Sample records for a2 regulates phagocytosis

  1. The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1

    PubMed Central

    Ai, Jing; Maturu, Amita; Johnson, Wesley; Wang, Yijie; Marsh, Clay B.; Tridandapani, Susheela

    2006-01-01

    FcγR-mediated phagocytosis of IgG-coated particles is a complex process involving the activation of multiple signaling enzymes and is regulated by the inositol phosphatases PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP-1 (Src homology [SH2] domain-containing inositol phosphatase). In a recent study we have demonstrated that SHIP-2, an inositol phosphatase with high-level homology to SHIP-1, is involved in FcγR signaling. However, it is not known whether SHIP-2 plays a role in modulating phagocytosis. In this study we have analyzed the role of SHIP-2 in FcγR-mediated phagocytosis using independent cell models that allow for manipulation of SHIP-2 function without influencing the highly homologous SHIP-1. We present evidence that SHIP-2 translocates to the site of phagocytosis and down-regulates FcγR-mediated phagocytosis. Our data indicate that SHIP-2 must contain both the N-terminal SH2 domain and the C-terminal proline-rich domain to mediate its inhibitory effect. The effect of SHIP-2 is independent of SHIP-1, as overexpression of dominant-negative SHIP-2 in SHIP-1-deficient primary macrophages resulted in enhanced phagocytic efficiency. Likewise, specific knockdown of SHIP-2 expression using siRNA resulted in enhanced phagocytosis. Finally, analysis of the molecular mechanism of SHIP-2 down-regulation of phagocytosis revealed that SHIP-2 down-regulates upstream activation of Rac. Thus, we conclude that SHIP-2 is a novel negative regulator of FcγR-mediated phagocytosis independent of SHIP-1. (Blood. 2006;107:813-820) PMID:16179375

  2. Signal Regulatory Protein α Negatively Regulates β2 Integrin-Mediated Monocyte Adhesion, Transendothelial Migration and Phagocytosis

    PubMed Central

    Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke

    2008-01-01

    Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737

  3. The protease-activated receptor-2 upregulates keratinocyte phagocytosis.

    PubMed

    Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M

    2000-09-01

    The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.

  4. Stimulation of phagocytosis by sulforaphane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu; Fahey, Jed W., E-mail: jfahey@jhmi.edu; Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatorymore » and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.« less

  5. Stimulation of phagocytosis by sulforaphane.

    PubMed

    Suganuma, Hiroyuki; Fahey, Jed W; Bryan, Kelley E; Healy, Zachary R; Talalay, Paul

    2011-02-04

    Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2(-/-) mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Inducible CYP2J2 and its product 11,12-EET promotes bacterial phagocytosis: a role for CYP2J2 deficiency in the pathogenesis of Crohn's disease?

    PubMed

    Bystrom, Jonas; Thomson, Scott J; Johansson, Jörgen; Edin, Matthew L; Zeldin, Darryl C; Gilroy, Derek W; Smith, Andrew M; Bishop-Bailey, David

    2013-01-01

    The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn's disease. Unlike macrophages from control donors, macrophages from Crohn's disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn's disease.

  7. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    NASA Technical Reports Server (NTRS)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  8. Regulation of phagocytosis by TAM receptors and their ligands

    PubMed Central

    Lu, Qingxian; Li, Qiutang; Lu, Qingjun

    2010-01-01

    The TAM family of receptors is preferentially expressed by professional and non-professional phagocytes, including macrophages, dendritic cells and natural killer cells in the immune system, osteoclasts in bone, Sertoli cells in testis, and retinal pigmental epithelium cells in the retina. Mutations in the Mertk single gene or in different combinations of the double or triple gene mutations in the same cell cause complete or partial impairment in phagocytosis of their preys; and as a result, either the normal apoptotic cells cannot be efficiently removed or the tissue neighbor cells die by apoptosis. This scenario of TAM regulation represents a widely adapted model system used by phagocytes in all different tissues. The present review will summarize current known functional roles of TAM receptors and their ligands, Gas 6 and protein S, in the regulation of phagocytosis. PMID:21057587

  9. Inducible CYP2J2 and Its Product 11,12-EET Promotes Bacterial Phagocytosis: A Role for CYP2J2 Deficiency in the Pathogenesis of Crohn’s Disease?

    PubMed Central

    Bystrom, Jonas; Thomson, Scott J.; Johansson, Jörgen; Edin, Matthew L.; Zeldin, Darryl C.; Gilroy, Derek W.; Smith, Andrew M.; Bishop-Bailey, David

    2013-01-01

    The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn’s disease. Unlike macrophages from control donors, macrophages from Crohn’s disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn’s disease. PMID:24058654

  10. Essential role of integrin-linked kinase in regulation of phagocytosis in keratinocytes.

    PubMed

    Sayedyahossein, Samar; Nini, Lylia; Irvine, Timothy S; Dagnino, Lina

    2012-10-01

    Phagocytic melanosome uptake by epidermal keratinocytes is a central protective mechanism against damage induced by ultraviolet radiation. Phagocytosis requires formation of pseudopodia via actin cytoskeleton rearrangements. Integrin-linked kinase (ILK) is an important modulator of actin cytoskeletal dynamics. We have examined the role of ILK in regulation of phagocytosis, using epidermal keratinocytes isolated from mice with epidermis-restricted Ilk gene inactivation. ILK-deficient cells exhibited severely impaired capacity to engulf fluorescent microspheres in response to stimulation of the keratinocyte growth factor (KGF) receptor or the protease-activated receptor-2. KGF induced ERK phosphorylation in ILK-expressing and ILK-deficient cells, suggesting that ILK is not essential for KGF receptor signaling. In contrast, KGF promoted activation of Rac1 and formation of pseudopodia in ILK-expressing, but not in ILK-deficient cells. Rac1-deficient keratinocytes also showed substantially impaired phagocytic ability, underlining the importance of ILK-dependent Rac1 function for particle engulfment. Finally, cross-modulation of KGF receptors by integrins may be another important element, as integrin β1-deficient keratinocytes also fail to show significant phagocytosis in response to KGF. Thus, we have identified a novel signaling pathway essential for phagocytosis in keratinocytes, which involves ILK-dependent activation of Rac1 in response to KGF, resulting in the formation of pseudopodia and particle uptake.

  11. MiR-146a activates WAVE2 expression and enhances phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages

    PubMed Central

    Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai

    2015-01-01

    MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages. PMID:26396677

  12. MiR-146a activates WAVE2 expression and enhances phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages.

    PubMed

    Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai

    2015-01-01

    MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages.

  13. A Regulatory Role for Src Homology 2 Domain–Containing Inositol 5′-Phosphatase (Ship) in Phagocytosis Mediated by Fcγ Receptors and Complement Receptor 3 (αMβ2; Cd11b/Cd18)

    PubMed Central

    Cox, Dianne; Dale, Benjamin M.; Kashiwada, Masaki; Helgason, Cheryl D.; Greenberg, Steven

    2001-01-01

    The Src homology 2 domain–containing inositol 5′-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)–containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)–dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase–dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis mediated by receptors for the Fc portion of IgG (FcγRs). In contrast, macrophages expressing catalytically inactive SHIP or lacking SHIP expression demonstrated enhanced phagocytosis. To determine whether SHIP regulates phagocytosis mediated by receptors that are not known to recruit ITIMs, we determined the effect of SHIP expression on complement receptor 3 (CR3; CD11b/CD18; αMβ2)–dependent phagocytosis. Macrophages overexpressing SHIP demonstrated impaired CR3-mediated phagocytosis, whereas macrophages expressing catalytically inactive SHIP demonstrated enhanced phagocytosis. CR3-mediated phagocytosis in macrophages derived from SHIP−/− mice was up to 2.5 times as efficient as that observed in macrophages derived from littermate controls. SHIP was localized to FcγR- and CR3-containing phagocytic cups and was recruited to the cytoskeleton upon clustering of CR3. In a transfected COS cell model of activation-independent CR3-mediated phagocytosis, catalytically active but not inactive SHIP also inhibited phagocytosis. We conclude that PI 3-kinase(s) and SHIP regulate multiple forms of phagocytosis and that endogenous SHIP plays a role in modulating β2 integrin outside-in signaling. PMID:11136821

  14. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis.

    PubMed

    Link, Tiffany M; Park, Una; Vonakis, Becky M; Raben, Daniel M; Soloski, Mark J; Caterina, Michael J

    2010-03-01

    Macrophage phagocytosis is critical for defense against pathogens. Whereas many steps of phagocytosis involve ionic flux, the underlying ion channels remain ill defined. Here we show that zymosan-, immunoglobulin G (IgG)- and complement-mediated particle binding and phagocytosis were impaired in macrophages lacking the cation channel TRPV2. TRPV2 was recruited to the nascent phagosome and depolarized the plasma membrane. Depolarization increased the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)), which triggered the partial actin depolymerization necessary for occupancy-elicited phagocytic receptor clustering. TRPV2-deficient macrophages were also defective in chemoattractant-elicited motility. Consequently, TRPV2-deficient mice showed accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. Our data demonstrate the participation of TRPV2 in early phagocytosis and its fundamental importance in innate immunity.

  15. Interferon-γ acts as a regulator in the trade-off between phagocytosis and production performance in dwarf chickens.

    PubMed

    Yuan, Yitong; Liu, Shunqi; Zhao, Yue; Lian, Ling; Lian, Zhengxing

    2018-01-01

    Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. IFN-γ reportedly affects the phagocytic ability of monocytes and macrophages as well as regulates pituitary function in humans and mice. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and then, the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. For the in vitro experiment, the pituitary tissues were supplemented with IFN-γ, and the mRNA expression levels of follicle-stimulating hormone beta subunit ( FSH-β ), interferon gamma receptor 1 ( IFNGR 1), and interferon gamma receptor 2 ( IFNGR 2) in the pituitary were assessed. Monocyte and macrophage phagocytosis product (PP) was decreased by IFN-γ treatment in a dose-dependent manner in vitro. In the in vivo experiment, the level of IFN-γ in the treatment group was higher than that in the control group at 7 d ( P  < 0.05), 14 d ( P  < 0.01), and 21 d ( P  < 0.01) post-injection. Compared with the control group, monocyte and macrophage PP was lower in the treatment group after injection ( P  < 0.01). The laying rate was higher in the treatment group than in the control group at 2 and 3 wk post-injection ( P  < 0.05). There was a significant difference between the treatment and control groups in the levels of FSH at 1, 3, 7, and 14 d post-injection ( P  < 0.01). In the in vitro experiment, increased mRNA expression levels of FSH-β , IFNGR 1, and IFNGR 2 were observed in the treatment group after stimulation with 100 U/mL IFN-γ for 24 h compared to those in the control group ( P  < 0.05). IFN-γ inhibited the phagocytosis of monocytes and macrophages; up-regulated the mRNA expression levels of the FSH

  16. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    PubMed

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  17. Plasminogen promotes macrophage phagocytosis in mice

    PubMed Central

    Ganapathy, Swetha; Settle, Megan; Plow, Edward F.

    2014-01-01

    The phagocytic function of macrophages plays a pivotal role in eliminating apoptotic cells and invading pathogens. Evidence implicating plasminogen (Plg), the zymogen of plasmin, in phagocytosis is extremely limited with the most recent in vitro study showing that plasmin acts on prey cells rather than on macrophages. Here, we use apoptotic thymocytes and immunoglobulin opsonized bodies to show that Plg exerts a profound effect on macrophage-mediated phagocytosis in vitro and in vivo. Plg enhanced the uptake of these prey by J774A.1 macrophage-like cells by 3.5- to fivefold Plg receptors and plasmin proteolytic activity were required for phagocytosis of both preys. Compared with Plg+/+ mice, Plg−/− mice exhibited a 60% delay in clearance of apoptotic thymocytes by spleen and an 85% reduction in uptake by peritoneal macrophages. Phagocytosis of antibody-mediated erythrocyte clearance by liver Kupffer cells was reduced by 90% in Plg−/− mice compared with Plg+/+ mice. A gene array of splenic and hepatic tissues from Plg−/− and Plg+/+ mice showed downregulation of numerous genes in Plg−/− mice involved in phagocytosis and regulation of phagocytic gene expression was confirmed in macrophage-like cells. Thus, Plg may play an important role in innate immunity by changing expression of genes that contribute to phagocytosis. PMID:24876560

  18. Regulation of CRIg Expression and Phagocytosis in Human Macrophages by Arachidonate, Dexamethasone, and Cytokines

    PubMed Central

    Gorgani, Nick N.; Thathaisong, Umaporn; Mukaro, Violet R.S.; Poungpair, Ornnuthchar; Tirimacco, Amanda; Hii, Charles S.T.; Ferrante, Antonio

    2011-01-01

    Although the importance of the macrophage complement receptor immunoglobulin (CRIg) in the phagocytosis of complement opsonized bacteria and in inflammation has been established, the regulation of CRIg expression remains undefined. Because cellular activation during inflammation leads to the release of arachidonate, a stimulator of leukocyte function, we sought to determine whether arachidonate regulates CRIg expression. Adding arachidonate to maturing human macrophages and to prematured CRIg+ macrophages caused a significant decrease in the expression of cell-surface CRIg and CRIg mRNA. This effect was independent of the metabolism of arachidonate via the cyclooxygenase and lipoxygenase pathways, because it was not inhibited by the nonsteroidal anti-inflammatory drugs indomethacin and nordihydroguaiaretic acid. Studies with specific pharmacological inhibitors of arachidonate-mediated signaling pathways showed that protein kinase C was involved. Administration of dexamethasone to macrophages caused an increase in CRIg expression. Studies with proinflammatory and immunosuppressive cytokines showed that IL-10 increased, but interferon-γ, IL-4, and transforming growth factor-β1 decreased CRIg expression on macrophages. This down- and up-regulation of CRIg expression was reflected in a decrease and increase, respectively, in the phagocytosis of complement opsonized Candida albicans. These data suggest that a unique inflammatory mediator network regulates CRIg expression and point to a mechanism by which arachidonate and dexamethasone have reciprocal effects on inflammation. PMID:21741936

  19. Phagocytosis imprints heterogeneity in tissue-resident macrophages

    PubMed Central

    A-Gonzalez, Noelia; Quintana, Juan A.; Mazariegos, Marina; González de la Aleja, Arturo; Nicolás-Ávila, José A.; Crainiciuc, Georgiana; Rothlin, Carla V.; Peinado, Héctor; Castrillo, Antonio

    2017-01-01

    Tissue-resident macrophages display varying phenotypic and functional properties that are largely specified by their local environment. One of these functions, phagocytosis, mediates the natural disposal of billions of cells, but its mechanisms and consequences within living tissues are poorly defined. Using a parabiosis-based strategy, we identified and isolated macrophages from multiple tissues as they phagocytosed blood-borne cellular material. Phagocytosis was circadianally regulated and mediated by distinct repertoires of receptors, opsonins, and transcription factors in macrophages from each tissue. Although the tissue of residence defined the core signature of macrophages, phagocytosis imprinted a distinct antiinflammatory profile. Phagocytic macrophages expressed CD206, displayed blunted expression of Il1b, and supported tissue homeostasis. Thus, phagocytosis is a source of macrophage heterogeneity that acts together with tissue-derived factors to preserve homeostasis. PMID:28432199

  20. The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes.

    PubMed

    Scott, Glynis; Leopardi, Sonya; Parker, Lorelle; Babiarz, Laura; Seiberg, Miri; Han, Rujiing

    2003-09-01

    Recent work shows that the G-protein-coupled receptor proteinase activated receptor-2 activates signals that stimulate melanosome uptake in keratinocytes in vivo and in vitro. The Rho family of GTP-binding proteins is involved in cytoskeletal remodeling during phagocytosis. We show that proteinase-activated receptor-2 mediated phagocytosis in human keratinocytes is Rho dependent and that proteinase-activated receptor-2 signals to activate Rho. In contrast, Rho activity did not affect either proteinase-activated receptor-2 activity or mRNA and protein levels. We explored the signaling mechanisms of proteinase-activated receptor-2 mediated Rho activation in human keratinocytes and show that activation of proteinase-activated receptor-2, either through specific proteinase-activated receptor-2 activating peptides or through trypsinization, elevates cAMP in keratinocytes. Proteinase-activated receptor-2 mediated Rho activation was pertussis toxin insensitive and independent of the protein kinase A signaling pathway. These data are the first to show that proteinase-activated receptor-2 mediated phagocytosis is Rho dependent and that proteinase-activated receptor-2 signals to Rho and cAMP in keratinocytes. Because phagocytosis of melanosomes is recognized as an important mechanism for melanosome transfer to keratinocytes, these results suggest that Rho is a critical signaling intermediate in melanosome uptake in keratinocytes.

  1. Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    PubMed Central

    Zahuczky, Gábor; Kristóf, Endre; Majai, Gyöngyike; Fésüs, László

    2011-01-01

    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk. PMID:21731712

  2. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    PubMed

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  3. Entamoeba histolytica. Phagocytosis as a virulence factor

    PubMed Central

    1983-01-01

    In this paper, we attempted to define the role of phagocytosis in the virulence of Entamoeba histolytica. We have isolated, from a highly phagocytic and virulent strain, a clone deficient in phagocytosis. Trophozoites of wild-type strain HM1:IMSS were fed with Escherichia coli strain CR34-Thy- grown on 5-bromo,2'-deoxyuridine. The trophozoites that had incorporated the base analog through phagocytosis of the bacteria were killed by irradiation with 310 nm light. The survivors, presumably trophozoites defective in phagocytosis, were grown until log phase and submitted two more times to the selection procedure. Clone L-6, isolated from a subpopulation resulting from this selection procedure, showed 75-85% less erythrophagocytic activity than the wild-type strain. The virulence of clone L-6 and strain HM1:IMSS was measured. The inoculum required to induce liver abscesses in 50% of the newborn hamsters inoculated (AD50) of HM1:IMSS was 1.5 X 10(4) trophozoites. Clone L-6 trophozoites failed to induce liver abscesses in newborn hamsters even with inocula of 5 X 10(5) trophozoites. Virulence revertants were obtained by successive passage of L-6 trophozoites through the liver of young hamsters. The trophozoites that recovered the ability to produce liver abscesses simultaneously recuperate high erythrophagocytic rates. These results show that phagocytosis is involved in the aggressive mechanisms of E. histolytica. PMID:6313842

  4. Prostaglandins may play a signal-coupling role during phagocytosis in Amoeba proteus.

    PubMed

    Prusch, R D; Goette, S M; Haberman, P

    1989-03-01

    Phagocytosis in Amoeba proteus can be induced with prostaglandins (PG). In addition, arachidonic acid (the fatty acid precursor to the PG-2 series) also induces phagocytosis. The induction of phagocytosis with arachidonic acid can be partially inhibited by the cyclooxygenase inhibitor indomethacin. Phagocytosis in the amoeba can also be induced with the chemotactic peptide N-formylmethionyl-leucylphenylalanine (NFMLP). The peptide presumably induces phagocytosis by interacting with receptors on the amoeba surface, which may initiate the release of arachidonic acid from membrane lipids. NFMLP-induced phagocytosis can also be partially inhibited by indomethacin. It is suggested that PG's or biochemically related substances may play a signal-coupling role during phagocytosis in the amoeba.

  5. A novel real time imaging platform to quantify macrophage phagocytosis.

    PubMed

    Kapellos, Theodore S; Taylor, Lewis; Lee, Heyne; Cowley, Sally A; James, William S; Iqbal, Asif J; Greaves, David R

    2016-09-15

    Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Quantitative Phagocytosis.

    ERIC Educational Resources Information Center

    McCallister, Zane Gary; McCallister, Gary Loren

    1996-01-01

    Presents a model experiment for quantifying phagocytosis using earthworm coelomocytes and determining the optimum length of time necessary to obtain maximum phagocytosis. Involves incubating coelomocytes from invertebrates with an antigen, staining the cells, counting the number of antigen particles ingested, and measuring the effect of different…

  7. Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis.

    PubMed

    Lévêque, Manuella; Penna, Aubin; Le Trionnaire, Sophie; Belleguic, Chantal; Desrues, Benoît; Brinchault, Graziella; Jouneau, Stéphane; Lagadic-Gossmann, Dominique; Martin-Chouly, Corinne

    2018-03-09

    Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection.

  8. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    PubMed

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  9. Orexin Impairs the Phagocytosis and Degradation of Amyloid-β Fibrils by Microglial Cells.

    PubMed

    An, Hoyoung; Cho, Mi-Hyang; Kim, Dong-Hou; Chung, Seockhoon; Yoon, Seung-Yong

    2017-01-01

    Intracranial accumulation of amyloid-β (Aβ) is a characteristic finding of Alzheimer's disease (AD). It is thought to be the result of Aβ overproduction by neurons and impaired clearance by several systems, including degradation by microglia. Sleep disturbance is now considered a risk factor for AD, but studies focusing on how sleep modulates microglial handling of Aβ have been scarce. To determine whether phagocytosis and degradation of extracellular Aβ fibrils by BV2 microglial cells were impaired by treatment with orexin-A/B, a major modulator of the sleep-wake cycle, which may mimic sleep deprivation conditions. BV2 cells were treated with orexin and Aβ for various durations and phagocytic and autophagic processes for degradation of extracellular Aβ were examined. After treatment with orexin, the formation of actin filaments around Aβ fibrils, which is needed for phagocytosis, was impaired, and phagocytosis regulating molecules such as PI3K, Akt, and p38-MAPK were downregulated in BV2 cells. Orexin also suppressed autophagic flux, through disruption of the autophagosome-lysosome fusion process, resulting in impaired Aβ degradation in BV2 cells. Our results demonstrate that orexin can hinder clearance of Aβ through the suppression of phagocytosis and autophagic flux in microglia. This is a novel mechanism linking AD and sleep, and suggests that attenuated microglial function, due to sleep deprivation, may increase Aβ accumulation in the brain.

  10. Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.

    PubMed

    Schiff, D E; Kline, L; Soldau, K; Lee, J D; Pugin, J; Tobias, P S; Ulevitch, R J

    1997-12-01

    THP-1-derived cell lines were stably transfected with constructs encoding glycophosphatidylinositol (GPI)-anchored or transmembrane forms of human CD14. CD14 expression was associated with enhanced phagocytosis of serum (heat-inactivated)-opsonized Escherichia coli (opEc). Both the GPI-anchored and transmembrane forms of CD14 supported phagocytosis of opEc equally well. Lipopolysaccharide-binding protein (LBP) played a role in CD14-dependent phagocytosis as evidenced by inhibition of CD14-dependent phagocytosis of opEc with anti-LBP monoclonal antibody (mAb) and by enhanced phagocytosis of E. coli opsonized with purified LBP. CD14-dependent phagocytosis was inhibited by a phosphatidylinositol (PI) 3-kinase inhibitor (wortmannin) and a protein tyrosine kinase inhibitor (tyrphostin 23) but not a protein kinase C inhibitor (bisindolyl-maleimide) or a divalent cation chelator (ethylenediaminetetraacetate). Anti-LBP mAb 18G4 and anti-CD14 mAb 18E12 were used to differentiate between the pathways involved in CD14-dependent phagocytosis and CD14-dependent cell activation. F(ab')2 fragments of 18G4, a mAb to LBP that does not block cell activation, inhibited ingestion of opEc by THP1-wtCD14 cells. 18E12 (an anti-CD14 mAb that does not block LPS binding to CD14 but does inhibit CD14-dependent cell activation) did not inhibit phagocytosis of LBP-opEc by THP1-wtCD14 cells. Furthermore, CD14-dependent phagocytosis was not inhibited by anti-CD18 (CR3 and CR4 beta-chain) or anti-Fcgamma receptor mAb.

  11. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    PubMed

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively

  12. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  13. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    PubMed

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition

    PubMed Central

    Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E

    2014-01-01

    The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781

  15. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes.

    PubMed

    Kurucz, Eva; Márkus, Róbert; Zsámboki, János; Folkl-Medzihradszky, Katalin; Darula, Zsuzsanna; Vilmos, Péter; Udvardy, Andor; Krausz, Ildikó; Lukacsovich, Tamás; Gateff, Elisabeth; Zettervall, Carl-Johan; Hultmark, Dan; Andó, István

    2007-04-03

    The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.

  16. Effects of β-glucans from Coriolus versicolor on macrophage phagocytosis are related to the Akt and CK2/Ikaros.

    PubMed

    Kang, Se Chan; Koo, Hyun Jung; Park, Sulkyung; Lim, Jung Dae; Kim, Ye-Jin; Kim, Taeseong; Namkoong, Seung; Jang, Ki-Hyo; Pyo, Suhkneung; Jang, Seon-A; Sohn, Eun-Hwa

    2013-06-01

    Coriolus versicolor has been known to be an immune stimulator effects. For further understanding of the phagocytic activity and the intracellular mechanisms of β-glucan from C. versicolor (CVG), we examined the phagocytic activity, phosphorylation of Akt and CK2, nucleus translocation of p65 and Ikaros activity in β-glucan-treated macrophages using RT-PCR, western blotting, and IP assay. The role of Ikaros in regulating phagocytic effects of CVG was also determined using Ikaros dominant negative isoform cells. This study suggests that CK2/Ikaros are positive regulators and novel signaling pathway involved in phagocytosis and contributes to elucidating the mechanism underlying phagocytic activity induced by β-glucan. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcgamma receptors and tyrosine kinases

    PubMed Central

    1996-01-01

    In neutrophils, binding and phagocytosis facilitate subsequent intracellular killing of microorganisms. Activity of Na+/H+ exchangers (NHEs) participates in these events, especially in regulation of intracellular pH (pHi) by compensating for the H+ load generated by the respiratory burst. Despite the importance of these functions, comparatively little is known regarding the nature and regulation of NHE(s) in neutrophils. The purpose of this study was to identify which NHE(s) are expressed in neutrophils and to elucidate the mechanisms regulating their activity during phagocytosis. Exposure of cells to the phagocytic stimulus opsonized zymosan (OpZ) induced a transient cytosolic acidification followed by a prolonged alkalinization. The latter was inhibited in Na+-free medium and by amiloride analogues and therefore was due to activation of Na+/H+ exchange. Reverse transcriptase PCR and cDNA sequencing demonstrated that mRNA for the NHE-1 but not for NHE-2, 3, or 4 isoforms of the exchanger was expressed. Immunoblotting of purified plasma membranes with isoform- specific antibodies confirmed the presence of NHE-1 protein in neutrophils. Since phagocytosis involves Fcgamma (FcgammaR) and complement receptors such as CR3 (a beta2 integrin) which are linked to pathways involving alterations in intracellular [Ca2+]i and tyrosine phosphorylation, we studied these pathways in relation to activation of NHE-1. Cross-linking of surface bound antibodies (mAb) directed against FcgammaRs (FcgammaRII > FcgammaRIII) but not beta2 integrins induced an amiloride-sensitive cytosolic alkalinization. However, anti-beta2 integrin mAb diminished OpZ-induced alkalinization suggesting that NHE- 1 activation involved cooperation between integrins and FcgammaRs. The tyrosine kinase inhibitors genistein and herbimycin blocked cytosolic alkalinization after OpZ or FcgammaR cross-linking suggesting that tyrosine phosphorylation was involved in NHE-I activation. An increase in [Ca2+]i was not

  18. Phagocytosis: Hungry, Hungry Cells.

    PubMed

    Gray, Matthew; Botelho, Roberto J

    2017-01-01

    Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.

  19. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less

  20. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    PubMed

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  1. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase.

    PubMed

    Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J

    2014-05-20

    Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for

  2. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.

    PubMed

    Castro, D P; Figueiredo, M B; Genta, F A; Ribeiro, I M; Tomassini, T C B; Azambuja, P; Garcia, E S

    2009-06-01

    The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.

  4. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    NASA Technical Reports Server (NTRS)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  5. C-type lectin B (SpCTL-B) regulates the expression of antimicrobial peptides and promotes phagocytosis in mud crab Scylla paramamosain.

    PubMed

    Wei, Xiaoyuan; Wang, Limin; Sun, Wanwei; Zhang, Ming; Ma, Hongyu; Zhang, Yueling; Zhang, Xinxu; Li, Shengkang

    2018-07-01

    As pattern recognition receptors, C-type lectins (CTLs) play important roles in immune system of crustaceans through identifying and binding to the conservative pathogen-associated molecular patterns (PAMPs) on pathogen surfaces. In this study, a new CTL, SpCTL-B, was identified from the hemocytes of mud crab Scylla paramamosain. The full-length of SpCTL-B cDNA was 1278 bp with an open reading frame (ORF) of 348 bp. The predicted SpCTL-B protein contains a single carbohydrate-recognition domain (CRD). SpCTL-B transcripts were distributed in all examined tissues with the highest levels in hepatopancreas. After challenged with Vibrio parahaemolyticus, LPS, polyI:C and white spot syndrome virus (WSSV), the mRNA levels of SpCTL-B in hemocytes and hepatopancreas were up-regulated. The recombinant SpCTL-B (rSpCTL-B) purified by Ni-affinity chromatography showed stronger binding activities with Staphylococcus aureus, β-hemolytic Streptococcus, Escherichia coli, Aeromonas hydrophila, Vibrio alginolyticus than those with V. parahaemolyticus and Saccharomyces cerevisiae. rSpCTL-B exhibited a broad spectrum of microorganism-agglutination activities against Gram-positive bacteria (S. aureus, β-hemolytic Streptococcus) and Gram-negative bacteria (E. coli, V. parahaemolyticus, A. hydrophila, V. alginolyticus) in a Ca 2+ -dependent manner. The agglutination activities of rSpCTL-B could be inhibited by D-mannose and LPS, but not by d-fructose and galactose. The antimicrobial assay showed that rSpCTL-B exhibited the growth inhibition against all examined gram-positive bacteria and gram-negative bacteria. When SpCTL-B was silenced by RNAi, the bacterial clearance ability in mud crab was decreased and the transcript levels of five antimicrobial peptides (AMPs) (SpCrustin, SpHistin, SpALF4 (anti-lipopolysaccharide factor), SpALF5 and SpALF6) were significantly decreased in hemocytes. In our study, knockdown of SpCTL-B could down-regulate the expression of SpSTAT at m

  6. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation

    PubMed Central

    Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A

    2014-01-01

    Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282

  7. Alveolar macrophage phagocytosis is enhanced after blunt chest trauma and alters the posttraumatic mediator release.

    PubMed

    Seitz, Daniel H; Palmer, Annette; Niesler, Ulrike; Fröba, Janine S; Heidemann, Vera; Rittlinger, Anne; Braumüller, Sonja T; Zhou, Shaoxia; Gebhard, Florian; Knöferl, Markus W

    2011-12-01

    Blunt chest trauma is known to induce a pulmonary invasion of short-lived polymorphonuclear neutrophils and apoptosis of alveolar epithelial type 2 (AT2) cells. Apoptotic cells are removed by alveolar macrophages (AMΦ). We hypothesized that chest trauma alters the phagocytic response of AMΦ as well as the mediator release of AMΦ during phagocytosis. To study this, male Sprague-Dawley rats were subjected to blunt chest trauma. Phagocytosis assays were performed in AMΦ isolated 2 or 24 h after trauma with apoptotic cells or opsonized beads. Phagocytosis of apoptotic AT2 cells by unstimulated AMΦ was significantly increased 2 h after trauma. At 24 h, AMΦ from traumatized animals, stimulated with phorbol-12-myristate-13-acetate, ingested significantly more apoptotic polymorphonuclear neutrophils than AMΦ from sham animals. Alveolar macrophages after trauma released significantly higher levels of tumor necrosis factor α, macrophage inflammatory protein 1α, and cytokine-induced neutrophil chemoattractant 1 when they incorporated latex beads, but significantly lower levels of interleukin 1β and macrophage inflammatory protein 1α when they ingested apoptotic cells. In vivo, phagocytosis of intratracheally instilled latex beads was decreased in traumatized rats. The bronchoalveolar lavage concentrations of the phagocytosis-supporting surfactant proteins A and D after blunt chest trauma were slightly decreased, whereas surfactant protein D mRNA expression in AT2 cells was significantly increased after 2 h. These findings indicate that chest trauma augments the phagocytosis of apoptotic cells by AMΦ. Phagocytosis of opsonized beads enhances and ingestion of apoptotic cells downregulates the immunologic response following lung contusion. Our data emphasize the important role of phagocytosis during posttraumatic inflammation after lung contusion.

  8. Coiling Phagocytosis of Trypanosomatids and Fungal Cells

    PubMed Central

    Rittig, M. G.; Schröppel, K.; Seack, K.-H.; Sander, U.; N’Diaye, E.-N.; Maridonneau-Parini, I.; Solbach, W.; Bogdan, C.

    1998-01-01

    Coiling phagocytosis has previously been studied only with the bacteria Legionella pneumophila and Borrelia burgdorferi, and the results were inconsistent. To learn more about this unconventional phagocytic mechanism, the uptake of various eukaryotic microorganisms by human monocytes, murine macrophages, and murine dendritic cells was investigated in vitro by video and electron microscopy. Unconventional phagocytosis of Leishmania spp. promastigotes, Trypanosoma cruzi trypomastigotes, Candida albicans hyphae, and zymosan particles from Saccharomyces cerevisiae differed in (i) morphology (rotating unilateral pseudopods with the trypanosomatids, overlapping bilateral pseudopods with the fungi), (ii) frequency (high with Leishmania; occasional with the fungi; rare with T. cruzi), (iii) duration (rapid with zymosan; moderate with the trypanosomatids; slow with C. albicans), (iv) localization along the promastigotes (flagellum of Leishmania major and L. aethiopica; flagellum or posterior pole of L. donovani), and (v) dependence on complement (strong with L. major and L. donovani; moderate with the fungi; none with L. aethiopica). All of these various types of unconventional phagocytosis gave rise to similar pseudopod stacks which eventually transformed to a regular phagosome. Further video microscopic studies with L. major provided evidence for a cytosolic localization, synchronized replication, and exocytic release of the parasites, extending traditional concepts about leishmanial infection of host cells. It is concluded that coiling phagocytosis comprises phenotypically similar consequences of various disturbances in conventional phagocytosis rather than representing a single separate mechanism. PMID:9712785

  9. Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development

    PubMed Central

    Cork, Sarah M.

    2011-01-01

    While G-protein-coupled receptors (GPCRs) have received considerable attention for their biological activity in a diversity of physiological functions and have become targets for therapeutic intervention in many diseases, the function of the cell adhesion subfamily of GPCRs remains poorly understood. Within this group, the family of brain angiogenesis inhibitor molecules (BAI1-3) has become increasingly appreciated for their diverse roles in biology and disease. In particular, recent findings suggest emerging roles for BAI1 in the regulation of phenomena including phagocytosis, synaptogenesis, and the inhibition of tumor growth and angiogenesis via the processing of its extracellular domain into secreted vasculostatins. Here we summarize the known biological features of the BAI proteins, including their structure, proteolysis events, and interacting partners, and their recently identified ability to regulate certain signaling pathways. Finally, we discuss the potential of the BAIs as therapeutics or targets for diseases as varied as cancer, stroke, and schizophrenia. PMID:21509575

  10. [Phagocytosis and intracellular proliferation of Nocardia asteroides (strain Weipheld) in cell structures in vitro. 2. Peritoneal macrophages of guinea-pigs (author's transl)].

    PubMed

    Splino, M; Mĕrka, V; Kyntera, F

    1976-08-01

    The study deals with the phagocytosis of Nocardia asteroides (strain Weipheld) and the subsequent intracellular proliferation in peritoneal macrophage cells. Normal, two-stage-immunized and long-term cortison-treated guinea-pig (28 mg cortison / kg weight / day during 30 days) macrophages were used. Further, the cytotoxic effect of Nocardia upon the cells in the peritoneal washing liquid in vitro and the influence of the normal, immune and antimacrophage serum upon the phagocytosis and the intracellular proliferation were studied. Among the cells obtained from the peritoneal washing liquid macrophages were most frequently subject to phagocytosis, leukocytes to a lesser degree. The normal macrophages phagocytized in 14.56% (Fig. 1), macrophages of two-stage-immunized guinea-pigs in 18.21% (Fig. 2) and macrophages from cortison treated guinea-pigs in 12.48% of cases. Intracellular observation showed phagocytized germs after 3 min. of exposure. The course of the intracellular proliferation of Nocardia can be seen in Fig. 3. The phagocytosis index increases slowly in all three groups of macrophages; least so in the immunized macrophages (1.30-after 8 hours). The highest values were obtained in the macrophages of cortison treated guinea-pigs (2.02-after 8 hours). Within 8 hours of exposure the filaments of Nocardia grew through the cell membrane of phagocytizing cells (Figs. 4 A, 4 B). Fig. 5 shows the course of the cytopathogenic effect of Nocardia upon the cells. After 1 hr. the number of dead cells increased from 0.30% to 1.9-3.8%; after 4 hrs. it reached 8.15-9.80%; after 8 hrs. 10.1-14.80%. The highest values were observed in cells from cortison treated guinea-pigs (14.80%). After addition of normal serum (time of phagocytosis 60 min.) normal peritoneal macrophages phagocytized in 13.30% of cases; immune serum stimulated phagocytosis (16.21%); antimacrophage serum significantly reduced phagocytosis (4.10%). The phagocytosis index in peritoneal macrophages with

  11. HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods. PMID:22479406

  12. Second-Hand Cigarette Smoke Impairs Bacterial Phagocytosis in Macrophages by Modulating CFTR Dependent Lipid-Rafts

    PubMed Central

    Ni, Inzer; Ji, Changhoon; Vij, Neeraj

    2015-01-01

    Introduction First/Second-hand cigarette-smoke (FHS/SHS) exposure weakens immune defenses inducing chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are not fully understood. Hence, we evaluated if SHS induced changes in membrane/lipid-raft (m-/r)-CFTR (cystic fibrosis transmembrane conductance regulator) expression/activity is a potential mechanism for impaired bacterial phagocytosis in COPD. Methods RAW264.7 murine macrophages were exposed to freshly prepared CS-extract (CSE) containing culture media and/or Pseudomonas-aeruginosa-PA01-GFP for phagocytosis (fluorescence-microscopy), bacterial survival (colony-forming-units-CFU), and immunoblotting assays. The CFTR-expression/activity and lipid-rafts were modulated by transient-transfection or inhibitors/inducers. Next, mice were exposed to acute/sub-chronic-SHS or room-air (5-days/3-weeks) and infected with PA01-GFP, followed by quantification of bacterial survival by CFU-assay. Results We investigated the effect of CSE treatment on RAW264.7 cells infected by PA01-GFP and observed that CSE treatment significantly (p<0.01) inhibits PA01-GFP phagocytosis as compared to the controls. We also verified this in murine model, exposed to acute/sub-chronic-SHS and found significant (p<0.05, p<0.02) increase in bacterial survival in the SHS-exposed lungs as compared to the room-air controls. Next, we examined the effect of impaired CFTR ion-channel-activity on PA01-GFP infection of RAW264.7 cells using CFTR172-inhibitor and found no significant change in phagocytosis. We also similarly evaluated the effect of a CFTR corrector-potentiator compound, VRT-532, and observed no significant rescue of CSE impaired PA01-GFP phagocytosis although it significantly (p<0.05) decreases CSE induced bacterial survival. Moreover, induction of CFTR expression in macrophages significantly (p<0.03) improves CSE impaired PA01-GFP phagocytosis as compared to the control. Next, we verified the link between m

  13. Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery.

