8 and 9 mmHg (P < 0.05) in both strains. The L-NAME-induced MAP increase of 14–15 mmHg during night was similar in both strains. However, the L-NAME-induced MAP increase during the day was smaller in RGS2−/− than in RGS2+/+ (11 ± 1 vs. 17 ± 2 mmHg; P < 0.05). Urinary norepinephrine and epinephrine excretion was higher in RGS2−/− than in RGS2+/+ mice. The MAP decrease after prazosin was more pronounced in L-NAME-RGS2−/−. HR variability parameters [root mean square of successive differences (RMSSD), low-frequency (LF) power, and high-frequency (HF) power] and baroreflex sensitivity were increased in RGS2−/−. Atropine and atropine plus metoprolol markedly reduced RMSSD, LF, and HF. Our data suggest an interaction between RGS2 and the NO-cGMP pathway. The blunted L-NAME response in RGS2−/− during the day suggests impaired NO signaling. The MAP increases during the active phase in RGS2−/− mice may be related to central sympathetic activation and increased vascular adrenergic responsiveness. PMID:16269576

  1. Spinophilin Is Indispensable for the α2B Adrenergic Receptor-Elicited Hypertensive Response.

    PubMed

    Che, Pulin; Chen, Yunjia; Lu, Roujian; Peng, Ning; Gannon, Mary; Wyss, J Michael; Jiao, Kai; Wang, Qin

    2015-01-01

    The α2 adrenergic receptor (AR) subtypes are important for blood pressure control. When activated, the α2A subtype elicits a hypotensive response whereas the α2B subtype mediates a hypertensive effect that counteracts the hypotensive response by the α2A subtype. We have previously shown that spinophilin attenuates the α2AAR-dependent hypotensive response; in spinophilin null mice, this response is highly potentiated. In this study, we demonstrate that spinophilin impedes arrestin-dependent phosphorylation and desensitization of the α2BAR subtype by competing against arrestin binding to this receptor subtype. The Del301-303 α2BAR, a human variation that shows impaired phosphorylation and desensitization and is linked to hypertension in certain populations, exhibits preferential interaction with spinophilin over arrestin. Furthermore, Del301-303 α2BAR-induced ERK signaling is quickly desensitized in cells without spinophilin expression, showing a profile similar to that induced by the wild type receptor in these cells. Together, these data suggest a critical role of spinophilin in sustaining α2BAR signaling. Consistent with this notion, our in vivo study reveals that the α2BAR-elicited hypertensive response is diminished in spinophilin deficient mice. In arrestin 3 deficient mice, where the receptor has a stronger binding to spinophilin, the same hypertensive response is enhanced. These data suggest that interaction with spinophilin is indispensable for the α2BAR to elicit the hypertensive response. This is opposite of the negative role of spinophilin in regulating α2AAR-mediated hypotensive response, suggesting that spinophilin regulation of these closely related receptor subtypes can result in distinct functional outcomes in vivo. Thus, spinophilin may represent a useful therapeutic target for treatment of hypertension.

  2. Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2.

    PubMed

    Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M

    2010-03-01

    To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.

  3. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Loss of prokineticin receptor 2 (Prokr2) signaling predisposes mice to torpor

    PubMed Central

    PH, Jethwa; H, I’Anson; A, Warner; HM, Prosser; MH, Hastings; ES, Maywood; FJP, Ebling

    2009-01-01

    The genes encoding prokineticin 2 polypeptide (Prok2) and its cognate receptor (Prokr2/Gpcr73l1) are widely expressed in both the suprachiasmatic nucleus (SCN) and its hypothalamic targets, and this signaling pathway has been implicated in the circadian regulation of behavior and physiology. We have previously observed that the targeted null mutation of Prokr2 disrupts circadian co-ordination of cycles of locomotor activity and thermoregulation. We have now observed spontaneous but sporadic bouts of torpor in the majority of these transgenic mice lacking Prokr2 signaling. During these torpor bouts, which lasted for up to 8h, body temperature and locomotor activity decreased markedly. Oxygen consumption and carbon dioxide production also decreased, and there was a decrease in RQ. These spontaneous torpor bouts generally began towards the end of the dark phase or in the early light phase when the mice were maintained on a 12:12 light-dark cycle, and persisted when mice were exposed to continuous darkness. Periods of food deprivation (16-24h) induced a substantial decrease in body temperature in all mice, but the duration and depth of hypothermia was significantly greater in mice lacking Prokr2 signaling compared to heterozygous and wild-type litter mates. Likewise, when tested in metabolic cages, food deprivation produced greater decreases in oxygen consumption and carbon dioxide production in the transgenic mice than the controls. We conclude that Prokr2 signaling plays a role in the hypothalamic regulation of energy balance, and loss of this pathway results in physiological and behavioral responses normally only detected when mice are in negative energy balance. PMID:18417646

  5. Haploinsufficiency of E-selectin ligand-1 is Associated with Reduced Atherosclerotic Plaque Macrophage Content while Complete Deficiency Leads to Early Embryonic Lethality in Mice

    PubMed Central

    Luo, Wei; Wang, Hui; Guo, Chiao; Wang, Jintao; Kwak, Jeffrey; Bahrou, Kristina L; Eitzman, Daniel T.

    2012-01-01

    E-selectin-1 (ESL-1), also known as golgi complex-localized glycoprotein-1 (GLG1), homocysteine-rich fibroblast growth factor receptor (CGR-1), and latent transforming growth factor-β complex protein 1 (LTCP-1), is a multifunctional protein with widespread tissue distribution. To determine the functional consequences of ESL-1 deficiency, mice were generated carrying an ESL-1 gene trap. After backcrossing to C57BL6/J for 6 generations, mice heterozygous for the gene trap (ESL-1+/-) were intercrossed to produce ESL-1-/- mice, however ESL-1-/- mice were not viable, even at embryonic day E10.5. To determine the effect of heterozygous ESL-1 deficiency on atherosclerosis, apolipoprotein E deficient (ApoE-/-), ESL-1+/- mice were generated and fed western diet. Compared to ApoE-/-, ESL-1++ mice, atherosclerotic lesions from ApoE-/-, ESL-1+/- contained more collagen and fewer macrophages, suggesting increased plaque stability. In conclusion, heterozygous deficiency of ESL-1 is associated with features of increased atherosclerotic plaque stability while complete deficiency of ESL-1 leads to embryonic lethality. PMID:22939356

  6. Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice

    PubMed Central

    Mihalek, Robert M.; Banerjee, Pradeep K.; Korpi, Esa R.; Quinlan, Joseph J.; Firestone, Leonard L.; Mi, Zhi-Ping; Lagenaur, Carl; Tretter, Verena; Sieghart, Werner; Anagnostaras, Stephan G.; Sage, Jennifer R.; Fanselow, Michael S.; Guidotti, Alessandro; Spigelman, Igor; Li, Zhiwei; DeLorey, Timothy M.; Olsen, Richard W.; Homanics, Gregg E.

    1999-01-01

    γ-Aminobutyric acid (GABA) type A receptors mediate fast inhibitory synaptic transmission and have been implicated in responses to sedative/hypnotic agents (including neuroactive steroids), anxiety, and learning and memory. Using gene targeting technology, we generated a strain of mice deficient in the δ subunit of the GABA type A receptors. In vivo testing of various behavioral responses revealed a strikingly selective attenuation of responses to neuroactive steroids, but not to other modulatory drugs. Electrophysiological recordings from hippocampal slices revealed a significantly faster miniature inhibitory postsynaptic current decay time in null mice, with no change in miniature inhibitory postsynaptic current amplitude or frequency. Learning and memory assessed with fear conditioning were normal. These results begin to illuminate the novel contributions of the δ subunit to GABA pharmacology and sedative/hypnotic responses and behavior and provide insights into the physiology of neurosteroids. PMID:10536021

  7. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  8. Proton Pump Inhibitor and Histamine-2 Receptor Antagonist Use and Iron Deficiency.

    PubMed

    Lam, Jameson R; Schneider, Jennifer L; Quesenberry, Charles P; Corley, Douglas A

    2017-03-01

    Proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) suppress gastric acid production, which can inhibit iron absorption. However, few data exist regarding whether these medications increase the risk of clinical iron deficiency. A community-based case-control study evaluated the association between acid-suppressing medication use and the subsequent risk of iron deficiency. It contrasted 77,046 patients with new iron deficiency diagnoses (January 1999-December 2013), with 389,314 controls. Medication exposures, outcomes, and potential confounders used electronic databases. We excluded patients with pre-existing risk factors for iron deficiency. Associations were estimated using conditional logistic regression. Among cases, 2343 (3.0%) received a prior ≥2-year supply of PPIs and 1063 (1.4%) received H2RAs (without PPI use). Among controls, 3354 (0.9%) received a prior ≥2-year supply of PPIs and 2247 (0.6%) H2RAs. Both ≥2 years of PPIs (adjusted odds ratio, 2.49; 95% confidence interval, 2.35-2.64) and ≥2 years of H2RAs (odds ratio, 1.58; 95% CI, 1.46-1.71) were associated with an increased subsequent risk for iron deficiency. Among PPI users, the associations were stronger for higher daily doses (>1.5 vs <0.75 PPI pills/d; P value interaction = .004) and decreased after medication discontinuation (P-trend < .001). Some of the strongest associations were among persons taking >1.5 pills per day for at least 10 years (odds ratio, 4.27; 95% CI, 2.53-7.21). No similar strong associations were found for other commonly used prescription medications. Among patients without known risk factors for iron deficiency, gastric acid inhibitor use for ≥2 years was associated with an increased subsequent risk of iron deficiency. The risk increased with increasing potency of acid inhibition and decreased after medication discontinuation. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Dectin-2 Is a C-Type Lectin Receptor that Recognizes Pneumocystis and Participates in Innate Immune Responses.