    PubMed

    Li, Hao; Tatematsu, Kenji; Somiya, Masaharu; Iijima, Masumi; Kuroda, Shun'ichi

    2018-06-01

    Macrophage hyperfunction or dysfunction is tightly associated with various diseases, such as osteoporosis, inflammatory disorder, and cancers. However, nearly all conventional drug delivery system (DDS) nanocarriers utilize endocytosis for entering target cells; thus, the development of macrophage-targeting and phagocytosis-inducing DDS nanocarriers for treating these diseases is required. In this study, we developed a hepatitis B virus (HBV) envelope L particle (i.e., bio-nanocapsule (BNC)) outwardly displaying a tandem form of protein G-derived IgG Fc-binding domain and protein L-derived IgG Fab-binding domain (GL-BNC). When conjugated with the macrophage-targeting ligand, mouse IgG2a (mIgG2a), the GL-BNC itself, and the liposome-fused GL-BNC (i.e., GL-virosome) spontaneously initiated aggregation by bridging between the Fc-binding domain and Fab-binding domain with mIgG2a. The aggregates were efficiently taken up by macrophages, whereas this was inhibited by latrunculin B, a phagocytosis-specific inhibitor. The mIgG2a-GL-virosome containing doxorubicin exhibited higher cytotoxicity toward macrophages than conventional liposomes and other BNC-based virosomes. Thus, GL-BNCs and GL-virosomes may constitute promising macrophage-targeting and phagocytosis-inducing DDS nanocarriers. We have developed a novel macrophage-targeting and phagocytosis-inducing bio-nanocapsule (BNC)-based nanocarrier named GL-BNC, which comprises a hepatitis B virus envelope L particle outwardly displaying protein G-derived IgG Fc- and protein L-derived IgG Fab-binding domains in tandem. The GL-BNC alone or liposome-fused form (GL-virosomes) could spontaneously aggregate when conjugated with macrophage-targeting IgGs, inducing phagocytosis by the interaction between IgG Fc of aggregates and FcγR on phagocytes. Thereby these aggregates were efficiently taken up by macrophages. GL-virosomes containing doxorubicin exhibited higher cytotoxicity towards macrophages than ZZ-virosomes and

  14. Heparin inhibits melanosome uptake and inflammatory response coupled with phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways in human epidermal keratinocytes.

    PubMed

    Makino-Okamura, Chieko; Niki, Yoko; Takeuchi, Seiji; Nishigori, Chikako; Declercq, Lieve; Yaroch, Daniel B; Saito, Naoaki

    2014-11-01

    To gain insight for the role of mast cell-produced heparin in the regulation of epidermal homeostasis and skin pigmentation, we have investigated the effect of heparin on melanosome uptake and proinflammatory responses in normal human epidermal keratinocytes (NHEKs). We quantified phagocytic activity of NHEKs with uptake of melanosomes or fluorescent microspheres. Heparin exhibited the inhibitory effect on keratinocyte phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways. In fact, the heparin-treated NHEKs showed impaired activation of Akt and ERK during phagocytosis, whereas PI3k and MEK inhibitors significantly suppressed melanosome uptake by NHEKs. In addition, the inflammation marker cycloxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2 ) production were induced during phagocytosis, while these effects were downregulated in the presence of heparin. Our observations suggest that heparin may play an antiphagocytic and anti-inflammation role in epidermis of human skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. In vitro phagocytosis of several Candida berkhout species by murine leukocytes.

    PubMed

    Fontenla de Petrino, S E; Bibas Bonet de Jorrat, M E; Sirena, A

    1985-03-01

    In vitro phagocytosis of thirteen Candida berkhout species by rat leukocytes was studied to assess a possible correlation between pathogenicity and phagocytosis Yeast-leukocyte suspensions were mixed up for 3 h and phagocytic index, germ-tube formation and leukocyte candidacidal activity were evaluated. Highest values for phagocytosis were reached in all cases at the end of the first hour. Leukocyte candidacidal activity was absent. Only C. albicans produced germ-tubes. The various phagocytosis indices were determined depending on the Candida species assayed. Under these conditions, the more pathogenic species presented the lower indices of phagocytosis. It is determined that the in vitro phagocytic index may bear a close relationship with the pathogenicity of the Candida berkhout.

  16. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  17. Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections

    PubMed Central

    Okagaki, Laura H.

    2012-01-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904

  18. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.

    PubMed

    Okagaki, Laura H; Nielsen, Kirsten

    2012-06-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.

  19. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    PubMed Central

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  20. How cells engulf: a review of theoretical approaches to phagocytosis

    NASA Astrophysics Data System (ADS)

    Richards, David M.; Endres, Robert G.

    2017-12-01

    Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.

  1. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions

    PubMed Central

    Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.

    2013-01-01

    We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads there are large increases of [Ca2+]i, time- and Ca2+-dependent enrichment of NMMIIA and gelsolin at collagen adhesions, and abundant intracellular collagen degradation. NMMIIA knockdown retards gelsolin recruitment to adhesions and blocks collagen phagocytosis. Gelsolin exhibits tight, Ca2+-dependent binding to full-length NMMIIA. Gelsolin domains G4–G6 selectively require Ca2+ to interact with NMMIIA, which is restricted to residues 1339–1899 of NMMIIA. We conclude that cell adhesion to collagen presented on beads activates Ca2+ entry and promotes the formation of phagosomes enriched with NMMIIA and gelsolin. The Ca2+ -dependent interaction of gelsolin and NMMIIA in turn enables actin remodeling and enhances collagen degradation by phagocytosis. PMID:23325791

  2. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  3. Over-Expression of the Mycobacterial Trehalose-Phosphate Phosphatase OtsB2 Results in a Defect in Macrophage Phagocytosis Associated with Increased Mycobacterial-Macrophage Adhesion

    PubMed Central

    Li, Hao; Wu, Mei; Shi, Yan; Javid, Babak

    2016-01-01

    Trehalose-6-phosphate phosphatase (OtsB2) is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-bacillus calmette-guerin (BCG) over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage–mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host–pathogen interactions. Macrophage–mycobacteria phagocytic interactions are complex and merit further study. PMID:27867377

  4. Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic ‘eat-me' signals: cleavage and inhibition of phagocytosis by Lp-PLA2

    PubMed Central

    Tyurin, V A; Balasubramanian, K; Winnica, D; Tyurina, Y Y; Vikulina, A S; He, R R; Kapralov, A A; Macphee, C H; Kagan, V E

    2014-01-01

    Diversified anionic phospholipids, phosphatidylserines (PS), externalized to the surface of apoptotic cells are universal phagocytic signals. However, the role of major PS metabolites, such as peroxidized species of PS (PSox) and lyso-PS, in the clearance of apoptotic cells has not been rigorously evaluated. Here, we demonstrate that H2O2 was equally effective in inducing apoptosis and externalization of PS in naive HL60 cells and in cells enriched with oxidizable polyunsaturated species of PS (supplemented with linoleic acid (LA)). Despite this, the uptake of LA-supplemented cells by RAW264.7 and THP-1 macrophages was more than an order of magnitude more effective than that of naive cells. A similar stimulation of phagocytosis was observed with LA-enriched HL60 cells and Jurkat cells triggered to apoptosis with staurosporine. This was due to the presence of PSox on the surface of apoptotic LA-supplemented cells (but not of naive cells). This enhanced phagocytosis was dependent on activation of the intrinsic apoptotic pathway, as no stimulation of phagocytosis occurred in LA-enriched cells challenged with Fas antibody. Incubation of apoptotic cells with lipoprotein-associated phospholipase A2 (Lp-PLA2), a secreted enzyme with high specificity towards PSox, hydrolyzed peroxidized PS species in LA-supplemented cells resulting in the suppression of phagocytosis to the levels observed for naive cells. This suppression of phagocytosis by Lp-PLA2 was blocked by a selective inhibitor of Lp-PLA2, SB-435495. Screening of possible receptor candidates revealed the ability of several PS receptors and bridging proteins to recognize both PS and PSox, albeit with diverse selectivity. We conclude that PSox is an effective phagocytic ‘eat-me' signal that participates in the engulfment of cells undergoing intrinsic apoptosis. PMID:24464221

  5. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis.

    PubMed

    Li, Xiaowei; Jia, Zhihao; Wang, Weilin; Wang, Lingling; Liu, Zhaoqun; Yang, Bin; Jia, Yunke; Song, Xiaorui; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-08-01

    Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-β from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p < 0.05) in comparison with control group, and then gradually decreased to the initial level at 48 h (p > 0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-α factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNF-α production was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNF-α production and inhibiting haemocyte phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells.

    PubMed

    Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C

    1996-11-01

    The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3

  7. Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.

    DTIC Science & Technology

    1979-11-30

    hours after Butler 7 institution of antibiotic treatment. Polymorphonuclear leukocytes are known to release endogenous pyrogen after phagocytosis of...other bacteria (6), and endogenous pyrogen may be one of the mediators of the rigor and temperature rise in the Jarisch-Herxheimer reaction (2). Release...the pathogenesis of fever. XII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leukocytes. J. Exp. Med. 119:715

  8. Phagocytosis of Candida albicans Inhibits Autophagic Flux in Macrophages.

    PubMed

    Duan, Zhimin; Chen, Qing; Du, Leilei; Tong, Jianbo; Xu, Song; Zeng, Rong; Ma, Yuting; Chen, Xu; Li, Min

    2018-01-01

    Autophagy machinery has roles in the defense against microorganisms such as Candida albicans . Lipidated LC3, the marker protein of autophagy, participates in the elimination of C. albicans by forming a single-membrane phagosome; this process is called LC3-associated phagocytosis (LAP). However, the influence of C. albicans on autophagic flux is not clear. In this study, we found that C. albicans inhibited LC3 turnover in macrophages. After the phagocytosis of C. albicans in macrophages, we observed fewer acridine orange-positive vacuoles and RFP-GFP-LC3 puncta without colocalization with phagocytized C. albicans . However, phagocytosis of C. albicans led to LC3 recruitment, but p62 and ATG9A did not colocalize with LC3 or C. albicans . These effects are due to an MTOR-independent pathway. Nevertheless, we found that the C. albicans pattern-associated molecular pattern β -glucan increased LC3 turnover. In addition, phagocytosis of C. albicans caused a decrease in BrdU incorporation. Blocking autophagic flux aggravated this effect. Our findings suggest that phagocytosis of C. albicans decreases autophagic flux but induces LAP in an MTOR-independent manner in macrophages. Occupation of LC3 by recruiting engulfed C. albicans might contribute to the inhibition of autophagic flux. Our study highlights the coordinated machinery between canonical autophagy and LAP that defends against C. albicans challenge.

  9. Neutralization of B. anthracis toxins during ex vivo phagocytosis.

    PubMed

    Tarasenko, Olga; Scott, Ashley; Jones, April; Soderberg, Lee; Alusta, Pierre

    2013-07-01

    Glycoconjugates (GCs) are recognized as stimulation and signaling agents, affecting cell adhesion, activation, and growth of living organisms. Among GC targets, macrophages are considered ideal since they play a central role in inflammation and immune responses against foreign agents. In this context, we studied the effects of highly selective GCs in neutralizing toxin factors produced by B. anthracis during phagocytosis using murine macrophages. The effects of GCs were studied under three conditions: A) prior to, B) during, and C) following exposure of macrophages to B. anthracis individual toxin (protective antigen [PA], edema factor [EF], lethal factor [LF] or toxin complexes (PA-EF-LF, PA-EF, and PA-LF). We employed ex vivo phagocytosis and post-phagocytosis analysis including direct microscopic observation of macrophage viability, and macrophage activation. Our results demonstrated that macrophages are more prone to adhere to GC-altered PA-EF-LF, PA-EF, and PA-LF toxin complexes. This adhesion results in a higher phagocytosis rate and toxin complex neutralization during phagocytosis. In addition, GCs enhance macrophage viability, activate macrophages, and stimulate nitric oxide (NO) production. The present study may be helpful in identifying GC ligands with toxin-neutralizing and/or immunomodulating properties. In addition, our study could suggest GCs as new targets for existing vaccines and the prospective development of vaccines and immunomodulators used to combat the effects of B. anthracis.

  10. DEVELOPMENTAL EXPOSURE TO A THYROID DISRUPTING CHEMICAL STIMULATES PHAGOCYTOSIS IN JUVENILE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Exposure to a Thyroid Disrupting Chemical Stimulates Phagocytosis in Juvenile Sprague-Dawley Rats.
    AA Rooney1, R Matulka2, and R Luebke3. 1NCSU/US EPA CVM, Department of Anatomy, Physiological Sciences and Radiology, Raleigh, NC;2UNC Department of Toxicology, Cha...

  11. Fc-receptor induced cell spreading during frustrated phagocytosis in J774A.1 macrophages

    NASA Astrophysics Data System (ADS)

    Kovari, Daniel; Curtis, Jennifer; Wei, Wenbin

    2014-03-01

    Phagocytosis is the process where by cells engulf foreign particles. It is the primary mechanism through which macrophages and neutrophils (white blood cells) eliminate pathogens and debris from the body. The behavior is the result of a cascade of chemical and mechanical cues, which result in the actin-driven expansion of the cell's membrane around its target. For macrophages undergoing Fc-mediated phagocytosis, we show that above a minimum threshold the spreading rate and maximum cell-target contact area are independent of the target's opsonin density. Qualitatively, macrophage phagocytic spreading is similar to the spreading of other cell types (e.g. fibroblasts, lymphocytes, and Dict.d.). Early spreading is most likely the result of ``passive'' alignment of the cell to the target surface. This is followed by an active expansion period driven by actin. Finally upon reaching a maximum contact area, typically 2-3 times the size of ``non-activated'' cells, macrophages often undergo a period of rapid contraction not reported in other cell types. We hypothesize that this, as yet unexplained, transition may be specific to the chemical and mechanical machinery associated with phagocytosis. This work was funded by NSF grant PHYS 0848797 and NSF grant DMR 0820382.

  12. Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-01-01

    Cells are sensitive to their underlying micro- and nano-topography, but the complex interplay is not completely understood especially if sharp edges and ridges of stochastically modified surfaces interfere with an attached cell body. Micro-topography offers cues that evoke a large range of cell responses e.g. altered adhesion behavior and integrin expression resulting in disturbed cell functions. In this study, we analyzed why osteoblastic cells mimic the underlying geometrical micro-pillar structure (5 × 5 × 5 μm, spacing of 5 μm) with their actin cytoskeleton. Interestingly, we discovered an attempted caveolae-mediated phagocytosis of each micro-pillar beneath the cells, which was accompanied by increased intracellular reactive oxygen species (ROS) production and reduced intracellular ATP levels. This energy consuming process hampered the cells in their function as osteoblasts at the interface. The raft-dependent/caveolae-mediated phagocytic pathway is regulated by diverse cellular components including caveolin-1 (Cav-1), cholesterol, actin cytoskeleton as well as actin-binding proteins like annexin A2 (AnxA2). Our results show a new aspect of osteoblast-material interaction and give insight into how cells behave on extraordinary micro-structures. We conclude that stochastically structured implants used in orthopedic surgery should avoid any topographical heights which induce phagocytosis to prevent their successful ingrowth. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Dictyostelium discoideum mutants with conditional defects in phagocytosis

    PubMed Central

    1994-01-01

    We have isolated and characterized Dictyostelium discoideum mutants with conditional defects in phagocytosis. Under suspension conditions, the mutants exhibited dramatic reductions in the uptake of bacteria and polystyrene latex beads. The initial binding of these ligands was unaffected, however, indicating that the defect was not in a plasma membrane receptor: Because of the phagocytosis defect, the mutants were unable to grow when cultured in suspensions of heat-killed bacteria. The mutants exhibited normal capacities for fluid phase endocytosis and grew as rapidly as parental (AX4) cells in axenic medium. Both the defects in phagocytosis and growth on bacteria were corrected when the mutant Dictyostelium cells were cultured on solid substrates. Reversion and genetic complementation analysis suggested that the mutant phenotypes were caused by single gene defects. While the precise site of action of the mutations was not established, the mutations are likely to affect an early signaling event because the binding of bacteria to mutant cells in suspension was unable to trigger the localized polymerization of actin filaments required for ingestion; other aspects of actin function appeared normal. This class of conditional phagocytosis mutant should prove to be useful for the expression cloning of the affected gene(s). PMID:7519624

  14. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    PubMed

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. The Role of CD38 in Fcγ Receptor (FcγR)-mediated Phagocytosis in Murine Macrophages*

    PubMed Central

    Kang, John; Park, Kwang-Hyun; Kim, Jwa-Jin; Jo, Eun-Kyeong; Han, Myung-Kwan; Kim, Uh-Hyun

    2012-01-01

    Phagocytosis is a crucial event in the immune system that allows cells to engulf and eliminate pathogens. This is mediated through the action of immunoglobulin (IgG)-opsonized microbes acting on Fcγ receptors (FcγR) on macrophages, which results in sustained levels of intracellular Ca2+ through the mobilization of Ca2+ second messengers. It is known that the ADP-ribosyl cyclase is responsible for the rise in Ca2+ levels after FcγR activation. However, it is unclear whether and how CD38 is involved in FcγR-mediated phagocytosis. Here we show that CD38 is recruited to the forming phagosomes during phagocytosis of IgG-opsonized particles and produces cyclic-ADP-ribose, which acts on ER Ca2+ stores, thus allowing an increase in FcγR activation-mediated phagocytosis. Ca2+ data show that pretreatment of J774A.1 macrophages with 8-bromo-cADPR, ryanodine, blebbistatin, and various store-operated Ca2+ inhibitors prevented the long-lasting Ca2+ signal, which significantly reduced the number of ingested opsonized particles. Ex vivo data with macrophages extracted from CD38−/− mice also shows a reduced Ca2+ signaling and phagocytic index. Furthermore, a significantly reduced phagocytic index of Mycobacterium bovis BCG was shown in macrophages from CD38−/− mice in vivo. This study suggests a crucial role of CD38 in FcγR-mediated phagocytosis through its recruitment to the phagosome and mobilization of cADPR-induced intracellular Ca2+ and store-operated extracellular Ca2+ influx. PMID:22396532

  16. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis.

    PubMed

    Kyrmizi, Irene; Ferreira, Helena; Carvalho, Agostinho; Figueroa, Julio Alberto Landero; Zarmpas, Pavlos; Cunha, Cristina; Akoumianaki, Tonia; Stylianou, Kostas; Deepe, George S; Samonis, George; Lacerda, João F; Campos, António; Kontoyiannis, Dimitrios P; Mihalopoulos, Nikolaos; Kwon-Chung, Kyung J; El-Benna, Jamel; Valsecchi, Isabel; Beauvais, Anne; Brakhage, Axel A; Neves, Nuno M; Latge, Jean-Paul; Chamilos, Georgios

    2018-05-30

    LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca 2+ signalling pathway that depends on intracellular Ca 2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca 2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca 2+ -CaM signalling in aspergillosis. Finally, we demonstrate that Ca 2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca 2+ -CaM signalling to inhibit LAP. These findings reveal the important role of Ca 2+ -CaM signalling in antifungal immunity and identify an immunological function of Ca 2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.

  17. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Granulocyte phagocytosis and killing virulent and avirulent serotypes of Streptococcus pneumoniae.

    PubMed

    Braconier, J H; Odeberg, H

    1982-08-01

    Five commonly isolated Streptococcus pneumoniae serotypes (3, 6, 14, 19, and 23) and five rarely found serotypes (31, 35, 36, 42, and 43) were compared to elucidate whether increased resistance against granulocyte phagocytosis and killing could explain the restricted number of pneumococcal serotypes found in infections. There was a great variation in sensitivity among the serotypes to granulocyte killing. No consistent pattern was found when pathogenicity and resistance to granulocytes were compared. The results do not indicate that the increased tendency of pathogenic pneumococcal serotypes to cause infections is due to increased resistance to granulocytes. Monocyte killing of some pneumococal serotypes (6, 19, 23, 35, and 43) was also studied and found very similar to granulocyte killing. Defective granulocyte kiling of encapsulated pneumococci was due to impaired phagocytosis. Moreover, no correlation was found between the sensitivity of the serotypes to isolated intragranulocytic microbial systems (i.e., MPO, hydrogen peroxide, or CCP) and the sensitivity to killing by intact granulocytes or pathogenicity. The significance of both the classical and alternative complement pathways for pneumococcal opsonization was indicated by reduced, the residual phagocytosis in C2-deficient and MgEGTA-chelated serum.

  19. Treponema denticola Outer Membrane Enhances the Phagocytosis of Collagen-Coated Beads by Gingival Fibroblasts

    PubMed Central

    Battikhi, Tulin; Lee, Wilson; McCulloch, Christopher A. G.; Ellen, Richard P.

    1999-01-01

    Human gingival fibroblasts (HGFs) degrade collagen fibrils in physiological processes by phagocytosis. Since Treponema denticola outer membrane (OM) extract perturbs actin filaments, important structures in phagocytosis, we determined whether the OM affects collagen phagocytosis in vitro by HGFs. Phagocytosis was measured by flow cytometric assessment of internalized collagen-coated fluorescent latex beads. Confluent HGFs pretreated with T. denticola ATCC 35405 OM exhibited an increase in the percentage of collagen phagocytic cells (phagocytosis index [PI]) and in the number of beads per phagocytosing cell (phagocytic capacity [PC]) compared with untreated controls. The enhancement was swift (within 15 min) and was still evident after 1 day. PI and PC of HGFs for bovine serum albumin (BSA)-coated beads were also increased, indicating a global increase in phagocytic processes. These results contrasted those for control OM from Veillonella atypica ATCC 17744, which decreased phagocytosis. The T. denticola OM-induced increase in bead uptake was eliminated by heating the OM and by depolymerization of actin filaments by cytochalasin D treatment of HGFs. Fluid-phase accumulation of lucifer yellow was enhanced in a saturable, concentration-dependent, transient manner by the T. denticola OM. Our findings were not due to HGF detachment or cytotoxicity in response to the T. denticola OM treatment since the HGFs exhibited minimal detachment from the substratum; they did not take up propidium iodide; and there was no change in their size, granularity, or content of sub-G1 DNA. We conclude that a heat-sensitive component(s) in T. denticola OM extract stimulates collagen phagocytosis and other endocytic processes such as nonspecific phagocytosis and pinocytosis by HGFs. PMID:10024564

  20. Phagocytosis of antibody‐opsonized tumor cells leads to the formation of a discrete vacuolar compartment in macrophages

    PubMed Central

    Velmurugan, Ramraj; Ramakrishnan, Sreevidhya; Kim, Mingin

    2018-01-01

    Despite the rapidly expanding use of antibody‐based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody‐opsonized tumor cells is limited. Here we report the formation of a phagosome‐associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2‐positive cancer cells in the presence of the HER2‐specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome‐associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody‐opsonized cancer cells by macrophages. PMID:29437282

  1. Immunocompetence of bivalve hemocytes as evaluated by a miniaturized phagocytosis assay.

    PubMed

    Blaise, C; Trottier, S; Gagné, F; Lallement, C; Hansen, P-D

    2002-01-01

    Immune function in bivalves can be adversely affected by long-term exposure to environmental contaminants. Investigating alterations in immunity can therefore yield relevant information about the relationship between exposure to environmental contaminants and susceptibility to infectious diseases. We have developed a rapid, cost-effective, and miniaturized immunocompetence assay to evaluate the phagocytic activity, viability, and concentration of hemocytes in freshwater and marine bivalves. Preliminary experiments were performed to optimize various aspects of the assay including 1) the time required for adherence of hemocytes to polystyrene microplate wells, 2) the time required for internalization of fluorescent bacteria, 3) the ratio of hemocytes to fluorescent bacteria in relation to phagocytosis, 4) hemolymph plasma requirements, and 5) the elimination of fluorescence from (noninternalized) bacteria adhering to the external surface of hemocytes. The results of these experiments showed the optimal adherence time for hemocytes in microplate wells to be 1 h, that phagocytosis required at least 2 h of contact with fluorescently labeled E. coli cells, that the number of fluorescent E. coli cells had a positive effect on phagocytic activity, that at least 2.5 million cells/mL were required to measure a significant intake, and that a linear increase in uptake of bacteria (R = 0.91; p < 0.01) could be obtained with concentrations of up to 1.3 x 10(6) hemocytes/mL. Afterward, the assay was used in two field studies to identify sites having the potential to affect the immunocompetence of bivalves. The first study was conducted on Mya arenaria clams collected at selected contaminated sites in the Saguenay River (Quebec, Canada), and the second examined Elliptio complanata freshwater bivalves that had been exposed to a municipal effluent plume in the St. Lawrence River (Quebec, Canada). In the Saguenay River field study a significant increase in phagocytosis was observed

  2. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    PubMed Central

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  3. M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1.

    PubMed

    Rajaram, Murugesan V S; Arnett, Eusondia; Azad, Abul K; Guirado, Evelyn; Ni, Bin; Gerberick, Abigail D; He, Li-Zhen; Keler, Tibor; Thomas, Lawrence J; Lafuse, William P; Schlesinger, Larry S

    2017-10-03

    Despite its prominent role as a C-type lectin (CTL) pattern recognition receptor, mannose receptor (MR, CD206)-specific signaling molecules and pathways are unknown. The MR is highly expressed on human macrophages, regulating endocytosis, phagocytosis, and immune responses and mediating Mycobacterium tuberculosis (M.tb) phagocytosis by human macrophages, thereby limiting phagosome-lysosome (P-L) fusion. We identified human MR-associated proteins using phosphorylated and non-phosphorylated MR cytoplasmic tail peptides. We found that MR binds FcRγ-chain, which is required for MR plasma membrane localization and M.tb cell association. Additionally, we discovered that MR-mediated M.tb association triggers immediate MR tyrosine residue phosphorylation and Grb2 recruitment, activating the Rac/Pak/Cdc-42 signaling cascade important for M.tb uptake. MR activation subsequently recruits SHP-1 to the M.tb-containing phagosome, where its activity limits PI(3)P generation at the phagosome and M.tb P-L fusion and promotes M.tb growth. In sum, we identify human MR signaling pathways that temporally regulate phagocytosis and P-L fusion during M.tb infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Src is required for migration, phagocytosis, and interferon beta production in Toll-like receptor-engaged macrophages.

    PubMed

    Maa, Ming-Chei; Leu, Tzeng-Horng

    2016-06-01

    As an evolutionarily conserved mechanism, innate immunity controls self-nonself discrimination to protect a host from invasive pathogens. Macrophages are major participants of the innate immune system. Through the activation of diverse Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of functions including locomotion, phagocytosis, and secretion of cytokines that requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are myeloid-specific Src family kinases. Despite their constitutively high expression in macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible in response to TLR engagement, implicating its role in macrophage activation. Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis, and interferon-beta (IFN-β) secretion in macrophages. And these physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-κB target, which can be induced by various TLR ligands, (2) Src can mediate NF-κB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.

  5. LIGR, a protease-activated receptor-2-derived peptide, enhances skin pigmentation without inducing inflammatory processes.

    PubMed

    Lin, Connie B; Chen, Nannan; Scarpa, Richard; Guan, Fei; Babiarz-Magee, Laura; Liebel, Frank; Li, Wen-Hwa; Kizoulis, Menas; Shapiro, Stanley; Seiberg, Miri

    2008-04-01

    The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.

  6. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity.

    PubMed

    Privalova, L I; Katsnelson, B A; Osipenko, A B; Yushkov, B N; Babushkina, L G

    1980-04-01

    The adaptation of the alveolar phagocytosis response to the quantitative and qualitative features of dust deposited during inhalation consists not only in enhanced recruitment of alveolar macrophages (AM), but also in adding a more or less pronounced neutrophil leukocyte (NL) recruitment as an auxiliary participant of particle clearance. The NL contribution to clearance is especially typical for response to cytotoxic particles (quartz, in particular). An important feature of the adaptation considered is the limitation of the number of AM and NL recruited when an efficient clearance can be achieved by a lesser number of cells due to increased AM reistance to the damaging actin of phagocytized particles. The main mechanism providing the adequacy of the alveolar phagocytosis response is its self-regulation thrugh the products of macrophage breakdown (PMB). In a series of experiments with intraperitoneal and intratracheal injections of syngenetic PMB into rats and mice, it was shown that these products stimulate respiration and migration of phagocytic cells, their dose-dependent attraction to the site of PMB formation with the predominant NL contribution, increasing with the increase of amount of PMB, the AM and NL precursor cells recruitment from reserve pools, and the replenishment of these reserves in the process of hemopoiesis. At least some of the above effects are connected with the action of the lipid components of PMB. The action of specialized regulative systems of the organism can modify the response to PMB, judging by the results obtained by hydrocortisone injection. Autocontrol of alveolar phagocytosis requires great care in attempts at artificial stimulation of this process, as an excessive cell recruitment may promote the retention of particles in lungs.

  7. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity.

    PubMed Central

    Privalova, L I; Katsnelson, B A; Osipenko, A B; Yushkov, B N; Babushkina, L G

    1980-01-01

    The adaptation of the alveolar phagocytosis response to the quantitative and qualitative features of dust deposited during inhalation consists not only in enhanced recruitment of alveolar macrophages (AM), but also in adding a more or less pronounced neutrophil leukocyte (NL) recruitment as an auxiliary participant of particle clearance. The NL contribution to clearance is especially typical for response to cytotoxic particles (quartz, in particular). An important feature of the adaptation considered is the limitation of the number of AM and NL recruited when an efficient clearance can be achieved by a lesser number of cells due to increased AM reistance to the damaging actin of phagocytized particles. The main mechanism providing the adequacy of the alveolar phagocytosis response is its self-regulation thrugh the products of macrophage breakdown (PMB). In a series of experiments with intraperitoneal and intratracheal injections of syngenetic PMB into rats and mice, it was shown that these products stimulate respiration and migration of phagocytic cells, their dose-dependent attraction to the site of PMB formation with the predominant NL contribution, increasing with the increase of amount of PMB, the AM and NL precursor cells recruitment from reserve pools, and the replenishment of these reserves in the process of hemopoiesis. At least some of the above effects are connected with the action of the lipid components of PMB. The action of specialized regulative systems of the organism can modify the response to PMB, judging by the results obtained by hydrocortisone injection. Autocontrol of alveolar phagocytosis requires great care in attempts at artificial stimulation of this process, as an excessive cell recruitment may promote the retention of particles in lungs. PMID:6997028

  8. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing.

    PubMed

    Anding, Kirsten; Gross, Peter; Rost, Jan M; Allgaier, Dirk; Jacobs, Enno

    2003-10-01

    Neutrophil functions in haemodialysis (HD) patients are altered by uraemia and by HD procedure. We investigated details of the neutrophil dysfunction as its nature and origin is not well understood. This is reflected by conflicting results about neutrophil phagocytosis activity and by scarce data on the neutrophil killing capability in HD patients. Using a flow-cytometric test system we have measured simultaneously phagocytosis and the production of reactive oxygen species (ROS) of neutrophils and in parallel antimicrobial killing of yeast by neutrophils. 117 whole-blood samples of healthy controls and 50 pre- and 50 post-dialysis samples of HD patients, half of them with diabetes mellitus (DM), have been evaluated. We have constructed a model to account for the dependence on the stimulus-to-cell ratio and obtain means for phagocytosis and killing at different incubation times. (i) HD patients have significantly lower neutrophil killing (20%) than healthy controls. (ii) Dialysis improves the killing capability by 10-15%, after dialysis the killing activity remains significantly (10%) below that of the controls. (iii) The percentage of neutrophils, which exhibit phagocytosis and produce ROS, does not differ significantly between HD patients and healthy controls. (iv) Age has no significant influence on phagocytosis and killing. The neutrophil killing capability is reduced in HD patients while the amount of neutrophils that phagocyte and produce ROS remains unchanged. Functional impairment of uraemic neutrophils is therefore mainly a result of their reduced capability to kill microorganisms intracellularly.

  9. Identification of Human Cathelicidin Peptide LL-37 as a Ligand for Macrophage Integrin αMβ2 (Mac-1, CD11b/CD18) that Promotes Phagocytosis by Opsonizing Bacteria

    PubMed Central

    Lishko, Valeryi K.; Moreno, Benjamin; Podolnikova, Nataly P.; Ugarova, Tatiana P.

    2016-01-01

    LL-37, a cationic antimicrobial peptide, has numerous immune-modulating effects. However, the identity of a receptor(s) mediating the responses in immune cells remains uncertain. We have recently demonstrated that LL-37 interacts with the αMI-domain of integrin αMβ2 (Mac-1), a major receptor on the surface of myeloid cells, and induces a migratory response in Mac-1-expressing monocyte/macrophages as well as activation of Mac-1 on neutrophils. Here, we show that LL-37 and its C-terminal derivative supported strong adhesion of various Mac-1-expressing cells, including HEK293 cells stably transfected with Mac-1, human U937 monocytic cells and murine IC-21 macrophages. The cell adhesion to LL-37 was partially inhibited by specific Mac-1 antagonists, including mAb against the αM integrin subunit and neutrophil inhibitory factor, and completely blocked when anti-Mac-1 antibodies were combined with heparin, suggesting that cell surface heparan sulfate proteoglycans act cooperatively with integrin Mac-1. Coating both Gram-negative and Gram-positive bacteria with LL-37 significantly potentiated their phagocytosis by macrophages, and this process was blocked by a combination of anti-Mac-1 mAb and heparin. Furthermore, phagocytosis by wild-type murine peritoneal macrophages of LL-37-coated latex beads, a model of foreign surfaces, was several fold higher than that of untreated beads. By contrast, LL-37 failed to augment phagocytosis of beads by Mac-1-deficient macrophages. These results identify LL-37 as a novel ligand for integrin Mac-1 and demonstrate that the interaction between Mac-1 on macrophages and bacteria-bound LL-37 promotes phagocytosis. PMID:27990411

  10. Modulation of hepatic reticuloendothelial system phagocytosis by pancreatic hormones.

    PubMed

    Cornell, R P; McClellan, C C

    1982-12-01

    Experiments were conducted to determine the influence of the pancreatic hormones insulin, glucagon, and somatostatin on reticuloendothelial system (RES) phagocytosis both in vivo and in the isolated perfused livers of rats. Chronic pancreatic hormonal treatment consisted of twice daily injections SC of NPH insulin with doses ranging from 0.75 U on day 1 to 9.0 U on day 13 and unchanged doses of glucagon (200 micrograms) and somatostatin (50 micrograms). Chronic treatment with insulin significantly depressed by 48% intravascular phagocytosis of colloidal carbon administered IV at a dose of 8 mg/100 g, while glucagon and somatostatin stimulated macrophage endocytic function by 32% and 26%, respectively, compared to the control value. Acute treatment with the three pancreatic hormones at 30 min prior to carbon administration similarly produced insulin depression as well as glucagon and somatostatin stimulation of RES phagocytosis. Addition of the three hormones at near physiologic concentrations (20 ng/ml for insulin, 10 ng/ml for glucagon, and 5 ng/ml for somatostatin) to the recirculating perfusate of isolated perfused rat livers simultaneous with 24 mg of colloidal carbon likewise resulted in phagocytic reduction after insulin and enhancement after glucagon and somatostatin. Experiments involving insulin in vitro with isolated perfused livers as well as glucose replacement therapy concomitant with insulin in vivo demonstrated that hypoglycemia is not necessary for phagocytic depression by insulin while severe hypoglycemia in the perfusion medium is sufficient to depress carbon uptake by isolated perfused livers independent of insulin. Both pancreatic hormones and the level of glycemia seem to be important in modulating hepatic reticuloendothelial system phagocytosis.

  11. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  12. The Physiology of Phagocytosis in the Context of Mitochondrial Origin

    PubMed Central

    Tielens, Aloysius G. M.; Mentel, Marek

    2017-01-01

    SUMMARY How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell. PMID:28615286

  13. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages.

    PubMed

    Ween, Miranda P; Whittall, Jonathan J; Hamon, Rhys; Reynolds, Paul N; Hodge, Sandra J

    2017-08-01

    E-cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E-cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E-cigarette of components; E-liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP-1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E-liquid flavoring (11.65-15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E-liquid, nicotine, and E-liquid+ nicotine reduced phagocytic recognition molecules; SR-A1 and TLR-2. IL-8 secretion increased with flavor and nicotine, while TNF α , IL-1 β , IL-6, MIP-1 α , MIP-1 β , and MCP-1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP-1 α and MIP-1 β We conclude that E-cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E-cigarettes should be treated with caution by users, especially those who are nonsmokers. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Rapamycin-based inducible translocation systems for studying phagocytosis.

    PubMed

    Bohdanowicz, Michal; Fairn, Gregory D

    2011-01-01

    Phagocytosis is an immune receptor-mediated process whereby cells engulf large particles. The process is dynamic and requires several localized factors acting in concert with and sequentially after the engagement of immune receptors to envelope the particle. Once the particle is internalized, the nascent -phagosome undergoes a series of events leading to its maturation to the microbicidal phagolysosome. Investigating these dynamic and temporally controlled series of events in live cells requires noninvasive methods. The ability to rapidly recruit the proteins of interest to the sites of phagocytosis or to nascent phagosomes would help dissect the regulatory mechanisms involved during phagocytosis. Here, we describe a general approach to express in RAW264.7 murine macrophages, a genetically encoded rapamycin--induced heterodimerization system. In the presence of rapamycin, tight association between FK506-binding protein (FKBP) and FKBP rapamycin-binding protein (FRB) is observed. Based on this principle, a synthetic system consisting of a targeting domain attached to FKBP can recruit a protein of interest fused to FRB upon the addition of rapamycin. Previously, this technique has been used to target lipid-modifying enzymes and small GTPases to the phagosome or plasma membrane. The recruitment of the FRB module can be monitored by fluorescent microscopy if a fluorescent protein is fused to the FRB sequence. While the focus of this chapter is on phagocytic events, this method can be employed to study any organelle of interest when the appropriate targeting sequence is used.

  15. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2)*

    PubMed Central

    Atagi, Yuka; Liu, Chia-Chen; Painter, Meghan M.; Chen, Xiao-Fen; Verbeeck, Christophe; Zheng, Honghua; Li, Xia; Rademakers, Rosa; Kang, Silvia S.; Xu, Huaxi; Younkin, Steven; Das, Pritam; Fryer, John D.; Bu, Guojun

    2015-01-01

    Several heterozygous missense mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) have recently been linked to risk for a number of neurological disorders including Alzheimer disease (AD), Parkinson disease, and frontotemporal dementia. These discoveries have re-ignited interest in the role of neuroinflammation in the pathogenesis of neurodegenerative diseases. TREM2 is highly expressed in microglia, the resident immune cells of the central nervous system. Along with its adaptor protein, DAP12, TREM2 regulates inflammatory cytokine release and phagocytosis of apoptotic neurons. Here, we report apolipoprotein E (apoE) as a novel ligand for TREM2. Using a biochemical assay, we demonstrated high-affinity binding of apoE to human TREM2. The functional significance of this binding was highlighted by increased phagocytosis of apoE-bound apoptotic N2a cells by primary microglia in a manner that depends on TREM2 expression. Moreover, when the AD-associated TREM2-R47H mutant was used in biochemical assays, apoE binding was vastly reduced. Our data demonstrate that apoE-TREM2 interaction in microglia plays critical roles in modulating phagocytosis of apoE-bound apoptotic neurons and establish a critical link between two proteins whose genes are strongly linked to the risk for AD. PMID:26374899

  16. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes

    PubMed Central

    Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity. PMID:28877227

  17. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.

    PubMed

    Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  18. Phagocytosis as a biomarker for stress responses

    NASA Astrophysics Data System (ADS)

    Huber, K.; Krotz-Fahning, M.; Hock, B.

    2005-08-01

    An in vitro test has been developed for the detection of immunotoxic events. It will be used within the project "TRIPLE LUX" on the International Space Station to investigate the effects of single and combined space flight conditions on mammalian phagocytes. The intensity of the respiratory burst during phagocytosis can be followed by the luminol-based chemiluminescence response after stimulation with zymosan. We adapted this test system for polymorphonuclear leukocytes, purified from sheep blood and stored by cryoconservation. In this report we show the immunostimulating effect of hydrocortisone and the immunosuppressive impact of cadmium as an example for alterations that can be detected by this test.

  19. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    PubMed Central

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  20. Spreading and contraction in phagocytosis: The role of actin organization and curvature

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer E.

    Phagocytosis is the process used by immune cells to engulf and remove foreign objects from the body. The engulfment is realized by the formation of an actin-driven `phagocytic cup' of the cell membrane, which quickly crawls up and then surrounds the object via constriction. In this study, we resolve the paradox of how actin-driven protrusion of the plasma membrane can co-exist with a contractile actin belt proposed to mechanically-drive the closure of the phagocytic cup. To do this we quantitatively assessed macrophage phagocytic behavior in a planar geometry, a process known as frustrated phagocytosis. Our results reveal that phagocytosis occurs in a binary manner, such that once it is initiated, frustrated phagocytosis proceeds at a prescribed rate, resulting in peak contact areas that correspond to a roughly 225% increase in apparent cell surface area. Upon reaching their maximum area, the majority of macrophages enter a period of late-stage contraction. During the contraction phase, cells exert significant stress on the underlying substrate. Contraction also corresponds with dramatic reorganization of the F-actin cytoskeleton, in particular the formation of a bundled contractile belt around the cell perimeter. In contrast to other studies of phagocytosis, our work definitively illustrates that whatever signals trigger late-stage phagocytic contraction must be independent of particle size and curvature. Mounting evidence suggests that membrane tension is involved in late-stage signaling. The idea that tension is linked to late-stage contraction is reinforced by our finding that the peak-contact area roughly corresponds to the area threshold that results in increased cortical tension, as measured by Lam et al., and that reducing tension through hypertonic buffer shock enables the cells to spread further before the onset of contraction. Supported by NSF Grants #PHYS-0848797 and SRN-POLS 1205878.

  1. Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface

    PubMed Central

    Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.

    2013-01-01

    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255

  2. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis.

    PubMed

    Laopajon, Witida; Takheaw, Nuchjira; Kasinrerk, Watchara; Pata, Supansa

    2016-01-01

    The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.

  3. Characterization of a cDNA of peroxiredoxin II responding to hydrogen peroxide and phagocytosis in Amoeba proteus.

    PubMed

    Park, Miey; Shin, Hae J; Lee, Soo Y; Ahn, Tae I

    2005-01-01

    Phagocytic cells have defense systems against reactive oxygen species generated as the first non-specific defense mechanism against invading pathogens or microorganisms. We cloned a cDNA encoding a 21.69-kDa protein in Amoeba proteus homologous to 2-Cys peroxiredoxin (Prx-Ap). In the disk inhibition assay using H2O2 as an oxidizing agent, Escherichia coli overproducing Prx-Ap showed better viability than did E. coli transformed with pBluescript II SK for control. Monoclonal antibodies (mAb) produced against Prx-Ap reacted with a 22.5-kDa protein and several minor proteins. In Western blot analysis, levels of the 22.5-kDa protein in amoebae treated with 2-mM H2O2 for 1 h increased about 2-fold over those in control cells. Immunofluorescence scattered throughout the cytoplasm also increased after H2O2 treatment. In Northern blot analysis using the cDNA as a probe, the level of transcripts also changed with H2O2 treatment. When amoebae were fed with Tetrahymena, the intensity of immunofluorescence increased from 15 min and persisted until 2 h after phagocytosis. These results suggest that the 22.5-kDa protein of A. proteus is a Prx protein and that it has an antioxidant property responding to phagocytosis.

  4. Effects of ascorbate on leucocytes: Part II. Effects of ascorbic acid and calcium and sodium ascorbate on neutrophil phagocytosis and post-phagocytic metabolic activity.

    PubMed

    Anderson, R

    1979-09-01

    The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.

  5. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  6. Resveratrol increases phagocytosis and lipopolysaccharide-induced interleukin-1β production, but decreases surface expression of Toll-like receptor 2 in THP-1 monocytes.

    PubMed

    Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H

    2018-02-01

    THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.

  7. Integrins and small GTPases as modulators of phagocytosis.

    PubMed

    Sayedyahossein, Samar; Dagnino, Lina

    2013-01-01

    Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Involvement of myosin VI immunoanalog in pinocytosis and phagocytosis in Amoeba proteus.

    PubMed

    Sobczak, Magdalena; Wasik, Anna; Kłopocka, Wanda; Redowicz, Maria Jolanta

    2008-12-01

    Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.).

  9. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.

    PubMed

    Harik, Vasyl Michael

    2017-05-05

    A review of in vivo and in vitro toxicological studies of the potential toxic effects of carbon nanotubes is presented along with the analysis of experimental data and a hypothesis about the nanotube-asbestos similarity. Developments of the structure-activity paradigm have been reviewed along with the size effects and the classification of carbon nanotubes into eleven distinct classes (e.g., the high aspect ratio nanotubes, thick multi-wall nanotubes and short nanotubes). Scaling analysis of similarities between different classes of carbon nanotubes and asbestos fibers in the context of their potential toxicity and the efficiency of phagocytosis has been reviewed. The potential toxic effects of carbon nanotubes have been characterized by their normalized length, their aspect ratio and other parameters related to their inhalability, engulfment by macrophages and the effectiveness of phagocytosis. Geometric scaling parameters and the classification of carbon nanotubes are used to develop an updated parametric map for the extrapolation of the potential toxic effects resulting from the inhalation of long and short carbon nanotubes. An updated parametric map has been applied to the evaluation of the efficiency of phagocytosis involving distinct classes of carbon nanotubes. A critical value of an important nondimensional parameter characterizing the efficiency of phagocytosis for different nanotubes is presented along with its macrophage-based normalization. The present evaluation of the potential toxicological effects of the high aspect ratio carbon nanotubes is found to be in the agreement with other available studies and earlier scaling analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease.

    PubMed

    Kim, Kwang Soo; Marcogliese, Paul C; Yang, Jungwoo; Callaghan, Steve M; Resende, Virginia; Abdel-Messih, Elizabeth; Marras, Connie; Visanji, Naomi P; Huang, Jana; Schlossmacher, Michael G; Trinkle-Mulcahy, Laura; Slack, Ruth S; Lang, Anthony E; Park, David S

    2018-05-14

    Leucine-rich repeat kinase 2 ( LRRK2 ) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2 - G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.

  11. P2X(7) is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP.

    PubMed

    Gu, Ben J; Saunders, Bernadette M; Petrou, Steven; Wiley, James S

    2011-09-01

    Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.

  12. A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis

    ERIC Educational Resources Information Center

    Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari

    2012-01-01

    Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…

  13. Mechanism of phagocytosis in dictyostelium discoideum: phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties

    PubMed Central

    Vogel, G; Thilo, L; Schwarz, H; Steinhart, R

    1980-01-01

    The recognition step in the phagocytotic process of the unicellular amoeba dictyostelium discoideum was examined by analysis of mutants defective in phagocytosis, Reliable and simple assays were developed to measure endocytotic uptake. For pinocytosis, FITC-dextran was found to be a suitable fluid-phase marker; FITC-bacteria, latex beads, and erythrocytes were used as phagocytotic substrates. Ingested material was isolated in one step by centrifuging through highly viscous poly(ethyleneglycol) solutions and was analyzed optically. A selection procedure for isolating mutants defective in phagocytosis was devised using tungsten beads as particulate prey. Nonphagocytosing cells were isolated on the basis of their lower density. Three mutant strains were found exhibiting a clear-cut phenotype directly related to the phagocytotic event. In contrast to the situation in wild-type cells, uptake of E. coli B/r by mutant cells is specifically and competitively inhibited by glucose. Mutant amoeba phagocytose latex beads normally but not protein-coated latex, nonglucosylated bacteria, or erythrocytes. Cohesive properties of mutant cells are altered: they do not form EDTA-sensitive aggregates, and adhesiveness to glass or plastic surfaces is greatly reduced. Based upon these findings, a model for recognition in phagocytosis is proposed: (a) A lectin-type receptor specifically mediates binding of particles containing terminal glucose (E. coli B/r). (b) A second class of "nonspecific" receptors mediate binding of a variety of particles by hydrophobic interaction. Nonspecific binding is affected by mutation in such a way that only strongly hydrophobic (latex) but not more hydrophilic particles (e.g., protein-coated latex, bacteria, erythrocytes) can be phagocytosed by mutant amoebae. PMID:6995464

  14. [The Enhanceing effect of IL-12 on phagocytosis and killing of Mycobacterium tuberculosis by neutrophils in tuberculosis patients].

    PubMed

    Jiang, Li-na; Yao, Chun-yan; Jin, Qi-li; He, Wen-xin; Li, Bai-qing

    2011-11-01

    To explore the effects of IL-12 on phagocytosis and killing of Mycobacterium tuberculosis by neutrophils or polymorphonuclear cells (PMNs) in tuberculosis patients. The fresh peripheral blood samples from TB patients and healthy adults were incubated with M.tb labeled with FITC, and the percentages of phagocytosis of M.tb by PMNs was measured by flow cytometry (FCM). The fresh peripheral blood samples were incubated with DCFH-DA, and with or without M.tb for different times, the percentage of activation and the ROS production of PMNs were measured by FCM. Whole blood samples were pretreated with IL-12, the changes of phagocytosis, activation and ROS production of PMNs were measured by FCM. The percentages of phagocytosis by PMNs, activation and ROS production of PMNs in both TB patients and healthy adults increased dependent on the time of incubation with M.tb. Only the phagocytosis of M.tb by PMNs at 5 min in TB patients of tuberculosis patients (51.82±6.93)% was obviously higher than that in healthy adults (47.20±4.26)%, (P<0.05). Pretreatment of whole blood with IL-12 before incubation with M.tb, the percentages of phagocytosis, activation and ROS production of PMNs in both TB patients and healthy adults increased in dose dependent manner, but no significant difference was found between both groups. The results indicated that the phagocytosis of M.tb and ROS production by PMNs in TB patients were almost the same as that in healthy controls, except for phagocytosis is higher at early stage. Furthermore, IL-12 can enhance the responsiveness to the phagocytosis and ROS production of PMNs.

  15. Rho is Required for the Initiation of Calcium Signaling and Phagocytosis by Fcγ Receptors in Macrophages

    PubMed Central

    Hackam, David J.; Rotstein, Ori D.; Schreiber, Alan; Zhang, Wei-jian; Grinstein, Sergio

    1997-01-01

    Phagocytosis of bacteria by macrophages and neutrophils is an essential component of host defense against infection. The mechanism whereby the interaction of opsonized particles with Fcγ receptors triggers the engulfment of opsonized particles remains incompletely understood, although activation of tyrosine kinases has been recognized as an early step. Recent studies in other systems have demonstrated that tyrosine kinases can in turn signal the activation of small GTPases of the ras superfamily. We therefore investigated the possible role of Rho in Fc receptor–mediated phagocytosis. To this end we microinjected J774 macrophages with C3 exotoxin from Clostridium botulinum, which ADP-ribosylates and inactivates Rho. C3 exotoxin induced the retraction of filopodia, the disappearance of focal complexes, and a global decrease in the F-actin content of J774 cells. In addition, these cells exhibited increased spreading and the formation of vacuolar structures. Importantly, inactivation of Rho resulted in the complete abrogation of phagocytosis. Inhibition of Fcγ receptor–mediated phagocytosis by C3 exotoxin was confirmed in COS cells, which become phagocytic upon transfection of the FcγRIIA receptor. Rho was found to be essential for the accumulation of phosphotyrosine and of F-actin around phagocytic cups and for Fcγ receptor–mediated Ca2+ signaling. The clustering of receptors in response to opsonin, an essential step in Fcγ-induced signaling, was the earliest event shown to be inhibited by C3 exotoxin. The effect of the toxin was specific, since clustering and internalization of transferrin receptors were unaffected by microinjection of C3. These data identify a role for small GTPases in Fcγ receptor–mediated phagocytosis by leukocytes. PMID:9294149

  16. PKC-ε pseudosubstrate and catalytic activity are necessary for membrane delivery during IgG-mediated phagocytosis

    PubMed Central

    Wood, Tiffany R.; Chow, Rachel Y.; Hanes, Cheryl M.; Zhang, Xuexin; Kashiwagi, Kaori; Shirai, Yasuhito; Trebak, Mohamed; Loegering, Daniel J.; Saito, Naoaki; Lennartz, Michelle R.

    2013-01-01

    In RAW 264.7 cells [1], PKC-ε regulates FcγR-mediated phagocytosis. BMDM behave similarly; PKC-ε concentrates at phagosomes and internalization are reduced in PKC-ε−/− cells. Two questions were asked: what is the role of PKC-ε? and what domains are necessary for PKC-ε concentration? Function was studied using BMDM and frustrated phagocytosis. On IgG surfaces, PKC-ε−/− macrophages spread less than WT. Patch-clamping revealed that the spreading defect is a result of the failure of PKC-ε−/− macrophages to add membrane. The defect is specific for FcγR ligation and can be reversed by expression of full-length (but not the isolated RD) PKC-ε in PKC-ε−/− BMDM. Thus, PKC-ε function in phagocytosis requires translocation to phagosomes and the catalytic domain. The expression of chimeric PKC molecules in RAW cells identified the εPS as necessary for PKC-ε targeting. When placed into (nonlocalizing) PKC-δ, εPS was sufficient for concentration, albeit to a lesser degree than intact PKC-ε. In contrast, translocation of δ(εPSC1B) resembled that of WT PKC-ε. Thus, εPS and εC1B cooperate for optimal phagosome targeting. Finally, cells expressing εK437W were significantly less phagocytic than their PKC-ε-expressing counterparts, blocked at the pseudopod-extension phase. In summary, we have shown that εPS and εC1B are necessary and sufficient for targeting PKC-ε to phagosomes, where its catalytic activity is required for membrane delivery and pseudopod extension. PMID:23670290

  17. Suppressive effect of delta 9-tetrahydrocannabinol in vitro on phagocytosis by murine macrophages.

    PubMed

    Friedman, M; Cepero, M L; Klein, T; Friedman, H

    1986-06-01

    Incubation of normal mouse peritoneal cells consisting of over 90% phagocytizing macrophages with delta 9-tetrahydrocannabinol (THC) resulted in a inhibition of phagocytic function. The THC in a dose-related manner suppressed the percentage of macrophages per culture which ingested yeast and the average number of yeast particles ingested by the phagocytizing macrophages. The vehicle used to suspend the THC in vitro, i.e., DMSO, had no detectable effect on macrophage function. Suppression of phagocytosis with no effects on viability or cell number occurred with doses of 10 micrograms or less THC per milliliter culture medium. Measurable suppression also occurred after 24- to 48-hr treatment of the macrophages with the THC. This compound had little if any detectable effect on phagocytosis when added directly to the cultures shortly before testing for phagocytosis. Further studies concerning the effects of THC on macrophage function appear warranted.

  18. CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

    PubMed Central

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685

  19. [Effect of glucidic and fat total parenteral nutrition on macrophage phagocytosis in rats].

    PubMed

    Cukier, C; Waitzberg, D L; Soares, S R; Logullo, A F; Bacchi, C E; Travassos, V H; Saldiva, P H; Torrinhas, R S; de Oliveira, T S

    1997-01-01

    Fat lipid emulsions in Total Parenteral Nutrition (TPN) have been associated to Mononuclear Phagocytary System (MPS) changes. Intravenous lipid emulsions may alter macrophage membrane composition but there are controversies about their effects on MPS function. The aim of the present investigation was to assess the influence of fat free TPN and fat emulsions TPN on the macrophage phagocytosis. Wistar rats (70) with external jugular vein canulation were divided in seven groups. The rats received, intravenously (i.v.) different isocaloric (1.16 kcal/mL), isonitrogenous (1.5 g/mL), and isolipidic (30 to 32% of non-proteic caloric value) TPN regimens or oral diet: 1) Group OS: oral diet with i.v. infusion of saline; 2) Group GLU: fat-free TPN; 3) Group LCT: TPN with 10% long chain triglecide emulsion (TCL); 6) Group MCT: TPN with 10% lipid emulsion with medium chain triglycerides (TCM-50%) and TCL (50%). After 96 hours of TPN or saline infusion, colloidal carbon was i.v. injected at 1.0 mL/kg body weight. The rats were sacrificed after three hours. Liver, spleen and lung were weighted and studied by immunohistochemistry by the avidine-biotine method. Under light microscopy the total macrophage number (MT) and colloidal carbon phagocytic macrophages number (MF) were established. Phagocytic index was MT/MF x 100. The results were statistically analysed (p < 0.05). The group under oral diet (OS) was the only one to gain weight. There were no differences in organ weight in any group. There were changes in MT, MF and phagocytic index in all TPN groups. Fat free TPN inhibited liver, spleen and lung macrophage phagocytosis. Fat TPN with TCL inhibited liver and lung macrophage phagocytosis. At conclusion fat free TPN or with long chain tryglicerides may inhibit MPS phagocytosis. Further studies are necessary to estabilish the effect of TPN on other MPS function.

  20. Development of novel fluorescent particles applicable for phagocytosis assays with human macrophages.

    PubMed

    Sóñora, Cecilia; Arbildi, Paula; Miraballes-Martínez, Iris; Hernández, Ana

    2018-01-01

    Phagocytosis is a fundamental process for removal of pathogens and for clearance of apoptotic cells. The objective of this work was the preparation of fluorescent microspheres by a simple method and the evaluation of its applicability in phagocytosis assays by using different human derived cells, differentiated THP-1 cell line and blood monocytes, with flow cytometry measurements for functionality assays. Our results show that microparticles are efficiently internalised in a non-opsonised form and in dose-dependent manner by both cellular types. Concerning mechanism we determined that tTG-β3 integrin signaling could be involved in the uptake of these particles.

  1. Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

    PubMed Central

    Henan, Xu; Toyota, Naoka; Yanjiang, Xing; Fujita, Yuuki; Zhijun, Huang; Touma, Maki; Qiong, Wu; Sugimoto, Kenkichi

    2014-01-01

    Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of CD11b+ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-α), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells. [BMB Reports 2014; 47(5): 286-291] PMID:24286318

  2. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia

    2014-04-25

    Particle geometry of micro- and nanoparticles has been identified as an important design parameter to influence the interaction with cells such as macrophages. A head to head comparison of elongated, non-spherical and spherical micro- and nanoparticles with and without PEGylation was carried out to benchmark two phagocytosis inhibiting techniques. J774.A1 macrophages were incubated with fluorescently labeled PLGA micro- and nanoparticles and analyzed by confocal laser scanning microscope (CLSM) and flow cytometry (FACS). Particle uptake into macrophages was significantly reduced upon PEGylation or elongated particle geometry. A combination of both, an elongated shape and PEGylation, had the strongest phagocytosis inhibiting effect for nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Phagocytosis in pup and adult harbour, grey and harp seals.

    PubMed

    Frouin, Héloïse; Lebeuf, Michel; Hammill, Mike; Fournier, Michel

    2010-04-15

    Knowledge on pinniped immunology is still in its infancy. For instance, age-related and developmental aspects of the immune system in pinnipeds need to be better described. The present study examined the phagocytic activity and efficiency of harbour, grey and harp seal leukocytes. In the first part of the study, peripheral blood was collected from captive female harbour seals of various ages. Data showed an age-related decrease in phagocytosis in female harbour seals from sub-adult to adulthood. In the second part of the study, changes in phagocytosis were quantified during lactation in wild newborn harbour, grey and harp seals and in their mothers (harp and grey seals). In newborns of the same age, leukocytes of harbour and harp seals phagocytosed less than those of grey seal pups. The phagocytic activity and efficiency increased significantly from early to mid-lactation in newborn harbour seals, and from early to late lactation in newborn grey seals, which could suggest that the transfer of phagocytosis-promoting factor(s) in colostrum is an important feature of temporary protection for pups. In contrast, no changes in phagocytic activity and efficiency were observed in lactating females of the two seal species, harp and grey, examined. At late lactation, phagocytic activity in both grey and harp seal pups and phagocytic efficiency in grey seal pups were significantly higher than in their mothers. These results could reflect either the capacity of phagocytes of the newborn harp and grey seals to respond to pathogens. Results from this study suggest that the phagocytosis of the seal species examined is not fully developed at birth as it generally increases in pups during lactation. Thereafter, the phagocytic activity of seals appears to decrease throughout adulthood. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of

  5. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression.

    PubMed

    Amiel, Eyal; Lovewell, Rustin R; O'Toole, George A; Hogan, Deborah A; Berwin, Brent

    2010-07-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion.

  6. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration.

    PubMed

    Bhattacharjee, Surjyadipta; Zhao, Yuhai; Dua, Prerna; Rogaev, Evgeny I; Lukiw, Walter J

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3'UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-kB - [corrected] inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-kB - [corrected] sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular

  7. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration

    PubMed Central

    Dua, Prerna; Rogaev, Evgeny I.; Lukiw, Walter J.

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3’UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-B-inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-B-sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular medium; and (v) that anti

  8. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis

    PubMed Central

    Erlich, Ziv; Hourizadeh, Aria; Ofir-Birin, Yifat; Croker, Ben A.; Regev-Rudzki, Neta; Edry-Botzer, Liat

    2017-01-01

    Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the “find me” and “eat me” signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such “eat me” signal observed during apoptosis is the exposure of phosphatidylserine (PS) on the outer plasma membrane. Here, we demonstrate that necroptotic cells also expose PS after phosphorylated mixed lineage kinase-like (pMLKL) translocation to the membrane. Necroptotic cells that expose PS release extracellular vesicles containing proteins and pMLKL to their surroundings. Furthermore, inhibition of pMLKL after PS exposure can reverse the process of necroptosis and restore cell viability. Finally, externalization of PS by necroptotic cells drives recognition and phagocytosis, and this may limit the inflammatory response to this nonapoptotic form of cell death. The exposure of PS to the outer membrane and to extracellular vesicles is therefore a feature of necroptotic cell death and may serve to provide an immunologically-silent window by generating specific “find me” and “eat me” signals. PMID:28650960

  9. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    PubMed

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.

  10. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells.

    PubMed

    Rosenzwajg, Michelle; Jourquin, Frédéric; Tailleux, Ludovic; Gluckman, Jean Claude

    2002-12-01

    That monocytes can differentiate into macrophages or dendritic cells (DCs) makes them an essential link between innate and adaptive immunity. However, little is known about how interactions with pathogens or T cells influence monocyte engagement toward DCs. We approached this point in cultures where granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-4 induced monocytes to differentiate into immature DCs. Activating monocytes with soluble CD40 ligand (CD40L) led to accelerated differentiation toward mature CD83(+) DCs with up-regulated human leukocyte antigen-DR, costimulatory molecules and CD116 (GM-CSF receptor), and down-regulation of molecules involved in antigen capture. Monocytes primed by phagocytosis of antibody-opsonized, killed Escherichia coli differentiated into DCs with an immature phenotype, whereas Zymosan priming yielded active DCs with an intermediate phenotype. Accordingly, DCs obtained from cultures with CD40L or after Zymosan priming had a decreased capacity to endocytose dextran, but only DCs cultured with CD40L had increased capacity to stimulate allogeneic T cells. DCs obtained after E. coli or Zymosan priming of monocytes produced high levels of proinflammatory tumor necrosis factor alpha and IL-6 as well as of regulatory IL-10, but they produced IL-12p70 only after secondary CD40 ligation. Thus, CD40 ligation on monocytes accelerates the maturation of DCs in the presence of GM-CSF/IL-4, whereas phagocytosis of different microorganisms does not alter and even facilitates their potential to differentiate into immature or active DCs, the maturation of which can be completed upon CD40 ligation. In vivo, such differences may correspond to DCs with different trafficking and T helper cell-stimulating capacities that could differently affect induction of adaptive immune responses to infections.

  11. A bloody mess: dendritic cells use hemophagocytosis to regulate viral inflammation.

    PubMed

    Miller, Elizabeth; Bhardwaj, Nina

    2013-09-19

    Previous studies have highlighted the immune-dampening effects of apoptotic cell uptake by phagocytes. Ohyagi et al. (2013) expose a unique mechanism of immune regulation during viral infection, which is mediated through phagocytosis of apoptotic red cells by dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression▿ †

    PubMed Central

    Amiel, Eyal; Lovewell, Rustin R.; O'Toole, George A.; Hogan, Deborah A.; Berwin, Brent

    2010-01-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion. PMID:20457788

  13. Data supporting attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-06-01

    The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 µm in size as well as geometric micro-pillared topography with micro-pillar sizes 5 µm of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the Biomaterials journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars. Data related to the experiments in [1] with siRNA-mediated knockdown are presented here as well as micro-particle control experiments, tubulin analysis on the micro-pillared topography and initial cell interaction with the micro-pillars.

  14. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  15. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape

    PubMed Central

    2010-01-01

    Background Phagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood. Results Here, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes. Conclusions This suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible. PMID:21059234

  16. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages

    PubMed Central

    Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.

    2017-01-01

    Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615

  17. In vitro assessment of the effects of temperature on phagocytosis, reactive oxygen species production and apoptosis in bovine polymorphonuclear cells.

    PubMed

    Lecchi, Cristina; Rota, Nicola; Vitali, Andrea; Ceciliani, Fabrizio; Lacetera, Nicola

    2016-12-01

    Heat stress exerts a direct negative effect on farm animal health, triggering physiological responses. Environmental high temperature induces immunosuppression in dairy cows, increasing the risk of mastitis and milk somatic cell counts. The influence of heat stress on leukocytes activities has not been fully elucidated. The present in vitro study was aimed at assessing whether the exposure to temperature simulating conditions of severe whole body hyperthermia affects defensive functions of bovine blood polymorphonuclear cells. Blood was collected from seven clinically healthy, multiparous, late lactating Holstein cows. After isolation, PMN were incubated at either 39 or 41°C. Phagocytosis, respiratory burst and apoptosis were then investigated. The selected temperatures of 39°C or 41°C mimicked conditions of normothermia or severe heat stress, respectively. Phagocytosis assay was carried out by measuring the fluorescence of phagocyted fluorescein-labelled E. coli bioparticles. The modulation of oxidative burst activity was studied by the cytochrome C reduction method. Apoptosis was determined by measuring the activities of two enzymes that play an effector role in the process, namely Caspase-3 and Caspase-7. Statistical analyses were performed using SPSS 22.0. A Student t-test for paired samples and a Generalised Estimating Equation were used based on data distribution. The phagocytosis rate was reduced (-37%, P<0.01) when PMN were incubated for 2h at 41°C, when compared to phagocytosis rate measured at 39°C. The oxidative burst, as determined by extracellular production of reactive oxygen species (ROS), was also reduced by the exposure of cells to 41°C compared to 39°C. Such reduction ranged between -2 and -21% (P<0.05). Apoptosis rate was not affected by different temperatures. The results reported in this study suggest that phagocytosis and ROS production in PMN exposed to severe high temperature are impaired, partially explaining the higher occurrence of

  18. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. LC3-associated phagocytosis initiated by integrin ITGAM-ITGB2/Mac-1 enhances immunity to Listeria monocytogenes.

    PubMed

    Herb, Marc; Gluschko, Alexander; Schramm, Michael

    2018-06-20

    The macroautophagic/autophagic machinery cannot only target cell-endogenous components but also intracellular pathogenic bacteria such as Listeria monocytogenes. Listeria are targeted both by canonical autophagy and by a noncanonical form of autophagy referred to as LC3-associated phagocytosis (LAP). The molecular mechanisms involved and whether these processes contribute to anti-listerial immunity or rather provide Listeria with a replicative niche for persistent infection, however, remained unknown. Recently, using an in vivo mouse infection model, we have been able to demonstrate that Listeria in tissue macrophages are targeted exclusively by LAP. Furthermore, our data show that LAP is required for killing of Listeria by macrophages and thereby contributes to anti-listerial immunity of mice, whereas canonical autophagy is completely dispensable. Moreover, we have elucidated the molecular mechanisms that trigger LAP of Listeria and identified the integrin ITGAM-ITGB2/Mac-1/CR3/integrin α M ß 2 as the receptor that initiates LAP in response to Listeria infection.

  20. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    PubMed Central

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  1. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate.

    PubMed

    Yang, Ping; Huang, Shengfeng; Yan, Xinyu; Huang, Guangrui; Dong, Xiangru; Zheng, Tingting; Yuan, Dongjuan; Wang, Ruihua; Li, Rui; Tan, Ying; Xu, Anlong

    2014-05-01

    The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line.

    PubMed

    Bansal, Geetha P; Weinstein, Corey S; Kumar, Nirbhay

    2016-05-01

    During natural infection malaria parasites are injected into the bloodstream of a human host by the bite of an infected female Anopheles mosquito. Both asexual and mature sexual stages of Plasmodium circulate in the blood. Asexual forms are responsible for clinical malaria while sexual stages are responsible for continued transmission via the mosquitoes. Immune responses generated against various life cycle stages of the parasite have important roles in resistance to malaria and in reducing malaria transmission. Phagocytosis of free merozoites and erythrocytic asexual stages has been well studied, but very little is known about similar phagocytic clearance of mature sexual stages, which are critical for transmission. We evaluated phagocytic uptake of mature sexual (gametocyte) stage parasites by a human monocyte cell line in the absence of immune sera. We found that intact mature stages do not undergo phagocytosis, unless they are either killed or freed from erythrocytes. In view of this observation, we propose that the inability of mature gametocytes to be phagocytized may actually result in malaria transmission advantage. On the other hand, mature gametocytes that are not transmitted to mosquitoes during infection will eventually die and undergo phagocytosis, initiating immune responses that may have transmission blocking potential. A better understanding of early phagocytic clearance and immune responses to gametocytes may identify additional targets for transmission blocking strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Activin A increases phagocytosis of Escherichia coli K1 by primary murine microglial cells activated by toll-like receptor agonists.

    PubMed

    Diesselberg, Catharina; Ribes, Sandra; Seele, Jana; Kaufmann, Annika; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Michel, Uwe; Nau, Roland; Schütze, Sandra

    2018-06-07

    Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro. Primary murine microglial cells were treated with activin A (0.13 ng/ml-13 μg/ml) alone or in combination with agonists of TLR2, 4, and 9. Phagocytosis of Escherichia coli K1 as well as release of TNF-α, IL-6, CXCL1, and NO was assessed. Activin A dose-dependently enhanced the phagocytosis of Escherichia coli K1 by microglial cells activated by agonists of TLR2, 4, and 9 without further increasing NO and proinflammatory cytokine release. Cell viability of microglial cells was not affected by activin A. Priming of microglial cells with activin A could increase the elimination of bacteria in bacterial CNS infections. This preventive strategy could improve the resistance of the brain to infections, particularly in elderly and immunocompromised patients.

  4. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury.

    PubMed

    Brosius Lutz, Amanda; Chung, Won-Suk; Sloan, Steven A; Carson, Glenn A; Zhou, Lu; Lovelett, Emilie; Posada, Sean; Zuchero, J Bradley; Barres, Ben A

    2017-09-19

    Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.

  5. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

    PubMed Central

    Sokolovska, Anna; Becker, Christine E.; Eddie Ip, WK; Rathinam, Vijay A.K.; Brudner, Matthew; Paquette, Nicholas; Tanne, Antoine; Vanaja, Sivapriya K.; Moore, Kathryn J.; Fitzgerald, Katherine A.; Lacy-Hulbert, Adam; Stuart, Lynda M.

    2013-01-01

    Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense. PMID:23644505

  6. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkina, Svetlana I.; Molotkovsky, Julian G.; Ullrich, Volker

    2005-04-01

    We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na{sup +}-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-{omega}-nitro-L-arginine methyl ester,more » neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a {beta}1 and {beta}2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.« less

  7. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    PubMed

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  8. ACTIVATED NEUTROPHILS INHIBIT PHAGOCYTOSIS BY HUMAN MONOCYTE CELLS IN VITRO

    EPA Science Inventory

    We have previously reported the correlation of decreased phagocytosis of opsonized zymosan by sputum monocytic cells with the increase in sputum neutrophils in volunteers 6h after inhalation of endotoxin (20,000 EU) (Alexis, et al. JACI, 2003;112:353). To define whether an intrin...

  9. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    PubMed Central

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  10. Targeting Nrf2 Signaling Improves Bacterial Clearance by Alveolar Macrophages in Patients with COPD and in a Mouse Model

    PubMed Central

    Harvey, Christopher J.; Thimmulappa, Rajesh K.; Sethi, Sanjay; Kong, Xiaoni; Yarmus, Lonny; Brown, Robert H.; David, Feller-Kopman; Wise, Robert; Biswal, Shyam

    2016-01-01

    Patients with chronic obstructive pulmonary disease (COPD) have innate immune dysfunction in the lung largely due to defective macrophage phagocytosis. This deficiency results in periodic bacterial infections that cause acute exacerbations of COPD, a major source of morbidity and mortality. Recent studies indicate that a decrease in Nrf2 (nuclear erythroid–related factor 2) signaling in patients with COPD may hamper their ability to defend against oxidative stress, although the role of Nrf2 in COPD exacerbations has not been determined. Here, we test whether activation of Nrf2 by the phytochemical sulforaphane restores phagocytosis of clinical isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa (PA) by alveolar macrophages from patients with COPD. Sulforaphane treatment restored bacteria recognition and phagocytosis in alveolar macrophages from COPD patients. Furthermore, sulforaphane treatment enhanced pulmonary bacterial clearance by alveolar macrophages and reduced inflammation in wild-typemice but not in Nrf2-deficientmice exposed to cigarette smoke for 6 months. Gene expression and promoter analysis revealed that Nrf2 increased phagocytic ability of macrophages by direct transcriptional up-regulation of the scavenger receptor MARCO. Disruption of Nrf2 or MARCO abrogated sulforaphane-mediated bacterial phagocytosis by COPD alveolar macrophages. Our findings demonstrate the importance of Nrf2 and its downstream target MARCO in improving antibacterial defenses and provide a rationale for targeting this pathway, via pharmacological agents such as sulforaphane, to prevent exacerbations of COPD caused by bacterial infection. PMID:21490276

  11. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion.