    PubMed

    Kottom, Theodore J; Hebrink, Deanne M; Jenson, Paige E; Marsolek, Paige L; Wüthrich, Marcel; Wang, Huafeng; Klein, Bruce; Yamasaki, Sho; Limper, Andrew H

    2018-02-01

    Pneumocystis is an important fungal pathogen that causes life-threatening pneumonia in patients with AIDS and malignancy. Lung fungal pathogens are recognized by C-type lectin receptors (CLRs), which bind specific ligands and stimulate innate immune responses. The CLR Dectin-1 was previously shown to mediate immune responses to Pneumocystis spp. For this reason, we investigated a potential role for Dectin-2. Rats with Pneumocystis pneumonia (PCP) exhibited elevated Dectin-2 mRNA levels. Soluble Dectin-2 carbohydrate-recognition domain fusion protein showed binding to intact Pneumocystis carinii (Pc) and to native Pneumocystis major surface glycoprotein/glycoprotein A (Msg/gpA). RAW macrophage cells expressing V5-tagged Dectin-2 displayed enhanced binding to Pc and increased protein tyrosine phosphorylation. Furthermore, the binding of Pc to Dectin-2 resulted in Fc receptor-γ-mediated intracellular signaling. Alveolar macrophages from Dectin-2-deficient mice (Dectin-2 -/- ) showed significant decreases in phospho-Syk activation after challenge with Pc cell wall components. Stimulation of Dectin-2 -/- alveolar macrophages with Pc components showed significant decreases in the proinflammatory cytokines IL-6 and TNF-α. Finally, during infection with Pneumocystis murina, Dectin-2 -/- mice displayed downregulated mRNA expression profiles of other CLRs implicated in fungal immunity. Although Dectin-2 -/- alveolar macrophages had reduced proinflammatory cytokine release in vitro, Dectin-2 -/- deficiency did not reduce the overall resistance of these mice in the PCP model, and organism burdens were statistically similar in the long-term immunocompromised and short-term immunocompetent PCP models. These results suggest that Dectin-2 participates in the initial innate immune signaling response to Pneumocystis, but its deficiency does not impair resistance to the organism.

  10. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    PubMed

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice

    PubMed Central

    Qadri, Fatimunnisa; Penninger, Josef M.; Santos, Robson Augusto S.; Bader, Michael

    2016-01-01

    Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2−/y) mice. Methods. Male C57BL/6 and ACE2−/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2−/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2−/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2−/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2−/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis. PMID:28101297

  12. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice.

    PubMed

    Rasmiena, Aliki A; Barlow, Christopher K; Stefanovic, Nada; Huynh, Kevin; Tan, Ricardo; Sharma, Arpeeta; Tull, Dedreia; de Haan, Judy B; Meikle, Peter J

    2015-12-01

    We previously reported a negative association of circulating plasmalogens (phospholipids with proposed atheroprotective properties) with coronary artery disease. Plasmalogen modulation was previously demonstrated in animals but its effect on atherosclerosis was unknown. We assessed the effect of plasmalogen enrichment on atherosclerosis of murine models with differing levels of oxidative stress. Six-week old ApoE- and ApoE/glutathione peroxidase-1 (GPx1)-deficient mice were fed a high-fat diet with/without 2% batyl alcohol (precursor to plasmalogen synthesis) for 12 weeks. Mass spectrometry analysis of lipids showed that batyl alcohol supplementation to ApoE- and ApoE/GPx1-deficient mice increased the total plasmalogen levels in both plasma and heart. Oxidation of plasmalogen in the treated mice was evident from increased level of plasmalogen oxidative by-product, sn-2 lysophospholipids. Atherosclerotic plaque in the aorta was reduced by 70% (P = 5.69E-07) and 69% (P = 2.00E-04) in treated ApoE- and ApoE/GPx1-deficient mice, respectively. A 40% reduction in plaque (P = 7.74E-03) was also seen in the aortic sinus of only the treated ApoE/GPx1-deficient mice. Only the treated ApoE/GPx1-deficient mice showed a decrease in VCAM-1 staining (-28%, P = 2.43E-02) in the aortic sinus and nitrotyrosine staining (-78%, P = 5.11E-06) in the aorta. Plasmalogen enrichment via batyl alcohol supplementation attenuated atherosclerosis in ApoE- and ApoE/GPx1-deficient mice, with a greater effect in the latter group. Plasmalogen enrichment may represent a viable therapeutic strategy to prevent atherosclerosis and reduce cardiovascular disease risk, particularly under conditions of elevated oxidative stress and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Involvement of GluD2 in Fear-Conditioned Bradycardia in Mice.

    PubMed

    Kotajima-Murakami, Hiroko; Narumi, Sakae; Yuzaki, Michisuke; Yanagihara, Dai

    2016-01-01

    Lesions in the cerebellar vermis abolish acquisition of fear-conditioned bradycardia in animals and human patients. The δ2 glutamate receptor (GluD2) is predominantly expressed in cerebellar Purkinje cells. The mouse mutant ho15J carries a spontaneous mutation in GluD2 and these mice show a primary deficiency in parallel fiber-Purkinje cell synapses, multiple innervations of Purkinje cells by climbing fibers, and impairment of long-term depression. In the present study, we used ho15J mice to investigate the role of the cerebellum in fear-conditioned bradycardia. We recorded changes in heart rate of ho15J mice induced by repeated pairing of an acoustic (conditioned) stimulus (CS) with an aversive (unconditioned) stimulus (US). The mice acquired conditioned bradycardia on Day 1 of the CS-US phase, similarly to wild-type mice. However, the magnitude of the conditioned bradycardia was not stable in the mutant mice, but rather was exaggerated on Days 2-5 of the CS-US phase. We examined the effects of reversibly inactivating the cerebellum by injection of an antagonist against the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR). The antagonist abolished expression of conditioned responses in both wild-type and ho15J mice. We conclude that the GluD2 mutation in the ho15J mice affects stable retention of the acquired conditioned bradycardia.

  14. Behavioral effects of pulp exposure in mice lacking cannabinoid receptor 2.

    PubMed

    Flake, Natasha M; Zweifel, Larry S

    2012-01-01

    Cannabinoid receptor 2 (CB2) is an intriguing target for the treatment of pain because of its ability to mediate analgesia without psychoactive effects, but little is known about the role of CB2 in pain of endodontic origin. The purpose of this study was to determine the behavioral effects of dental pulp exposure in wild-type (WT) mice and to explore the contribution of CB2 to these behaviors using CB2 knockout (CB2 KO) mice. Pulp exposures were created unilaterally in the maxillary and mandibular first molars of female WT and CB2 KO mice. The open field test was used before pulp exposure or sham surgery, and postoperatively at 1 day, 1 week, 2 weeks, and 3 weeks. Mouse body weight and food consumption were recorded preoperatively and postoperatively at 1 day, 2 days, and 1 week. At baseline, CB2 KO mice weighed significantly more and had significantly greater food intake than WT mice. CB2 KO mice exhibited greater anxiety-like behavior in the baseline open field test, having significantly fewer center crossings and less distance traveled than WT mice. Pulp exposure had relatively little effect on the behavior of WT mice. CB2 KO mice with pulp exposures showed a decrease in food intake and body weight after surgery, and pulp exposure resulted in significantly fewer center crossings in the open field test in CB2 KO mice. Pulp exposure in CB2 KO mice resulted in behaviors consistent with an increase in pain and/or anxiety. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Angiopoietin-1 deficiency increases tumor metastasis in mice.

    PubMed

    Michael, Iacovos P; Orebrand, Martina; Lima, Marta; Pereira, Beatriz; Volpert, Olga; Quaggin, Susan E; Jeansson, Marie

    2017-08-11

    Angipoietin-1 activation of the tyrosine kinase receptor Tek expressed mainly on endothelial cells leads to survival and stabilization of endothelial cells. Studies have shown that Angiopoietin-1 counteracts permeability induced by a number of stimuli. Here, we test the hypothesis that loss of Angiopoietin-1/Tek signaling in the vasculature would increase metastasis. Angiopoietin-1 was deleted in mice just before birth using floxed Angiopoietin-1 and Tek mice crossed to doxycycline-inducible bitransgenic ROSA-rtTA/tetO-Cre mice. By crossing Angiopoietin-1 knockout mice to the MMTV-PyMT autochthonous mouse breast cancer model, we investigated primary tumor growth and metastasis to the lung. Furthermore, we utilized B16F10 melanoma cells subcutaneous and experimental lung metastasis models in Angiopoietin-1 and Tek knockout mice. We found that primary tumor growth in MMTV-PyMT mice was unaffected, while metastasis to the lung was significantly increased in Angiopoietin-1 knockout MMTV-PyMT mice. In addition, angiopoietin-1 deficient mice exhibited a significant increase in lung metastasis of B16F10 melanoma cells, compared to wild type mice 3 weeks after injection. Additional experiments showed that this was likely an early event due to increased attachment or extravasation of tumor cells, since seeding of tumor cells was significantly increased 4 and 24 h post tail vein injection. Finally, using inducible Tek knockout mice, we showed a significant increase in tumor cell seeding to the lung, suggesting that Angiopoietin-1/Tek signaling is important for vascular integrity to limit metastasis. This study show that loss of the Angiopoietin-1/Tek vascular growth factor system leads to increased metastasis without affecting primary tumor growth.

  16. Dopamine receptor D3 deficiency results in chronic depression and anxiety.

    PubMed

    Moraga-Amaro, Rodrigo; Gonzalez, Hugo; Pacheco, Rodrigo; Stehberg, Jimmy

    2014-11-01

    Over the last decade accumulating evidence suggests that brain dopamine (DA) has a role in depression, particularly given the high comorbidity of depression with Parkinson's Disease (PD) and the antidepressant effects of the DA receptor subtype 3 (D3R) agonist pramipexole. The present study assesses the role of D3R in depression. Here we hypothesized that D3R mediates the antidepressant effects of DA. Thus, genetic deficiency of D3R in D3R knockout (D3RKO) mice would yield animals with chronic depressive symptoms. Whereas D3R deficient mice did not show significant alterations in locomotion when tested in the openfield, these animals showed anxiety-like symptoms measured as a significant increase in thigmotaxis at the openfield and a significantly lower time spent in the lit compartment at the light/dark exploration test. D3RKO animals also showed depressive-like symptoms as measured by increased immobility time in the Porsolt forced swim test and the tail suspension test, as well as anhedonia measured in the non-motor dependent sucrose test. In conclusion, D3R deficiency results in anxiety-like and depressive-like symptoms that cannot be attributed to motor dysfunction. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    PubMed

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  18. Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2

    PubMed Central

    Ohno, Shouichi; Ikeda, Jun-ichiro; Naito, Yoko; Okuzaki, Daisuke; Sasakura, Towa; Fukushima, Kohshiro; Nishikawa, Yukihiro; Ota, Kaori; Kato, Yorika; Wang, Mian; Torigata, Kosuke; Kasama, Takashi; Uchihashi, Toshihiro; Miura, Daisaku; Yabuta, Norikazu; Morii, Eiichi; Nojima, Hiroshi

    2016-01-01

    Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B’γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan–Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer. PMID:27982046

  19. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    PubMed Central

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  20. Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF.