    PubMed

    He, Li-Xia; Ren, Jin-Wei; Liu, Rui; Chen, Qi-He; Zhao, Jian; Wu, Xin; Zhang, Zhao-Feng; Wang, Jun-Bo; Pettinato, Giuseppe; Li, Yong

    2017-10-01

    Traditionally used as a restorative medicine, ginseng (Panax ginseng Meyer) has been the most widely used and acclaimed herb in Chinese communities for thousands of years. To investigate the immune-modulating activity of ginseng oligopeptides (GOP), 420 healthy female BALB/c mice were intragastrically administered distilled water (control), whey protein (0.15 g per kg body weight (BW)), and GOP 0.0375, 0.075, 0.15, 0.3 and 0.6 g per kg BW for 30 days. Blood samples from mice were collected from the ophthalmic venous plexus and then sacrificed by cervical dislocation. Seven assays were conducted to determine the immunomodulatory effects of GOP on innate and adaptive immune responses, followed by flow cytometry to investigate spleen T lymphocyte sub-populations, multiplex sandwich immunoassays to investigate serum cytokine and immunoglobulin levels, and ELISA to investigate intestinally secreted immunoglobulin to study the mechanism of GOP affecting the immune system. Our results showed that GOP was able to enhance innate and adaptive immune responses in mice by improving cell-mediated and humoral immunity, macrophage phagocytosis capacity and NK cell activity. Notably, the use of GOP revealed a better immune-modulating activity compared to whey protein. We conclude that the immune-modulating activity might be due to the increased macrophage phagocytosis capacity and NK cell activity, and the enhancement of T and Th cells, as well as IL-2, IL-6 and IL-12 secretion and IgA, IgG1 and IgG2b production. These results indicate that GOP could be considered a good candidate that may improve immune functions if used as a dietary supplement, with a dosage that ranges from 0.3 to 0.6 g per kg BW.

  12. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets.

    PubMed

    Lin, Gloria H Y; Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S; Uger, Robert A; Viller, Natasja N

    2017-01-01

    Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 "do-not-eat" signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade.

  13. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets

    PubMed Central

    Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D.; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S.; Viller, Natasja N.

    2017-01-01

    Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 “do-not-eat” signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade. PMID:29084248

  14. SHIP-1 Increases Early Oxidative Burst and Regulates Phagosome Maturation in Macrophages1

    PubMed Central

    Kamen, Lynn A.; Levinsohn, Jonathan; Cadwallader, Amy; Tridandapani, Susheela; Swanson, Joel A.

    2010-01-01

    Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5) P3 to PI(3,4)P2 on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1-deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3′ phosphoinositide composition. PMID:18490750

  15. [Update views on the theory of phagocytosis].

    PubMed

    Freĭdlin, I S

    2008-01-01

    Developer of the phagocytosis theory I.I Mechnikov forecasted the most fruitful directions of its development. Macrophages express on the plasma membranes broad spectrum of receptors, which mediate their interaction with altered organism's own components as well as with exogenous agents, including various microorganisms. Recognition leads to changes of expression of surface molecules, enhancement of phagocytic activity as well as production and secretion of cytokines, presentation functions, signaling and genes expression. This reflected on maintenance of homeostasis, as well as on host defense effectiveness, including mechanisms of innate and adaptive immunity.

  16. Human immunodeficiency virus type 1 Tat binds to Candida albicans, inducing hyphae but augmenting phagocytosis in vitro

    PubMed Central

    Gruber, Andreas; Lell, Claudia P; Speth, Cornelia; Stoiber, Heribert; Lass-Flörl, Cornelia; Sonneborn, Anja; Ernst, Joachim F; Dierich, Manfred P; Würzner, Reinhard

    2001-01-01

    Tat, the human immunodeficiency virus type 1 (HIV-1) transactivating protein, binds through its RGD-motif to human integrin receptors. Candida albicans, the commonest cause of mucosal candidiasis in subjects infected with HIV-1, also possesses RGD-binding capacity. The present study reveals that Tat binds to C. albicans but not to C. tropicalis. Tat binding was markedly reduced by laminin and to a lesser extent by a complement C3 peptide containing the RGD motif, but not by a control peptide. The outgrowth of C. albicans was accelerated following binding of Tat, but phagocytosis of opsonized C. albicans was also increased after Tat binding. Thus, Tat binding promotes fungal virulence by inducing hyphae but may also reduce it by augmenting phagocytosis. The net effect of Tat in vivo is difficult to judge but in view of the many disease-promoting effects of Tat we propose that accelerating the formation of hyphae dominates over the augmentation of phagocytosis. PMID:11899432

  17. Differential Kinetics of Aspergillus nidulans and Aspergillus fumigatus Phagocytosis.

    PubMed

    Gresnigt, Mark S; Becker, Katharina L; Leenders, Floris; Alonso, M Fernanda; Wang, Xiaowen; Meis, Jacques F; Bain, Judith M; Erwig, Lars P; van de Veerdonk, Frank L

    2018-01-01

    Invasive aspergillosis mainly occurs in immunocompromised patients and is commonly caused by Aspergillus fumigatus, while A.nidulans is rarely the causative agent. However, in chronic granulomatous disease (CGD) patients, A. nidulans is a frequent cause of invasive aspergillosis and is associated with higher mortality. Immune recognition of A. nidulans was compared to A. fumigatus to offer an insight into why A. nidulans infections are prevalent in CGD. Live cell imaging with J774A.1 macrophage-like cells and LC3-GFP-mCherry bone marrow-derived macrophages (BMDMs) revealed that phagocytosis of A. nidulans was slower compared to A. fumigatus. This difference could be attributed to slower migration of J774A.1 cells and a lower percentage of migrating BMDMs. In addition, delayed phagosome acidification and LC3-associated phagocytosis was observed with A. nidulans. Cytokine and oxidative burst measurements in human peripheral blood mononuclear cells revealed a lower oxidative burst upon challenge with A. nidulans. In contrast, A. nidulans induced significantly higher concentrations of cytokines. Collectively, our data demonstrate that A. nidulans is phagocytosed and processed at a slower rate compared to A. fumigatus, resulting in reduced fungal killing and increased germination of conidia. This slower rate of A. nidulans clearance may be permissive for overgrowth within certain immune settings. The Author(s). Published by S. Karger AG, Basel.

  18. EhVps32 Is a Vacuole-Associated Protein Involved in Pinocytosis and Phagocytosis of Entamoeaba histolytica

    PubMed Central

    Avalos-Padilla, Yunuen; Betanzos, Abigail; Javier-Reyna, Rosario; García-Rivera, Guillermina; Chávez-Munguía, Bibiana; Lagunes-Guillén, Anel; Ortega, Jaime; Orozco, Esther

    2015-01-01

    Here, we investigated the role of EhVps32 protein (a member of the endosomal-sorting complex required for transport) in endocytosis of Entamoeba histolytica, a professional phagocyte. Confocal microscopy, TEM and cell fractionation revealed EhVps32 in cytoplasmic vesicles and also located adjacent to the plasma membrane. Between 5 to 30 min of phagocytosis, EhVps32 was detected on some erythrocytes-containing phagosomes of acidic nature, and at 60 min it returned to cytoplasmic vesicles and also appeared adjacent to the plasma membrane. TEM images revealed it in membranous structures in the vicinity of ingested erythrocytes. EhVps32, EhADH (an ALIX family member), Gal/GalNac lectin and actin co-localized in the phagocytic cup and in some erythrocytes-containing phagosomes, but EhVps32 was scarcely detected in late phagosomes. During dextran uptake, EhVps32, EhADH and Gal/GalNac lectin, but not actin, co-localized in pinosomes. EhVps32 recombinant protein formed oligomers composed by rings and filaments. Antibodies against EhVps32 monomers stained cytoplasmic vesicles but not erythrocytes-containing phagosomes, suggesting that in vivo oligomers are formed on phagosome membranes. The involvement of EhVps32 in phagocytosis was further study in pNeoEhvps32-HA-transfected trophozoites, which augmented almost twice their rate of erythrophagocytosis as well as the membranous concentric arrays built by filaments, spirals and tunnel-like structures. Some of these structures apparently connected phagosomes with the phagocytic cup. In concordance, the EhVps32-silenced G3 trophozoites ingested 80% less erythrocytes than the G3 strain. Our results suggest that EhVps32 participates in E. histolytica phagocytosis and pinocytosis. It forms oligomers on erythrocytes-containing phagosomes, probably as a part of the scission machinery involved in membrane invagination and intraluminal vesicles formation. PMID:26230715

  19. Chitosan but Not Chitin Activates the Inflammasome by a Mechanism Dependent upon Phagocytosis*

    PubMed Central

    Bueter, Chelsea L.; Lee, Chrono K.; Rathinam, Vijay A. K.; Healy, Gloria J.; Taron, Christopher H.; Specht, Charles A.; Levitz, Stuart M.

    2011-01-01

    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert. PMID:21862582

  20. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis.

    PubMed

    Bueter, Chelsea L; Lee, Chrono K; Rathinam, Vijay A K; Healy, Gloria J; Taron, Christopher H; Specht, Charles A; Levitz, Stuart M

    2011-10-14

    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert.

  1. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.

    PubMed

    Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher

    2011-10-15

    Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.

  2. Emergence of anti-red blood cell antibodies triggers red cell phagocytosis by activated macrophages in a rabbit model of Epstein-Barr virus-associated hemophagocytic syndrome.

    PubMed

    Hsieh, Wen-Chuan; Chang, Yao; Hsu, Mei-Chi; Lan, Bau-Shin; Hsiao, Guan-Chung; Chuang, Huai-Chia; Su, Ih-Jen

    2007-05-01

    Hemophagocytic syndrome (HPS) is a fatal complication frequently associated with viral infections. In childhood HPS, Epstein-Barr virus (EBV) is the major causative agent, and red blood cells (RBCs) are predominantly phagocytosed by macrophages. To investigate the mechanism of RBC phagocytosis triggered by EBV infection, we adopted a rabbit model of EBV-associated HPS previously established by using Herpesvirus papio (HVP). The kinetics of virus-host interaction was studied. Using flow cytometry, we detected the emergence of antibody-coated RBCs, as well as anti-platelet antibodies, at peak virus load period at weeks 3 to 4 after HVP injection, and the titers increased thereafter. The presence of anti-RBCs preceded RBC phagocytosis in tissues and predicted the full-blown development of HPS. The anti-RBC antibodies showed cross-reactivity with Paul-Bunnell heterophile antibodies. Preabsorption of the HVP-infected serum with control RBCs removed the majority of anti-RBC activities and remarkably reduced RBC phagocytosis. The RBC phagocytosis was specifically mediated via an Fc fragment of antibodies in the presence of macrophage activation. Therefore, the emergence of anti-RBC antibodies and the presence of macrophage activation are both essential in the development of HPS. Our observations in this animal model provide a potential mechanism for hemophagocytosis in EBV infection.

  3. Emergence of Anti-Red Blood Cell Antibodies Triggers Red Cell Phagocytosis by Activated Macrophages in a Rabbit Model of Epstein-Barr Virus-Associated Hemophagocytic Syndrome

    PubMed Central

    Hsieh, Wen-Chuan; Chang, Yao; Hsu, Mei-Chi; Lan, Bau-Shin; Hsiao, Guan-Chung; Chuang, Huai-Chia; Su, Ih-Jen

    2007-01-01

    Hemophagocytic syndrome (HPS) is a fatal complication frequently associated with viral infections. In childhood HPS, Epstein-Barr virus (EBV) is the major causative agent, and red blood cells (RBCs) are predominantly phagocytosed by macrophages. To investigate the mechanism of RBC phagocytosis triggered by EBV infection, we adopted a rabbit model of EBV-associated HPS previously established by using Herpesvirus papio (HVP). The kinetics of virus-host interaction was studied. Using flow cytometry, we detected the emergence of antibody-coated RBCs, as well as anti-platelet antibodies, at peak virus load period at weeks 3 to 4 after HVP injection, and the titers increased thereafter. The presence of anti-RBCs preceded RBC phagocytosis in tissues and predicted the full-blown development of HPS. The anti-RBC antibodies showed cross-reactivity with Paul-Bunnell heterophile antibodies. Preabsorption of the HVP-infected serum with control RBCs removed the majority of anti-RBC activities and remarkably reduced RBC phagocytosis. The RBC phagocytosis was specifically mediated via an Fc fragment of antibodies in the presence of macrophage activation. Therefore, the emergence of anti-RBC antibodies and the presence of macrophage activation are both essential in the development of HPS. Our observations in this animal model provide a potential mechanism for hemophagocytosis in EBV infection. PMID:17456768

  4. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages.

    PubMed

    Jie, Peng; Zhe, Ma; Chengwei, Hua; Huixing, Lin; Hui, Zhang; Chengping, Lu; Hongjie, Fan

    2017-01-06

    Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.

  5. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo

    PubMed Central

    2012-01-01

    phagocytosis are associated with a pro-inflammatory state in the pleural space. We further showed that fibres compartmentalise in the mesothelial cells at the parietal pleura as well as in inflammatory cells in the pleural space. Conclusion BSE is a useful way to clearly distinguish between fibres that are, or are not, membrane-bounded. Using this method we were able to show differences in the threshold length at which frustrated phagocytosis occurred between in vitro and in vivo models. Visualising nanowires in the pleura demonstrated at least 2 compartments – in leukocyte aggregations and in the mesothelium - which may have consequences for long term pathology in the pleural space including mesothelioma. PMID:22929371

  6. Evaluation of Oxidative Metabolism in Leukocytes during Phagocytosis of Escherichia coli Carrying Genetic Constructs soxS::lux or katG::lux.

    PubMed

    Karimov, I F; Deryabin, D G; Karimova, D N; Subbotina, T Yu; Manukhov, I V

    2016-06-01

    We studied ROS generation by human peripheral blood monocytes and granulocytes during phagocytosis of Escherichia coli soxS::lux or katG::lux responding by luminescence (bioluminescence) to the development of oxidative stress. Initially high sensitivity of the bioluminescent reaction of E. coli katG::lux strain to the effects of model ROS (KO2 and H2O2) and pronounced induction of luminescence upon contact with granulocytes, whereas E. coli soxS::lux demonstrated less pronounced reaction to chemical oxidants and bioluminescence was observed primarily upon contact with monocytes. A correlation was found between quantitative characteristics of E. coli katG::lux bioluminescence and luminol-dependent chemiluminescence of leukocytes in some patients, but no dependence of this kind was noted for E. coli soxS::lux. The results can provide experimental substantiation of a new approach for evaluation of ROS production by leukocytes during phagocytosis and choosing the optimal object for these studies.

  7. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation.

    PubMed

    Han, Claudia Z; Juncadella, Ignacio J; Kinchen, Jason M; Buckley, Monica W; Klibanov, Alexander L; Dryden, Kelly; Onengut-Gumuscu, Suna; Erdbrügger, Uta; Turner, Stephen D; Shim, Yun M; Tung, Kenneth S; Ravichandran, Kodi S

    2016-11-24

    Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.

  8. Live-cell Video Microscopy of Fungal Pathogen Phagocytosis

    PubMed Central

    Lewis, Leanne E.; Bain, Judith M.; Okai, Blessing; Gow, Neil A.R.; Erwig, Lars Peter

    2013-01-01

    Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a

  9. Trypanosoma cruzi: sequence of phagocytosis and cytotoxicity by human polymorphonuclear leucocytes.

    PubMed Central

    Rimoldi, M T; Cardoni, R L; Olabuenaga, S E; de Bracco, M M

    1981-01-01

    We have studied the relationship between phagocytosis and cytotoxicity of human polymorphonuclear leucocytes (PMN) to sensitized Trypanosoma cruzi. Assays were done simultaneously using [3H]-uridine labelled epimastigotes as target cells. Phagocytosis was evaluated by the uptake and cytotoxicity by the release of parasite associated [3H]-uridine. Both reactions reached maximum levels at the same effector- to target-cell ratio and antibody concentration. Uptake of epimastigotes by PMN was highest at 30 min and intracellular disruption and release of parasite debris took place later. In conditions that precluded repeated uptake of sensitized radiolabelled T. cruzi, the release profile of [3H]-uridine from PMN that contained intracellular parasites was similar to that of the standard cytotoxic assay. However, as the ingestion phase was separated from the release step, no lag in the onset of the reaction was observed. Although we cannot rule out extracellular killing, the results of this study demonstrate that the bulk of damaged T. cruzi epimastigotes had been previously internalized by the PMN. PMID:7016743

  10. Metabolic similarities between fertilization and phagocytosis. Conservation of a peroxidatic mechanism

    PubMed Central

    1979-01-01

    At the time of fertilization, sea urchin eggs release a peroxidase which, together with H2O2 generated by a respiratory burst, is responsible for hardening of the fertilization membrane. We demonstrate here that the ovoperoxidase of unfertilized eggs is located in cortical granules and, after fertilization, is concentrated in the fertilization membrane. Fertilization of sea urchin eggs or their parthenogenetic activation with the ionophor A23187 also results in (a) the conversion of iodide to a trichloroacetic acid-precipitable form (iodination), (b) the deiodination of eggs exogenously labeled with myeloperoxidase and H2O2, (c) the degradation of thyroxine as measured by the recovery of the released radioiodine at the origin and in the inorganic iodide spot on paper chromatography, and (d) the conversion of estradiol to an alcohol-precipitable form (estrogen binding). The iodination reaction and the binding of estradio occurs predominantly in the fertilization membrane where the ovoperoxidase is concentrated. From the estimation of the kinetics of incorporation of iodine, we determine that the peroxidative system is active for 30 min after fertilization, long after hardening of the fertilization membrane is complete. Most of the bound iodine is lost during the hatching process. Iodination of albumin is catalyzed by the material released from the egg during fertilization, when combined with H2O2 and iodide. Iodination, thyroxine degradation, and estradiol binding are inhibited by azide, cyanide, aminotriazole, methimazole, ascorbic acid and ergothioneine, all of which can inhibit peroxidase-catalyzed reactions. These responses of the sea urchin egg to fertilization are strikingly similar to the changes induced in polymorphonuclear leukocytes by phagocytosis and, in both instances, a peroxidative mechanism may be involved. PMID:372484

  11. Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.) Leucocytes Analysed by Flow Cytometry

    PubMed Central

    Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870

  12. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition.

    PubMed

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose; Segura, Mariela

    2012-02-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.

  13. Determination of Active Phagocytosis of Unopsonized Porphyromonas gingivalis by Macrophages and Neutrophils Using the pH-Sensitive Fluorescent Dye pHrodo

    PubMed Central

    Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Cecil, Jessica; Holden, James A.

    2016-01-01

    Phagocytosis of pathogens is an important component of the innate immune system that is responsible for the removal and degradation of bacteria as well as their presentation via the major histocompatibility complexes to the adaptive immune system. The periodontal pathogen Porphyromonas gingivalis exhibits strain heterogeneity, which may affect a phagocyte's ability to recognize and phagocytose the bacterium. In addition, P. gingivalis is reported to avoid phagocytosis by antibody and complement degradation and by invading phagocytic cells. Previous studies examining phagocytosis have been confounded by both the techniques employed and the potential of the bacteria to invade the cells. In this study, we used a novel, pH-sensitive dye, pHrodo, to label live P. gingivalis strains and examine unopsonized phagocytosis by murine macrophages and neutrophils and human monocytic cells. All host cells examined were able to recognize and phagocytose unopsonized P. gingivalis strains. Macrophages had a preference to phagocytose P. gingivalis strain ATCC 33277 over other strains and clinical isolates in the study, whereas neutrophils favored P. gingivalis W50, ATCC 33277, and one clinical isolate over the other strains. This study revealed that all P. gingivalis strains were capable of being phagocytosed without prior opsonization with antibody or complement. PMID:27021243

  14. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.

    PubMed

    Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J

    2001-10-01

    The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.

  15. Phagocytosis of sperm by follicle cells of the carnivorous sponge Asbestopluma occidentalis (Porifera, Demospongiae).

    PubMed

    Riesgo, Ana

    2010-06-01

    During spermatogenesis of the carnivorous sponge Asbestopluma occidentalis, follicle cells that lined the spermatocysts phagocytosed unreleased mature sperm. Such follicle cells are part of the complex envelope that limits spermatocysts of A. occidentalis, which is also comprised of a collagen layer, a thick layer of intertwined cells, and spicules. Follicle cells showed vesicles containing single phagocytosed spermatozoa within their cytoplasm. Additionally, lipids and other inclusions were observed within the cytoplasm of follicle cells. It is likely that follicle cells recapture nutrients by phagocytosing spermatozoa and use them to form lipids and other inclusions. Such sperm phagocytosis is usually performed in higher invertebrates and vertebrates by Sertoli cells that are located in the testis wall. While Sertoli cells develop a wide range of functions such as creating a blood-testis barrier, providing crucial factors to ensure correct progression of spermatogenesis, and phagocytosis of aberrant, degenerating, and unreleased sperm cells, sponge follicle cells may only display phagocytotic activity on spermatogenic cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Lipopolysaccharide O-Antigen Prevents Phagocytosis of Vibrio anguillarum by Rainbow Trout (Oncorhynchus mykiss) Skin Epithelial Cells

    PubMed Central

    Lindell, Kristoffer; Fahlgren, Anna; Hjerde, Erik; Willassen, Nils-Peder; Fällman, Maria; Milton, Debra L.

    2012-01-01

    Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues. PMID:22662189

  17. ELMO1 Regulates Autophagy Induction and Bacterial Clearance During Enteric Infection.

    PubMed

    Sarkar, Arup; Tindle, Courtney; Pranadinata, Rama F; Reed, Sharon; Eckmann, Lars; Stappenbeck, Thaddeus S; Ernst, Peter B; Das, Soumita

    2017-12-19

    Macrophages are specialized phagocytic cells involved in clearing invading pathogens. Previously we reported that engulfment and cell motility protein 1 (ELMO1) in macrophages mediates bacterial internalization and intestinal inflammation. Here we studied the role of ELMO1 in the fate of internalized targets. ELMO1 is present in the intracellular vesicles and enhances accumulation of the protein LC3B following engulfment of Salmonella or treatment with autophagy-inducing rapamycin. The protein ATG5 and the kinase ULK1 are involved in classical autophagy, while LC3-associated phagocytosis is ULK1 independent. ATG5 but not ULK1 cooperated with ELMO1 in LC3 accumulation after infection, suggesting the ELMO1 preferentially regulated LC3-associated phagocytosis. Because LC3-associated phagocytosis delivers cargo for degradation, the contribution of ELMO1 to the lysosome degradation pathways was evaluated by studying pH and cathepsin B activity. ELMO1-depleted macrophages showed a time-dependent increase in pH and a decrease in cathepsin B activity associated with bacterial survival. Together, ELMO1 regulates LC3B accumulation and antimicrobial responses involved in the clearance of enteric pathogens. This paper investigated how innate immune pathways involving ELMO1 work in a coordinated fashion to eliminate bacterial threats. ELMO1 is present in the phagosome and enhances bacterial clearance by differential regulation of lysosomal acidification and enzymatic activity. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  19. Huaier extract suppresses breast cancer via regulating tumor-associated macrophages

    PubMed Central

    Li, Yaming; Qi, Wenwen; Song, Xiaojin; Lv, Shangge; Zhang, Hanwen; Yang, Qifeng

    2016-01-01

    Macrophages in tumor microenvironment are mostly M2-polarized - and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). Here, we examined the regulatory effects of Huaier extract on TAMs using RAW264.7 murine macrophage cell line. Our data demonstrated that Huaier extract could inhibit the infiltration of macrophages into tumor microenvironment in a dose-dependent manner. By performing RT-PCR, immunofluorescence and phagocytosis assay, we were able to find that Huaier extract could regulate the polarization of macrophages, with decreased M2-polarization and increased phagocytosis of RAW264.7 cells. Moreover, we identified that Huaier extract could suppress macrophages-induced angiogenesis by using HUVEC migration assay, tube formation and chorioallantoic membrane assay. Additionally, western blotting showed decreased expression of MMP2, MMP9 and VEGF with the use of Huaier extract. Finally, we found that Huaier extract could inhibit M2-macrophages infiltration and angiogenesis through treating 4T1 tumor bearing mice with Huaier extract. Our study revealed a novel mechanism of the anti-tumor effect of Huaier extract which inhibited angiogenesis by targeting TAMs. These findings provided that Huaier was a promising drug for clinical treatment of breast cancer. PMID:26831282

  20. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells.

    PubMed

    Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland

    2009-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.

  1. Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes.

    PubMed

    Choi, Eun-Jung; Kang, Young-Gyu; Kim, Jaekyung; Hwang, Jae-Kwan

    2011-01-01

    Skin pigmentation is the result of melanosome transfer from melanocytes to keratinocytes. Protease-activated receptor-2 (PAR-2) is a key mediator of melanosome transfer, which occurs as the melanocyte extends its dendrite toward surrounding keratinocytes that take up melanosomes by phagocytosis. We investigated the effects of macelignan isolated from Myristica fragrans HOUTT. (nutmeg) on melanosome transfer and the regulation of PAR-2 in human keratinocytes (HaCaT). HaCaT cells stimulated by the PAR-2-activating peptide Ser-Leu-Ile-Gly-Arg-Leu-NH₂ (SLIGRL) were treated with macelignan; PAR-2 expression was then determined by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry. We evaluated the effects of macelignan on calcium mobilization and keratinocyte phagocytosis. In addition, B16F10 melanoma cells and keratinocytes were co-cultured to assess the effects of macelignan on prostaglandin E₂ (PGE₂) secretion and subsequent dendrite formation. Macelignan decreased HaCaT PAR-2 mRNA and protein levels in a dose-dependent manner. Furthermore, macelignan markedly reduced intracellular calcium mobilization and significantly downregulated keratinocyte phagocytosis, as shown by decreased ingestion of Escherichia coli bioparticles and fluorescent microspheres. In co-culture experiments, macelignan reduced keratinocyte PGE₂ secretion, thereby preventing dendrite formation in B16F10 melanoma cells compared with SLIGRL-treated controls. Macelignan inhibits melanosome transfer by downregulating PAR-2, thereby reducing keratinocyte phagocytosis and PGE₂ secretion, which in turn inhibits dendrite formation in B16F10 melanoma cells. Taken together, our findings suggest that macelignan could be used as a natural depigmenting agent to ameliorate hyperpigmentation.

  2. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens

    PubMed Central

    Chen, Xin-hai; Liu, Shi-rao; Peng, Bo; Li, Dan; Cheng, Zhi-xue; Zhu, Jia-xin; Zhang, Song; Peng, Yu-ming; Li, Hui; Zhang, Tian-tuo; Peng, Xuan-xian

    2017-01-01

    The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections. PMID:28321214

  3. Streptococcus suis Capsular Polysaccharide Inhibits Phagocytosis through Destabilization of Lipid Microdomains and Prevents Lactosylceramide-Dependent Recognition

    PubMed Central

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose

    2012-01-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes. PMID:22124659

  4. Effects of banding or burdizzo castration of bulls on neutrophil phagocytosis and respiratory burst, CD62-L expression, and serum interleukin-8 concentration.

    PubMed

    Pang, W Y; Earley, B; Sweeney, T; Pirani, S; Gath, V; Crowe, M A

    2009-10-01

    The objective was to investigate measures of neutrophil function in response to banding or burdizzo castration of bulls. Thirty-two Holstein-Friesian bulls (14 mo old, 505 +/- 7.8 kg of BW) were assigned to 1 of 4 treatment groups: 1) sham-handled control (CON); 2) banding castration alone (BAND); 3) burdizzo castration alone (BURD); or 4) cortisol infusion (CORT) as a further control group. For each group on d -14, 8 animals (2 animals/treatment) were tied up in tie stalls (day of treatment = d 0). At -2, 2, 6, 12, 24, 48, 72, and 144 h relative to treatment time, blood samples were collected for analyses of neutrophil phagocytosis and respiratory burst, neutrophil CD62-L expression, and serum IL-8 concentration. Leukocyte counts, phagocytosis activity, and CD62-L expression were similar (P > 0.05) among the 4 treatment groups. The BURD castrates had greater burst activity compared with BAND castrates (P = 0.048) and CON (P = 0.01) at 72 h posttreatment. The BURD castrates had a greater percentage of granulocyte positive leukocytes (Gr%; P < 0.01) at 2 h posttreatment compared with CON and CORT bulls. The BURD castrates had greater (P < 0.05) Gr% compared with BAND, CON, and CORT animals at 24, 48, and 72 h posttreatment. The BURD and BAND castrates had greater Gr% (P < 0.05) compared with CORT bulls at 144 h posttreatment. In general, BAND, BURD, and CORT did not affect serum IL-8 concentration. Banding castration, BURD, and CORT did not induce leukocytosis, whereas BURD induced a modest neutrophilia. Neutrophil functioning in terms of phagocytosis and respiratory burst and serum IL-8 concentration were not compromised by BAND, BURD, and CORT. These findings indicate nonsurgical castration is unlikely to induce a severe acute systemic inflammatory response in terms of neutrophil function.

  5. Participation of 14-3-3ε and 14-3-3ζ proteins in the phagocytosis, component of cellular immune response, in Aedes mosquito cell lines.

    PubMed

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Del Angel, Rosa María; Medina-Ramírez, Fernando; Santos-Argumedo, Leopoldo; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2017-08-01

    Better knowledge of the innate immune system of insects will improve our understanding of mosquitoes as potential vectors of diverse pathogens. The ubiquitously expressed 14-3-3 protein family is evolutionarily conserved from yeast to mammals, and at least two isoforms of 14-3-3, the ε and ζ, have been identified in insects. These proteins have been shown to participate in both humoral and cellular immune responses in Drosophila. As mosquitoes of the genus Aedes are the primary vectors for arboviruses, causing several diseases such as dengue fever, yellow fever, Zika and chikungunya fevers, cell lines derived from these mosquitoes, Aag-2 from Aedes aegypti and C6/36 HT from Aedes albopictus, are currently used to study the insect immune system. Here, we investigated the role of 14-3-3 proteins (ε and ζ isoform) in phagocytosis, the main cellular immune responses executed by the insects, using Aedes spp. cell lines. We evaluated the mRNA and protein expression of 14-3-3ε and 14-3-3ζ in C6/36 HT and Aag-2 cells, and demonstrated that both proteins were localised in the cytoplasm. Further, in C6/36 HT cells treated with a 14-3-3 specific inhibitor we observed a notable modification of cell morphology with filopodia-like structure caused through cytoskeleton reorganisation (co-localization of 14-3-3 proteins with F-actin), more importantly the decrease in Salmonella typhimurium, Staphylococcus aureus and E. coli phagocytosis and reduction in phagolysosome formation. Additionally, silencing of 14-3-3ε and 14-3-3ζ expression by mean of specific DsiRNA confirmed the decreased phagocytosis and phagolysosome formation of pHrodo labelled E. coli and S. aureus bacteria by Aag-2 cells. The 14-3-3ε and 14-3-3ζ proteins modulate cytoskeletal remodelling, and are essential for phagocytosis of Gram-positive and Gram-negative bacteria in Aedes spp. cell lines.

  6. The expression and activation of protease-activated receptor-2 correlate with skin color.

    PubMed

    Babiarz-Magee, Laura; Chen, Nannan; Seiberg, Miri; Lin, Connie B

    2004-06-01

    Skin color results from the production and distribution of melanin in the epidermis. The protease-activated receptor-2 (PAR-2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR-2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color-dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR-2 may play a role in the modulation of pigmentation in a skin type-dependent manner. We examined the expression of PAR-2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR-2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR-2-specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR-2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin-derived keratinocytes. These results demonstrate that PAR-2 expression and activity correlate with skin color, suggesting the involvement of PAR-2 in ethnic skin color phenotypes.

  7. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  8. Using an improved phagocytosis assay to evaluate the effect of HIV on specific antibodies to pregnancy-associated malaria.

    PubMed

    Ataíde, Ricardo; Hasang, Wina; Wilson, Danny W; Beeson, James G; Mwapasa, Victor; Molyneux, Malcolm E; Meshnick, Steven R; Rogerson, Stephen J

    2010-05-25

    Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.

  9. Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila

    PubMed Central

    Regan, Jennifer C.; Brandão, Ana S.; Leitão, Alexandre B.; Mantas Dias, Ângela Raquel; Sucena, Élio; Jacinto, António; Zaidman-Rémy, Anna

    2013-01-01

    Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in

  10. Physics of phagocytosis of foreign versus self-tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Richard; Rodriguez, Pia; Discher, Dennis

    2009-03-01

    The first cells to `attack' an implanted or injected foreign material or microbe are phagocytic cells of the innate immune system. These cells actively and rapidly phagocytose foreign cells, surfaces, or particles, but the process that is inefficient when faced with ``self'' cells. We have examined the biochemistry and some of the physics of this decision to eat or not eat. One particular protein on all animal cell membranes, called CD47, seems to engage phagocytic cell couter-receptors, and deactivate the force-generating myosin machinery that otherwise makes phagocytosis efficient. We will map the phagocytic synapse between phagocytes and particles or cells and describe the physicochemical dynamics that mediate this key decision in compatability.

  11. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  12. Histologic and cytologic bone marrow findings in dogs with suspected precursor-targeted immune-mediated anemia and associated phagocytosis of erythroid precursors.

    PubMed

    Lucidi, Cynthia de A; de Rezende, Christian L E; Jutkowitz, L Ari; Scott, Michael A

    2017-09-01

    Precursor-targeted immune-mediated anemia (PIMA) has been suspected in dogs with nonregenerative anemia and bone marrow findings varying from erythroid hyperplasia to pure red cell aplasia. Phagocytosis of erythroid precursors/rubriphagocytosis (RP) reported in some affected dogs suggests a destructive component to the pathogenesis of PIMA. The purpose of the study was to characterize laboratory and clinical findings in dogs with suspected PIMA and RP, with emphasis on cytologic and histologic bone marrow findings. Dogs with PIMA and RP were identified by review of paired bone marrow aspirate and core biopsy slides collected over a 4-year period. Samples were systematically assessed and characterized along with other pertinent laboratory data and clinical findings. Twenty-five dogs met criteria for PIMA and had RP that was relatively stage-selective. Erythropoiesis was expanded to the stage of erythroid precursors undergoing most prominent phagocytosis, yielding patterns characterized by a hypo-, normo-, or hypercellular erythroid lineage. A 4 th pattern involved severe collagen myelofibrosis, and there was a spectrum of mild to severe collagen myelofibrosis overall. Evidence of immune-mediated hemolysis was rare. Immunosuppressive therapy was associated with remission in 77% of dogs treated for at least the median response time of 2 months. Bone marrow patterns in dogs fulfilling criteria for PIMA were aligned with stage-selective phagocytosis of erythroid precursors and the development of collagen myelofibrosis, common in dogs with PIMA. Recognition of these patterns and detection of RP facilitates diagnosis of PIMA, and slow response to immunosuppressive therapy warrants further investigation into its pathogenesis. © 2017 American Society for Veterinary Clinical Pathology.

  13. Determination of phagocytosis of /sup 32/P-labeled Staphylococcus aureus by bovine polymorphonuclear leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulin, A.M.; Paape, M.J.; Weinland, B.T.

    1984-04-01

    A procedure for the measurement of phagocytosis by bovine polymorphonuclear leukocytes (PMN) of /sup 32/P-labeled Staphylococcus aureus was modified so that a larger number of samples could be compared in a single run, and smaller volumes of sample, PMN, and /sup 32/P-labeled S aureus could be used. Results were highly reproducible, with a coefficient of variation between duplicate determinations of less than or equal to 2%. Lysostaphin was prepared from the supernatant of S staphylolyticus and was compared with a commercially available preparation. Effects of lysostaphin on PMN and influence of incubation media on release of /sup 32/P from /supmore » 32/P-labeled S aureus by lysostaphin were examined.« less

  14. Diffusion Barriers, Mechanical Forces, and the Biophysics of Phagocytosis.

    PubMed

    Ostrowski, Philip P; Grinstein, Sergio; Freeman, Spencer A

    2016-07-25

    Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages.

    PubMed

    Ikeda-Dantsuji, Yurika; Ohno, Hideaki; Tanabe, Koichi; Umeyama, Takashi; Ueno, Keigo; Nagi, Minoru; Yamagoe, Satoshi; Kinjo, Yuki; Miyazaki, Yoshitsugu

    2015-12-01

    Among invasive fungal infections, cryptococcosis caused by inhalation of Cryptococcus neoformans or Cryptococcus gattii is particularly dangerous because it can disseminate to the central nervous system and cause life-threatening meningitis or meningoencephalitis. Previous reports described significant differences in the histopathological features of C. neoformans and C. gattii infection, such as greater pathogen proliferation and a limited macrophage response in mouse lung infected by C. gattii. To elucidate the difference in pathogenicity of these two Cryptococcus species, we investigated the interaction of C. neoformans and C. gattii with murine macrophages, the first line of host defense, by confocal laser microscopy. Only thin-capsulated, and not thick-capsulated C. neoformans and C. gattii were phagocytosed by macrophages. Preactivation with interferon-γ increased the phagocytic rate of thin-capsulated C. neoformans up to two-fold, but did not promote phagocytosis of thin-capsulated C. gattii. Lipopolysaccharide preactivation or Aspergillus fumigatus conidia co-incubation had no effect on internalization of thin-capsulated C. neoformans or C. gattii by macrophages. Phagocytosis of live thin-capsulated C. neoformans, but not that of live thin-capsulated C. gattii, induced interleukin-12 release from macrophages. However, phagocytosis of heat-killed or paraformaldehyde-fixed thin-capsulated C. neoformans did not increase IL-12 release, showing that the internalization of live yeast is important for initiating the immune response during C. neoformans-macrophage interactions. Our data suggest that macrophage response to C. gattii is limited compared with that to C. neoformans and that these results may partially explain the limited immune response and the greater pathogenicity of C. gattii. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Nanocage-Therapeutics Prevailing Phagocytosis and Immunogenic Cell Death Awakens Immunity against Cancer.

    PubMed

    Lee, Eun Jung; Nam, Gi-Hoon; Lee, Na Kyeong; Kih, Minwoo; Koh, Eunee; Kim, Yoon Kyoung; Hong, Yeonsun; Kim, Soyoun; Park, Seung-Yoon; Jeong, Cherlhyun; Yang, Yoosoo; Kim, In-San

    2018-03-01

    A growing appreciation of the relationship between the immune system and the tumorigenesis has led to the development of strategies aimed at "re-editing" the immune system to kill tumors. Here, a novel tactic is reported for overcoming the activation-energy threshold of the immunosuppressive tumor microenvironment and mediating the delivery and presentation of tumor neoantigens to the host's immune system. This nature-derived nanocage not only efficiently presents ligands that enhance cancer cell phagocytosis, but also delivers drugs that induce immunogenic cancer cell death. The designed nanocage-therapeutics induce the release of neoantigens and danger signals in dying tumor cells, and leads to enhancement of tumor cell phagocytosis and cross-priming of tumor specific T cells by neoantigen peptide-loaded antigen-presenting cells. Potent inhibition of tumor growth and complete eradication of tumors is observed through systemic tumor-specific T cell responses in tumor draining lymph nodes and the spleen and further, infiltration of CD8+ T cells into the tumor site. Remarkably, after removal of the primary tumor, all mice treated with this nanocage-therapeutics are protected against subsequent challenge with the same tumor cells, suggesting development of lasting, tumor-specific responses. This designed nanocage-therapeutics "awakens" the host's immune system and provokes a durable systemic immune response against cancer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria.

    PubMed

    Pils, Stefan; Kopp, Kathrin; Peterson, Lisa; Delgado Tascón, Julia; Nyffenegger-Jann, Naja J; Hauck, Christof R

    2012-01-01

    CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.

  18. Dietary antioxidants and behavioral enrichment enhance neutrophil phagocytosis in geriatric Beagles.

    PubMed

    Hall, Jean A; Picton, Rebecca A; Finneran, Phyllis S; Bird, Karyn E; Skinner, Monica M; Jewell, Dennis E; Zicker, Steven

    2006-09-15

    The study objective was to determine the effects of feeding food enriched in antioxidants and a program of environmental/cognitive enrichment on selected ex vivo assays of inflammatory and immune cells in healthy geriatric Beagle dogs (n=21). Four groups of dogs were tested using a 2 x 2 factorial design. The 2-year longitudinal study included both nutritional (control food or antioxidant-fortified food) and behavioral (normal level or cognitive enrichment) interventions. Behavior enrichment included increased exercise, environmental enrichment, and a series of learning tasks. Phagocytosis of opsonized latex-coated beads by peripheral blood neutrophils was measured by flow cytometry and found to be significantly increased in dogs receiving both dietary antioxidants and cognitive enrichment. Simultaneous stimulation of cells with Con A and suppression with Dex resulted in decreased lymphocyte proliferation in dogs receiving both dietary antioxidants and cognitive enrichment, compared to dogs receiving dietary antioxidants or cognitive enrichment alone. There were no significant differences between the groups of dogs for percentages of CD4 and CD8 T-lymphocyte subpopulations before or after lymphocyte stimulation with Con A. These results support our hypothesis that both dietary antioxidants and behavioral enrichment enhance host defense mechanisms.

  19. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    PubMed

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  20. The relationship of detergent-solubilization plasma-membrane components of rabbit alveolar macrophages to an isolated inhibitor of phagocytosis.

    PubMed Central

    Pratt, R S; Cook, G M

    1979-01-01

    1. A plasma-membrane fraction prepared from rabbit alveolar macrophages by hyposmotic borate lysis is described. 2. Rabbit lung lavages, containing a glycoprotein inhibitor of phagocytosis, may be fractionated by preparative isoelectric focusing in the presence of Triton X-100. 3. Chemical analysis indicates that the glycoproteins of the lung lavage contain sialic acid, fucose, mannose, galactose, hexosamine and appreciable quantities of glucose. 4. The relationship of macrophage membrane glycoproteins, solubilized with Triton X-100 in the presence of borate, to the lung lavage glycoproteins is demonstrated immunoelectrophoretically. Images PLATE 1 Fig. 1. Fig. 2. PMID:486083

  1. Differential Association of Phosphatidylinositol 3-Kinase, SHIP-1, and PTEN with Forming Phagosomes

    PubMed Central

    Kamen, Lynn A.; Levinsohn, Jonathan

    2007-01-01

    In macrophages, enzymes that synthesize or hydrolyze phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] regulate Fcγ receptor-mediated phagocytosis. Inhibition of phosphatidylinositol 3-kinase (PI3K) or overexpression of the lipid phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP-1), which hydrolyze PI(3,4,5)P3 to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], respectively, inhibit phagocytosis in macrophages. To examine how these enzymes regulate phagosome formation, the distributions of yellow fluorescent protein (YFP) chimeras of enzymes and pleckstrin homology (PH) domains specific for their substrates and products were analyzed quantitatively. PTEN-YFP did not localize to phagosomes, suggesting that PTEN regulates phagocytosis globally within the macrophage. SHIP1-YFP and p85-YFP were recruited to forming phagosomes. SHIP1-YFP sequestered to the leading edge and dissociated from phagocytic cups earlier than did p85-cyan fluorescent protein, indicating that SHIP-1 inhibitory activities are restricted to the early stages of phagocytosis. PH domain chimeras indicated that early during phagocytosis, PI(3,4,5)P3 was slightly more abundant than PI(3,4)P2 at the leading edge of the forming cup. These results support a model in which phagosomal PI3K generates PI(3,4,5)P3 necessary for later stages of phagocytosis, PTEN determines whether those late stages can occur, and SHIP-1 regulates when and where they occur by transiently suppressing PI(3,4,5)P3-dependent activities necessary for completion of phagocytosis. PMID:17442886

  2. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present.

    PubMed

    Rudkin, Fiona M; Bain, Judith M; Walls, Catriona; Lewis, Leanne E; Gow, Neil A R; Erwig, Lars P

    2013-10-29

    An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single

  3. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    PubMed Central

    2012-01-01

    Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research

  4. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain.

    PubMed

    Griffiths, Mark R; Gasque, Philippe; Neal, James W

    2009-03-01

    Central nervous system (CNS) tissues contain cells (i.e. glia and neurons) that have innate immune functions. These cells express a range of receptors that are capable of detecting and clearing apoptotic cells and regulating inflammatory responses. Phagocytosis of apoptotic cells is a nonphlogistic (i.e. noninflammatory) process that provides immune regulation through anti-inflammatory cytokines andregulatory T cells. Neurons and glia express cellular death signals, including CD95Fas/CD95L, FasL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor receptor 1 (TNFR), through which they can trigger apoptosis in T cells and other infiltrating cells. Microglia, astrocytes, ependymal cells, and neurons express defense collagens and scavenger and phagocytic receptors that recognize apoptotic cells displaying apoptotic cell-associated molecular patterns, which serve as markers of "altered self." Glia also express pentraxins and complement proteins (C1q, C3b, and iC3b) that opsonize apoptotic cells, making them targets for the phagocytic receptors CR3 and CR4. Immunoregulatory molecules such as the complement regulator CD46 are lost from apoptotic cells and stimulate phagocytosis, whereas the expression of CD47 and CD200 is upregulated during apoptosis; this inhibits proinflammatory microglial cytokine expression, thereby reducing the severity of inflammation. This review outlines the cellular pathways used for the detection and phagocytosis of apoptotic cells in vitro and in experimental models of CNS inflammation.

  5. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus

    PubMed Central

    Ip, WK Eddie; Sokolovska, Anna; Charriere, Guillaume M; Boyer, Laurent; Dejardin, Stephanie; Cappillino, Michael P; Yantosca, L Michael; Takahashi, Kazue; Moore, Kathryn J; Lacy-Hulbert, Adam; Stuart, Lynda M

    2010-01-01

    Innate immunity is vital for protection from microbes and is mediated by both humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells such as macrophages. After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. Here we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production bacteria must not only be engulfed but also delivered into acidic phagosomes. Here acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to Staphylococcus aureus can be rescued by addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together these observations delineate the inter-dependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to Staphylococcus aureus. PMID:20483752

  6. The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria

    PubMed Central

    Delgado Tascón, Julia; Nyffenegger-Jann, Naja J.; Hauck, Christof R.

    2012-01-01

    Background CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment. PMID:22448228

  7. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo

    PubMed Central

    Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua

    2015-01-01

    In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates. PMID:26223836

  8. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo.

    PubMed

    Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua

    2015-07-30

    In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK-1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3'UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.

  9. Dynamics of Increasing IFN-γ Exposure on Murine MH-S Cell-Line Alveolar Macrophage Phagocytosis of Streptococcus pneumoniae

    PubMed Central

    Brown, Lou Ann S.; Klugman, Keith P.

    2015-01-01

    Previous investigations have demonstrated that activation with the type II interferon, IFN-γ, downregulates alveolar macrophage (AM) phagocytosis of Streptococcus pneumoniae. While these studies have shown clear effects at discrete time points, the kinetics of the macrophage response to IFN-γ over time, with respect to pneumococcal phagocytosis, have not been shown. Here, we describe these kinetics in the murine MH-S AM cell-line, a well-established model useful for investigations of AM phenotype and function. We measure binding and internalizing rates of S. pneumoniae following exposure to increasing durations of physiologic levels of IFN-γ. When MH-S murine alveolar macrophage (mAM) were exposed to IFN-γ for increasing durations of time, from 0 to 6 days before inoculation with the type II S. pneumoniae, D39, exposure for 6 h transiently reduced bacterial binding by 50%, which was temporarily restored at 2 and 3 days of exposure. Bacterial internalization was also reduced shortly following initial exposure, however, internalization continued to fall to less than 5% that of IFN-γ naïve controls after 6 days of exposure. These data may help explain otherwise contradictory reports from the literature regarding timing between infections and reductions in macrophage function. PMID:25713979

  10. Dynamics of Increasing IFN-γ Exposure on Murine MH-S Cell-Line Alveolar Macrophage Phagocytosis of Streptococcus pneumoniae.

    PubMed

    Mina, Michael J; Brown, Lou Ann S; Klugman, Keith P

    2015-06-01

    Previous investigations have demonstrated that activation with the type II interferon, IFN-γ, downregulates alveolar macrophage (AM) phagocytosis of Streptococcus pneumoniae. While these studies have shown clear effects at discrete time points, the kinetics of the macrophage response to IFN-γ over time, with respect to pneumococcal phagocytosis, have not been shown. Here, we describe these kinetics in the murine MH-S AM cell-line, a well-established model useful for investigations of AM phenotype and function. We measure binding and internalizing rates of S. pneumoniae following exposure to increasing durations of physiologic levels of IFN-γ. When MH-S murine alveolar macrophage (mAM) were exposed to IFN-γ for increasing durations of time, from 0 to 6 days before inoculation with the type II S. pneumoniae, D39, exposure for 6 h transiently reduced bacterial binding by 50%, which was temporarily restored at 2 and 3 days of exposure. Bacterial internalization was also reduced shortly following initial exposure, however, internalization continued to fall to less than 5% that of IFN-γ naïve controls after 6 days of exposure. These data may help explain otherwise contradictory reports from the literature regarding timing between infections and reductions in macrophage function.

  11. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

    PubMed

    Barresi, Valeria; Branca, Giovanni; Ieni, Antonio; Rigoli, Luciana; Tuccari, Giovanni; Caruso, Rosario Alberto

    2015-05-14

    To identify those with a micropapillary pattern, ascertain relative frequency and document clinicopathological characteristics by reviewing gastric carcinomas. One hundred and fifty-one patients diagnosed with gastric cancer who underwent gastrectomy were retrospectively studied and the presence of a regional invasive micropapillary component was evaluated by light microscopy. All available hematoxylin-eosin (HE)-stained slides were histologically reviewed and 5 tumors were selected as putative micropapillary carcinoma when cancer cell clusters without a vascular core within empty lymphatic-like space comprised at least 5% of the tumor. Tumor tissues from these 5 invasive gastric carcinomas were immunostained using an anti-mucin 1 (MUC1) antibody (clone MA695) to detect the characteristic inside-out pattern and with D2-40 antibody to determine the presence of intratumoral lymph vessels. Detection of intraepithelial neutrophil apoptosis was evaluated in consecutive histological tissue sections by three independent methods, namely light microscopy with HE staining, the conventional terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemistry for activated caspase-3 (clone C92-605). Among 151 gastric cancers resected for cure, 5 (3.3%) were adenocarcinomas with a micropapillary component. Four of the patients died of disease from 6 to 23 mo and one patient was alive with metastases at 9 mo. All patients had advanced-stage cancer (≥ pT2) and lymph node metastasis. Positive MUC1 immunostaining on the stroma-facing surface (inside-out pattern) of the carcinomatous cluster cells, together with negative immunostaining for D2-40 in the cells limiting lymphatic-like spaces, confirmed the true micropapillary pattern in these gastric neoplasms. In all five cases, several micropapillae were infiltrated by neutrophils. HE staining, TUNEL assay and immunostaining for caspase-3 demonstrated apoptotic neutrophils within

  12. Role of serotype-specific polysaccharide in the resistance of Streptococcus mutans to phagocytosis by human polymorphonuclear leukocytes.

    PubMed

    Tsuda, H; Yamashita, Y; Toyoshima, K; Yamaguchi, N; Oho, T; Nakano, Y; Nagata, K; Koga, T

    2000-02-01

    To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis.

  13. Role of Serotype-Specific Polysaccharide in the Resistance of Streptococcus mutans to Phagocytosis by Human Polymorphonuclear Leukocytes

    PubMed Central

    Tsuda, Hiromasa; Yamashita, Yoshihisa; Toyoshima, Kuniaki; Yamaguchi, Noboru; Oho, Takahiko; Nakano, Yoshio; Nagata, Kengo; Koga, Toshihiko

    2000-01-01

    To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis. PMID:10639428

  14. Exposure of articular chondrocytes to wear particles induces phagocytosis, differential inflammatory gene expression, and reduced proliferation.

    PubMed

    Kurdziel, Michael D; Salisbury, Meagan; Kaplan, Lige; Maerz, Tristan; Baker, Kevin C

    2017-07-01

    The production of wear debris particulate remains a concern due to its association with implant failure through complex biologic interactions. In the setting of unicompartmental knee arthroplasty (UKA), damage and wear of the components may introduce debris particulate into the adjacent, otherwise, healthy compartment. The purpose of this study was to investigate the in vitro effect of polymeric and metallic wear debris particles on cell proliferation, extracellular matrix regulation, and phagocytosis index of normal human articular chondrocytes (nHACs). In culture, nHACs were exposed to both cobalt-chromium-molybdenum (CoCrMo) and polymethyl-methacrylate (PMMA) wear debris particulate for 3 and 10 days. At 3 days, no significant difference in cell proliferation was found between control cells and cells exposed to both CoCrMo or PMMA particles. However, cell proliferation was significantly decreased for CoCrMo exposed nHACs at both 6 (P < 0.001) and 10 days (P < 0.001) and PMMA at 10 days (P < 0.001). Target gene expression displayed both a time- and material-dependent response to CoCrMo and PMMA particles. Significant differences in COL10A1, ACAN, VCAN, IL-1β, TNF-α, MMP3, ADAMTS1, CASP3, and CASP9 regulation were found between CoCrMo and PMMA exposed nHACs at day 3 with gene regulation returning to near baseline at 10 days. Results from our study indicate a role of wear debris induced cartilage degeneration after exposure to polymeric and metallic wear debris particulate, suggesting an additional pathway of cartilage breakdown, potentially manifesting in traditional clinical symptoms.

  15. Live Imaging of LysoTracker-Labelled Phagolysosomes Tracks Diurnal Phagocytosis of Photoreceptor Outer Segment Fragments in Rat RPE Tissue Ex Vivo.

    PubMed

    Mao, Yingyu; Finnemann, Silvia C

    2016-01-01

    Renewal of rod photoreceptor outer segments in the mammalian eye involves synchronized diurnal shedding after light onset of spent distal outer segment fragments (POS) linked to swift clearance of shed POS from the subretinal space by the adjacent retinal pigment epithelium (RPE). Engulfed POS phagosomes in RPE cells mature to acidified phagolysosomes, which accomplish enzymatic degradation of POS macromolecules. Here, we used an acidophilic fluorophore LysoTracker to label acidic organelles in freshly dissected, live rat RPE tissue flat mounts. We observed that all RPE cells imaged contained numerous acidified POS phagolysosomes whose abundance per cell was dramatically increased 2 h after light onset as compared to either 1 h before or 4 h after light onset. Lack of organelles of similar diameter (of 1-2 μm) in phagocytosis-defective mutant RCS rat RPE confirmed that LysoTracker live imaging detected POS phagolysosomes. Lack of increase in lysosomal membrane protein LAMP-1 in RPE/choroid during the diurnal phagocytic burst suggests that formation of POS phagolysosomes in RPE in situ may not involve extra lysosome membrane biogenesis. Taken together, we report a new imaging approach that directly detects POS phagosome acidification and allows rapid tracking and quantification of POS phagocytosis by live RPE -tissue ex situ.

  16. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    PubMed

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  17. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    PubMed

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Phagocytosis of Apoptotic Trophoblast Cells by Human Endometrial Endothelial Cells Induces Proinflammatory Cytokine Production

    PubMed Central

    Peng, Bing; Koga, Kaori; Cardenas, Ingrid; Aldo, Paulomi; Mor, Gil

    2011-01-01

    Problem Apoptosis is a normal constituent of trophoblast turnover in the placenta; however in some cases, this process is related to pregnancy complications such as preeclampsia. Recognition and engulfment of these apoptotic trophoblast cells is important for clearance of dying cells. The aim of this study was to show the cross talk between human endometrial endothelial cells (HEECs) and apoptotic trophoblast cells in an in vitro coculture model and its effect on cytokine production by HEECs. Method of study Fluorescent-labeled HEECs were cocultured with fluorescent-labeled apoptotic human trophoblast cells. Confocal microscopy and flowcytometry were used to show the interaction between these two types of cells. Cytokine profiles were determined using multiplex analysis. Results HEECs are capable to phagocytose apoptotic trophoblasts. This activity is inhibited by the phagocytosis inhibitor cytochalasin B. Phagocytosis of apoptotic trophoblast cells induced the secretion of the proinflammatory cytokines interleukin-6 and monocyte chemoattractant protein-1 by HEECs. Conclusion This study provides the first evidence that HEECs have an ability to phagocytose apoptotic trophoblasts. Furthermore, we demonstrated an inflammatory response of HEECs after phagocytosing the apoptotic trophoblast cells. This event may contribute to the inflammatory response in both normal pregnancy and pathologic pregnancy such as preeclampsia. PMID:20219062

  19. Characterization of the Hemocytes in Larvae of Protaetia brevitarsis seulensis: Involvement of Granulocyte-Mediated Phagocytosis

    PubMed Central

    Cho, Saeyoull

    2014-01-01

    Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo. PMID:25083702

  20. An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway.

    PubMed

    Paine, C; Sharlow, E; Liebel, F; Eisinger, M; Shapiro, S; Seiberg, M

    2001-04-01

    The protease-activated receptor 2, expressed on keratinocytes but not on melanocytes, has been ascribed functional importance in the regulation of pigmentation by phagocytosis of melanosomes. Inhibition of protease-activated receptor 2 activation by synthetic serine protease inhibitors requires keratinocyte-melanocyte contact and results in depigmentation of the dark skinned Yucatan swine, suggesting a new class of depigmenting mechanism and agents. We therefore examined natural agents that could exert their effect via the protease-activated receptor 2 pathway. Here we show that soymilk and the soybean-derived serine protease inhibitors soybean trypsin inhibitor and Bowman-Birk inhibitor inhibit protease-activated receptor 2 cleavage, affect cytoskeletal and cell surface organization, and reduce keratinocyte phagocytosis. The depigmenting activity of these agents and their capability to prevent ultraviolet-induced pigmentation are demonstrated both in vitro and in vivo. These results imply that inhibition of the protease-activated receptor 2 pathway by soymilk may be used as a natural alternative to skin lightening.

  1. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    PubMed

    Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  2. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    PubMed Central

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  3. Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: a pilot study in gene regulation by mind-body interaction.

    PubMed

    Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili

    2005-02-01

    The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study

  4. FcγR-induced production of superoxide and inflammatory cytokines is differentially regulated by SHIP through its influence on PI3K and/or Ras/Erk pathways

    PubMed Central

    Ganesan, Latha P.; Joshi, Trupti; Fang, Huiqing; Kutala, Vijay Kumar; Roda, Julie; Trotta, Rossana; Lehman, Amy; Kuppusamy, Periannan; Byrd, John C.; Carson, William E.; Caligiuri, Michael A.; Tridandapani, Susheela

    2006-01-01

    Phagocytosis of IgG-coated particles via FcγR is accompanied by the generation of superoxide and inflammatory cytokines, which can cause collateral tissue damage in the absence of regulation. Molecular mechanisms regulating these phagocytosis-associated events are not known. SHIP is an inositol phosphatase that downregulates PI3K-mediated activation events. Here, we have examined the role of SHIP in FcγR-induced production of superoxide and inflammatory cytokines. We report that primary SHIP-deficient bone marrow macrophages produce elevated levels of superoxide upon FcγR clustering. Analysis of the molecular mechanism revealed that SHIP regulates upstream Rac-GTP binding, an obligatory event for superoxide production. Likewise, SHIP-deficient macrophages displayed enhanced IL-1β and IL-6 production in response to FcγR clustering. Interestingly, whereas IL-6 production required activation of both PI3K and Ras/Erk pathways, IL-1β production was dependent only on Ras/Erk activation, suggesting that SHIP may also regulate the Ras/Erk pathway in macrophages. Consistently, SHIP-deficient macrophages displayed enhanced activation of Erk upon FcγR clustering. Inhibition of Ras/Erk or PI3K suppressed the enhanced production of IL-6 in SHIP-deficient macrophages. In contrast, inhibition of Ras/Erk, but not PI3K, suppressed IL-1β production in these cells. Together, these data demonstrate that SHIP regulates phagocytosis-associated events through the inhibition of PI3K and Ras/Erk pathways. PMID:16543474

  5. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects

    NASA Astrophysics Data System (ADS)

    Rodríguez-Arco, Laura; Li, Mei; Mann, Stephen

    2017-08-01

    The spontaneous assembly of micro-compartmentalized colloidal objects capable of controlled interactions offers a step towards rudimentary forms of collective behaviour in communities of artificial cell-like entities (synthetic protocells). Here we report a primitive form of artificial phagocytosis in a binary community of synthetic protocells in which multiple silica colloidosomes are selectively ingested by self-propelled magnetic Pickering emulsion (MPE) droplets comprising particle-free fatty acid-stabilized apertures. Engulfment of the colloidosomes enables selective delivery and release of water-soluble payloads, and can be coupled to enzyme activity within the MPE droplets. Our results highlight opportunities for the development of new materials based on consortia of colloidal objects, and provide a novel microscale engineering approach to inducing higher-order behaviour in mixed populations of synthetic protocells.

  6. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    NASA Astrophysics Data System (ADS)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  7. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects.

    PubMed

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E

    2016-05-13

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  8. Flow cytometric quantitation of phagocytosis in heparinized complete blood with latex particles and Candida albicans.

    PubMed

    Egido, J M; Viñuelas, J

    1997-01-01

    We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripheral blood (HCPB), using commercially available phycoerythrin-conjugated latex particles of 1 micron diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984) standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripheral blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.

  9. A Coding Variant of ANO10, Affecting Volume Regulation of Macrophages, Is Associated with Borrelia Seropositivity

    PubMed Central

    Hammer, Christian; Wanitchakool, Podchanart; Sirianant, Lalida; Papiol, Sergi; Monnheimer, Mathieu; Faria, Diana; Ousingsawat, Jiraporn; Schramek, Natalie; Schmitt, Corinna; Margos, Gabriele; Michel, Angelika; Kraiczy, Peter; Pawlita, Michael; Schreiber, Rainer; Schulz, Thomas F; Fingerle, Volker; Tumani, Hayrettin; Ehrenreich, Hannelore; Kunzelmann, Karl

    2015-01-01

    In a first genome-wide association study (GWAS) approach to anti-Borrelia seropositivity, we identified two significant single nucleotide polymorphisms (SNPs) (rs17850869, P = 4.17E-09; rs41289586, P = 7.18E-08). Both markers, located on chromosomes 16 and 3, respectively, are within or close to genes previously connected to spinocerebellar ataxia. The risk SNP rs41289586 represents a missense variant (R263H) of anoctamin 10 (ANO10), a member of a protein family encoding Cl− channels and phospholipid scram-blases. ANO10 augments volume-regulated Cl− currents (IHypo) in Xenopus oocytes, HEK293 cells, lymphocytes and macrophages and controls volume regulation by enhancing regulatory volume decrease (RVD). ANO10 supports migration of macrophages and phagocytosis of spirochetes. The R263H variant is inhibitory on IHypo, RVD and intracellular Ca2+ signals, which may delay spirochete clearance, thereby sensitizing adaptive immunity. Our data demonstrate for the first time that ANO10 has a central role in innate immune defense against Borrelia infection. PMID:25730773

  10. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    PubMed

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  11. The Role of Siglec-1 and SR-BI Interaction in the Phagocytosis of Oxidized Low Density Lipoprotein by Macrophages

    PubMed Central

    Li, Chang; Zhu, Lin; Wu, Li-juan; Zhong, Ren-qian

    2013-01-01

    Background Macrophages play a proatherosclerotic role in atherosclerosis via oxLDL uptake. As an adhesion molecular of I-type lectins, Siglec-1 is highly expressed on circulating monocytes and plaque macrophages of atherosclerotic patients, but the exact role of Siglec-1 has not been elucidated. Methods In this study, oxLDL was used to stimulate Siglec-1 and some oxLDL receptors (SR-BI, CD64, CD32B, LOX-1 and TLR-4) expression on bone marrow-derived macrophages, whereas small interfering RNA was used to down-regulate Siglec-1. Meanwhile, an ELISA-based assay for Siglec-1-oxLDL interaction was performed, and co-immunoprecipitation (co-IP) and laser scanning confocal microscopy (LSCM) were used to determine the role of Siglec-1 in oxLDL uptake by macrophages. Results We found that oxLDL could up-regulate the expression of various potential oxLDL receptors, including Siglec-1, in a dose-dependent manner. Moreover, down-regulation of Siglec-1 could attenuate oxLDL uptake by Oil red O staining. LSCM revealed that Siglec-1 and CD64/SR-BI may colocalize on oxLDL-stimulated macrophage surface, whereas co-IP showed that Siglec-1 and SR-BI can be immunoprecipitated by each other. However, no direct interaction between Siglec-1 and oxLDL was found in the in vitro protein interaction system. Conclusions Thus, Siglec-1 can interact with SR-BI in the phagocytosis of oxLDL by macrophages, rather than act as an independent receptor for oxLDL. PMID:23520536

  12. Filamin A regulates the organization and remodeling of the pericellular collagen matrix.

    PubMed

    Mezawa, Masaru; Pinto, Vanessa I; Kazembe, Mwayi P; Lee, Wilson S; McCulloch, Christopher A

    2016-10-01

    Extracellular matrix remodeling by cell adhesion-related processes is critical for proliferation and tissue homeostasis, but how adhesions and the cytoskeleton interact to organize the pericellular matrix (PCM) is not understood. We examined the role of the actin-binding protein, filamin A (FLNa), in pericellular collagen remodeling. Compared with wild-type (WT), mice with fibroblast-specific deletion of FLNa exhibited higher density but reduced organization of collagen fibers after increased loading of the periodontal ligament for 2 wk. In cultured fibroblasts, FLNa knockdown (KD) did not affect collagen mRNA, but after 24 h of culture, FLNa WT cells exhibited ∼2-fold higher cell-surface collagen KD cells and 13-fold higher levels of activated β1 integrins. In FLNa WT cells, there was 3-fold more colocalization of talin with pericellular cleaved collagen than in FLNa KD cells. MMP-9 mRNA and protein expression were >2-fold higher in FLNa KD cells than in WT cells. Cathepsin B, which is necessary for intracellular collagen digestion, was >3-fold higher in FLNa WT cells than in KD cells. FLNa WT cells exhibited 2-fold more collagen phagocytosis than KD cells, which involved the FLNa actin-binding domain. Evidently, FLNa regulates PCM remodeling through its effects on degradation pathways that affect the abundance and organization of collagen.-Mezawa, M., Pinto, V. I., Kazembe, M. P., Lee, W. S., McCulloch, C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. © FASEB.

  13. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype.

    PubMed

    He, Hua; Zhang, Suzhen; Tighe, Sean; Son, Ji; Tseng, Scheffer C G

    2013-09-06

    Despite the known anti-inflammatory effect of amniotic membrane, its action mechanism remains largely unknown. HC-HA complex (HC-HA) purified from human amniotic membrane consists of high molecular weight hyaluronic acid (HA) covalently linked to the heavy chain (HC) 1 of inter-α-trypsin inhibitor. In this study, we show that soluble HC-HA also contained pentraxin 3 and induced the apoptosis of both formyl-Met-Leu-Phe or LPS-activated neutrophils and LPS-activated macrophages while not affecting the resting cells. This enhanced apoptosis was caused by the inhibition of cell adhesion, spreading, and proliferation caused by HC-HA binding of LPS-activated macrophages and preventing adhesion to the plastic surface. Preferentially, soluble HC-HA promoted phagocytosis of apoptotic neutrophils in resting macrophages, whereas immobilized HC-HA promoted phagocytosis in LPS-activated macrophages. Upon concomitant LPS stimulation, immobilized HC-HA but not HA polarized macrophages toward the M2 phenotype by down-regulating IRF5 protein and preventing its nuclear localization and by down-regulating IL-12, TNF-α, and NO synthase 2. Additionally, IL-10, TGF-β1, peroxisome proliferator-activated receptor γ, LIGHT (TNF superfamily 14), and sphingosine kinase-1 were up-regulated, and such M2 polarization was dependent on TLR ligation. Collectively, these data suggest that HC-HA is a unique matrix component different from HA and uses multiple mechanisms to suppress M1 while promoting M2 phenotype. This anti-inflammatory action of HC-HA is highly desirable to promote wound healing in diseases heightened by unsuccessful transition from M1 to M2 phenotypes.

  14. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function.

    PubMed

    Oh, Se-Young; Mead, Philip J; Sharma, Bhawani S; Quinton, V Margaret; Boermans, Herman J; Smith, Trevor K; Swamy, H V L N; Karrow, Niel A

    2015-12-25

    Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations. PAT and PA for example, significantly decreased the percent phagocytosis of MAP at 5.0 (p<0.01) and 15.6 μM (p<0.01), respectively, but only PA significantly suppressed PAM-3-stimulated ROS production at 62.5 (p<0.05) and 250.0 μM (p<0.01). OTA significantly increased the percent phagocytosis of MAP at 6.3 (p<0.05) and 12.5 μM (p<0.01). These findings suggest that exposure to sub-lethal concentrations of PMs can affect macrophage function, which could affect immunoregulation and innate disease resistance to pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. TREM-2 serves as a negative immune regulator through Syk pathway in an IL-10 dependent manner in lung cancer

    PubMed Central

    Chen, Junjun; Xu, Weiyi; Yang, Guangdie; Bao, Zhang; Xia, Dajing; Lu, Guohua; Hu, Shuwen; Zhou, Jianying

    2016-01-01

    During infection, triggering receptor expressed on myeloid cells-2 (TREM-2) restrains dendritic cells (DCs) and macrophages (MΦs) phagocytosis, as well as reduces pro-inflammatory cytokines release through DNAX-activation protein 12 (DAP12) signaling. However, the role of TREM-2 signaling in cancer has never been elucidated. In the current study, we found that TREM-2 was up-regulated on peripheral blood monocytes in tumor-bearing host. More TREM-2+DCs were detected in the lung of 3LL tumor-bearing mice. On the other hand, the level of TREM-2 on pulmonary MΦs positively correlated with the pathological staging of lung cancer. However, surgical or chemotherapeutic reduction of tumor burden led to the obvious decline of TREM-2. In vitro, TREM-2 expression of bone marrow (BM)-derived DCs and MΦs was induced by conditional medium (CM) containing the supernatant of 3LL cells. TREM-2+DCs from CM and/or tumor-bearing mice held altered phenotypes (CD80LowCD86LowMHCIILow) and impaired functions, such as, reduced interleukin (IL)-12 secretion, increased IL-10 production, and weakened ovalbumin (OVA)-endocytic capacity; also developed potent inhibitory effect on T cell proliferation that could be partially reversed by TREM-2 blockage. Moreover, spleen tyrosine kinase (Syk) inhibitor restrained IL-10 production of TREM-2+DC. Remarkably, IL-10 neutralizing antibody and Syk inhibitor both lowered the suppressive potential of TREM-2+DCs in T cell proliferation. Also, adoptive transfer of this TREM-2+DCs accelerated the tumor growth rather than jeopardized survival in lung cancer-bearing mice. In conclusion, these results indicate that TREM-2 might act as a negative immuno-regulatory molecule through Syk pathway in an IL-10 dependent manner and partially predicts prognosis in lung cancer patients. PMID:27102437

  16. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis

    PubMed Central

    Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P. M.

    2016-01-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346

  17. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.

    PubMed

    Kuipers, Annemarie; Stapels, Daphne A C; Weerwind, Lleroy T; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C; van Kessel, Kok P M; Rooijakkers, Suzan H M

    2016-07-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.

  18. The core structure of ginsenan PA, a phagocytosis-activating polysaccharide from the root of Panax ginseng.

    PubMed

    Tomoda, M; Hirabayashi, K; Shimizu, N; Gonda, R; Ohara, N

    1994-09-01

    Controlled Smith degradation and limited hydrolysis of ginsenan PA, the main phagocytosis-activating polysaccharide isolated from the root of Panax ginseng C. A. Meyer, were performed. The reticuloendothelial system-potentiating and anti-complementary activities of the degradation products were investigated. Methylation analysis of the primary and secondary Smith degradation products indicated that the core structural features of ginsenan PA include a backbone chain mainly composed of beta-1,3-linked D-galactose. Almost half of the galactose units in the backbone carry side-chains composed of beta-1,6-linked D-galactosyl residues at position 6. Further 3,6-branching of D-galactose units was observed in a part of the side-chains. alpha-L-Arabinose units are connected mainly to the core galactose moieties via position 6. Removal of most of the arabinose units had a considerable effect on immunological activity.

  19. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK.

    PubMed

    Mohning, Michael P; Thomas, Stacey M; Barthel, Lea; Mould, Kara J; McCubbrey, Alexandria L; Frasch, S Courtney; Bratton, Donna L; Henson, Peter M; Janssen, William J

    2018-01-01

    Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.

  20. Correlation of Increased Metabolic Activity, Resistance to Infection, Enhanced Phagocytosis, and Inhibition of Bacterial Growth by Macrophages from Listeria- and BCG-Infected Mice

    PubMed Central

    Ratzan, Kenneth R.; Musher, Daniel M.; Keusch, Gerald T.; Weinstein, Louis

    1972-01-01

    Macrophages from mice infected with facultative intracellular organisms such as Listeria monocytogenes and BCG have been shown to resist infection by antigenically unrelated intracellular bacterial parasites. This study compares phagocytosis, bacterial growth inhibition, and oxidation of glucose by macrophages from normal mice, mice infected with listeria or BCG, or mice immunized with killed listeria in incomplete Freund's adjuvant. Macrophages from listeria- and BCG-infected mice ingested more listeria; 67 and 57%, respectively, had three or more cell-associated bacteria versus 22% of controls (P < 0.001). Peritoneal macrophages from listeria- and BCG-infected animals significantly (P < 0.001 covariance analysis) inhibited growth of listeria in suspension, whereas control macrophages had no such inhibitory effect. The rate of oxidation of glucose-1-14C was higher in macrophages from listeria- and BCG-infected mice than from either uninfected animals or those immunized with killed listeria. During phagocytosis of killed or live bacteria, or latex particles, the rate of glucose oxidation was increased (P < 0.01). These data suggest that the cellular immunity after infection by an intracellular organism is associated with an increase in metabolic activity of macrophages, namely, an increase in the rate of glucose oxidation resulting in enhancement of phagocytosis and killing. PMID:4629124

  1. Phosphorylation of SNAP-23 at Ser95 causes a structural alteration and negatively regulates Fc receptor-mediated phagosome formation and maturation in macrophages.