    PubMed

    Swee, Lee Kim; Tardivel, Aubry; Schneider, Pascal; Rolink, Antonius

    2010-06-15

    BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Long Term Expression of Drosophila melanogaster Nucleoside Kinase in Thymidine Kinase 2-deficient Mice with No Lethal Effects Caused by Nucleotide Pool Imbalances*

    PubMed Central

    Krishnan, Shuba; Paredes, João A.; Zhou, Xiaoshan; Kuiper, Raoul V.; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna

    2014-01-01

    Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. PMID:25296759

  2. Long term expression of Drosophila melanogaster nucleoside kinase in thymidine kinase 2-deficient mice with no lethal effects caused by nucleotide pool imbalances.

    PubMed

    Krishnan, Shuba; Paredes, João A; Zhou, Xiaoshan; Kuiper, Raoul V; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna

    2014-11-21

    Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK(+/-)Tk2(-/-) mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK(+/-) mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effects of sazetidine-A, a selective α4β2* nicotinic receptor desensitizing agent, on body temperature regulation in mice and rats

    PubMed Central

    Rezvani, Amir H.; Timofeeva, Olga; Sexton, Hannah G.; DeCuir, Damien; Xiao, Yingxian; Gordon, Christopher J.; Kellar, Kenneth J.; Levin, Edward D.

    2014-01-01

    Nicotine-induced hypothermia is well established, but the nicotinic receptor actions underlying this effect are not clear. Nicotine causes activation and desensitization at a variety of nicotinic receptor subtypes. Sazetidine-A [6-(5(((S)-azetidine-2-yl)methoxy)pyridine-3-yl)hex-5-yn-1-ol] is a novel compound that potently and selectively desensitizes α4β2* nicotinic receptors. The main goal of this study was to investigate the effects of sazetidine-A, on core body temperature (Tc) in mice and rats. Sazetidine-A effects on Tc and the interactions of sazetidine-A with nicotine and selective nicotinic antagonists were investigated to determine the receptor actions underlying nicotine-induced hypothermia. Adult male mice were injected with different dose of nicotine (0.2, 0.4 and 0.8 mg/kg), sazetidine-A (0.3, 1, and 3 mg/kg), a mixture of nicotine (0.4 or 0.8 mg/kg) and sazetidine-A (0.3 or 0.6 mg/kg) or saline and Tc was monitored telemetrically. In another set of experiments, the interaction between sazetidine-A and dihydro-β-erythroidine (DHβE), an α4β2* nicotinic receptors antagonist, and methyllycaconitine (MLA), an α 7 antagonist, was investigated. Tc of mice was monitored following DHβE (1, 3 and 6 mg/kg), a combination of DHβE (3 mg/kg) and sazetidine-A (0.6 mg/kg), MLA (1.5, 3 or 6 mg/kg) or combination of MLA (6 mg/kg) and sazetidine (0.6 mg/kg) or saline. The acute effect of sazetidine-A (1, 3, and 6 mg/kg) on rats Tc was also studied. Acute sazetidine-A caused a pronounced and long-lasting hypothermia in mice; Tc decreased to about 28 °C at 100 min and recovered within 230 min. The hypothermic effect of sazetidine in rats was much less in magnitude (about 3°C) and shorter in duration compared with that in mice. Nicotine co-administration with low doses of sazetidine potentiated the magnitude and duration of hypothermia in mice. The α4β2* nicotinic receptors antagonist DHβE significantly prolonged sazetidine-A-induced hypothermia but did not

  4. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice

    PubMed Central

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore

    2017-01-01

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664

  5. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    PubMed

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  6. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    PubMed

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  7. Potentiation of oxycodone antinociception in mice by agmatine and BMS182874 via an imidazoline I2 receptor-mediated mechanism.

    PubMed

    Bhalla, Shaifali; Ali, Izna; Lee, Hyaera; Andurkar, Shridhar V; Gulati, Anil

    2013-01-01

    The potentiation of oxycodone antinociception by BMS182874 (endothelin-A (ET(A)) receptor antagonist) and agmatine (imidazoline receptor/α(2)-adrenoceptor agonist) is well-documented. It is also known that imidazoline receptors but not α(2)-adrenoceptors are involved in potentiation of oxycodone antinociception by agmatine and BMS182874 in mice. However, the involvement of specific imidazoline receptor subtypes (I(1), I(2), or both) in this interaction is not clearly understood. The present study was conducted to determine the involvement of imidazoline I(1) and I(2) receptors in agmatine- and BMS182874-induced potentiation of oxycodone antinociception in mice. Antinociceptive (tail flick and hot-plate) latencies were determined in male Swiss Webster mice treated with oxycodone, agmatine, BMS182874, and combined administration of oxycodone with agmatine or BMS182874. Efaroxan (imidazoline I(1) receptor antagonist) and BU224 (imidazoline I(2) receptor antagonist) were used to determine the involvement of I(1) and I(2) imidazoline receptors, respectively. Oxycodone produced significant antinociceptive response in mice which was not affected by efaroxan but was blocked by BU224. Agmatine-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. Similarly, BMS182874-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. This is the first report demonstrating that BMS182874- or agmatine-induced enhancement of oxycodone antinociception is blocked by BU224 but not by efaroxan. We conclude that imidazoline I(2) receptors but not imidazoline I(1) receptors are involved in BMS182874- and agmatine-induced potentiation of oxycodone antinociception in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  9. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model

    PubMed Central

    Koványi, Bence; Csölle, Cecilia; Calovi, Stefano; Hanuska, Adrienn; Kató, Erzsébet; Köles, László; Bhattacharya, Anindya; Haller, József; Sperlágh, Beáta

    2016-01-01

    P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7−/−), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7−/− animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia. PMID:27824163

  10. Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis.

    PubMed

    Zhu, Longdong; Kong, Ming; Han, Yuan-Ping; Bai, Li; Zhang, Xiaohui; Chen, Yu; Zheng, Sujun; Yuan, Hong; Duan, Zhongping

    2015-05-01

    Epidemiological studies have revealed an association between vitamin D deficiency and various chronic liver diseases. However, it is not known whether lack of vitamin D can induce spontaneous liver fibrosis in an animal model. To study this, mice were fed either a control diet or a vitamin D deficient diet (VDD diet). For the positive control, liver fibrosis was induced with carbon tetrachloride. Here we show, for the first time, that liver fibrosis spontaneously developed in mice fed the VDD diet. Long-term administration of a VDD diet resulted in necro-inflammation and liver fibrosis. Inflammatory mediators including tumor necrosis factor-α, interleulin-1, interleukin-6, Toll-like-receptor 4, and monocyte chemotactic protein-1 were up-regulated in the livers of the mice fed the VDD diet. Conversely, the expression of Th2/M2 markers such as IL-10, IL-13, arginase 1, and heme oxygenase-1 were down-regulated in the livers of mice fed the VDD diet. Transforming growth factor-β1 and matrix metalloproteinase 13, which are important for fibrosis, were induced in the livers of mice fed the VDD diet. Moreover, the VDD diet triggered apoptosis in the parenchymal cells, in agreement with the increased levels of Fas and FasL, and decreased Bcl2 and Bclx. Thus, long-term vitamin D deficiency can provoke chronic inflammation that can induce liver apoptosis, which consequently activates hepatic stellate cells to initiate liver fibrosis.

  11. Learning and Memory Impairments in a Congenic C57BL/6 Strain of Mice That Lacks the M2 Muscarinic Acetylcholine Receptor Subtype

    PubMed Central

    Bainbridge, Natalie K.; Koselke, Lisa R.; Jeon, Jongrye; Bailey, Kathleen R.; Wess, Jürgen; Crawley, Jacqueline N.; Wrenn, Craige C.

    2009-01-01

    The neurotransmitter acetylcholine is an important modulator of cognitive functions including attention, learning, and memory. The actions of acetylcholine are mediated by five distinct muscarinic acetylcholine receptor subtypes (M1-M5). The lack of drugs with a high degree of selectivity for these subtypes has impeded the determination of which subtypes mediate which components of cholinergic neurotransmission relevant to cognitive abilities. The present study examined the behavioral functions of the M2 muscarinic receptor subtype by utilizing congenic C57BL/6 mice possessing a null-mutation in the M2 muscarinic receptor gene (M2−/− mice). Comprehensive assessment of general health and neurological function found no major differences between M2−/− and wild-type (M2+/+) mice. In tests of learning and memory, M2−/− mice were impaired in the acquisition (trials to criterion), but not the retention (72 hr) of a passive avoidance task. In a novel open field, M2−/− mice were impaired in between-sessions, but not within-session habituation. In a holeboard test of spatial memory, M2−/− mice committed more errors in working memory than M2+/+ mice. Reference memory did not differ between the genotypes. M2−/− mice showed no impairments in either cued or contextual fear conditioning. These findings replicate and extend earlier findings in a hybrid strain and solidify the interpretation that the M2 receptor plays a critical role in specific components of cognitive abilities. PMID:18346798

  12. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    PubMed

    Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N

    2015-01-01

    Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1

  13. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  14. Circadian behaviour in neuroglobin deficient mice.

    PubMed

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  15. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma.