    PubMed

    Sakurai, Chiye; Itakura, Makoto; Kinoshita, Daiki; Arai, Seisuke; Hashimoto, Hitoshi; Wada, Ikuo; Hatsuzawa, Kiyotaka

    2018-05-17

    SNAP-23 is a plasma membrane-localized SNARE protein involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation specific-antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages. To understand the role of this phosphorylation, we established macrophage lines overexpressing the non-phosphorylatable S95A or the phospho-mimicking S95D mutation. The efficiency of phagosome formation and maturation was severely reduced in SNAP-23-S95D-overexpressing cells. To examine whether phosphorylation at Ser95 affected SNAP-23 structure, we constructed intramolecular Förster resonance energy transfer (FRET) probes of SNAP-23 designed to evaluate the approximation of the N-termini of the two SNARE motifs. Interestingly, a high FRET efficiency was detected on the membrane when the S95D probe was used, indicating that phosphorylation at Ser95 caused a dynamic structural shift to the closed form. Co-expression of IκB kinase (IKK) 2 enhanced the FRET efficiency of the wild-type probe on the phagosome membrane. Furthermore, the enhanced phagosomal FRET signal in interferon-γ-activated macrophages was largely dependent on IKK2, and this kinase mediated a delay in phagosome-lysosome fusion. These results suggested that SNAP-23 phosphorylation at Ser95 played an important role in the regulation of SNARE-dependent membrane fusion during FcR-mediated phagocytosis.

  2. SpTransformer proteins from the purple sea urchin opsonize bacteria, augment phagocytosis, and retard bacterial growth

    PubMed Central

    Chou, Hung-Yen; Lun, Cheng Man

    2018-01-01

    The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker’s yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity. PMID:29738524

  3. The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy

    PubMed Central

    Ding, Ya-Hui; Qian, Lin-Yan; Pang, Jie; Lin, Jing-Yang; Xu, Qiang; Wang, Li-Hong; Huang, Dong-Sheng; Zou, Hai

    2017-01-01

    Atherosclerosis is an inflammatory disease regulated by several immune cells including lymphocytes, macrophages and dendritic cells. Gut probiotic bacteria like Lactobacilli have been shown immunomodificatory effects in the progression of atherogenesis. Some Lactobacillus stains can upregulate the activity of regulatory T-lymphocytes, suppress T-lymphocyte helper (Th) cells Th1, Th17, alter the Th1/Th2 ratio, influence the subsets ratio of M1/M2 macrophages, inhibit foam cell formation by suppressing macrophage phagocytosis of oxidized low-density lipoprotein, block the activation of the immune system with dendritic cells, which are expected to suppress the atherosclerosis-related inflammation. However, various strains can have various effects on inflammation. Some other Lactobacillus strains were found have potential pro-atherogenic effect through promote Th1 cell activity, increase pro-inflammatory cytokines levels as well as decrease anti-inflammatory cytokines levels. Thus, identifying the appropriate strains is essential to the therapeutic potential of Lactobacilli as an anti-atherosclerotic therapy. PMID:28938693

  4. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families.

    PubMed

    García-García, Erick; Prado-Alvarez, Maria; Novoa, Beatriz; Figueras, Antonio; Rosales, Carlos

    2008-01-01

    Various hemocyte cell types have been described in invertebrates, but for most species a functional characterization of different hemocyte cell types is still lacking. In order to characterize some immunological properties of mussel (Mytilus galloprovincialis) hemocytes, cells were separated by flow cytometry and their capacity for phagocytosis, production of reactive oxygen species (ROS), and production of nitric oxide (NO), was examined. Phosphatidylinositol 3-kinase (PI 3-K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) inhibitors were also used to biochemically characterize these cell responses. Four morphologically distinct subpopulations, designated R1-R4, were detected. R1, R2, and R3 cells presented different levels of phagocytosis towards zymosan, latex beads, and two bacteria species. Similarly, R1 to R3, but not R4, cells produced ROS, while all subpopulations produced NO, in response to zymosan. Internalization of all phagocytic targets was blocked by PI 3-K inhibition. In addition, internalization of latex particles, but not of bacteria, was partially blocked by PKC or ERK inhibition. Interestingly, phagocytosis of zymosan was impaired by PKC, or ERK inhibitors, only in R2 cells. Zymosan-induced ROS production was blocked by PI 3-K inhibition, but not by PKC, or ERK inhibition. In addition, zymosan-stimulated NO production was affected by PI 3-K inhibition in R1 and R2, but not in R3 or R4 cells. NO production in all cell types was unaffected by PKC inhibition, but ERK inhibition blocked it in R2 cells. These data reveal the existence of profound functional and biochemical differences in mussel hemocytes and indicate that M. galloprovincialis hemocytes are specialized cells fulfilling specific tasks in the context of host defense.

  5. Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis, Lmk 1819) hemocyte phagocytosis: modulation of spreading and oxidative response.

    PubMed

    Mosca, Francesco; Narcisi, Valeria; Calzetta, Angela; Gioia, Luisa; Finoia, Maria G; Latini, Mario; Tiscar, Pietro G

    2013-06-01

    Hemocytes are a critical component of the mussel defense system and the present study aims at investigating their spreading and oxidative properties during phagocytosis under in vivo experimental stress conditions. The spreading ability was measured by an automated cell analyzer on the basis of the circularity, a parameter corresponding to the hemocyte roundness. The oxidative activity was investigated by micromethod assay, measuring the respiratory burst as expression of the fluorescence generated by the oxidation of specific probe. Following the application of high temperature and exposure to air, there was evidence of negative modulation of spreading and oxidative response, as revealed by a cell roundness increase and fluorescence generation decrease. Therefore, the fall of respiratory burst appeared as matched with the inhibition of hemocyte morphological activation, suggesting a potential depression of the phagocytosis process and confirming the application of the circularity parameter as potential stress marker, both in experimental and field studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Agglutination and phagocytosis of foreign abiotic particles by hemocytes of the blowely, Calliphora vicina in vivo. I. Dynamics of hemocyte activity during larval development].

    PubMed

    Kind, T V

    2005-01-01

    Three types of Calliphora larval hemocytes have been revealed to be involved in phagocytosis of abiotic foreign particles: thrombocytoids, larval plasmatocytes and plasmatocytes I. Thrombocytoids are the quickest to respond to the appearance of invaders. The onset of test particle entrapment by thrombocytoid cytoplasmic fragments was observed, depending on the larval age within 0.5-5.0 min after injection. Separated fragments were fused, forming strands or roundish agglutinates. Phagocytosis of carbon, carmine or Indian ink particles by larval plasmatocytes occurs far more lately, and no earlier than 20-30 min after injection. Plasmatocytes I are capable of foreign particles adhesion on their surface, with a subsequent morule formation, and of engulfing these particles. These two events start in different time periods: adhesion occurs in 5-10 min, while phagocytosis is observed in 1--3 h. The rate of test particle entrapment and stability of agglutinales clearly depends on the larval age. The most pronounced reaction of hemocytes to foreign particles may be observed by the end of feeding and crop emptying. The second, somewhat less expressed rise of activity occurs in mature larvae not long before the onset of pupariation. Diapause induction is accompanied by reducing activities of both plasmatocytes and thrompocytoids. The importance of different hemocyte types in cellular immune reaction of Calliphora vicina larvae, and co-ordination between plasmatocytes and thrombocytoids are discussed.

  7. Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

    PubMed Central

    Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.

    2013-01-01

    ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578

  8. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro.

    PubMed

    Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe

    2007-01-01

    Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our

  9. Sialoglycoproteins in morphological distinct stages of Mucor polymorphosporus and their influence on phagocytosis by human blood phagocytes.

    PubMed

    Almeida, Catia Amancio; de Campos-Takaki, Galba Maria; Portela, Maristela Barbosa; Travassos, Luiz R; Alviano, Celuta Sales; Alviano, Daniela Sales

    2013-10-01

    The possible role of sialic acids in host cells-fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.

  10. EFFECT OF INHALED ENDOTOXIN ON AIRWAY AND CIRCULATING INFLAMMATORY CELL PHAGOCYTOSIS AND CD11B EXPRESSION IN ATOPIC ASTHMATIC SUBJECTS

    EPA Science Inventory

    Effect of inhaled endotoxin on airway and circulating inflammatory cell phagocytosis and CD11b expression in atopic asthmatic subjects

    Neil E. Alexis, PhD, Marlowe W. Eldridge, MD, David B. Peden, MD, MS

    Chapel Hill and Research Triangle Park, NC

    Backgrou...

  11. Cytokine production of the neutrophils and macrophages in time of phagocytosis under influence of infrared low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rudik, Dmitry V.; Tikhomirova, Elena I.; Tuchina, Elena S.

    2006-08-01

    Influence of infrared low-level laser irradiation (LLLI) on induction of synthesis of some cytokines such as interleykin-1 (Il-1), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleykin-8 (Il-8) and interleykin-4 (Il-4) by the neutrophils and macrophages in time of bacterial cells phagocytosis that was searched. As the object of analysis we used peritoneal macrophages from white mice and neutrophils from peripheral blood of healthy donors. We used the laser diod with spectrum maximum of 850 nm with doses 300, 900 and 1500 mJ (exposition -60, 180 and 300 s respectively; capacity - 5 mW). We carried out the Enzyme-Linked Immunospot Assay (ELISA) to determine cytokine content during phagocytosis after 3 h and 6 h. We found dynamics in production of the cytokines, which was different for the neutrophils and macrophages. We showed that the infrared LLLI has significant stimulating activity on the proinflammatory cytokines production by neutrophils and macrophages. Moreover we revealed dynamics changing in the Il-8 and Il-4 production.

  12. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.A.

    1983-08-01

    The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determinedmore » as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.« less

  13. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    PubMed

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  14. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    PubMed

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  15. The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes.

    PubMed

    Kanno, Sanae; Hirano, Seishiro; Chiba, Shoetsu; Takeshita, Hiroshi; Nagai, Tomonori; Takada, Meri; Sakamoto, Kana; Mukai, Toshiji

    2015-01-01

    Long fibers, such as asbestos and carbon nanotubes (CNTs), are more potent activators of inflammatory and genotoxicity than short or tangled fibers. Fibrous particles trigger interleukin (IL)-1β secretion and cause inflammatory diseases through NLRP3 inflammasomes in phagocytotic cells. However, the mechanism involved in fibrous particle-induced inflammation has not been well documented. In this study, we focused on GTPase effector Rho-kinases (ROCK1, and 2), which are known to be involved in a wide range of cellular functions such as adhesion, regulation of cytoskeleton, and phagocytosis. We examined whether ROCKs are associated with multi-walled CNT (MWCNT)- or asbestos-induced IL-1β secretion in human monocytic THP-1 cells using a selective inhibitor and small interfering RNA. THP-1 cells were differentiated to macrophages by PMA and were exposed to MWCNTs, crocidolite asbestos or lipopolysaccharide (LPS) in the presence or absence of Y27632 (ROCK inhibitor) or Z-YVAD (caspase-1 inhibitor). Exposure of the cells to MWCNTs or asbestos provoked IL-1β secretion, but this secretion was suppressed by both Y27632 and Z-YVAD, whereas LPS-induced IL-1β secretion was inhibited only by Z-YVAD and not by Y27632. siRNA designed for knockdown of both ROCK1 and ROCK2 suppressed MWCNT- and asbestos-induced IL-1β secretion, but did not change LPS-induced IL-1β secretion. Moreover, Y27632 suppressed pro-IL-1β protein levels and the release of activated-cathepsin B and activated-caspase-1 induced by MWCNTs or asbestos. In contrast, LPS-induced pro-IL-1β protein was not suppressed by Y27632. These results suggest that ROCKs are involved in fibrous particle-induced inflammasome responses in THP-1 cells.

  16. A TNF-Regulated Recombinatorial Macrophage Immune Receptor Implicated in Granuloma Formation in Tuberculosis

    PubMed Central

    Streich, Roswita; Breysach, Caroline; Raddatz, Dirk; Oniga, Septimia; Peccerella, Teresa; Findeisen, Peter; Kzhyshkowska, Julia; Gratchev, Alexei; Schweyer, Stefan; Saunders, Bernadette; Wessels, Johannes T.; Möbius, Wiebke; Keane, Joseph; Becker, Heinz; Ganser, Arnold; Neumaier, Michael; Kaminski, Wolfgang E.

    2011-01-01

    Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR) αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis. PMID:22114556

  17. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    PubMed Central

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  18. Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages.

    PubMed

    Wong, Ching-On; Gregory, Steven; Hu, Hongxiang; Chao, Yufang; Sepúlveda, Victoria E; He, Yuchun; Li-Kroeger, David; Goldman, William E; Bellen, Hugo J; Venkatachalam, Kartik

    2017-06-14

    Clearance of bacteria by macrophages involves internalization of the microorganisms into phagosomes, which are then delivered to endolysosomes for enzymatic degradation. These spatiotemporally segregated processes are not known to be functionally coupled. Here, we show that lysosomal degradation of bacteria sustains phagocytic uptake. In Drosophila and mammalian macrophages, lysosomal dysfunction due to loss of the endolysosomal Cl - transporter ClC-b/CLCN7 delayed degradation of internalized bacteria. Unexpectedly, defective lysosomal degradation of bacteria also attenuated further phagocytosis, resulting in elevated bacterial load. Exogenous application of bacterial peptidoglycans restored phagocytic uptake in the lysosomal degradation-defective mutants via a pathway requiring cytosolic pattern recognition receptors and NF-κB. Mammalian macrophages that are unable to degrade internalized bacteria also exhibit compromised NF-κB activation. Our findings reveal a role for phagolysosomal degradation in activating an evolutionarily conserved signaling cascade, which ensures that continuous uptake of bacteria is preceded by lysosomal degradation of microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development of monoclonal antibodies against IgM of sea bass (Lateolabrax japonicus) and analysis of phagocytosis by mIgM+ lymphocytes.

    PubMed

    Yang, Shun; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2018-07-01

    B cells in some fish were recently found to have potent phagocytic activities. Sea bass (Lateolabrax japonicus) as an important economical marine fish species, it could be used as an appropriate model to study the functions of B cells in phagocytosis. In the paper, three positive hybridomas designated as 1E11, 2H4 and 3F3 secreting monoclonal antibodies (MAbs) against sea bass immunoglobulin M (IgM) were produced and used as research tools. Indirect enzyme-linked immunosorbent assay showed that all the three MAbs had a high binding capacity with sea bass serum IgM. Western blotting analysis showed that all the three MAbs were specific for the heavy chain of sea bass IgM. Indirect immunofluorescence assay (IFA) analysis suggested that both MAbs 1E11 and 2H4 could recognize membrane-bound IgM (mIgM) molecule of sea bass. Specificity analysis showed that three MAbs had no cross-reactions with other six teleosts IgMs. Flow cytometric analysis exhibited that the percentages of sea bass mIgM + lymphocytes in peripheral blood, spleen and pronephros were 25.6%, 21.1%, and 17.5%, respectively. Moreover, we found that the mIgM + lymphocytes of sea bass could phagocytose fluorescence microspheres and Lactococcus lactis, but lower phagocytosis rates of L. lactis was observed. These results demonstrated that the MAbs produced in this paper could be used as tools to study secretory IgM and mIgM + lymphocytes of sea bass, and mIgM + lymphocytes might also play an important role in innate immunity of sea bass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes.

    PubMed

    Elsori, Deena H; Yakubenko, Valentin P; Roome, Talat; Thiagarajan, Praveena S; Bhattacharjee, Ashish; Yadav, Satya P; Cathcart, Martha K

    2011-09-01

    Zymosan, a mimic of fungal pathogens, and its opsonized form (ZOP) are potent stimulators of monocyte NADPH oxidase, resulting in the production of O(2)(.-), which is critical for host defense against fungal and bacterial pathogens and efficient immune responses; however, uncontrolled O(2)(.-) production may contribute to chronic inflammation and tissue injury. Our laboratory has focused on characterizing the signal transduction pathways that regulate NADPH oxidase activity in primary human monocytes. In this study, we examined the involvement of various pattern recognition receptors and found that Dectin-1 is the primary receptor for zymosan stimulation of O(2)(.-) via NADPH oxidase in human monocytes, whereas Dectin-1 and CR3 mediate the activation by ZOP. Further studies identified Syk and Src as important signaling components downstream of Dectin-1 and additionally identified PKCδ as a novel downstream signaling component for zymosan-induced O(2)(.-) as well as phagocytosis. Our results show that Syk and Src association with Dectin-1 is dependent on PKCδ activity and expression and demonstrate direct binding between Dectin-1 and PKCδ. Finally, our data show that PKCδ and Syk but not Src are required for Dectin-1-mediated phagocytosis. Taken together, our data identify Dectin-1 as the major PRR for zymosan in primary human monocytes and identify PKCδ as a novel downstream signaling kinase for Dectin-1-mediated regulation of monocyte NADPH oxidase and zymosan phagocytosis.

  1. Role of Yersinia pestis Toxin Complex Family Proteins in Resistance to Phagocytosis by Polymorphonuclear Leukocytes

    PubMed Central

    Carmody, Aaron B.; Jarrett, Clayton O.; Hinnebusch, B. Joseph

    2013-01-01

    Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc+ and Tc− Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA– or YipA–β-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea. PMID:23959716

  2. Opsonization of Toxoplasma gondii tachyzoites with nonspecific immunoglobulins promotes their phagocytosis by macrophages and inhibits their proliferation in nonphagocytic cells in tissue culture.

    PubMed

    Vercammen, M; Scorza, T; El Bouhdidi, A; Van Beeck, K; Carlier, Y; Dubremetz, J F; Verschueren, H

    1999-11-01

    We have recently shown that Toxoplasma gondii tachyzoites grown in in vitro culture can bind unspecific immunoglobulin (Ig) through their Fc moiety. We show now that Fc receptors are also present on T. gondii within the host animal, and that intraperitoneal parasites in immunocompetent mice are saturated with unspecific Ig. We have also investigated the effect of the parasite's Fc receptor on the interaction of tachyzoites with mammalian cells, using the Vero cell line as a model for nonphagocytic host cells and murine peritoneal macrophages in primary culture as a model for phagocytic cells. Coating of tachyzoites with parasite-unrelated Ig did not enhance their invasive capacity in either target cell type, but slightly decreased the parasite proliferation. Moreover, phagocytosis by macrophages was increased by approximately 50% when parasites were coated with unspecific Ig. These results indicate that the Fc receptor on T. gondii affects the balance between invasion and phagocytosis in a way that is detrimental to the parasites.

  3. EZH2: a pivotal regulator in controlling cell differentiation.

    PubMed

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  4. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  5. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    PubMed Central

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  6. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    PubMed Central

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  7. A novel modulation of structural and functional changes of mouse bone marrow derived dendritic cells (BMDCs) by interleukin-2(IL-2).

    PubMed

    Hu, Xiaofang; Cao, Yan; Meng, Yiming; Hou, Mingxiao

    2015-01-01

    IL-2 is a pleiotropic cytokine produced by T cell after antigen activation of T cell and it is so called T cell growth factor. A large number of documents suggest that Il-2 plays pivotal roles in the immune response and now Il-2 is an approved drug being used for various kinds of diseases such as cancer and dermatitis. (1) The aim of present exploration was to look at effect of IL-2 on structural, phenotypic and functional maturation of murine BMDCs. The structural and phenotypic maturation of BMDCs under influence of IL-2 were evaluated by light microscope and flow cytometry (FCM). The functional maturation of BMDCs was confirmed by cytochemistry assay, FITC-dextran, acid phosphatase (ACP) activity, bio-assay and enzyme linked immunosorbent assay (ELISA).We elucidated that IL-2 up-regulated the expression of key surface markers such as: CD80, CD83, CD86, CD40 and MHC II molecules on BMDCs, down-regulated phagocytosis activity, induced more production of IL-12 and TNF-α secreted by BMDCs. Therefore it can be concluded that IL-2 effectively enhance the maturation of BMDCs. Our results provide direct evidence to support IL-2 would be used as a potent adjuvant in preparation of DC-based vaccines, as well as an immune remedy for cancer situation.

  8. Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ω-3 supplementation.

    PubMed

    Famenini, Sam; Rigali, Elizabeth A; Olivera-Perez, Henry M; Dang, Johnny; Chang, Michael To; Halder, Ramesh; Rao, Rammohan V; Pellegrini, Matteo; Porter, Verna; Bredesen, Dale; Fiala, Milan

    2017-01-01

    Monocyte/macrophages of patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) are defective in phagocytosis and degradation amyloid β 1-42 (Aβ 1-42 ), but are improved by ω-3 fatty acids (ω-3s). The hypothesis of this study was that active Aβ 1-42 phagocytosis by macrophages prevents brain amyloidosis and thus maintains cognition. We studied the effects of self-supplementation with a drink with ω-3s, antioxidants, and resveratrol on Mini-Mental State Examination (MMSE) scores, macrophage M1M2 phenotype [the ratio of inflammatory cluster of differentiation (CD)54+CD80 and proresolution markers CD163+CD206], and Aβ 1-42 phagocytosis in patients initially diagnosed as having MCI or subjective cognitive impairment (SCI). At baseline, the median MMSE score in patients in both the apolipoprotein E (ApoE) ε3/ε3 and ApoE ε3/ε4 groups was 26.0 and macrophage Aβ 1-42 phagocytosis was defective. The MMSE rate of change increased in the ApoE ε3/ε3 group a median 2.2 points per year (P = 0.015 compared to 0) but did not change in the ApoE ε3/ε4 group (P = 0.014 between groups). In the ApoE ε3/ε3 group, all patients remained cognitively stable or improved; in the ApoE ε3/ε4 group, 1 recovered from dementia, but 3 lapsed into dementia. The macrophage phenotype polarized in patients bearing ApoE ε3/ε3 to an intermediate (green zone) M1-M2 type at the rate of 0.226 U/yr, whereas in patients bearing ApoE ε3/ε4, polarization was negative (P = 0.08 between groups). The baseline M1M2 type in the extreme M1 (red zone) or M2 (white zone) was unfavorable for cognitive outcome. Aβ 1-42 phagocytosis increased in both ApoE groups (P = 0.03 in each groups). In vitro, the lipidic mediator resolvin D1 (RvD1) down regulated the M1 type in patients with ApoE ε3/ε3 but in some patients with ε3/ε4, paradoxically up-regulated the M1 type. Antioxidant/ω-3/resveratrol supplementation was associated with favorable immune and cognitive responses in Apo

  9. Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages

    PubMed Central

    Strijbis, Karin; Tafesse, Fikadu G.; Fairn, Gregory D.; Witte, Martin D.; Dougan, Stephanie K.; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K.; Fink, Gerald R.; Grinstein, Sergio; Ploegh, Hidde L.

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans. PMID:23825946

  10. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages.

    PubMed

    Strijbis, Karin; Tafesse, Fikadu G; Fairn, Gregory D; Witte, Martin D; Dougan, Stephanie K; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K; Fink, Gerald R; Grinstein, Sergio; Ploegh, Hidde L

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.

  11. [Agglutination and phagocytosis of foreign abiotic particles by bluebottle Calliphora vicina haemocytes in vivo. II. Influence of the previous septic immune induction on haemocytic activity].

    PubMed

    Kind, T V

    2010-01-01

    The rate of Calliphora vicina haemocytic defense reaction to foreign particles injection depends on the larval age and on the previous bacterial immunization. Immunization of crop-empting larvae induces an evident increase in particles phagocytosis by juvenile plasmatocytes in 24 h after injection. Both the hemogram and the pattern of cellular defense reaction change significantly after crop-empting. Immunized larvae start intensive adhesion of foreign particles to plasmatocytes surface and formation of great aggregations of plasmatocytes (morules) no longer than in 34 min after injection. The period of particle-haemocyte adhesion is short-termed and no more than after 30 min cell aggregates dissociate and adhered charcoal particles pass to thrombocydoidal agglutinates. Unimmunized control larvae of the same age have shown no adhesion and morules formation. In immunized wadering and diapausing larvae, formation of capsules consisting of central thrombocydoidal agglutinate filled with alien particles and adherent plasmatocytes I is intensified. In contrast to moru-les, this capsule formation is not accompanied by charcoal particles adhesion to plasmatocytes. Immunization of mature larvae of C. vicina shown no prominent influence on both the rate of phagocytosis and the hyaline cells differentiation. It might be supposed that the receptors system is complex and the immunization both the mechanisms of foreigners recognition (adhesion, morulation and incapsulation) and the far more lately occurring phagocytosis.

  12. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    PubMed Central

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  13. Inhaled corticosteroid treatment for 6 months was not sufficient to normalize phagocytosis in asthmatic children.

    PubMed

    da Silva-Martins, Carmen Lívia Faria; Couto, Shirley Claudino; Muniz-Junqueira, Maria Imaculada

    2013-08-30

    Corticosteroids are the first-line therapy for asthma; however, the effect of corticosteroids on the innate immune system remains unclear. This study's objective was to evaluate the effect of inhaled corticosteroid therapy (ICT) on phagocytic functions. To evaluate the impact of ICT, the phagocytosis of Saccharomyces cerevisiae by blood monocytes and neutrophils and the production of superoxide anions were assessed before and after three and six months of ICT treatment in 58 children with persistent asthma and 21 healthy controls. We showed that the phagocytic capacity of monocytes and neutrophils that occurred via pattern recognition receptors or was mediated by complement and immunoglobulin receptors in asthmatic children before treatment was significantly lower than in healthy controls (p<0.05, Mann-Whitney test) and was not influenced by the severity of the clinical form of the disease. Although there was clinical improvement with treatment, ICT for 6 months was not sufficient to normalize phagocytosis by the phagocytes. Superoxide anion production was also decreased in the asthmatic children before treatment, and ICT normalized the O- production only for children with mild persistent asthma when assessed at baseline but caused this function to decrease after stimulation (p<0.05, Kruskal-Wallis test). Our data suggest that an immunodeficiency in phagocytes remained even after treatment. However, this immunodeficiency does not appear to correspond with the clinical evolution of asthma because an improvement in clinical parameters occurred.

  14. Hyperforin is a modulator of inducible nitric oxide synthase and phagocytosis in microglia and macrophages.

    PubMed

    Kraus, Birgit; Wolff, Horst; Elstner, Erich F; Heilmann, Jörg

    2010-06-01

    Upon activation, microglia, the immunocompetent cells in the brain, get highly phagocytic and release pro-inflammatory mediators like nitric oxide (NO). Excessive NO production is pivotal in neurodegenerative disorders, and there is evidence that abnormalities in NO production and inflammatory responses may at least support a range of neuropsychiatric disorders, including depression. Although extracts of St. John's wort (Hypericum perforatum L.) have been used for centuries in traditional medicine, notably for the treatment of depression, there is still considerable lack in scientific knowledge about the impact on microglia. We used N11 and BV2 mouse microglia, as well as RAW 264.7 macrophages to investigate the effects of St. John's wort extract and constituents thereof on NO production Moreover, flow cytometry and fluorescence microscopy were employed to analyze the influence on phagocytosis, transcription factor activation states, and cell motility. We found that extracts of St. John's wort efficiently suppress lipopolysaccharide-induced NO release and identified hyperforin as the responsible compound, being effective at concentrations between 0.25 and 0.75 microM. The reduced NO production was mediated by diminished inducible nitric oxide synthase expression on the mRNA and protein level. In addition, at similar concentrations, hyperforin reduced zymosan phygocytosis to 20-40% and putatively acted by downregulating the CD206 macrophage mannose receptor and modulation of cell motility. We found that the observed effects correlate with a suppression of the activated state of Nf-kappaB and phospho-CREB, while c-JUN, STAT1, and HIF-1alpha activity and cyclooxygenase-2 expression remained unaffected by hyperforin. These results reveal that hyperforin influences pro-inflammatory and immunological responses of microglia that are involved in the progression of neuropathologic disorders.

  15. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms.

    PubMed

    Pilling, Carissa; Cooper, Jonathan A

    2017-09-07

    Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.

  16. Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation

    PubMed Central

    Basnet, Harihar; Bessie Su, Xue; Tan, Yuliang; Meisenhelder, Jill; Merkurjev, Daria; Ohgi, Kenneth A.; Hunter, Tony; Pillus, Lorraine; Rosenfeld, Michael G.

    2014-01-01

    Post-translational histone modifications play critical roles in regulating transcription, the cell cycle, DNA replication and DNA damage repair1. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation, or termination is of particular interest. Here, we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals, based on a phosphorylation of a highly-conserved tyrosine residue, Y57, in histone H2A that is mediated by an unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of H2A-Y57 in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2α, the catalytic subunit of CK2, binds across RNA polymerase II-transcribed coding genes and active enhancers. Mutation of Y57 causes a loss of H2B mono-ubiquitylation as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and H2A-Y57F mutation enhance the H2B deubiquitylation activity of the SAGA complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A. PMID:25252977

  17. PD-1 expression by tumor-associated macrophages inhibits phagocytosis and tumor immunity

    PubMed Central

    Gordon, Sydney R.; Maute, Roy L.; Dulken, Ben W.; Hutter, Gregor; George, Benson M.; McCracken, Melissa N.; Gupta, Rohit; Tsai, Jonathan M.; Sinha, Rahul; Corey, Daniel; Ring, Aaron M.; Connolly, Andrew J.; Weissman, Irving L.

    2017-01-01

    Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor that is upregulated on activated T cells to induce immune tolerance.1,2 Tumor cells frequently overexpress the ligand for PD-1, programmed cell death ligand 1 (PD-L1), facilitating escape from the immune system.3,4 Monoclonal antibodies blocking PD-1/PD-L1 have shown remarkable clinical efficacy in patients with a variety of cancers, including melanoma, colorectal cancer, non-small cell lung cancer, and Hodgkin’s lymphoma.5–9 Although it is well-established that PD-1/PD-L1 blockade activates T cells, little is known about the role that this pathway may have on tumor-associated macrophages (TAMs). Here we show that both mouse and human TAMs express PD-1. TAM PD-1 expression increases over time in mouse models, and with increasing disease stage in primary human cancers. TAM PD-1 expression negatively correlates with phagocytic potency against tumor cells, and blockade of PD-1/PD-L1 in vivo increases macrophage phagocytosis, reduces tumor growth, and lengthens survival in mouse models of cancer in a macrophage-dependent fashion. Our results suggest that PD-1/PD-L1 therapies may also function through a direct effect on macrophages, with significant implications for treatment with these agents. PMID:28514441

  18. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  19. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  20. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  1. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  2. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  3. 25 CFR 249.2 - Area regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Area regulations. 249.2 Section 249.2 Indians BUREAU OF... Provisions § 249.2 Area regulations. (a) The Secretary of the Interior may upon request of an Indian tribe, request of a State Governor, or upon his own motion, and upon finding that Federal regulation of Indian...

  4. 25 CFR 249.2 - Area regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Area regulations. 249.2 Section 249.2 Indians BUREAU OF... Provisions § 249.2 Area regulations. (a) The Secretary of the Interior may upon request of an Indian tribe, request of a State Governor, or upon his own motion, and upon finding that Federal regulation of Indian...

  5. The phagocytosis and toxicity of amorphous silica.

    PubMed

    Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A

    2011-02-02

    Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37 °C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference

  6. 25 CFR 167.2 - General regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false General regulations. 167.2 Section 167.2 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.2 General regulations. Part 166 of this subchapter authorizes the Commissioner of Indian Affairs to regulate...

  7. 25 CFR 167.2 - General regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false General regulations. 167.2 Section 167.2 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.2 General regulations. Part 166 of this subchapter authorizes the Commissioner of Indian Affairs to regulate...

  8. Asbestos-induced endothelial cell activation and injury. Demonstration of fiber phagocytosis and oxidant-dependent toxicity.

    PubMed

    Garcia, J G; Gray, L D; Dodson, R F; Callahan, K S

    1988-10-01

    Vascular endothelial cell injury is important in the development of a variety of chronic interstitial lung disorders. However, the involvement of such injury in the inflammatory response associated with the inhalation of asbestos fibers is unclear and the mechanism of asbestos fiber cytotoxicity remains unknown. In the present study, human umbilical vein endothelial cells were challenged with amosite asbestos and several parameters of cellular function were examined. Electron microscopic examination revealed that endothelial cell exposure to asbestos resulted in active phagocytosis of these particulates. Biochemical evidence of dose-dependent asbestos-mediated endothelial cell activation was indicated by increased metabolism of arachidonic acid. For example, amosite asbestos (500 micrograms/ml) produced a ninefold increase in prostacyclin (PGI2) levels over those levels in non-exposed cells. Incubation of human endothelial cells with asbestos fibers induced specific 51Cr release in both a dose- and time-dependent fashion indicative of cellular injury. Injury induced by amosite asbestos was not significantly attenuated by treatment of the endothelial cell monolayer with either the iron chelator deferoxamine, which prevents hydroxyl radical (.OH) formation, or by the superoxide anion (O2-) scavenger, superoxide dismutase. However, significant dose-dependent protection was observed with the hydrogen peroxide (H2O2) scavenger, catalase. Chelation of elemental iron present within amosite asbestos fibers by deferoxamine produced a 33% reduction in asbestos cytotoxicity, suggesting a potential role for hydroxyl radical-mediated injury via the iron-catalyzed Haber-Weiss reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Divergence of macrophage phagocytic and antimicrobial programs in leprosy.

    PubMed

    Montoya, Dennis; Cruz, Daniel; Teles, Rosane M B; Lee, Delphine J; Ochoa, Maria Teresa; Krutzik, Stephan R; Chun, Rene; Schenk, Mirjam; Zhang, Xiaoran; Ferguson, Benjamin G; Burdick, Anne E; Sarno, Euzenir N; Rea, Thomas H; Hewison, Martin; Adams, John S; Cheng, Genhong; Modlin, Robert L

    2009-10-22

    Effective innate immunity against many microbial pathogens requires macrophage programs that upregulate phagocytosis and direct antimicrobial pathways, two functions generally assumed to be coordinately regulated. We investigated the regulation of these key functions in human blood-derived macrophages. Interleukin-10 (IL-10) induced the phagocytic pathway, including the C-type lectin CD209 and scavenger receptors, resulting in phagocytosis of mycobacteria and oxidized low-density lipoprotein. IL-15 induced the vitamin D-dependent antimicrobial pathway and CD209, yet the cells were less phagocytic. The differential regulation of macrophage functional programs was confirmed by analysis of leprosy lesions: the macrophage phagocytosis pathway was prominent in the clinically progressive, multibacillary form of the disease, whereas the vitamin D-dependent antimicrobial pathway predominated in the self-limited form and in patients undergoing reversal reactions from the multibacillary to the self-limited form. These data indicate that macrophage programs for phagocytosis and antimicrobial responses are distinct and differentially regulated in innate immunity to bacterial infections.

  10. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors

    PubMed Central

    Catz, Sergio Daniel

    2013-01-01

    The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593

  11. Leishmania donovani Utilize Sialic Acids for Binding and Phagocytosis in the Macrophages through Selective Utilization of Siglecs and Impair the Innate Immune Arm.

    PubMed

    Roy, Saptarshi; Mandal, Chitra

    2016-08-01

    Leishmania donovani, belonging to a unicellular protozoan parasite, display the differential level of linkage-specific sialic acids on their surface. Sialic acids binding immunoglobulin-like lectins (siglecs) are a class of membrane-bound receptors present in the haematopoetic cell lineages interact with the linkage-specific sialic acids. Here we aimed to explore the utilization of sialic acids by Leishmania donovani for siglec-mediated binding, phagocytosis, modulation of innate immune response and signaling pathways for establishment of successful infection in the host. We have found enhanced binding of high sialic acids containing virulent strains (AG83+Sias) with siglec-1 and siglec-5 present on macrophages compared to sialidase treated AG83+Sias (AG83-Sias) and low sialic acids-containing avirulent strain (UR6) by flow cytometry. This specific receptor-ligand interaction between sialic acids and siglecs were further confirmed by confocal microscopy. Sialic acids-siglec-1-mediated interaction of AG83+Sias with macrophages induced enhanced phagocytosis. Additionally, sialic acids-siglec-5 interaction demonstrated reduced ROS, NO generation and Th2 dominant cytokine response upon infection with AG83+Sias in contrast to AG83-Sias and UR6. Sialic acids-siglecs binding also facilitated multiplication of intracellular amastigotes. Moreover, AG83+Sias induced sialic acids-siglec-5-mediated upregulation of host phosphatase SHP-1. Such sialic acids-siglec interaction was responsible for further downregulation of MAPKs (p38, ERK and JNK) and PI3K/Akt pathways followed by the reduced translocation of p65 subunit of NF-κβ to the nucleus from cytosol in the downstream signaling pathways. This sequence of events was reversed in AG83-Sias and UR6-infected macrophages. Besides, siglec-knockdown macrophages also showed the reversal of AG83+Sias infection-induced effector functions and downstream signaling events. Taken together, this study demonstrated that virulent parasite

  12. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity

    PubMed Central

    Losvik, Aleksandra; Beste, Lisa; Glinwood, Robert; Ivarson, Emelie; Stephens, Jennifer; Zhu, Li-Hua; Jonsson, Lisbeth

    2017-01-01

    Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses. PMID:29257097

  13. TAM receptors regulate multiple features of microglial physiology.

    PubMed

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

  14. 7 CFR 301.91-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.91-2 Section 301.91-2... Regulations § 301.91-2 Regulated articles. The following are regulated articles: (a) Logs, pulpwood, branches...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  15. 7 CFR 301.91-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.91-2 Section 301.91-2... Regulations § 301.91-2 Regulated articles. The following are regulated articles: (a) Logs, pulpwood, branches...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  16. 7 CFR 301.91-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.91-2 Section 301.91-2... Regulations § 301.91-2 Regulated articles. The following are regulated articles: (a) Logs, pulpwood, branches...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  17. 7 CFR 301.91-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.91-2 Section 301.91-2... Regulations § 301.91-2 Regulated articles. The following are regulated articles: (a) Logs, pulpwood, branches...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  18. 7 CFR 301.91-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.91-2 Section 301.91-2... Regulations § 301.91-2 Regulated articles. The following are regulated articles: (a) Logs, pulpwood, branches...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  19. 15 CFR 2.7 - Supplementary regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Supplementary regulations. 2.7 Section... SETTLEMENT OF CLAIMS UNDER THE FEDERAL TORT CLAIMS ACT § 2.7 Supplementary regulations. (a) The Assistant General Counsel for Finance and Litigation may from time to time issue such supplementary regulations or...