    PubMed

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James G; Xu, Yan; Shen, Xiling; Kalady, Mathew F; Markowitz, Sanford; Maillard, Ivan; Lowe, John B; Xin, Wei; Zhou, Lan

    2017-01-01

    De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency

  16. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    PubMed

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  17. NOX2 Deficiency Protects Against Streptozotocin-Induced β-Cell Destruction and Development of Diabetes in Mice

    PubMed Central

    Xiang, Fu-Li; Lu, Xiangru; Strutt, Brenda; Hill, David J.; Feng, Qingping

    2010-01-01

    OBJECTIVE The role of NOX2-containing NADPH oxidase in the development of diabetes is not fully understood. We hypothesized that NOX2 deficiency decreases reactive oxygen species (ROS) production and immune response and protects against streptozotocin (STZ)-induced β-cell destruction and development of diabetes in mice. RESEARCH DESIGN AND METHODS Five groups of mice—wild-type (WT), NOX2−/−, WT treated with apocynin, and WT adoptively transferred with NOX2−/− or WT splenocytes—were treated with multiple-low-dose STZ. Blood glucose and insulin levels were monitored, and an intraperitoneal glucose tolerance test was performed. Isolated WT and NOX2−/− pancreatic islets were treated with cytokines for 48 h. RESULTS Significantly lower blood glucose levels, higher insulin levels, and better glucose tolerance was observed in NOX2−/− mice and in WT mice adoptively transferred with NOX2−/− splenocytes compared with the respective control groups after STZ treatment. Compared with WT, β-cell apoptosis, as determined by TUNEL staining, and insulitis were significantly decreased, whereas β-cell mass was significantly increased in NOX2−/− mice. In response to cytokine stimulation, ROS production was significantly decreased, and insulin secretion was preserved in NOX2−/− compared with WT islets. Furthermore, proinflammatory cytokine release induced by concanavalin A was significantly decreased in NOX2−/− compared with WT splenocytes. CONCLUSIONS NOX2 deficiency decreases β-cell destruction and preserves islet function in STZ-induced diabetes by reducing ROS production, immune response, and β-cell apoptosis. PMID:20627937

  18. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice

    PubMed Central

    Uz, Tolga; Dimitrijevic, Nikola; Imbesi, Marta; Manev, Hari; Manev, Radmila

    2008-01-01

    A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX; 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, 6 daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 μg per 100 mg body-weight per day, required three weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings. PMID:18403121

  19. Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages

    PubMed Central

    Zhou, Yi; Yu, Xueqing; Chen, Huimei; Sjöberg, Sara; Roux, Joséphine; Zhang, Lijun; Ivoulsou, Al-Habib; Bensaid, Farid; Liu, Conglin; Liu, Jian; Tordjman, Joan; Clement, Karine; Lee, Chih-Hao; Hotamisligil, Gokhan S.; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    SUMMARY Mast cells (MCs) contribute to the pathogenesis of obesity and diabetes. This study demonstrates that leptin deficiency slants MCs toward anti-inflammatory functions. MCs in the white adipose tissues (WAT) of lean humans and mice express negligible leptin. Adoptive transfer of leptin-deficient MCs expanded ex vivo mitigates diet-induced and pre-established obesity and diabetes in mice. Mechanistic studies show that leptin-deficient MCs polarize macrophages from M1 to M2 functions because of impaired cell signaling and an altered balance between pro- and anti-inflammatory cytokines, but do not affect T-cell differentiation. Rampant body weight gain in ob/ob mice, a strain that lacks leptin, associates with reduced MC content in WAT. In ob/ob mice, genetic depletion of MCs exacerbates obesity and diabetes, and repopulation of ex vivo expanded ob/ob MCs ameliorates these diseases. PMID:26481668

  20. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice

    PubMed Central

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y.; DeMayo, Francesco J.; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W.

    2005-01-01

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, ARGAL4DBD, which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators. PMID:15983373

  1. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice.

    PubMed

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y; DeMayo, Francesco J; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W

    2005-07-05

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.

  2. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice

    PubMed Central

    Smith, Craig M.; Walker, Lesley L.; Leeboonngam, Tanawan; McKinley, Michael J.; Denton, Derek A.; Lawrence, Andrew J.

    2016-01-01

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior. PMID:27849613

  3. Thymic Stromal-Cell Abnormalities and Dysregulated T-Cell Development in IL-2-Deficient Mice

    PubMed Central

    Reya, Tannishtha; Bassiri, Hamid; Biancaniello, Renée

    1998-01-01

    The role that interleukin-2 (IL-2) plays in T-cell development is not known. To address this issue, we have investigated the nature of the abnormal thymic development and autoimmune disorders that occurs in IL-2-deficient (IL-2–/–) mice. After 4 to 5 weeks of birth, IL-2–/– mice progressively develop a thymic disorder resulting in the disruption of thymocyte maturation. This disorder is characterized by a dramatic reduction in cellularity, the selective loss of immature CD4-8- (double negative; DN) and CD4+8+ (double positive; DP) thymocytes and defects in the thymic stromal-cell compartment. Immunohistochemical staining of sections of thymuses from specific pathogen-free and germ-free IL-2–/– mice of various ages showed a progressive ,loss of cortical epithelial cells, MHC class II-expressing cells, monocytes, and macrophages. Reduced numbers of macrophages were apparent as early as week after birth. Since IL-2–/– thymocyte progenitor populations could mature normally on transfer into a normal thymus, the thymic defect in IL-2–/– mice appears to be due to abnormalities among thymic stromal cells. These results underscore the role of IL-2 in maintaining functional microenvironments that are necessary to support thymocyte growth, development, and selection. PMID:9814585

  4. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice

    PubMed Central

    Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.

    2017-01-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702

  5. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    PubMed

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  6. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    PubMed

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  7. D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking.

    PubMed

    Helms, C M; Gubner, N R; Wilhelm, C J; Mitchell, S H; Grandy, D K

    2008-09-01

    Alleles of the human dopamine D(4) receptor (D(4)R) gene (DRD4.7) have repeatedly been found to correlate with novelty seeking, substance abuse, pathological gambling, and attention-deficit hyperactivity disorder (ADHD). If these various psychopathologies are a result of attenuated D(4)R-mediated signaling, mice lacking D(4)Rs (D(4)KO) should be more impulsive than wild-type (WT) mice and exhibit more novelty seeking. However, in our study, D(4)KO and WT mice showed similar levels of impulsivity as measured by delay discounting performance and response inhibition on a Go/No-go test, suggesting that D(4)R-mediated signaling may not affect impulsivity. D(4)KO mice were more active than WT mice in the first 5 min of a novel open field test, suggesting greater novelty seeking. For both genotypes, more impulsive mice habituated less in the novel open field. These data suggest that the absence of D(4)Rs is not sufficient to cause psychopathologies associated with heightened impulsivity and novelty seeking.

  8. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation.

    PubMed

    Daigle, Tanya L; Caron, Marc G

    2012-08-15

    Although G-protein-coupled receptor kinase 2 (GRK2) is the most widely studied member of a family of kinases that has been shown to exert powerful influences on a variety of G-protein-coupled receptors, its role in the brain remains largely unknown. Here we report the localization of GRK2 in the mouse brain and generate novel conditional knock-out (KO) mice to assess the physiological importance of this kinase in cholinergic neurons. Mice with the selective deletion of GRK2 in this cell population (ChAT(IRES-cre)Grk2(f/f) KO mice) exhibit reduced behavioral responsiveness to challenge with oxotremorine-M (Oxo-M), a nonselective muscarinic acetylcholine receptor agonist. Specifically, Oxo-M-induced hypothermia, hypolocomotion, and salivation were markedly reduced in these animals, while analgesic responses were unaltered. In contrast, we found that GRK2 deficiency in cholinergic neurons does not alter cocaine-induced psychomotor activation, behavioral sensitization, or conditioned place preference. These results demonstrate that the elimination of GRK2 in cholinergic neurons reduces sensitivity to select muscarinic-mediated behaviors, while dopaminergic effects remain intact and further suggests that GRK2 may selectively impair muscarinic acetylcholine receptor-mediated function in vivo.

  10. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    PubMed

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  11. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus.

    PubMed

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel

    2014-10-31

    Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  12. Cherubism Mice Also Deficient in c-Fos Exhibit Inflammatory Bone Destruction Executed by Macrophages That Express MMP14 Despite the Absence of TRAP+ Osteoclasts.

    PubMed

    Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi

    2018-01-01

    Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2 KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2 KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2 KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2 KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2 KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in

  13. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival.

    PubMed

    Zheng, Qiao; Dunlap, Sarah M; Zhu, Jinling; Downs-Kelly, Erinn; Rich, Jeremy; Hursting, Stephen D; Berger, Nathan A; Reizes, Ofer

    2011-08-01

    Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.

  14. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

    PubMed Central

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-01-01

    Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The

  15. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice.

    PubMed

    Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten

    2012-06-01

    Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive

  16. Neuropeptide Y-Y2 receptor knockout mice: influence of genetic background on anxiety-related behaviors.

    PubMed

    Zambello, E; Zanetti, L; Hédou, G F; Angelici, O; Arban, R; Tasan, R O; Sperk, G; Caberlotto, L

    2011-03-10

    Neuropeptide Y (NPY) has been extensively studied in relation to anxiety and depression but of the seven NPY receptors known to date, it is not yet clear which one is mainly involved in mediating its effects in emotional behavior. Mice lacking the NPY-Y2 receptors were previously shown to be less anxious due to their improved ability to cope with stressful situations. In the present study, the behavioral phenotype including the response to challenges was analyzed in NPY-Y2 knockout (KO) mice backcrossed in to congenic C57BL/6 background. In the elevated plus-maze (EPM) and the forced swim test (FST), the anxiolytic-like or antidepressant-like phenotype of the NPY-Y2 KO mice could not be confirmed, although this study differs from the previous one only with regard to the genetic background of the mice. In addition, no differences in response to acute stress or to the antidepressant desipramine in the FST were detected between wild type (WT) and NPY-Y2 KO animals. These results suggest that the genetic background of the animals appears to have a strong influence on the behavioral phenotype of NPY-Y2 KO mice. Additionally, to further characterize the animals by their biochemical response to a challenge, the neurochemical changes induced by the anxiogenic compound yohimbine were measured in the medial prefrontal cortex (mPFC) of NPY-Y2 KO and compared to WT mice. Dopamine (DA) levels were significantly increased by yohimbine in the WT but unaffected in the KO mice, suggesting that NPY-Y2 receptor exerts a direct control over both the tonic and phasic release of DA and that, although the anxiety-like behavior of these NPY-Y2 KO mice is unaltered, there are clear modifications of DA dynamics. However, yohimbine led to a significant increase in noradrenaline (NA) concentration and a slight reduction in serotonin concentration that were identical for both phenotypes. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Impaired Innate Immunity in Tlr4 −/− Mice but Preserved CD8+ T Cell Responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9- or Myd88-Deficient Mice

    PubMed Central

    Tzelepis, Fanny; Klezewsky, Weberton; da Silva, Raquel N.; Neves, Fabieni S.; Cavalcanti, Gisele S.; Boscardin, Silvia; Nunes, Marise P.; Santiago, Marcelo F.; Nóbrega, Alberto; Rodrigues, Maurício M.; Bellio, Maria

    2010-01-01

    The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/ − or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi. PMID:20442858

  18. Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes

    PubMed Central

    Knowles, Heather; Heizer, Justin W.; Li, Yuan; Chapman, Kathryn; Ogden, Carol Anne; Andreasen, Karl; Shapland, Ellen; Kucera, Gary; Mogan, Jennifer; Humann, Jessica; Lenz, Laurel L.; Morrison, Alastair D.; Perraud, Anne-Laure

    2011-01-01

    The generation of reactive oxygen species (ROS) is inherent to immune responses. ROS are crucially involved in host defense against pathogens by promoting bacterial killing, but also as signaling agents coordinating the production of cytokines. Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable channel gated via binding of ADP-ribose, a metabolite formed under conditions of cellular exposure to ROS. Here, we show that TRPM2-deficient mice are extremely susceptible to infection with Listeria monocytogenes (Lm), exhibiting an inefficient innate immune response. In a comparison with IFNγR-deficient mice, TRPM2−/− mice shared similar features of uncontrolled bacterial replication and reduced levels of inducible (i)NOS-expressing monocytes, but had intact IFNγ responsiveness. In contrast, we found that levels of cytokines IL-12 and IFNγ were diminished in TRPM2−/− mice following Lm infection, which correlated with their reduced innate activation. Moreover, TRPM2−/− mice displayed a higher degree of susceptibility than IL-12–unresponsive mice, and supplementation with recombinant IFNγ was sufficient to reverse the unrestrained bacterial growth and ultimately the lethal phenotype of Lm-infected TRPM2−/− mice. The severity of listeriosis we observed in TRPM2−/− mice has not been reported for any other ion channel. These findings establish an unsuspected role for ADP-ribose and ROS-mediated cation flux for innate immunity, opening up unique possibilities for immunomodulatory intervention through TRPM2. PMID:21709234

  19. Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: relation to anxiolytic-like phenotype.

    PubMed

    Greco, Barbara; Carli, Mirjana

    2006-05-15

    Neuropeptide (NPY) Y2 receptors play an important role in some anxiety-related and stress-related behaviours in mice. Changes in the level of anxiety can affect some cognitive functions such as memory, attention and inhibitory response control. We investigated the effects of NPY Y2 receptor deletion (Y2(-/-)) in mice on visual attention and response control using the five-choice serial reaction time (5-CSRT) task in which accuracy of detection of a brief visual stimulus across five spatial locations may serve as a valid behavioural index of attentional functioning. Anticipatory and perseverative responses provide a measure of inhibitory response control. During training, the Y2(-/-) mice had lower accuracy (% correct), and made more anticipatory responses. At stimulus durations of 2 and 4s the Y2(-/-) were as accurate as the Y2(+/+) mice but still more impulsive than Y(+/+). At stimulus durations of 0.25 and 0.5s both groups performed worse but the Y2(-/-) mice made significantly fewer correct responses than the Y2(+/+) controls. The anxiolytic drug diazepam at 2mg/kg IP greatly increased the anticipatory responding of Y2(-/-) mice compared to Y2(+/+). The anxiogenic inverse benzodiazepine agonist, FG 7142, at 10mg/kg IP reduced the anticipatory responding of Y2(-/-) but not Y2(+/+) mice. These data suggest that NPY Y2 receptors make an important contribution to mechanisms controlling attentional functioning and "impulsivity". They also show that "impulsivity" of NPY Y2(-/-) mice may depend on their level of anxiety. These findings may help in understanding the pathophysiology of stress disorders and depression.

  20. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2 deficiency persistently reduces bleomycin-induced pulmonary fibrosis or merely delays disease progression and whether pharmacological PAR-2 inhibition limits experimental pulmonary fibrosis. Bleomycin was instilled intranasally into wild-type or PAR-2deficient mice in the presence/absence of a specific PAR-2 antagonist (P2pal-18S). Pulmonary fibrosis was consistently reduced in PAR-2deficient mice throughout the fibrotic phase, as evident from reduced Ashcroft scores (29%) and hydroxyproline levels (26%) at d 28. Moreover, P2pal-18S inhibited PAR-2–induced profibrotic responses in both murine and primary human pulmonary fibroblasts (p < 0.05). Once daily treatment with P2pal-18S reduced the severity and extent of fibrotic lesions in lungs of bleomycin-treated wild-type mice but did not further reduce fibrosis in PAR-2deficient mice. Importantly, P2pal-18S treatment starting even 7 d after the onset of fibrosis limits pulmonary fibrosis as effectively as when treatment was started together with bleomycin instillation. Overall, PAR-2 contributes to the progression of pulmonary fibrosis, and targeting PAR-2 may be a promising therapeutic strategy for treating pulmonary fibrosis. PMID:26147947

  1. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    PubMed Central

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A; Ploug, Michael; Almholt, Kasper; Lilla, Jennifer; Nielsen, Boye S; Christensen, Ib J; Craik, Charles S; Werb, Zena; Danø, Keld; Rømer, John

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation. PMID:16763560

  2. Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice

    PubMed Central

    McGee-Lawrence, Meghan E.; Carpio, Lomeli R.; Bradley, Elizabeth W.; Dudakovic, Amel; Lian, Jane B.; van Wijnen, Andre J.; Kakar, Sanjeev; Hsu, Wei; Westendorf, Jennifer J.

    2014-01-01

    Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/− mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/− mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2−/−:Runx2+/− mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/− mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2−/−:Runx2+/− calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/− and double mutant Axin2−/−:Runx2+/− mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/− mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2−/− mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation. PMID:24973690

  3. Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation With Aberrant Mineralization.

    PubMed

    Azuma, Kotaro; Shiba, Sachiko; Hasegawa, Tomoka; Ikeda, Kazuhiro; Urano, Tomohiko; Horie-Inoue, Kuniko; Ouchi, Yasuyoshi; Amizuka, Norio; Inoue, Satoshi

    2015-07-01

    Vitamin K is a fat-soluble vitamin that is necessary for blood coagulation. In addition, it has bone-protective effects. Vitamin K functions as a cofactor of γ-glutamyl carboxylase (GGCX), which activates its substrates by carboxylation. These substrates are found throughout the body and examples include hepatic blood coagulation factors. Furthermore, vitamin K functions as a ligand of the nuclear receptor known as steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR). We have previously reported on the bone-protective role of SXR/PXR signaling by demonstrating that systemic Pxr-knockout mice displayed osteopenia. Because systemic Ggcx-knockout mice die shortly after birth from severe hemorrhage, the GGCX-mediated effect of vitamin K on bone metabolism has been difficult to evaluate. In this work, we utilized Ggcx-floxed mice to generate osteoblast-specific GGCX-deficient (Ggcx(Δobl/Δobl)) mice by crossing them with Col1-Cre mice. The bone mineral density (BMD) of Ggcx(Δobl/Δobl) mice was significantly higher than that of control Col1-Cre (Ggcx(+/+)) mice. Histomorphometrical analysis of trabecular bones in the proximal tibia showed increased osteoid volume and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Histomorphometrical analysis of cortical bones revealed a thicker cortical width and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Electron microscopic examination revealed disassembly of mineralized nodules and aberrant calcification of collagen fibers in Ggcx(Δobl/Δobl) mice. The mechanical properties of bones from Ggcx(Δobl/Δobl) mice tended to be stronger than those from control Ggcx(+/+) mice. These results suggest that GGCX in osteoblasts functions to prevent abnormal mineralization in bone formation, although this function may not be a prerequisite for the bone-protective effect of vitamin K. © 2015 American Society for Bone and Mineral Research.

  4. Salusin-α attenuates hepatic steatosis and atherosclerosis in high fat diet-fed low density lipoprotein receptor deficient mice.

    PubMed

    Tang, Kun; Wang, Fei; Zeng, Yi; Chen, XueMeng; Xu, XiaoLe

    2018-07-05

    Salusin-α is an endogenous bioactive peptide and likely to prevent atherosclerosis. But its protective effect against atherosclerosis in vivo remains poorly understood. The aim of the present study was to determine the potential effects of salusin-α on atherosclerosis and its associated metabolic disorders in high fat diet (HFD)-fed low density lipoprotein receptor deficient (LDLr -/- ) mice, and also explore the possible underlying mechanisms involved. Our data showed that after 12 weeks treatment, salusin-α ameliorated HFD-induced weight gain, hyperlipidemia, and serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Salusin-α suppressed HFD-induced hepatic steatosis and regulated gene expression of fatty acid synthase, acetyl coenzyme A carboxylase-α, peroxisome proliferator-activated receptor-α, camitine palmitoyltransferase-1α and CYP7A1 in liver. Salusin-α reduced atherosclerotic plaque area and macrophage foam cell formation. Salusin-α prevented hepatic and aortic inflammation as evidenced by the reduced macrophage recruitment and mRNA expression of IL-6 and TNF-α in both liver and aorta. Salusin-α also reduced hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in liver and suppressing reactive oxygen species generation and protein expressions of NADPH-oxidase (NOX) 2 and NOX4 in both liver and aorta. Our present data suggest that salusin-α could reduce hepatic steatosis and atherosclerosis via its pleiotropic effects, including amelioration of lipid profiles, regulation of some key molecules involved in lipid metabolism in liver, anti-oxidative effect and anti-inflammatory action. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. UCP2 deficiency helps to restrict the pathogenesis of experimental cutaneous and visceral leishmaniosis in mice.

    PubMed

    Carrión, Javier; Abengozar, M Angeles; Fernández-Reyes, María; Sánchez-Martín, Carlos; Rial, Eduardo; Domínguez-Bernal, Gustavo; González-Barroso, M Mar

    2013-01-01

    Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO). To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection. In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.

  6. Impaired human responses to tetanus toxoid in vitamin A-deficient SCID mice reconstituted with human peripheral blood lymphocytes.