  20. STUDIES ON THE PATHOGENESIS OF FEVER. 13. THE EFFECT OF PHAGOCYTOSIS ON THE RELEASE OF ENDOGENOUS PYROGEN BY POLYMORPHONUCLEAR LEUKOCYTES.

    PubMed

    BERLIN, R D; WOOD, W B

    1964-05-01

    1. Phagocytosis promotes the release of endogenous pyrogen from polymorphonuclear leucocytes. 2. The release of pyrogen, though initiated by the phagocytic event, is not synchronous with it. 3. The postphagocytic release mechanism is not inhibited by sodium fluoride and, therefore, appears not to require continued production of energy by the cell. 4. The release process, on the other hand, is inhibited by arsenite, suggesting the participation of one or more sulfhydryl-dependent enzymes in the over-all reaction. 5. Particle for particle, the ingestion of heat-killed rough pneumococci causes the release of approximately 100 times as much pyrogen as the ingestion of polystyrene beads of the same size. 6. The pyrogen release mechanism of polymorphonuclear leucocytes separated directly from blood, unlike that of granulocytes in acute inflammatory exudates, is not readily activated by incubation of the cells in K-free saline. Despite this difference, both blood and exudate leucocytes following phagocytosis release large amounts of pyrogen, even in the presence of K(+). The fact that the postphagocytic reaction is uninhibited by the concentrations of K(+) which are present in plasma and extracellular fluids, suggests that this mechanism of pyrogen release may well operate in vivo. 7. As might be expected from the foregoing observations, the intravenous injection of a sufficiently large number of heat-killed pneumococci causes fever in the intact host. Intravenously injected polystyrene beads, on the other hand, are significantly less pyrogenic. Evidence is presented to support the conclusion that the fever in both instances is caused by pyrogen released from the circulating leucocytes which have phagocyted the injected particles. 8. The possible relationships of these findings to the pathogenesis of fevers caused by acute bacterial infections are discussed.

  1. Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity.

    PubMed

    Akoumianaki, Tonia; Kyrmizi, Irene; Valsecchi, Isabel; Gresnigt, Mark S; Samonis, George; Drakos, Elias; Boumpas, Dimitrios; Muszkieta, Laetitia; Prevost, Marie-Christine; Kontoyiannis, Dimitrios P; Chavakis, Triantafyllos; Netea, Mihai G; van de Veerdonk, Frank L; Brakhage, Axel A; El-Benna, Jamel; Beauvais, Anne; Latge, Jean-Paul; Chamilos, Georgios

    2016-01-13

    Concealing pathogen-associated molecular patterns (PAMPs) is a principal strategy used by fungi to avoid immune recognition. Surface exposure of PAMPs during germination can leave the pathogen vulnerable. Accordingly, β-glucan surface exposure during Aspergillus fumigatus germination activates an Atg5-dependent autophagy pathway termed LC3-associated phagocytosis (LAP), which promotes fungal killing. We found that LAP activation also requires the genetic, biochemical or biological (germination) removal of A. fumigatus cell wall melanin. The attenuated virulence of melanin-deficient A. fumigatus is restored in Atg5-deficient macrophages and in mice upon conditional inactivation of Atg5 in hematopoietic cells. Mechanistically, Aspergillus melanin inhibits NADPH oxidase-dependent activation of LAP by excluding the p22phox subunit from the phagosome. Thus, two events that occur concomitantly during germination of airborne fungi, surface exposure of PAMPs and melanin removal, are necessary for LAP activation and fungal killing. LAP blockade is a general property of melanin pigments, a finding with broad physiological implications. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    PubMed

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  3. Entamoeba histolytica: the over expression of a mutated EhRabB protein produces a decrease of in vitro and in vivo virulence.

    PubMed

    Juárez-Hernández, L J; García-Pérez, R M; Salas-Casas, A; García-Rivera, G; Orozco, E; Rodríguez, M A

    2013-03-01

    Vesicular trafficking, which is implicated in secretion of cytolytic molecules as well as in phagocytosis, plays an important role in the pathogenic mechanism of Entamoeba histolytica, the protozoan parasite causative of human amoebiasis. Thus, Rab GTPases, that are key regulators of vesicle trafficking, should be considered as molecules involved in the parasite virulence. EhRabB is a Rab protein located in cytoplasmic vesicles that are translocated to phagocytic mouths during ingestion of target cells, suggesting that this Rab protein is involved in phagocytosis. To prove this hypothesis, we over expressed the wild type EhrabB gene and a mutant gene encoding for a protein (RabBN118I) unable to bind guanine nucleotides and therefore constitutively inactive. The over expression of the mutated protein in E. histolytica trophozoites provoked a dominant negative effect, reflected in a significant decrease of both phagocytosis and cytopathic effect as well as in a failure to produce hepatic abscesses in hamsters. These results confirm that EhRabB is involved in phagocytosis and virulence of E. histolytica. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. SNAP-23 regulates phagosome formation and maturation in macrophages

    PubMed Central

    Sakurai, Chiye; Hashimoto, Hitoshi; Nakanishi, Hideki; Arai, Seisuke; Wada, Yoh; Sun-Wada, Ge-Hong; Wada, Ikuo; Hatsuzawa, Kiyotaka

    2012-01-01

    Synaptosomal associated protein of 23 kDa (SNAP-23), a plasma membrane–localized soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE), has been implicated in phagocytosis by macrophages. For elucidation of its precise role in this process, a macrophage line overexpressing monomeric Venus–tagged SNAP-23 was established. These cells showed enhanced Fc receptor–mediated phagocytosis. Detailed analyses of each process of phagocytosis revealed a marked increase in the production of reactive oxygen species within phagosomes. Also, enhanced accumulation of a lysotropic dye, as well as augmented quenching of a pH-sensitive fluorophore were observed. Analyses of isolated phagosomes indicated the critical role of SNAP-23 in the functional recruitment of the NADPH oxidase complex and vacuolar-type H+-ATPase to phagosomes. The data from the overexpression experiments were confirmed by SNAP-23 knockdown, which demonstrated a significant delay in phagosome maturation and a reduction in uptake activity. Finally, for analyzing whether phagosomal SNAP-23 entails a structural change in the protein, an intramolecular Förster resonance energy transfer (FRET) probe was constructed, in which the distance within a TagGFP2-TagRFP was altered upon close approximation of the N-termini of its two SNARE motifs. FRET efficiency on phagosomes was markedly enhanced only when VAMP7, a lysosomal SNARE, was coexpressed. Taken together, our results strongly suggest the involvement of SNAP-23 in both phagosome formation and maturation in macrophages, presumably by mediating SNARE-based membrane traffic. PMID:23087210

  5. 7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...

  6. 7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...

  7. 7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...

  8. 7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...

  9. 7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...

  10. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site

    PubMed Central

    Bothe, Ingo; Deng, Su; Baylies, Mary

    2014-01-01

    Cell-cell fusion is a regulated process that requires merging of the opposing membranes and underlying cytoskeletons. However, the integration between membrane and cytoskeleton signaling during fusion is not known. Using Drosophila, we demonstrate that the membrane phosphoinositide PI(4,5)P2 is a crucial regulator of F-actin dynamics during myoblast fusion. PI(4,5)P2 is locally enriched and colocalizes spatially and temporally with the F-actin focus that defines the fusion site. PI(4,5)P2 enrichment depends on receptor engagement but is upstream or parallel to actin remodeling. Regulators of actin branching via Arp2/3 colocalize with PI(4,5)P2 in vivo and bind PI(4,5)P2 in vitro. Manipulation of PI(4,5)P2 availability leads to impaired fusion, with a reduction in the F-actin focus size and altered focus morphology. Mechanistically, the changes in the actin focus are due to a failure in the enrichment of actin regulators at the fusion site. Moreover, improper localization of these regulators hinders expansion of the fusion interface. Thus, PI(4,5)P2 enrichment at the fusion site encodes spatial and temporal information that regulates fusion progression through the localization of activators of actin polymerization. PMID:24821989

  11. 7 CFR 301.89-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.89-2 Section 301.89-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-2 Regulated articles. The following are regulated articles: (a) Conveyances, including trucks, railroad cars, and other...

  12. 7 CFR 301.89-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.89-2 Section 301.89-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-2 Regulated articles. The following are regulated articles: (a) Conveyances, including trucks, railroad cars, and other...

  13. 7 CFR 301.89-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.89-2 Section 301.89-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-2 Regulated articles. The following are regulated articles: (a) Conveyances, including trucks, railroad cars, and other...

  14. 7 CFR 301.89-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.89-2 Section 301.89-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-2 Regulated articles. The following are regulated articles: (a) Conveyances, including trucks, railroad cars, and other...

  15. 7 CFR 301.89-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.89-2 Section 301.89-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-2 Regulated articles. The following are regulated articles: (a) Conveyances, including trucks, railroad cars, and other...

  16. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  17. Norcantharidin Facilitates LPS-Mediated Immune Responses by Up-Regulation of AKT/NF-κB Signaling in Macrophages

    PubMed Central

    Li, Ruimei; Tan, Binghe; Han, Honghui; Liu, Mingyao; Qian, Min; Du, Bing

    2012-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin, is a common used clinical drug to inhibit proliferation and metastasis of cancer cells. But the role of NCTD in modulating immune responses remains unknown. Here, we investigated the function and mechanism of NCTD in regulation of TLR4 associated immune response in macrophages. We evaluated the influence of NCTD on host defense against invaded pathogens by acute peritonitis mouse model, ELISA, Q-PCR, nitrite quantification, phagocytosis assay and gelatin zymography assay. Our data showed that the survival and the serum concentrations of IL-6 and TNF-α were all enhanced by NCTD significantly in peritonitis mouse model. Accordingly, LPS-induced cytokine, nitric oxide and MMP-9 production as well as the phagocytosis of bacteria were all up-regulated by NCTD in a dose dependent manner in both RAW264.7 cells and bone marrow-derived macrophages (BMMs). Then we further analyzed TLR4 associated signaling pathway by Western blot, Immunofluorescence and EMSA in the presence or absence of LPS. The phosphorylation of AKT and p65 at serine 536 but not serine 468 was enhanced obviously by NCTD in a dose dependent manner, whereas the degradation of IκBα was little effected. Consequently, the nuclear translocation and DNA binding ability of NF-κB was also increased by NCTD obviously in RAW264.7 cells. Our results demonstrated that NCTD could facilitate LPS-mediated immune response through promoting the phosphorylation of AKT/p65 and transcriptional activity of NF-κB, thus reprofiling the traditional anti-tumor drug NCTD as a novel immune regulator in promoting host defense against bacterial infection. PMID:22984593

  18. Influence of dichloromethylene bisphosphonate on the in vitro phagocytosis of hydroxyapatite particles by rat peritoneal exudate cells: an electron microscopic and chemiluminescence study.

    PubMed Central

    Hyvönen, P M; Kowolik, M J

    1992-01-01

    Transmission electron microscopy and standard chemiluminescence assays were used to investigate the in vivo effect of dichloromethylene bisphosphonate (clodronate) on the phagocytosis of pure hydroxyapatite particles by rat peritoneal macrophages and the production of chemiluminescence by the peritoneal exudate cells. Hydroxyapatite (control) and a hydroxyapatite/clodronate suspension (28 mumol clodronate per gram of hydroxyapatite, experimental) were injected into the peritoneum of rats, the clodronate dose being 10 micrograms/kg. Macrophages were harvested at 12, 24, 48, and 96 hours after injection and the particle phagocytosis was assessed by transmission electron microscopy. Hydroxyapatite alone was completely phagocytosed by 24 hours and hydroxyapatite reacted with clodronate was completely phagocytosed by 48 hours. From 48 hours onwards hydroxyapatite particle dissolution was observed in the phagosomes of cells in the two groups. At 48 hours the chemiluminescence produced by the peritoneal exudate cells was also measured. Clodronate and clodronate/hydroxyapatite enhanced cell activity on subsequent challenge with phorbol myristate acetate or zymosan. Clodronate seemed to exhibit an inhibitory effect on the phagocytic activity and an enhancement of the chemiluminescence production by the cells in this model, indicating that it was modifying the inflammatory cell response. Images PMID:1532298

  19. 7 CFR 301.74-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.74-2 Section 301.74-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Plum Pox § 301.74-2 Regulated articles. The following are regulated articles: (a) All plant material and plant parts of Prunus (stone fruit) species...

  20. 7 CFR 301.74-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.74-2 Section 301.74-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Plum Pox § 301.74-2 Regulated articles. The following are regulated articles: (a) All plant material and plant parts of Prunus (stone fruit) species...

  1. 7 CFR 301.74-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.74-2 Section 301.74-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Plum Pox § 301.74-2 Regulated articles. The following are regulated articles: (a) All plant material and plant parts of Prunus (stone fruit) species...

  2. 7 CFR 301.74-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.74-2 Section 301.74-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Plum Pox § 301.74-2 Regulated articles. The following are regulated articles: (a) All plant material and plant parts of Prunus (stone fruit) species...

  3. 7 CFR 301.74-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.74-2 Section 301.74-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Plum Pox § 301.74-2 Regulated articles. The following are regulated articles: (a) All plant material and plant parts of Prunus (stone fruit) species...

  4. EHMT2 is a metastasis regulator in breast cancer.

    PubMed

    Kim, Kwangho; Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-02-05

    Various modes of epigenetic regulation of breast cancer proliferation and metastasis have been investigated, but epigenetic mechanisms involved in breast cancer metastasis remain elusive. Thus, in this study, EHMT2 (a histone methyltransferase) was determined to be significantly overexpressed in breast cancer tissues and in Oncomine data. In addition, knockdown of EHMT2 reduced cell migration/invasion and regulated the expression of EMT-related markers (E-cadherin, Claudin 1, and Vimentin). Furthermore, treatment with BIX-01294, a specific inhibitor of EHMT2, affected migration/invasion in MDA-MB-231 cells. Therefore, our findings demonstrate functions of EHMT2 in breast cancer metastasis and suggest that targeting EHMT2 may be an effective therapeutic strategy for preventing breast cancer metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.

    PubMed

    Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori

    2017-08-19

    Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis. PMID:21311600

  7. The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6‐sialic acid deficiency

    PubMed Central

    Cabral, M. Guadalupe; Silva, Zélia; Ligeiro, Dário; Seixas, Elsa; Crespo, Hélio; Carrascal, Mylène A.; Silva, Mariana; Piteira, Ana R.; Paixão, Paulo; Lau, Joseph T.; Videira, Paula A.

    2013-01-01

    Summary Dendritic cells (DCs) play an essential role in immunity against bacteria by phagocytosis and by eliciting adaptive immune responses. Previously, we demonstrated that human monocyte‐derived DCs (MDDCs) express a high content of cell surface α2,6‐sialylated glycans. However, the relative role of these sialylated structures in phagocytosis of bacteria has not been reported. Here, we show that treatment with a sialidase significantly improved the capacity of both immature and mature MDDCs to phagocytose Escherichia coli. Desialylated MDDCs had a significantly more mature phenotype, with higher expression of MHC molecules and interleukin (IL)‐12, tumour necrosis factor‐α, IL‐6 and IL‐10 cytokines, and nuclear factor‐κB activation. T lymphocytes primed by desialylated MDDCs expressed more interferon‐γ when compared with priming by sialylated MDDCs. Improved phagocytosis required E. coli sialic acids, indicating a mechanism of host–pathogen interaction dependent on sialic acid moieties. The DCs harvested from mice deficient in the ST6Gal.1 sialyltransferase showed improved phagocytosis capacity, demonstrating that the observed sialidase effect was a result of the removal of α2,6‐sialic acid. The phagocytosis of different pathogenic E. coli isolates was also enhanced by sialidase, which suggests that modifications on MDDC sialic acids may be considered in the development of MDDC‐based antibacterial therapies. Physiologically, our findings shed new light on mechanisms that modulate the function of both immature and mature MDDCs, in the context of host–bacteria interaction. Hence, with particular relevance to DC‐based therapies, the engineering of α2,6‐sialic acid cell surface is a novel possibility to fine tune DC phagocytosis and immunological potency. PMID:23113614

  8. Inhibitory effect of heparin on neutrophil phagocytosis and burst production using a new whole-blood cytofluorometric method for determination.

    PubMed

    Salih, H; Husfeld, L; Adam, D

    1997-12-31

    The influence of heparin on Polymorphonuclear (PMN s) leukocytes was investigated using a new whole-blood cytofluorometric method (patent granted for the test with the number P 4334935.8-41) with Candida albicans and Staphylococcus aureus as test microorganisms. After comparing the effect of equal volumes of two widely used heparins we examined the influence of 5 different heparin-concentrations. Using both yeasts and bacteria, we found a significant, dose-depending decrease of the percentage of phagocyting PMN's and of phagocytized microorganisms as well as of the resulting percentage of PMN s producing respiratory burst along the kinetics. Furthermore we could demonstrate that heparin independently of phagocytosis produces a dose-dependent decrease of burst production of PMN's. Our results indicate that the use of heparins as anticoagulant for immunological investigations as well as clinically with patients under immunosuppressive therapy should be critically reconsidered. This applies even more because due to the evaluated dose-dependent decrease of phagocyte function no boundary for the inhibiting effect can be declared.

  9. Aquaporin-2 Regulation in Health and Disease

    PubMed Central

    Radin, M. Judith; Yu, Ming-Jiun; Stoedkilde, Lene; Miller, R. Lance; Hoffert, Jason D.; Frokiaer, Jorgen; Pisitkun, Trairak; Knepper, Mark A.

    2012-01-01

    Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous water balance disorders in humans and animals including those associated with polyuria (e.g. urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity) and dilutional hyponatremia (e.g. SIADH). Normal regulation of AQP2 by vasopressin involves two independent regulatory mechanisms: 1) short-term regulation of AQP2 trafficking to and from the apical plasma membrane, and 2) long term regulation of the total abundance of the AQP2 protein in the cells. Most water balance disorders are the result of dysregulation of processes that regulate the total abundance of AQP2 in collecting duct cells. In general, the level of AQP2 in a collecting duct cell is determined by a balance between production via translation of AQP2 mRNA and removal via degradation and/or secretion into the urine in exosomes. AQP2 abundance increases in response to vasopressin chiefly due to increased translation subsequent to increases in AQP2 mRNA. Vasopressin-mediated regulation AQP2 gene transcription is poorly understood, although several transcription factor binding elements in the 5’ flanking region of the AQP2 gene have been identified and candidate transcription factors corresponding to these element have been discovered in proteomics studies. Here we review progress in this area and discuss elements of vasopressin signaling in the collecting duct that may impinge on regulation of AQP2 in health and in the context of examples of polyuric diseases. PMID:23130944

  10. The receptor tyrosine kinase MerTK activates phospholipase C γ2 during recognition of apoptotic thymocytes by murine macrophages

    PubMed Central

    Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.

    2008-01-01

    Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform βII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent fashion. How these molecules cooperate to induce phagocytosis is unknown. Because the phosphatidylinositol-specific phospholipase (PI-PLC) PLC γ2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that MerTK signals via PLC γ2. To test this hypothesis, we examined the interaction of MerTK and PLC γ2 in resident murine PMø and in the murine Mø cell line J774A.1 (J774) following exposure to apoptotic thymocytes. We found that, as with PMø, J774 phagocytosis of apoptotic thymocytes was inhibited by antibody against MerTK. Western blotting and immunoprecipitation showed that exposure to apoptotic cells produced three time-dependent changes in PMø and J774: (1) tyrosine phosphorylation of MerTK; (2) association of PLC γ2 with MerTK; and (3) tyrosine phosphorylation of PLC γ2. Phosphorylation of PLC γ2 and its association with MerTK was also induced by cross-linking MerTK using antibody. A PI-PLC appears to be required for phagocytosis of apoptotic cells because the PI-PLC inhibitor Et-18-OCH3 and the PLC inhibitor U73122, but not the inactive control U73343, blocked phagocytosis without impairing adhesion. On apoptotic cell adhesion to Mø, MerTK signals at least in part via PLC γ2. PMID:14704368

  11. 7 CFR 319.77-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 319.77-2 Section 319.77-2....77-2 Regulated articles. In order to prevent the spread of gypsy moth from Canada into noninfested... section are designated as regulated articles. Regulated articles may be imported into the United States...

  12. 7 CFR 319.77-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 319.77-2 Section 319.77-2....77-2 Regulated articles. In order to prevent the spread of gypsy moth from Canada into noninfested... section are designated as regulated articles. Regulated articles may be imported into the United States...

  13. 7 CFR 319.77-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 319.77-2 Section 319.77-2....77-2 Regulated articles. In order to prevent the spread of gypsy moth from Canada into noninfested... section are designated as regulated articles. Regulated articles may be imported into the United States...

  14. 7 CFR 319.77-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 319.77-2 Section 319.77-2....77-2 Regulated articles. In order to prevent the spread of gypsy moth from Canada into noninfested... section are designated as regulated articles. Regulated articles may be imported into the United States...

  15. Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio.

    PubMed

    Wonglapsuwan, Monwadee; Kongmee, Pataraporn; Suanyuk, Naraid; Chotigeat, Wilaiwan

    2016-06-01

    Cyprinus carpio (koi) is one of the most popular ornamental fish. A major problem for C. carpio farming is bacterial infections especially by Aeromonas hydrophila. Previously studies had shown that the Phagocytosis Activating Protein (PAP) gene was involved in the innate immune response of animals. Therefore, we attempted to identify a role for the PAP gene in the immunology of C. carpio. The expression of the PAP was found in C. carpio whole blood and increased when the fish were stimulated by inactivated A. hydrophila. In addition, PAP-phMGFP DNA was injected as an immunostimulant. The survival rate and the phagocytic index were significantly increased in the A. hydrophila infected fish that received the PAP-phMGFP DNA immunostimulant. A chitosan-PAP-phMGFP nanoparticle was then developed and feeded into fish which infected with A. hydrophila. These fish had a significantly lower mortality rate than the control. Therefore, this research confirmed a key role for PAP in protection fish from bacterial infection and the chitosan-PAP-phMGFP nanoparticle could be a good prototype for fish immunostimulant in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 7 CFR 301.51-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green... (elm). (b) Any other article, product, or means of conveyance not covered by paragraph (a) of this...

  17. 25 CFR 518.2 - Who may petition for a certificate of self-regulation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Who may petition for a certificate of self-regulation... PROVISIONS SELF REGULATION OF CLASS II GAMING § 518.2 Who may petition for a certificate of self-regulation? A tribe may submit to the Commission a petition for self-regulation of class II gaming if, for the...

  18. 25 CFR 518.2 - Who may petition for a certificate of self-regulation?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Who may petition for a certificate of self-regulation... PROVISIONS SELF REGULATION OF CLASS II GAMING § 518.2 Who may petition for a certificate of self-regulation? A tribe may submit to the Commission a petition for self-regulation of class II gaming if, for the...

  19. 25 CFR 518.2 - Who may petition for a certificate of self-regulation?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Who may petition for a certificate of self-regulation... PROVISIONS SELF REGULATION OF CLASS II GAMING § 518.2 Who may petition for a certificate of self-regulation? A tribe may submit to the Commission a petition for self-regulation of class II gaming if, for the...

  20. 25 CFR 518.2 - Who may petition for a certificate of self-regulation?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Who may petition for a certificate of self-regulation... PROVISIONS SELF REGULATION OF CLASS II GAMING § 518.2 Who may petition for a certificate of self-regulation? A tribe may submit to the Commission a petition for self-regulation of class II gaming if, for the...

  1. 7 CFR 301.55-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.55-2 Section 301.55-2... Regulated articles. The following are regulated articles: (a) The South American cactus moth, in any living..., Nopalea, and Opuntia. (c) Any other product, article, or means of conveyance not listed in paragraphs (a...

  2. 7 CFR 301.55-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.55-2 Section 301.55-2... Regulated articles. The following are regulated articles: (a) The South American cactus moth, in any living..., Nopalea, and Opuntia. (c) Any other product, article, or means of conveyance not listed in paragraphs (a...

  3. 7 CFR 301.55-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.55-2 Section 301.55-2... Regulated articles. The following are regulated articles: (a) The South American cactus moth, in any living..., Nopalea, and Opuntia. (c) Any other product, article, or means of conveyance not listed in paragraphs (a...

  4. 7 CFR 301.55-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.55-2 Section 301.55-2... Regulated articles. The following are regulated articles: (a) The South American cactus moth, in any living..., Nopalea, and Opuntia. (c) Any other product, article, or means of conveyance not listed in paragraphs (a...

  5. 7 CFR 301.55-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.55-2 Section 301.55-2... Regulated articles. The following are regulated articles: (a) The South American cactus moth, in any living..., Nopalea, and Opuntia. (c) Any other product, article, or means of conveyance not listed in paragraphs (a...

  6. Comparative Characterization of Phosphatidic Acid Sensors and Their Localization during Frustrated Phagocytosis.

    PubMed

    Kassas, Nawal; Tanguy, Emeline; Thahouly, Tamou; Fouillen, Laetitia; Heintz, Dimitri; Chasserot-Golaz, Sylvette; Bader, Marie-France; Grant, Nancy J; Vitale, Nicolas

    2017-03-10

    Phosphatidic acid (PA) is the simplest phospholipid naturally existing in living organisms, but it constitutes only a minor fraction of total cell lipids. PA has attracted considerable attention because it is a phospholipid precursor, a lipid second messenger, and a modulator of membrane shape, and it has thus been proposed to play key cellular functions. The dynamics of PA in cells and in subcellular compartments, however, remains an open question. The recent generation of fluorescent probes for PA, by fusing GFP to PA-binding domains, has provided direct evidence for PA dynamics in different intracellular compartments. Here, three PA sensors were characterized in vitro, and their preferences for different PA species in particular lipidic environments were compared. In addition, the localization of PA in macrophages during frustrated phagocytosis was examined using these PA sensors and was combined with a lipidomic analysis of PA in intracellular compartments. The results indicate that the PA sensors display some preferences for specific PA species, depending on the lipid environment, and the localization study in macrophages revealed the complexity of intracellular PA dynamics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  8. RFX2 Is a Major Transcriptional Regulator of Spermiogenesis

    PubMed Central

    Kistler, W. Stephen; Baas, Dominique; Lemeille, Sylvain; Paschaki, Marie; Seguin-Estevez, Queralt; Barras, Emmanuèle; Ma, Wenli; Duteyrat, Jean-Luc; Morlé, Laurette

    2015-01-01

    Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis. PMID:26162102

  9. 7 CFR 301.51-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green... (sycamore), Populus (poplar), Salix (willow), Sorbus (mountain ash), and Ulmus (elm). (b) Any other article...

  10. 7 CFR 301.51-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green...), Sorbus (mountain ash), and Ulmus (elm). (b) Any other article, product, or means of conveyance not...

  11. 7 CFR 301.51-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green...), Sorbus (mountain ash), and Ulmus (elm). (b) Any other article, product, or means of conveyance not...

  12. 7 CFR 301.51-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green...), Sorbus (mountain ash), and Ulmus (elm). (b) Any other article, product, or means of conveyance not...

  13. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leadsmore » to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.« less

  14. Studying longterm effects of micro gravity on basic immune functions - The development of an application based on the measuring of phagocytosis activity of Blue Mussel hemocytes

    NASA Astrophysics Data System (ADS)

    Unruh, Eckehardt

    The immunsystem of astronauts exposed to microgravity is declining. Whether this effect is caused by microgravity or in combination with cosmic radiation is so far not clear. The immune system of vertebrates has several defence strategies but the basic immune response (Phagocytosis) is present as well in invertebrates. Phagocytotic cells are drawn by chemotaxis to the origin of an infection. By adhesion, ingestion and phagosome formation foreign particles, bacteria etc are transported inside of a cell were they are destroyed by native powerful biocides. Related to this biocide production is the formation of Reactive Oxygen Species (ROS). ROS can be measured by luminescence. The effects of microgravity will be simultaneously tested by exposure of phagocytotic hemocytes on orbit under microgravity, artificial gravity and, on ground under natural gravity. To address this purpose defined pools of Blue Mussel (Mytilus edulis) hemocytes will be launched frozen to the ISS. References for all batches will stay on ground. Shortly after arrival and then in three-month intervals batches of the same pool will be thawed and reconstituted. The phagocytosis related production of ROS will be stimulated with opsonized Zymosan. Luminescence will be measured and the data will be sent to ground. The experiment is scheduled for the Columbus Biolab early 2009. In preparation of this flight experiments the following procedures were investigated and the results will be presented: - a protocol for the cryoconservation and reconstituton of blue mussel hemocytes. - preliminary results of phagocytosis activity by reconstituted hemocytes after cryo-conservation and hemocytes without cryo-conservation treatment. The TRIPLELUX-B Experiment contributes to risk assessment concerning longterm immunotoxicity under space flight conditions. The immune system of invertebrates has not been studied so far in space. The choice of the phagocytes from invertebrates is justified by the claim to study the

  15. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.

    PubMed

    Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W

    2004-10-01

    The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.

  16. HIV-1 Promotes Intake of Leishmania Parasites by Enhancing Phosphatidylserine-Mediated, CD91/LRP-1-Dependent Phagocytosis in Human Macrophages

    PubMed Central

    Lodge, Robert; Ouellet, Michel; Barat, Corinne; Andreani, Guadalupe; Kumar, Pranav; Tremblay, Michel J.

    2012-01-01

    Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-β). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-β. Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-β, and enhanced Leishmania phosphatidylserine-mediated phagocytosis. PMID:22412921

  17. Methylation-regulated decommissioning of multimeric PP2A complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Cheng-Guo; Zheng, Aiping; Jiang, Li

    2017-12-01

    Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivationmore » of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.« less

  18. 48 CFR 3401.104-2 - Arrangement of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Arrangement of regulations. 3401.104-2 Section 3401.104-2 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION GENERAL ED ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 3401.104-2...

  19. Endothelium as a transducing surface.

    PubMed

    Ryan, U S

    1989-02-01

    Endothelial cells responses to a variety of agonists include release of endothelium dependent vasodilators, such as endothelium dependent relaxing factor (EDRF) and prostacyclin (PGI2). These substances act on vascular smooth muscle to cause relaxation and also have potent anti-aggregatory effects on platelets. A study of the mechanisms of signal transduction involved in these processes was undertaken. An investigation of intracellular calcium using FURA-2 and INDO-1 loaded endothelial cells shows transient elevation in response to vasodilator agonists. The calcium content of endothelial cells calculated using 45Ca flux techniques is increased in response to bradykinin and thrombin. Receptor activation leads to increased phosphoinositide turnover in endothelial cells and activates protein kinase C, the latter may be involved in feedback regulation. Patch clamp studies have demonstrated receptor-operated ionic channels in the endothelial cell membrane. Thus, intracellular calcium concentration is elevated in response to receptor activation, both as a result of liberation of calcium from intracellular stores and calcium entry from extracellular sources. Endothelial cells also respond to particulate stimuli. They can selectively bind and phagocytize bacteria. Phagocytosis leads to generation of superoxide aionin, a process which also seems to be controlled by elevation of intracellular calcium and activation of protein kinase C. In addition phagocytosis activates endothelial cells resulting in increased migration, division and further phagocytosis. All in all, the plethora of different endothelial responses to a variety of stimuli suggests a complex and multipotent cell type.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes.

    PubMed

    Voyich, Jovanka M; Sturdevant, Daniel E; Braughton, Kevin R; Kobayashi, Scott D; Lei, Benfang; Virtaneva, Kimmo; Dorward, David W; Musser, James M; DeLeo, Frank R

    2003-02-18

    Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host-cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.

  1. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: Relevance to inflammatory brain diseases.

    PubMed

    Ou, Amber; Gu, Ben J; Wiley, James S

    2018-04-01

    Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence

    PubMed Central

    Hsieh, Pei-Fang; Hsu, Chun-Ru; Chen, Chun-Tang; Lin, Tzu-Lung; Wang, Jin-Town

    2016-01-01

    ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen that causes several kinds of infections, including pneumonia, bacteremia, urinary tract infection and community-acquired pyogenic liver abscess (PLA). Adhesion is the critical first step in the infection process. Our previous work demonstrated that the transcellular translocation is exploited by K. pneumoniae strains to migrate from the gut flora into other tissues, resulting in systemic infections. However, the initial stages of K. pneumoniae infection remain unclear. In this study, we demonstrated that a K. pneumoniae strain deleted for yfgL (bamB) exhibited reduced adherence to and invasion of host cells; changed biogenesis of major β-barrel outer membrane proteins; decreased transcriptional expression of type-1 fimbriae; and increased susceptibility to vancomycin and erythromycin. The yfgL deletion mutant also had reduced ability to against neutrophil phagocytosis; exhibited decreased induction of host IL-6 production; and was profoundly attenuated for virulence in a K. pneumoniae model of bacteremia. Thus, the K. pneumoniae YfgL lipoprotein mediates in outer membrane proteins biogenesis and is crucial for anti-phagocytosis and survival in vivo. These data provide a new insight for K. pneumoniae attachment and such knowledge could facilitate preventive therapies or alternative therapies against K. pneumoniae. PMID:27029012

  3. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2.

    PubMed

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2008-02-01

    Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediates the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony-stimulating factor 1 (CSF-1)-induced actin polymerization, protrusion and cell migration. However, IRSp53 was not essential for Fcgamma-R-mediated phagocytosis, formation of podosomes or for formation of Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitable complex with WAVE2 and Abi1 in a Rac1-activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2-binding site (IRSp53DeltaSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion, suggesting that membrane recruitment was insufficient for regulation of WAVE2. Combined, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for production of CSF-1-induced F-actin-rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than one operating solely through membrane localization.

  4. Membrane targeting of WAVE2 is not sufficient for WAVE2 dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2*

    PubMed Central

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2009-01-01

    Summary Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediate the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony stimulating factor-1 (CSF-1)-induced actin polymerization, protrusion, and cell migration. However, IRSp53 was not essential for Fcγ-R-mediated phagocytosis, formation of podosomes or for Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitatable complex with WAVE2 and Abi1 in a Rac1 activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2 binding site (IRSp53ΔSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion suggesting thatt membrane recruitment was insufficient for WAVE2 regulation. Altogether, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for CSF-1-induced F-actin rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than solely through membrane localization. PMID:18198193

  5. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  6. 39 CFR 211.2 - Regulations of the Postal Service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulations, all regulations of other agencies of the United States continued in effect as postal regulations... 39 Postal Service 1 2011-07-01 2011-07-01 false Regulations of the Postal Service. 211.2 Section... REGULATIONS § 211.2 Regulations of the Postal Service. (a) The regulations of the Postal Service consist of...

  7. 29 CFR 510.2 - Purpose and scope of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Purpose and scope of regulations. 510.2 Section 510.2 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS... RICO General § 510.2 Purpose and scope of regulations. (a) The purpose of these regulations is to...

  8. 48 CFR 2301.105-2 - Arrangement of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Arrangement of regulations. 2301.105-2 Section 2301.105-2 Federal Acquisition Regulations System SOCIAL SECURITY ADMINISTRATION GENERAL SOCIAL SECURITY ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 2301.105-2 Arrangement...

  9. 48 CFR 2501.104-2 - Arrangement of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Arrangement of regulations. 2501.104-2 Section 2501.104-2 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Purpose, Authority, Issuance 2501.104-2 Arrangement of...

  10. Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry

    NASA Astrophysics Data System (ADS)

    Li, Wenyan; Houston, Kevin D.; Houston, Jessica P.

    2017-01-01

    Phase-sensitive flow cytometry (PSFC) is a technique in which fluorescence excited state decay times are measured as fluorescently labeled cells rapidly transit a finely focused, frequency-modulated laser beam. With PSFC the fluorescence lifetime is taken as a cytometric parameter to differentiate intracellular events that are challenging to distinguish with standard flow cytometry. For example PSFC can report changes in protein conformation, expression, interactions, and movement, as well as differences in intracellular microenvironments. This contribution focuses on the latter case by taking PSFC measurements of macrophage cells when inoculated with enhanced green fluorescent protein (EGFP)-expressing E. coli. During progressive internalization of EGFP-E. coli, fluorescence lifetimes were acquired and compared to control groups. It was hypothesized that fluorescence lifetimes would correlate well with phagocytosis because phagosomes become acidified and the average fluorescence lifetime of EGFP is known to be affected by pH. We confirmed that average EGFP lifetimes consistently decreased (3 to 2 ns) with inoculation time. The broad significance of this work is the demonstration of how high-throughput fluorescence lifetime measurements correlate well to changes that are not easily tracked by intensity-only cytometry, which is affected by heterogeneous protein expression, cell-to-cell differences in phagosome formation, and number of bacterium engulfed.

  11. 7 CFR 301.86-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.86-2 Section 301.86-2... articles. The following are regulated articles: (a) Pale cyst nematodes.2 2 Permit and other requirements... infested or associated field that can carry soil if moved out of the field. (i) Any other product, article...