    PubMed Central

    Molrine, D C; Polk, D B; Ciamarra, A; Phillips, N; Ambrosino, D M

    1995-01-01

    Vitamin A deficiency is associated with increased childhood morbidity and mortality from respiratory and diarrheal diseases. In order to evaluate the effect of vitamin A on human antibody responses, we developed a vitamin A-deficient severe combined immunodeficient (SCID) mouse model. Vitamin A-deficient mice were produced by depriving them of vitamin A at day 7 of gestation. Mice were reconstituted with human peripheral blood lymphocytes (huPBL) from tetanus toxoid immune donors at 6 weeks of age and immunized with tetanus toxoid at 6 and 8 weeks of age. Secondary human antibody responses were determined 10 days later. The geometric mean human anti-tetanus toxoid immunoglobulin G concentrations were 3.75 micrograms/ml for the deficient mice and 148 micrograms/ml for controls (P = 0.0005). Vitamin A-deficient mice had only a 2.9-fold increase in human anti-tetanus toxoid antibody compared with a 74-fold increase in controls (P < 0.01). Supplementation with vitamin A prior to reconstitution restored human antibody responses to normal. These data suggest that vitamin A deficiency impairs human antibody responses. We speculate that impaired responses could increase susceptibility to certain infections. Furthermore, we propose that effects of other nutritional deficiencies on the human immune system could be evaluated in the SCID-huPBL model. PMID:7622207

  7. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  8. Involvement of GluD2 in Fear-Conditioned Bradycardia in Mice

    PubMed Central

    Kotajima-Murakami, Hiroko; Narumi, Sakae; Yuzaki, Michisuke; Yanagihara, Dai

    2016-01-01

    Lesions in the cerebellar vermis abolish acquisition of fear-conditioned bradycardia in animals and human patients. The δ2 glutamate receptor (GluD2) is predominantly expressed in cerebellar Purkinje cells. The mouse mutant ho15J carries a spontaneous mutation in GluD2 and these mice show a primary deficiency in parallel fiber-Purkinje cell synapses, multiple innervations of Purkinje cells by climbing fibers, and impairment of long-term depression. In the present study, we used ho15J mice to investigate the role of the cerebellum in fear-conditioned bradycardia. We recorded changes in heart rate of ho15J mice induced by repeated pairing of an acoustic (conditioned) stimulus (CS) with an aversive (unconditioned) stimulus (US). The mice acquired conditioned bradycardia on Day 1 of the CS-US phase, similarly to wild-type mice. However, the magnitude of the conditioned bradycardia was not stable in the mutant mice, but rather was exaggerated on Days 2–5 of the CS-US phase. We examined the effects of reversibly inactivating the cerebellum by injection of an antagonist against the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR). The antagonist abolished expression of conditioned responses in both wild-type and ho15J mice. We conclude that the GluD2 mutation in the ho15J mice affects stable retention of the acquired conditioned bradycardia. PMID:27820843

  9. Deletion of CB2 Cannabinoid Receptor Induces Schizophrenia-Related Behaviors in Mice

    PubMed Central

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-01-01

    The possible role of the CB2 receptor (CB2r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB2r in the regulation of such behaviors. Mice lacking the CB2r (CB2KO) were challenged in open field, light–dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D2 (D2r), adrenergic-α2C (α2Cr), serotonergic 5-HT2A and 5-HT2C receptors (5-HT2Ar and 5-HT2Cr) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB2r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it ‘normalized' the PPI deficit in CB2KO mice. CB2KO mice presented increased D2r and α2Cr gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT2Cr gene expression in the dorsal raphe (DR), and 5-HT2Ar gene expression in the PFC. Chronic risperidone treatment in WT mice left α2Cr gene expression unchanged, decreased D2r gene expression (15 μg/kg), and decreased 5-HT2Cr and 5-HT2Ar in PFC and DR. In CB2KO, the gene expression of D2r in the PFC, of α2Cr in the LC, and of 5-HT2Cr and 5-HT2Ar in PFC was reduced; 5-HT2Cr and 5-HT2Ar gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB2r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB2r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  10. α(2) noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain.

    PubMed

    Wang, Xin-Tai; Lian, Xia; Xu, Ying-Ming; Suo, Zhan-Wei; Yang, Xian; Hu, Xiao-Dong

    2014-02-05

    Intrathecal application of α2 noradrenergic receptor agonists effectively alleviates the pathological pain induced by peripheral tissue injury. However, the spinal antinociceptive mechanisms of α2 noradrenergic receptors remain to be characterized. The present study performed immunohistochemistry and western blot to elucidate the signaling pathway initiated by α2 noradrenergic receptors in spinal dorsal horn of mice, and identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an important target for noradrenergic suppression of inflammatory pain. Our data showed that intraplantar injection of Complete Freund's Adjuvant (CFA) substantially enhanced CaMKII autophosphorylation at Threonine 286, which could be abolished by intrathecal administration of α2 noradrenergic receptor agonist clonidine. Gi protein-coupled α2 noradrenergic receptor might inhibit cAMP-dependent protein kinase (PKA) to disturb CaMKII signaling. We found that pharmacological activation of PKA in intact mice also enhanced spinal CaMKII autophosphorylation level, which was completely antagonized by clonidine. Moreover, direct PKA inhibition in CFA-injected mice mimicked the suppressive effect of α2 noradrenergic receptors on CaMKII. PKA inhibition has been shown to downregulate CaMKII by enhancing protein phosphatase activity. Consistent with this notion, spinal treatment with protein phosphatase inhibitor okadaic acid ruled out clonidine-mediated CaMKII dephosphorylation in CFA-injected mice. Through PKA/protein phosphatase/CaMKII pathway, clonidine noticeably decreased CFA-evoked phosphorylation of N-methyl-d-aspartate subtype glutamate receptor GluN1 and GluN2B subunit as well as α-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid subtype glutamate receptor GluA1 subunit. These data suggested that interference with CaMKII signaling might represent an important mechanism underlying noradrenergic suppression of inflammatory pain. Copyright © 2013 Elsevier B.V. All rights

  11. Potential role for ET-2 acting through ETA receptors in experimental colitis in mice.

    PubMed

    Claudino, R F; Leite, D F; Bento, A F; Chichorro, J G; Calixto, J B; Rae, G A

    2017-02-01

    This study attempted to clarify the roles of endothelins and mechanisms associated with ET A /ET B receptors in mouse models of colitis. Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ET A receptor antagonist, 10 mg/kg), A-192621 (ET B receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ET A and ET B receptors mRNA were increased at 24, 48 and 72 h after colitis induction. Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ET A receptors might be a potential target for inflammatory bowel diseases.

  12. Partial thyrocyte-specific Gαs deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.

    PubMed

    Patyra, Konrad; Jaeschke, Holger; Löf, Christoffer; Jännäri, Meeri; Ruohonen, Suvi T; Undeutsch, Henriette; Khalil, Moosa; Kero, Andreina; Poutanen, Matti; Toppari, Jorma; Chen, Min; Weinstein, Lee S; Paschke, Ralf; Kero, Jukka

    2018-05-25

    Thyroid function is controlled by thyroid-stimulating hormone (TSH), which binds to its G protein-coupled receptor [thyroid-stimulating hormone receptor (TSHR)] on thyrocytes. TSHR can potentially couple to all G protein families, but it mainly activates the G s - and G q/11 -mediated signaling cascades. To date, there is a knowledge gap concerning the role of the individual G protein cascades in thyroid pathophysiology. Here, we demonstrate that the thyrocyte-specific deletion of G s -protein α subunit (Gα s ) in adult mice [tamoxifen-inducible G s protein α subunit deficient (iTGα s KO) mice] rapidly impairs thyrocyte function and leads to hypothyroidism. Consequently, iTGα s KO mice show reduced food intake and activity. However, body weight and the amount of white adipose tissue were decreased only in male iTGα s KO mice. Unexpectedly, hyperplastic follicles and papillary thyroid cancer-like tumor lesions with increased proliferation and slightly increased phospho-ERK1/2 staining were found in iTGα s KO mice at an older age. These tumors developed from nonrecombined thyrocytes still expressing Gα s in the presence of highly elevated serum TSH. In summary, we report that partial thyrocyte-specific Gα s deletion leads to hypothyroidism but also to tumor development in thyrocytes with remaining Gα s expression. Thus, these mice are a novel model to elucidate the pathophysiological consequences of hypothyroidism and TSHR/G s /cAMP-mediated tumorigenesis.-Patyra, K., Jaeschke, H., Löf, C., Jännäri, M., Ruohonen, S. T., Undeutsch, H., Khalil, M., Kero, A., Poutanen, M., Toppari, J., Chen, M., Weinstein, L. S., Paschke, R., Kero, J. Partial thyrocyte-specific Gα s deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.

  13. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis

    PubMed Central

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2. PMID:25689283

  14. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis.

    PubMed

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-06-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Mice Deficient in lysophosphatidic acid acyltransferase delta (Lpaatδ)/acylglycerophosphate acyltransferase 4 (Agpat4) Have Impaired Learning and Memory.

    PubMed

    Bradley, Ryan M; Mardian, Emily B; Bloemberg, Darin; Aristizabal Henao, Juan J; Mitchell, Andrew S; Marvyn, Phillip M; Moes, Katherine A; Stark, Ken D; Quadrilatero, Joe; Duncan, Robin E

    2017-11-15

    We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that Lpaat δ -/- mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged. Relative abundance of the important brain fatty acid docosahexaenoic acid was also unchanged in phosphatidylserine, phosphatidylglycerol, and cardiolipin, in agreement with prior data on PC, PE and PI. In phosphatidic acid, it was increased. Specific decreases in ethanolamine-containing phospholipids were detected in mitochondrial lipids, but the function of brain mitochondria in Lpaat δ -/- mice was unchanged. Importantly, we found that Lpaat δ -/- mice have a significantly and drastically lower brain content of the N -methyl-d-asparate (NMDA) receptor subunits NR1, NR2A, and NR2B, as well as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1, compared to wild-type mice. However, general dysregulation of PI-mediated signaling is not likely responsible, since phospho-AKT and phospho-mTOR pathway regulation was unaffected. Our findings indicate that Lpaat δ deficiency causes deficits in learning and memory associated with reduced NMDA and AMPA receptors. Copyright © 2017 American Society for Microbiology.

  16. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain.

    PubMed

    Abe, Tetsuya; Matsumura, Shinji; Katano, Tayo; Mabuchi, Tamaki; Takagi, Kunio; Xu, Li; Yamamoto, Akitsugu; Hattori, Kotaro; Yagi, Takeshi; Watanabe, Masahiko; Nakazawa, Takanobu; Yamamoto, Tadashi; Mishina, Masayoshi; Nakai, Yoshihide; Ito, Seiji

    2005-09-01

    Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.

  17. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione andmore » exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gst{alpha}1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.« less

  18. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet.

    PubMed

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L; Tanaka, Yuji; Klaassen, Curtis D

    2010-06-15

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstalpha1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities. Copyright 2010. Published by Elsevier Inc.

  19. Maladaptive defensive behaviours in monoamine oxidase A-deficient mice.

    PubMed

    Godar, Sean C; Bortolato, Marco; Frau, Roberto; Dousti, Mona; Chen, Kevin; Shih, Jean C

    2011-10-01

    Rich evidence indicates that monoamine oxidase (MAO) A, the major enzyme catalysing the degradation of monoamine neurotransmitters, plays a key role in emotional regulation. Although MAOA deficiency is associated with reactive aggression in humans and mice, the involvement of this enzyme in defensive behaviour remains controversial and poorly understood. To address this issue, we tested MAOA knockout (KO) mice in a spectrum of paradigms and settings associated with variable degrees of threat. The presentation of novel inanimate objects induced a significant reduction in exploratory approaches and increase in defensive behaviours, such as tail-rattling, biting and digging. These neophobic responses were context-dependent and particularly marked in the home cage. In the elevated plus- and T-mazes, MAOA KO mice and wild-type (WT) littermates displayed equivalent locomotor activity and time in closed and open arms; however, MAOA KO mice featured significant reductions in risk assessment, as well as unconditioned avoidance and escape. No differences between genotypes were observed in the defensive withdrawal and emergence test. Conversely, MAOA KO mice exhibited a dramatic reduction of defensive and fear-related behaviours in the presence of predator-related cues, such as predator urine or an anaesthetized rat, in comparison with those observed in their WT littermates. The behavioural abnormalities in MAOA KO mice were not paralleled by overt alterations in sensory and microvibrissal functions. Collectively, these results suggest that MAOA deficiency leads to a general inability to appropriately assess contextual risk and attune defensive and emotional responses to environmental cues.

  20. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization

    PubMed Central

    Draves, Kevin E.; Young, Lucy B.; Bryan, Marianne A.; Dresch, Christiane; Diamond, Michael S.; Gale, Michael

    2017-01-01

    B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals. PMID:29176765

  1. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene

    PubMed Central

    Singh, Katyayani; Loreth, Desirée; Pöttker, Bruno; Hefti, Kyra; Innos, Jürgen; Schwald, Kathrin; Hengstler, Heidi; Menzel, Lutz; Sommer, Clemens J.; Radyushkin, Konstantin; Kretz, Oliver; Philips, Mari-Anne; Haas, Carola A.; Frauenknecht, Katrin; Lilleväli, Kersti; Heimrich, Bernd; Vasar, Eero; Schäfer, Michael K. E.

    2018-01-01

    Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral

  2. Mice Deficient in Surfactant Protein A (SP-A) and SP-D or in TLR2 Manifest Delayed Parturition and Decreased Expression of Inflammatory and Contractile Genes

    PubMed Central

    Montalbano, Alina P.; Hawgood, Samuel

    2013-01-01

    Previously we obtained compelling evidence that the fetus provides a critical signal for the initiation of term labor through developmental induction of surfactant protein (SP)-A expression by the fetal lung and secretion into amniotic fluid (AF). We proposed that interactions of AF macrophage (Mφ) Toll-like receptors (TLRs) with SP-A, at term, or bacterial components, at preterm, result in their activation and migration to the pregnant uterus. Herein the timing of labor in wild-type (WT) C57BL/6 mice was compared with mice homozygous null for TLR2, SP-A, SP-D, or doubly deficient in SP-A and SP-D. Interestingly, TLR2−/− females manifested a significant (P < 0.001) delay in timing of labor compared with WT as well as reduced expression of the myometrial contraction-associated protein (CAP) gene, connexin-43, and Mφ marker, F4/80, at 18.5 d postcoitum (dpc). Whereas in first pregnancies, SP-A−/−, SP-D−/−, and SP-A/D−/− females delivered at term (∼19.5 dpc), in second pregnancies, parturition was delayed by approximately 12 h in SP-A−/− (P = 0.07) and in SP-A/D−/− (P <0.001) females. Myometrium of SP-A/D−/− females expressed significantly lower levels of IL-1β, IL-6, and CAP genes, connexin-43, and oxytocin receptor at 18.5 dpc compared with WT. F4/80+ AF Mφs from TLR2−/− and SP-A/D−/− mice expressed significantly lower levels of both proinflammatory and antiinflammatory activation markers (e.g. IL-1β, IL-6, ARG1, YM1) compared with gestation-matched WT AF Mφs. These novel findings suggest that the pulmonary collectins acting via TLR2 serve a modulatory role in the timing of labor; their relative impact may be dependent on parity. PMID:23183169

  3. Thyroid function in mice with compound heterozygous and homozygous disruptions of SRC-1 and TIF-2 coactivators: evidence for haploinsufficiency.

    PubMed

    Weiss, Roy E; Gehin, Martine; Xu, Jianming; Sadow, Peter M; O'Malley, Bert W; Chambon, Pierre; Refetoff, Samuel

    2002-04-01

    Steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)-2 are homologous nuclear receptor coactivators. We have investigated their possible redundancy as thyroid hormone (TH) coactivators by measuring thyroid function in compound SRC-1 and TIF-2 knock out (KO) mice. Whereas SRC-1 KO (SRC-1(-/-)) mice are resistant to TH and SRC-1(+/-) are not, we now demonstrate that TIF-2 KO (TIF-2(-/-)) mice have normal thyroid function. Yet double heterozygous, SRC-1(+/-)/TIF-2(+/-) mice manifested resistance to TH of a similar degree as that in mice completely deficient in SRC-1. KO of both SRC-1 and TIF-2 resulted in marked increases of serum TH and thyrotropin concentrations. This work demonstrates gene dosage effect in nuclear coactivators manifesting as haploinsufficiency and functional redundancy of SRC-1 and TIF-2.

  4. Tau Deficiency Down-Regulated Transcription Factor Orthodenticle Homeobox 2 Expression in the Dopaminergic Neurons in Ventral Tegmental Area and Caused No Obvious Motor Deficits in Mice

    PubMed Central

    Tang, Xiaolu; Jiao, Luyan; Zheng, Meige; Yan, Yan; Nie, Qi; Wu, Ting; Wan, Xiaomei; Zhang, Guofeng; Li, Yonglin; Wu, Song; Jiang, Bin; Cai, Huaibin; Xu, Pingyi; Duan, Jinhai; Lin, Xian

    2018-01-01

    Tau protein participates in microtubule stabilization, axonal transport, and protein trafficking. Loss of normal tau function will exert a negative effect. However, current knowledge on the impact of tau deficiency on the motor behavior and related neurobiological changes is controversial. In this study, we examined motor functions and analyzed several proteins implicated in the maintenance of midbrain dopaminergic (DA) neurons (mDANs) function of adult and aged tau+/+, tau+/−, tau−/− mice. We found tau deficiency could not induce significant motor disorders. However, we discovered lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of mDANs in older aged mice. Compared with age-matched tau+/+ mice, there were 54.1% lower (p = 0.0192) OTX2 protein (OTX2-fluorescence intensity) in VTA DA neurons of tau+/−mice and 43.6% lower (p = 0.0249) OTX2 protein in VTA DA neurons of tau−/−mice at 18 months old. Combined with the relevant reports, our results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson’s disease. However, OTX2 down-regulation indicates that mDANs of tau-deficient mice will be more sensitive to toxic damage from MPTP. PMID:29337233

  5. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

    PubMed Central

    2012-01-01

    Background Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior. PMID:23268962

  6. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.

    PubMed

    Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko

    2012-12-26

    Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  7. The islet estrogen receptor-α is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes.

    PubMed

    Kilic, Gamze; Alvarez-Mercado, Ana I; Zarrouki, Bader; Opland, Darren; Liew, Chong Wee; Alonso, Laura C; Myers, Martin G; Jonas, Jean-Christophe; Poitout, Vincent; Kulkarni, Rohit N; Mauvais-Jarvis, Franck

    2014-01-01

    The female steroid, 17β-estradiol (E2), is important for pancreatic β-cell function and acts via at least three estrogen receptors (ER), ERα, ERβ, and the G-protein coupled ER (GPER). Using a pancreas-specific ERα knockout mouse generated using the Cre-lox-P system and a Pdx1-Cre transgenic line (PERαKO ⁻/⁻), we previously reported that islet ERα suppresses islet glucolipotoxicity and prevents β-cell dysfunction induced by high fat feeding. We also showed that E2 acts via ERα to prevent β-cell apoptosis in vivo. However, the contribution of the islet ERα to β-cell survival in vivo, without the contribution of ERα in other tissues is still unclear. Using the PERαKO ⁻/⁻ mouse, we show that ERα mRNA expression is only decreased by 20% in the arcuate nucleus of the hypothalamus, without a parallel decrease in the VMH, making it a reliable model of pancreas-specific ERα elimination. Following exposure to alloxan-induced oxidative stress in vivo, female and male PERαKO ⁻/⁻ mice exhibited a predisposition to β-cell destruction and insulin deficient diabetes. In male PERαKO ⁻/⁻ mice, exposure to E2 partially prevented alloxan-induced β-cell destruction and diabetes. ERα mRNA expression was induced by hyperglycemia in vivo in islets from young mice as well as in cultured rat islets. The induction of ERα mRNA by hyperglycemia was retained in insulin receptor-deficient β-cells, demonstrating independence from direct insulin regulation. These findings suggest that induction of ERα expression acts to naturally protect β-cells against oxidative injury.

  8. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  9. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.

    PubMed

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M; Angueira, Anthony R; Brodsky, Michael; Hayes, M Geoffrey; Kovatcheva-Datchary, Petia; Bäckhed, Fredrik; Gilbert, Jack A; Lowe, William L; Layden, Brian T

    2015-11-15

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  10. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.

    PubMed

    Sun, D; Samuelson, L C; Yang, T; Huang, Y; Paliege, A; Saunders, T; Briggs, J; Schnermann, J

    2001-08-14

    Adenosine is a determinant of metabolic control of organ function increasing oxygen supply through the A2 class of adenosine receptors and reducing oxygen demand through A1 adenosine receptors (A1AR). In the kidney, activation of A1AR in afferent glomerular arterioles has been suggested to contribute to tubuloglomerular feedback (TGF), the vasoconstriction elicited by elevations in [NaCl] in the macula densa region of the nephron. To further elucidate the role of A1AR in TGF, we have generated mice in which the entire A1AR coding sequence was deleted by homologous recombination. Homozygous A1AR mutants that do not express A1AR mRNA transcripts and do not respond to A1AR agonists are viable and without gross anatomical abnormalities. Plasma and urinary electrolytes were not different between genotypes. Likewise, arterial blood pressure, heart rates, and glomerular filtration rates were indistinguishable between A1AR(+/+), A1AR(+/-), and A1AR(-/-) mice. TGF responses to an increase in loop of Henle flow rate from 0 to 30 nl/min, whether determined as change of stop flow pressure or early proximal flow rate, were completely abolished in A1AR(-/-) mice (stop flow pressure response, -6.8 +/- 0.55 mmHg and -0.4 +/- 0.2 in A1AR(+/+) and A1AR(-/-) mice; early proximal flow rate response, -3.4 +/- 0.4 nl/min and +0.02 +/- 0.3 nl/min in A1AR(+/+) and A1AR(-/-) mice). Absence of TGF responses in A1AR-deficient mice suggests that adenosine is a required constituent of the juxtaglomerular signaling pathway. A1AR null mutant mice are a promising tool to study the functional role of A1AR in different target tissues.

  11. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  12. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis

    PubMed Central

    de Diego, Rebeca Pérez; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro; Puel, Anne; Plancoulaine, Sabine; Picard, Capucine; Herman, Melina; Cardon, Annabelle; Durandy, Anne; Bustamante, Jacinta; Vallabhapurapu, Sivakumar; Bravo, Jerónimo; Warnatz, Klaus; Chaix, Yves; Cascarrigny, Françoise; Lebon, Pierre; Rozenberg, Flore; Karin, Michael; Tardieu, Marc; Al-Muhsen, Saleh; Jouanguy, Emmanuelle; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent

    2010-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions downstream of multiple receptors that induce interferon-α (IFN-α), IFN–β and IFN-λ production, including Toll-like receptor 3 (TLR3), which is deficient in some patients with herpes simplex virus-1 encephalitis (HSE). Mice lacking TRAF3 die in the neonatal period, preventing direct investigation of the role of TRAF3 in immune responses and host defenses in vivo. Here we reported the autosomal dominant, human TRAF3 deficiency in a young adult with a history of HSE in childhood. The TRAF3 mutant allele was a loss-of-expression, loss-of-function, dominant-negative phenotype, and was associated with impaired, but not abolished TRAF3-dependent responses upon stimulation of both TNF receptors and receptors that induce IFN production. TRAF3 deficiency was associated with a clinical phenotype limited to HSE resulting from the impairment of TLR3-dependent induction of IFN. Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central nervous system is critically dependent on TRAF3. Highlight sentence Autosomal dominant TRAF3 deficiency is a genetic etiology of herpes simplex encephalitis. Highlight sentence R118W TRAF3 allele is loss-of-function, loss-of-expression, and dominant-negative. Highlight sentence Human TRAF3 deficiency impairs the TLR3-dependent induction of anti-viral interferons. PMID:20832341

  13. Otitis media induced by peptidoglycan-polysaccharide (PGPS) in TLR2-deficient (Tlr2(-/-)) mice for developing drug therapy.

    PubMed

    Zhang, Xiaolin; Zheng, Tihua; Sang, Lu; Apisa, Luke; Zhao, Hongchun; Fu, Fenghua; Wang, Qingzhu; Wang, Yanfei; Zheng, Qingyin

    2015-10-01

    Toll like receptor 2 (TLR2) signaling can regulate the pathogenesis of otitis media (OM). However, the precise role of TLR2 signaling in OM has not been clarified due to the lack of an optimal animal model. Peptidoglycan-polysaccharide (PGPS) of the bacterial cell wall can induce inflammation by activating the TLR2 signaling. This study aimed at examining the pathogenic characteristics of OM induced by PGPS in Tlr2(-/-) mice, and the potential therapeutic effect of sodium aescinate (SA) in this model. Wild-type (WT) and Tlr2(-/-) mice were inoculated with streptococcal PGPS into their middle ears (MEs) and treated intravenously with vehicle or SA daily beginning at 3days prior to PGPS for 6 consecutive days. The pathologic changes of individual mice were evaluated longitudinally. In comparison with WT mice, Tlr2(-/-) mice were susceptible to PGPS-induced OM. Tlr2(-/-) mice displayed greater hearing loss, tympanic membrane damage, ME mucosal thickening, longer inflammation state, cilia and goblet cell loss. SA-treatment decreased neutrophil infiltration, modulated TLR2-related gene expression and improved ciliary organization. PGPS induced a relatively stable OM in Tlr2(-/-) mice, providing a new model for OM research. Treatment with SA mitigated the pathogenic damage in the ME and may be valuable for intervention of OM. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2.

    PubMed

    Coste, S C; Kesterson, R A; Heldwein, K A; Stevens, S L; Heard, A D; Hollis, J H; Murray, S E; Hill, J K; Pantely, G A; Hohimer, A R; Hatton, D C; Phillips, T J; Finn, D A; Low, M J; Rittenberg, M B; Stenzel, P; Stenzel-Poore, M P

    2000-04-01

    The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses. Here we generate Crhr2-/- mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2-/- mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2-/- mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2-/- mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2-/- mice following Ucn, but Crhr2-/- mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2-/- mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2-/- mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2.

  15. The Deficiency of Indoleamine 2,3-Dioxygenase Aggravates the CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Ogiso, Hideyuki; Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Kanbe, Ayumu; Ando, Kazuki; Ishikawa, Tetsuya; Saito, Kuniaki; Hara, Akira; Moriwaki, Hisataka; Shimizu, Masahito; Seishima, Mitsuru

    2016-01-01

    In the present study, we examined the role of indoleamine 2,3-dioxygenase (IDO) in the development of CCl4-induced hepatic fibrosis. The liver fibrosis induced by repetitive administration with CCl4 was aggravated in IDO-KO mice compared to WT mice. In IDO-KO mice treated with CCl4, the number of several inflammatory cells and the expression of pro-inflammatory cytokines increased in the liver. In the results, activated hepatic stellate cells (HSCs) and fibrogenic factors on HSCs increased after repetitive CCl4 administration in IDO-KO mice compared to WT mice. Moreover, the treatment with l-tryptophan aggravated the CCl4-induced hepatic fibrosis in WT mice. Our findings demonstrated that the IDO deficiency enhanced the inflammation in the liver and aggravated liver fibrosis in repetitive CCl4-treated mice. PMID:27598994

  16. Modulatory Role of Postsynaptic 5-Hydroxytryptamine Type 1A Receptors in (±)-8-Hydroxy-N,N-dipropyl-2-aminotetralin-Induced Hyperphagia in Mice.

    PubMed

    Brosda, Jan; Müller, Nadine; Bert, Bettina; Fink, Heidrun

    2015-07-15

    Brain serotonin (5-HT) is involved in the control of food intake. The ingestive effects of 5-HT are mediated by various receptor subtypes, among others the 5-HT1A receptor. While the involvement of presynaptic 5-HT1A receptors is regarded as certain, the role of postsynaptic 5-HT1A receptors is rather vague. Here, we studied the role of the 5-HT1A receptor on feeding in non-food-deprived and food-deprived (young adult and adult, both sexes) wild-type NMRI mice as well as transgenic NMRI mice, which are characterized by a distinct overexpression of postsynaptic 5-HT1A receptors. The known hyperphagic effect of the 5-HT1A receptor full agonist 8-OH-DPAT ((±)-8-hydroxy-N,N-dipropyl-2-aminotetralin) in non-food-deprived animals was demonstrated in male NMRI wild-type mice and could be antagonized by the selective 5-HT1A receptor antagonist WAY100635. In transgenic mice, this hyperphagic response was induced at lower doses, with an earlier onset and even in females. However, in adult male transgenic mice, the hyperphagic effect did not occur. In food-deprived NMRI wild-type as well as transgenic mice, 8-OH-DPAT first induced a hypophagic and subsequently a hyperphagic effect. Again, in transgenic animals most responses occurred at lower doses and with an earlier onset. The results indicate that postsynaptic 5-HT1A receptors exert a modulatory function in food intake in free-feeding and fasted mice, which for the first time shows an involvement of postsynaptic 5-HT1A receptors in feeding behavior. Understanding the function of pre- and postsynaptic 5-HT1A receptors may help to achieve new insights into the regulation of food intake and foster prospective treatment strategies for eating disorders.

  17. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    PubMed

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  18. Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo

    PubMed Central

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J.; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling

  19. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice.

    PubMed

    Souidi, M; Racine, R; Grandcolas, L; Grison, S; Stefani, J; Gourmelon, P; Lestaevel, P

    2012-04-01

    Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear

  20. Age-related NMDA signaling alterations in SOD2 deficient mice.

    PubMed

    Carvajal, Francisco J; Mira, Rodrigo G; Rovegno, Maximiliano; Minniti, Alicia N; Cerpa, Waldo

    2018-06-01

    Oxidative stress affects the survival and function of neurons. Hence, they have a complex and highly regulated machinery to handle oxidative changes. The dysregulation of this antioxidant machinery is associated with a wide range of neurodegenerative conditions. Therefore, we evaluated signaling alterations, synaptic properties and behavioral performance in 2 and 6-month-old heterozygous manganese superoxide dismutase knockout mice (SOD2 +/- mice). We found that their low antioxidant capacity generated direct oxidative damage in proteins, lipids, and DNA. However, only 6-month-old heterozygous knockout mice presented behavioral impairments. On the other hand, synaptic plasticity, synaptic strength and NMDA receptor (NMDAR) dependent postsynaptic potentials were decreased in an age-dependent manner. We also analyzed the phosphorylation state of the NMDAR subunit GluN2B. We found that while the levels of GluN2B phosphorylated on tyrosine 1472 (synaptic form) remain unchanged, we detected increased levels of GluN2B phosphorylated on tyrosine 1336 (extrasynaptic form), establishing alterations in the synaptic/extrasynaptic ratio of GluN2B. Additionally, we found increased levels of two phosphatases associated with dephosphorylation of p-1472: striatal-enriched protein tyrosine phosphatase (STEP) and phosphatase and tensin homolog deleted on chromosome Ten (PTEN). Moreover, we found decreased levels of p-CREB, a master transcription factor activated by synaptic stimulation. In summary, we describe mechanisms by which glutamatergic synapses are altered under oxidative stress conditions. Our results uncovered new putative therapeutic targets for conditions where NMDAR downstream signaling is altered. This work also contributes to our understanding of processes such as synapse formation, learning, and memory in neuropathological conditions. Copyright © 2018 Elsevier B.V. All rights reserved.