  12. 7 CFR 301.86-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.86-2 Section 301.86-2... articles. The following are regulated articles: (a) Pale cyst nematodes.2 2 Permit and other requirements... infested or associated field that can carry soil if moved out of the field. (i) Any other product, article...

  13. 7 CFR 301.86-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.86-2 Section 301.86-2... articles. The following are regulated articles: (a) Pale cyst nematodes.2 2 Permit and other requirements... infested or associated field that can carry soil if moved out of the field. (i) Any other product, article...

  14. 48 CFR 1601.104-2 - Arrangement of regulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Arrangement of regulation. 1601.104-2 Section 1601.104-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM...

  15. 48 CFR 1601.104-2 - Arrangement of regulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Arrangement of regulation. 1601.104-2 Section 1601.104-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM...

  16. 48 CFR 1601.104-2 - Arrangement of regulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Arrangement of regulation. 1601.104-2 Section 1601.104-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM...

  17. 48 CFR 1601.104-2 - Arrangement of regulation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Arrangement of regulation. 1601.104-2 Section 1601.104-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM...

  18. 48 CFR 1601.104-2 - Arrangement of regulation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Arrangement of regulation. 1601.104-2 Section 1601.104-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM...

  19. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  20. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    USDA-ARS?s Scientific Manuscript database

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  1. Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses.

    PubMed

    Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei

    2016-01-01

    The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.

  2. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

    PubMed

    Hizli, Asli A; Chi, Yong; Swanger, Jherek; Carter, John H; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G; Clurman, Bruce E

    2013-02-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A-cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity.

  3. Staufen2 regulates neuronal target RNAs.

    PubMed

    Heraud-Farlow, Jacki E; Sharangdhar, Tejaswini; Li, Xiao; Pfeifer, Philipp; Tauber, Stefanie; Orozco, Denise; Hörmann, Alexandra; Thomas, Sabine; Bakosova, Anetta; Farlow, Ashley R; Edbauer, Dieter; Lipshitz, Howard D; Morris, Quaid D; Bilban, Martin; Doyle, Michael; Kiebler, Michael A

    2013-12-26

    RNA-binding proteins play crucial roles in directing RNA translation to neuronal synapses. Staufen2 (Stau2) has been implicated in both dendritic RNA localization and synaptic plasticity in mammalian neurons. Here, we report the identification of functionally relevant Stau2 target mRNAs in neurons. The majority of Stau2-copurifying mRNAs expressed in the hippocampus are present in neuronal processes, further implicating Stau2 in dendritic mRNA regulation. Stau2 targets are enriched for secondary structures similar to those identified in the 3' UTRs of Drosophila Staufen targets. Next, we show that Stau2 regulates steady-state levels of many neuronal RNAs and that its targets are predominantly downregulated in Stau2-deficient neurons. Detailed analysis confirms that Stau2 stabilizes the expression of one synaptic signaling component, the regulator of G protein signaling 4 (Rgs4) mRNA, via its 3' UTR. This study defines the global impact of Stau2 on mRNAs in neurons, revealing a role in stabilization of the levels of synaptic targets. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. 15 CFR 2.7 - Supplementary regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Supplementary regulations. 2.7 Section 2.7 Commerce and Foreign Trade Office of the Secretary of Commerce PROCEDURES FOR HANDLING AND... General Counsel for Finance and Litigation may from time to time issue such supplementary regulations or...

  5. Microglia and Aging: The Role of the TREM2–DAP12 and CX3CL1-CX3CR1 Axes

    PubMed Central

    Mecca, Carmen; Giambanco, Ileana; Donato, Rosario; Arcuri, Cataldo

    2018-01-01

    Depending on the species, microglial cells represent 5–20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases. PMID:29361745

  6. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein

    PubMed Central

    Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

    2012-01-01

    Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in

  7. 7 CFR 301.53-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.53-2 Section 301.53-2... articles. The following are regulated articles: (a) The emerald ash borer; firewood of all hardwood (non... article, product, or means of conveyance not listed in paragraph (a) of this section may be designated as...

  8. 7 CFR 301.53-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.53-2 Section 301.53-2... articles. The following are regulated articles: (a) The emerald ash borer; firewood of all hardwood (non... article, product, or means of conveyance not listed in paragraph (a) of this section may be designated as...

  9. 7 CFR 301.53-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.53-2 Section 301.53-2... articles. The following are regulated articles: (a) The emerald ash borer; firewood of all hardwood (non... article, product, or means of conveyance not listed in paragraph (a) of this section may be designated as...

  10. 7 CFR 301.53-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.53-2 Section 301.53-2... articles. The following are regulated articles: (a) The emerald ash borer; firewood of all hardwood (non... article, product, or means of conveyance not listed in paragraph (a) of this section may be designated as...

  11. 7 CFR 301.53-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.53-2 Section 301.53-2... articles. The following are regulated articles: (a) The emerald ash borer; firewood of all hardwood (non... article, product, or means of conveyance not listed in paragraph (a) of this section may be designated as...

  12. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization.

    PubMed

    Yeh, Po-An; Chang, Ching-Jin

    2017-01-01

    Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation.

  13. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization

    PubMed Central

    Chang, Ching-Jin

    2017-01-01

    Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation. PMID:28977036

  14. 7 CFR 301.50-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles. 301.50-2 Section 301.50-2... articles. The following are regulated articles: (a) Pine products (Pinus spp.), as follows: Bark products... pine wreaths and garlands; and stumps. (b) Any article, product, or means of conveyance not covered by...

  15. 7 CFR 301.50-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.50-2 Section 301.50-2... articles. The following are regulated articles: (a) Pine products (Pinus spp.), as follows: Bark products... pine wreaths and garlands; and stumps. (b) Any article, product, or means of conveyance not covered by...

  16. 7 CFR 301.50-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles. 301.50-2 Section 301.50-2... articles. The following are regulated articles: (a) Pine products (Pinus spp.), as follows: Bark products... pine wreaths and garlands; and stumps. (b) Any article, product, or means of conveyance not covered by...

  17. 7 CFR 301.50-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles. 301.50-2 Section 301.50-2... articles. The following are regulated articles: (a) Pine products (Pinus spp.), as follows: Bark products... pine wreaths and garlands; and stumps. (b) Any article, product, or means of conveyance not covered by...

  18. 7 CFR 301.50-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles. 301.50-2 Section 301.50-2... articles. The following are regulated articles: (a) Pine products (Pinus spp.), as follows: Bark products... pine wreaths and garlands; and stumps. (b) Any article, product, or means of conveyance not covered by...

  19. TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions

    PubMed Central

    Cid, L. Pablo; Roa-Rojas, Hugo A.; Niemeyer, María I.; González, Wendy; Araki, Masatake; Araki, Kimi; Sepúlveda, Francisco V.

    2013-01-01

    TASK-2 (K2P5.1) is a two-pore domain K+ channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinization. Extra- and intracellular pH-sensors reside at arginine 224 and lysine 245 and might affect separate selectivity filter and inner gates respectively. TASK-2 is modulated by changes in cell volume and a regulation by direct G-protein interaction has also been proposed. Activation by extracellular alkalinization has been associated with a role of TASK-2 in kidney proximal tubule bicarbonate reabsorption, whilst intracellular pH-sensitivity might be the mechanism for its participation in central chemosensitive neurons. In addition to these functions TASK-2 has been proposed to play a part in apoptotic volume decrease in kidney cells and in volume regulation of glial cells and T-lymphocytes. TASK-2 is present in chondrocytes of hyaline cartilage, where it is proposed to play a central role in stabilizing the membrane potential. Additional sites of expression are dorsal root ganglion neurons, endocrine and exocrine pancreas and intestinal smooth muscle cells. TASK-2 has been associated with the regulation of proliferation of breast cancer cells and could become target for breast cancer therapeutics. Further work in native tissues and cells together with genetic modification will no doubt reveal the details of TASK-2 functions that we are only starting to suspect. PMID:23908634

  20. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells and down-regulates cardiac allograft rejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, De-Hua; Dou, Li-Ping; Wei, Yu-Xiang

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation ofmore » recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-{gamma} by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4{sup +}CD25{sup high}Foxp3{sup +} regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.« less

  1. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    PubMed Central

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  2. TCF7L2 is a master regulator of insulin production and processing.

    PubMed

    Zhou, Yuedan; Park, Soo-Young; Su, Jing; Bailey, Kathleen; Ottosson-Laakso, Emilia; Shcherbina, Liliya; Oskolkov, Nikolay; Zhang, Enming; Thevenin, Thomas; Fadista, João; Bennet, Hedvig; Vikman, Petter; Wierup, Nils; Fex, Malin; Rung, Johan; Wollheim, Claes; Nobrega, Marcelo; Renström, Erik; Groop, Leif; Hansson, Ola

    2014-12-15

    Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D. © The Author 2014. Published by Oxford University Press.

  3. MeCP2 regulates ethanol sensitivity and intake.

    PubMed

    Repunte-Canonigo, Vez; Chen, Jihuan; Lefebvre, Celine; Kawamura, Tomoya; Kreifeldt, Max; Basson, Oan; Roberts, Amanda J; Sanna, Pietro Paolo

    2014-09-01

    We have investigated the expression of chromatin-regulating genes in the prefrontal cortex and in the shell subdivision of the nucleus accumbens during protracted withdrawal in mice with increased ethanol drinking after chronic intermittent ethanol (CIE) vapor exposure and in mice with a history of non-dependent drinking. We observed that the methyl-CpG binding protein 2 (MeCP2) was one of the few chromatin-regulating genes to be differentially regulated by a history of dependence. As MeCP2 has the potential of acting as a broad gene regulator, we investigated sensitivity to ethanol and ethanol drinking in MeCP2(308/) (Y) mice, which harbor a truncated MeCP2 allele but have a milder phenotype than MeCP2 null mice. We observed that MeCP2(308/) (Y) mice were more sensitive to ethanol's stimulatory and sedative effects than wild-type (WT) mice, drank less ethanol in a limited access 2 bottle choice paradigm and did not show increased drinking after induction of dependence with exposure to CIE vapors. Alcohol metabolism did not differ in MeCP2(308/) (Y) and WT mice. Additionally, MeCP2(308/) (Y) mice did not differ from WT mice in ethanol preference in a 24-hour paradigm nor in their intake of graded solutions of saccharin or quinine, suggesting that the MeCP2(308/) (Y) mutation did not alter taste function. Lastly, using the Gene Set Enrichment Analysis algorithm, we found a significant overlap in the genes regulated by alcohol and by MeCP2. Together, these results suggest that MeCP2 contributes to the regulation of ethanol sensitivity and drinking. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  4. Hmga2 regulates self-renewal of retinal progenitors.

    PubMed

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  5. 7 CFR 301.87-2 - Regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and... for extracting and refining sugarcane juice; and experimental devices, such as devices used for...

  6. 7 CFR 301.87-2 - Regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and... for extracting and refining sugarcane juice; and experimental devices, such as devices used for...

  7. 7 CFR 301.87-2 - Regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and... for extracting and refining sugarcane juice; and experimental devices, such as devices used for...

  8. 7 CFR 301.87-2 - Regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and... for extracting and refining sugarcane juice; and experimental devices, such as devices used for...

  9. 7 CFR 301.87-2 - Regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and... for extracting and refining sugarcane juice; and experimental devices, such as devices used for...

  10. Polyreactive Antibodies Plus Complement Enhance the Phagocytosis of Cells Made Apoptotic by UV-Light or HIV

    PubMed Central

    Zhou, Zhao-hua; Wild, Teresa; Xiong, Ying; Sylvers, Peter; Zhang, Yahong; Zhang, Luxia; Wahl, Larry; Wahl, Sharon M.; Kozlowski, Steven; Notkins, Abner L.

    2013-01-01

    Polyreactive antibodies are a major component of the natural antibody repertoire and are capable of binding a variety of structurally unrelated antigens. Many of the properties attributed to natural antibodies, in fact, are turning out to be due to polyreactive antibodies. In humans, each day, billions of cells undergo apoptosis. In the present experiments, we show by ImageStream technology that although polyreactive antibodies do not bind to live T cells they bind to both the plasma membrane and cytoplasm of late apoptotic cells, fix complement, generate the anaphylatoxin C5a and increase by as much as 5 fold complement-mediated phagocytosis by macrophages. Of particular importance, T cells undergoing apoptosis following infection with HIV also bind polyreactive antibodies and are phagocytosed. We conclude that the polyreactive antibodies in the natural antibody repertoire contribute in a major way to the clearance of cells made apoptotic by a variety of natural and infectious processes. PMID:23881356

  11. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    PubMed

    Shelby, Shameka J; Colwill, Karen; Dhe-Paganon, Sirano; Pawson, Tony; Thompson, Debra A

    2013-01-01

    The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE). A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2)-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999)), purified and phosphorylated. Ni(2+)-NTA pull downs were performed using 6xHis-rMERTK(571-999) in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999) and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α), VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS), siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  12. Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions

    PubMed Central

    Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály

    2012-01-01

    Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127

  13. Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro

    PubMed Central

    Gaffaney, Jon D.; Dunning, F. Mark; Wang, Zhao; Hui, Enfu; Chapman, Edwin R.

    2008-01-01

    Synaptotagmin (syt) 1 is localized to synaptic vesicles, binds Ca2+, and regulates neuronal exocytosis. Syt 1 harbors two Ca2+-binding motifs referred to as C2A and C2B. In this study we examine the function of the isolated C2 domains of Syt 1 using a reconstituted, SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor)-mediated, fusion assay. We report that inclusion of phosphatidylethanolamine into reconstituted SNARE vesicles enabled isolated C2B, but not C2A, to regulate Ca2+-triggered fusion. The isolated C2B domain had a 6-fold lower EC for Ca2+ 50-activated fusion than the intact cytosolic domain of Syt 1 (C2AB). Phosphatidylethanolamine increased both the rate and efficiency of C2AB- and C2B-regulated fusion without affecting their abilities to bind membrane-embedded syntaxin-SNAP-25 (t-SNARE) complexes. At equimolar concentrations, the isolated C2A domain was an effective inhibitor of C2B-, but not C2AB-regulated fusion; hence, C2A has markedly different effects in the fusion assay depending on whether it is tethered to C2B. Finally, scanning alanine mutagenesis of C2AB revealed four distinct groups of mutations within the C2B domain that play roles in the regulation of SNARE-mediated fusion. Surprisingly, substitution of Arg-398 with alanine, which lies on the opposite end of C2B from the Ca2+/membrane-binding loops, decreases C2AB t-SNARE binding and Ca2+-triggered fusion in vitro without affecting Ca2+-triggered interactions with phosphatidylserine or vesicle aggregation. In addition, some mutations uncouple the clamping and stimulatory functions of syt 1, suggesting that these two activities are mediated by distinct structural determinants in C2B. PMID:18784080

  14. 7 CFR 2.2 - Authority of the Secretary to prescribe regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Authority of the Secretary to prescribe regulations. 2.2 Section 2.2 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE... prescribe regulations for the government of his department, the conduct of its employees, the distribution...

  15. p63 regulates glutaminase 2 expression

    PubMed Central

    Giacobbe, Arianna; Bongiorno-Borbone, Lucilla; Bernassola, Francesca; Terrinoni, Alessandro; Markert, Elke Katrin; Levine, Arnold J.; Feng, Zhaohui; Agostini, Massimilano; Zolla, Lello; Agrò, Alessandro Finazzi; Notterman, Daniel A.; Melino, Gerry; Peschiaroli, Angelo

    2013-01-01

    The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes. PMID:23574722

  16. 21 CFR 862.2 - Regulation of calibrators.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Regulation of calibrators. 862.2 Section 862.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES General Provisions § 862.2 Regulation...

  17. 21 CFR 862.2 - Regulation of calibrators.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Regulation of calibrators. 862.2 Section 862.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES General Provisions § 862.2 Regulation...

  18. 21 CFR 862.2 - Regulation of calibrators.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Regulation of calibrators. 862.2 Section 862.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES General Provisions § 862.2 Regulation...

  19. 21 CFR 862.2 - Regulation of calibrators.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Regulation of calibrators. 862.2 Section 862.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES General Provisions § 862.2 Regulation...

  20. 21 CFR 862.2 - Regulation of calibrators.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Regulation of calibrators. 862.2 Section 862.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES General Provisions § 862.2 Regulation...

  1. 50 CFR 15.2 - Scope of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BIRD CONSERVATION ACT Introduction and General Provisions § 15.2 Scope of regulations. (a) The regulations in this part apply to all species of exotic birds, as defined in section 15.3. (b) The provisions...

  2. [Regulation of cellular-mediated immunity by Chenopodi boni henrici herba polysaccharides in hens].

    PubMed

    Hanganu, Daniela; Dorhoi, Anca; Pintea, Adela; Olah, Neli; Sevastre, B

    2010-01-01

    The immunomodulatory effect of polysaccharides from Chenopodium bonus-henricus herba was tested on adult hens. Blood samples were harvested aseptically by punction of brachial vein; ability of circulating phagocytes was assessed by the carbon particles phagocytosis test in vitro; while reactivity of peripheral lymphocytes was evaluated by lymphocytes transformation assay in vitro. Polysaharides were dissolved in saline solution and filtered throughout Millipore. Phagocytic indexes (at 15 and 39 minutes) are variable according to polysaharides concentration; phagocytosis increased at 15 minutes for 40 microg/mL and 60 microg/mL, while for 30 minutes the phagocytic index decreased. In lymphocytes transformation assay, Chenopodium bonus-henricus polysaharides, alone, shown no stimulatory effect, and together to the classic mitogen, their influence was variable, but not statistical significant results were seen. Polysaccharides have inconstant effect on phagocytosis, and mainly inhibitory role on lymphocytes proliferation.

  3. 47 CFR 2.100 - International regulations in force.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false International regulations in force. 2.100 Section 2.100 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO....100 International regulations in force. The ITU Radio Regulations, edition of 2004, have been...

  4. PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2.

    PubMed

    Liu, Yonghong; Qu, Linlin; Liu, Yuanyuan; Roizman, Bernard; Zhou, Grace Guoying

    2017-08-15

    PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: ( i ) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. ( ii ) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. ( iii ) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. ( iv ) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. ( v ) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.

  5. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  6. Fidgetin-like 2: a microtubule-based regulator of wound healing

    PubMed Central

    Charafeddine, Rabab A.; Makdisi, Joy; Schairer, David; O’Rourke, Brian P.; Diaz-Valencia, Juan D.; Chouake, Jason; Kutner, Allison; Krausz, Aimee; Adler, Brandon; Nacharaju, Parimala; Liang, Hongying; Mukherjee, Suranjana; Friedman, Joel M.; Friedman, Adam; Nosanchuk, Joshua D.; Sharp, David J.

    2015-01-01

    Wound healing is a complex process driven largely by the migration of a variety of distinct cell types from the wound margin into the wound zone. In this study, we identify the previously uncharacterized microtubule-severing enzyme, Fidgetin-like 2 (FL2), as a fundamental regulator of cell migration that can be targeted in vivo using nanoparticle-encapsulated siRNA to promote wound closure and regeneration. In vitro, depletion of FL2 from mammalian tissue culture cells results in a more than two-fold increase in the rate of cell movement, due in part to a significant increase in directional motility. Immunofluorescence analyses indicate that FL2 normally localizes to the cell edge, importantly to the leading edge of polarized cells, where it regulates the organization and dynamics of the microtubule cytoskeleton. To clinically translate these findings, we utilized a nanoparticle-based siRNA delivery platform to locally deplete FL2 in both murine full-thickness excisional and burn wounds. Topical application of FL2 siRNA nanoparticles to either wound type results in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identify FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds. PMID:25756798

  7. Reassessing apoptosis in plants.

    PubMed

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  8. A novel siglec (CgSiglec-1) from the Pacific oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release.

    PubMed

    Liu, Conghui; Jiang, Shuai; Wang, Mengqiang; Wang, Lingling; Chen, Hao; Xu, Jiachao; Lv, Zhao; Song, Linsheng

    2016-08-01

    Sialic acid binding immunoglobulin-type lectin (siglec) belongs to the immunoglobulin superfamily (IgSF), which acts as regulator involved in glycan recognition and signal transduction in the immune and nervous systems. In the present study, a siglec gene (designated CgSiglec-1) was characterized from the Pacific oyster, Crassostrea gigas. The cDNA of CgSiglec-1 was of 1251 bp encoding a predicted polypeptide of 416 amino acids. CgSiglec-1 was composed of two I-set immunoglobulin (Ig) domains, one transmembrane (TM) domain and two ITIM motifs, sharing a sequence similarity with vertebrate CD22 homologs. The mRNA expression of CgSiglec-1 could be detected in all the selected tissues, with the highest level in hemocytes and labial palps. The confocal analysis revealed that CgSiglec-1 mainly distributed on the cytoplasmic membrane of the oyster hemocytes. In addition, the mRNA transcripts of CgSiglec-1 in hemocytes increased significantly (4.29-fold to that of control group, p < 0.05) after Vibrio splendidus stimulation. The recombinant CgSiglec-1 protein (rCgSiglec-1) could bind to poly sialic acid (pSIAS), lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner. The blockade of CgSiglec-1 by specific polyclonal antibodies could enhance the LPS-induced cell apoptosis, phagocytosis towards V. splendidus and the release of cytokines, such as CgTNF-1, CgIFNLP and CgIL-17. The results collectively indicated that CgSiglec-1 could act as a bridge molecule between invader recognition and signal transduction cascade, and modulate the immune response by inhibiting various important processes of immunity in oyster. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Supporting Self-Regulated Learning in Web 2.0 Contexts

    ERIC Educational Resources Information Center

    Huang, Yong-Ming; Huang, Yueh-Min; Wang, Chia-Sui; Liu, Chien-Hung; Sandnes, Frode Eika

    2012-01-01

    Web-based self-learning (WBSL) provides learners with a powerful means of acquiring knowledge. However, WBSL may disorient learners, especially when their skills are inadequate for regulating their learning. In this paper, a Web 2.0 self-regulated learning (Web2SRL) system based on the theory of self-regulated learning is proposed. Learners use…

  10. 34 CFR 673.2 - Applicability of regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Applicability of regulations. 673.2 Section 673.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GENERAL PROVISIONS FOR THE FEDERAL PERKINS LOAN PROGRAM, FEDERAL WORK...

  11. 34 CFR 673.2 - Applicability of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Applicability of regulations. 673.2 Section 673.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GENERAL PROVISIONS FOR THE FEDERAL PERKINS LOAN PROGRAM, FEDERAL WORK...

  12. [Food intake regulation - 2nd part].

    PubMed

    Brunerová, Ludmila; Anděl, Michal

    2014-01-01

    The review article summarizes the principles of hedonic regulation of food intake which represents the food intake independent on the maintenance of homeostasis. The theory describing hedonic regulation, so called Incentive Salience Theory, comprises three major processes: liking (positive attribution to food stimulus), wanting (motivation to gain it) and learning (identification of these stimuli and distinguishing them from those connected with aversive reaction). Neuronal reward circuits are the anatomical and functional substrates of hedonic regulation. They react to gustatory and olfactory (or visual) stimuli associated with food intake. A food item is preferred in case its consumption is connected with a pleasant feeling thus promoting the behavioural reaction. The probability of this reaction after repetitive exposure to such a stimulus is increased (learned preference). On the contrary, learned aversion after repetitive exposure is connected with avoidance of a food item associated with a negative feeling. Main mediators of hedonic regulation are endocannabinoids, opioids and monoamines (dopamine, serotonin). Dopamine in dorsal striatum via D2 receptors generates food motivation as a key means of survival, however in ventral striatum (nucleus accumbens) is responsible for motivation to food bringing pleasure. Serotonin via its receptors 5-HT1A a T-HT2C decreases intake of palatable food. It plays a significant role in the pathogenesis of eating disorders, particularly mental anorexia. There, a food restriction represents a kind of automedication to constitutionally pathologically increased serotonin levels. Detailed understanding of processes regulating food intake is a key to new pharmacological interventions in eating disorders.

  13. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  14. 7 CFR 301.85-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Nematode Quarantine and Regulations § 301.85-2a Regulated areas; suppressive and generally infested areas. The civil divisions and parts of civil divisions described below are designated as golden nematode...

  15. 7 CFR 301.85-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Nematode Quarantine and Regulations § 301.85-2a Regulated areas; suppressive and generally infested areas. The civil divisions and parts of civil divisions described below are designated as golden nematode...

  16. 7 CFR 301.85-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Nematode Quarantine and Regulations § 301.85-2a Regulated areas; suppressive and generally infested areas. The civil divisions and parts of civil divisions described below are designated as golden nematode...

  17. 7 CFR 301.85-2a - Regulated areas; suppressive and generally infested areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nematode Quarantine and Regulations § 301.85-2a Regulated areas; suppressive and generally infested areas. The civil divisions and parts of civil divisions described below are designated as golden nematode...

  18. A Discrete Ubiquitin-Mediated Network Regulates the Strength of NOD2 Signaling

    PubMed Central

    Tigno-Aranjuez, Justine T.; Bai, Xiaodong

    2013-01-01

    Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH−/− macrophages attenuates heightened ITCH−/− macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling. PMID:23109427

  19. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathione

    PubMed Central

    Wilkins, Heather M.; Marquardt, Kristin; Lash, Lawrence H.; Linseman, Daniel A.

    2011-01-01

    Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS)1 and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 is resident in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH) which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic, HA14-1, induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was co-immunoprecipitated with GSH following chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by pre-incubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. Following co-transfection of CHO cells, Bcl-2 was co-immunoprecipitated with OGC

  20. 48 CFR 2501.104-2 - Arrangement of regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Arrangement of regulations. 2501.104-2 Section 2501.104-2 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION... material in the FAR, Parts 70 and up are used by the NSFAR. Where the subject matter in the FAR requires no...

  1. 48 CFR 2501.104-2 - Arrangement of regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Arrangement of regulations. 2501.104-2 Section 2501.104-2 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION... material in the FAR, Parts 70 and up are used by the NSFAR. Where the subject matter in the FAR requires no...

  2. 48 CFR 2501.104-2 - Arrangement of regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Arrangement of regulations. 2501.104-2 Section 2501.104-2 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION... material in the FAR, Parts 70 and up are used by the NSFAR. Where the subject matter in the FAR requires no...

  3. 48 CFR 2501.104-2 - Arrangement of regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Arrangement of regulations. 2501.104-2 Section 2501.104-2 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION... material in the FAR, Parts 70 and up are used by the NSFAR. Where the subject matter in the FAR requires no...

  4. 34 CFR 462.2 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 462.2 Section 462.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT EDUCATION...

  5. 34 CFR 462.2 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 462.2 Section 462.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT EDUCATION...

  6. The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages.

    PubMed

    de Albuquerque, Jose Antonio Tavares; Banerjee, Pinaki Prosad; Castoldi, Angela; Ma, Royce; Zurro, Nuria Bengala; Ynoue, Leandro Hideki; Arslanian, Christina; Barbosa-Carvalho, Marina Uchoa Wall; Correia-Deur, Joya Emilie de Menezes; Weiler, Fernanda Guimarães; Dias-da-Silva, Magnus Regios; Lazaretti-Castro, Marise; Pedroza, Luis Alberto; Câmara, Niels Olsen Saraiva; Mace, Emily; Orange, Jordan Scott; Condino-Neto, Antonio

    2018-01-01

    Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene ( AIRE ). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans .

  7. 50 CFR 216.2 - Scope of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING AND IMPORTING OF MARINE MAMMALS Introduction § 216.2 Scope of regulations. This part 216 applies solely to marine mammals and marine mammal products as defined in § 216.3. For regulations under the MMPA, with respect to other marine mammals and...

  8. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis.

    PubMed

    Finney, Alexandra C; Funk, Steven D; Green, Jonette M; Yurdagul, Arif; Rana, Mohammad Atif; Pistorius, Rebecca; Henry, Miriam; Yurochko, Andrew; Pattillo, Christopher B; Traylor, James G; Chen, Jin; Woolard, Matthew D; Kevil, Christopher G; Orr, A Wayne

    2017-08-08

    Atherosclerotic plaque formation results from chronic inflammation and fibroproliferative remodeling in the vascular wall. We previously demonstrated that both human and mouse atherosclerotic plaques show elevated expression of EphA2, a guidance molecule involved in cell-cell interactions and tumorigenesis. Here, we assessed the role of EphA2 in atherosclerosis by deleting EphA2 in a mouse model of atherosclerosis (Apoe - /- ) and by assessing EphA2 function in multiple vascular cell culture models. After 8 to 16 weeks on a Western diet, male and female mice were assessed for atherosclerotic burden in the large vessels, and plasma lipid levels were analyzed. Despite enhanced weight gain and plasma lipid levels compared with Apoe -/- controls, EphA2 -/- Apoe -/- knockout mice show diminished atherosclerotic plaque formation, characterized by reduced proinflammatory gene expression and plaque macrophage content. Although plaque macrophages express EphA2, EphA2 deletion does not affect macrophage phenotype, inflammatory responses, and lipid uptake, and bone marrow chimeras suggest that hematopoietic EphA2 deletion does not affect plaque formation. In contrast, endothelial EphA2 knockdown significantly reduces monocyte firm adhesion under flow. In addition, EphA2 -/- Apoe -/- mice show reduced progression to advanced atherosclerotic plaques with diminished smooth muscle and collagen content. Consistent with this phenotype, EphA2 shows enhanced expression after smooth muscle transition to a synthetic phenotype, and EphA2 depletion reduces smooth muscle proliferation, mitogenic signaling, and extracellular matrix deposition both in atherosclerotic plaques and in vascular smooth muscle cells in culture. Together, these data identify a novel role for EphA2 in atherosclerosis, regulating both plaque inflammation and progression to advanced atherosclerotic lesions. Cell culture studies suggest that endothelial EphA2 contributes to atherosclerotic inflammation by promoting

  9. Phagocytosis-dependent activation of a TLR9–BTK–calcineurin–NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus

    PubMed Central

    Herbst, Susanne; Shah, Anand; Mazon Moya, Maria; Marzola, Vanessa; Jensen, Barbara; Reed, Anna; Birrell, Mark A; Saijo, Shinobu; Mostowy, Serge; Shaunak, Sunil; Armstrong-James, Darius

    2015-01-01

    Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin–NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin–NFAT occurs via the phagocytic Dectin-1–spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9–BTK–calcineurin–NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis. PMID:25637383

  10. Negative Regulation of Type 2 Immunity

    PubMed Central

    de Kouchkovsky, Dimitri A.; Ghosh, Sourav; Rothlin, Carla V.

    2017-01-01

    Type 2 immunity encompasses the mechanisms through which the immune system responds to helminths and an array of environmental substances such as allergens. In the developing world, billions of individuals are chronically infected with endemic parasitic helminths. In comparison, in the industrialized world, millions of individuals suffer from dysregulated type 2 immunity, referred to clinically as atopic diseases including asthma, allergic rhinitis and atopic dermatitis. Thus, type 2 immunity must be carefully regulated to mount protective host response yet avoid inappropriate activation and immunopathology. In this review, we describe the keys players and connections at play in type 2 responses and focus on the emerging mechanisms involved in the negative regulation of type 2 immunity. PMID:28082101

  11. 9 CFR 2.26 - Acknowledgment of regulations and standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Acknowledgment of regulations and standards. 2.26 Section 2.26 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Registration § 2.26 Acknowledgment of regulations and...

  12. 9 CFR 2.26 - Acknowledgment of regulations and standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Acknowledgment of regulations and standards. 2.26 Section 2.26 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Registration § 2.26 Acknowledgment of regulations and...

  13. 9 CFR 2.26 - Acknowledgment of regulations and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Acknowledgment of regulations and standards. 2.26 Section 2.26 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Registration § 2.26 Acknowledgment of regulations and...

  14. 9 CFR 2.26 - Acknowledgment of regulations and standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Acknowledgment of regulations and standards. 2.26 Section 2.26 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Registration § 2.26 Acknowledgment of regulations and...

  15. 9 CFR 2.26 - Acknowledgment of regulations and standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Acknowledgment of regulations and standards. 2.26 Section 2.26 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Registration § 2.26 Acknowledgment of regulations and...

  16. Hypoglycemic depression of hepatic phagocytosis in vivo and in the in situ perfused rat liver.

    PubMed

    Kober, P M; Filkins, J P

    1981-01-01

    Depression of the phagocytic function of the reticuloendothelial system (RES) during endotoxic hypoglycemia has been implicated in the pathogenesis of endotoxin shock. The present study evaluated the in vivo effects of hypoglycemia on RES function and assessed the effects of an vivo bout of hypoglycemia on phagocytosis in the in situ perfused rat liver. Hypoglycemia was produced in male Holtzman rats using either 1 U of regular insulin (RI) (ILETIN, Lilly) or 0.75 U of long-acting insulin (LAI) (85% LENTE/15% ULTRALENTE, Lilly). RES function was quantitated by intravascular clearance of 8 mg/100 gm body weight colloidal carbon (CC). Two hr after RI and 2.5 hr after LAI, the intravascular halftimes of CC clearance were 19 +/- 2 min (N = 22) and 18 +/- 1 min (N = 19), respectively, as compared to control, 11.3 +/- 0.4 min (N = 53, P less than 0.001). The corresponding plasma glucose (PG) levels were 95 +/- 2 mg/dl in control, 14.4 +/- 0.9 for the RI group, and 17 +/- 1 for LAI. Two hr after RI, livers were perfused for 10 min in situ with 50 mg/liter CC in saline 5% rat serum. PG for control liver donors were 90 +/- 3 mg/dl, while those for hypoglycemic liver donors were 15 +/- 2. CC uptake was decreased from 22 micrograms/min/gm liver in the control (+ serum, n = 19) to 11 +/- 2 in hypoglycemia livers (N = 6); no effect of serum on hypoglycemic depression of the RES was seen. There were no differences in flow rates in the 2 groups. These results indicate that hypoglycemia directly impairs RES function and that the in vivo depression of intravascular clearance is not related to either the presence or absence of serum factors or total hepatic blood flow. Thus, the characteristic hypoglycemia of endotoxin shock may contribute to RES depression and the lethal shock syndrome.

  17. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    PubMed

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  18. 48 CFR 245.7311-2 - Safety, security, and fire regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Safety, security, and fire regulations. 245.7311-2 Section 245.7311-2 Federal Acquisition Regulations System DEFENSE ACQUISITION... Inventory 245.7311-2 Safety, security, and fire regulations. ...

  19. An HMGA2-IGF2BP2 Axis Regulates Myoblast Proliferation and Myogenesis

    PubMed Central

    Li, Zhizhong; Gilbert, Jason A.; Zhang, Yunyu; Zhang, Minsi; Qiu, Qiong; Ramanujan, Krishnan; Shavlakadze, Tea; Eash, John K.; Scaramozza, Annarita; Goddeeris, Matthew M.; Kirsch, David G.; Campbell, Kevin P.; Brack, Andrew S.; Glass, David J.

    2013-01-01

    Summary A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development. PMID:23177649

  20. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis.

    PubMed

    Li, Zhizhong; Gilbert, Jason A; Zhang, Yunyu; Zhang, Minsi; Qiu, Qiong; Ramanujan, Krishnan; Shavlakadze, Tea; Eash, John K; Scaramozza, Annarita; Goddeeris, Matthew M; Kirsch, David G; Campbell, Kevin P; Brack, Andrew S; Glass, David J

    2012-12-11

    A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our datamore » strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.« less

  2. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, C D; Woo, Y; Thomas, C

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) andmore » Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification process to

  3. PP2A regulates autophagy in two alternative ways in Drosophila.

    PubMed

    Bánréti, Ágnes; Lukácsovich, Tamás; Csikós, György; Erdélyi, Miklós; Sass, Miklós

    2012-04-01

    Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy.

  4. Impaired phagocytosis of apoptotic cell material in serologically active clinically quiescent patients with systemic lupus erythematosis.

    PubMed

    Huang, Wen-Nan; Tso, Tim K; Wu, Hsiao-Chih; Yang, Hsiu-Fen; Tsay, Gregory J

    2016-12-01

    Serologically active clinically quiescent (SACQ) patients with systemic lupus erythematosus (SLE) account for 8-12% of all patients with SLE, but there is disagreement about whether such patients are indeed clinically stable. Patients with clinically active SLE have decreased macrophage function, although the status of SACQ patients with SLE is unclear. This study compared 18 patients who met the diagnostic criteria for SACQ SLE with 18 healthy volunteers with regard to the capability of macrophages to clear apoptotic bodies by use of a modified serum-free phagocytosis test. Macrophages that naturally differentiated from monocytes were used to engulf apoptotic cells developed from polymorphonuclear neutrophils. The results showed that macrophages from SACQ patients with SLE had less phagocytotic capability than those from healthy controls. The significant reduction of macrophage phagocytotic capability in these patients suggests the potential for disease recurrence. The use of a serum-free method confirmed the presence of intrinsic factors that modulate the decrease of macrophage function in SLE. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  5. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization.

    PubMed

    Gao, Hong-Bo; Chu, Yu-Jia; Xue, Hong-Wei

    2013-09-01

    Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapamycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephosphorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regulation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors. Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphorylation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.

  7. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition.

    PubMed

    Mahadevan, Vivek; Khademullah, C Sahara; Dargaei, Zahra; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti; Woodin, Melanie A

    2017-10-13

    KCC2 is a neuron-specific K + -Cl - cotransporter essential for establishing the Cl - gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl - . Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.

  8. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition

    PubMed Central

    Mahadevan, Vivek; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti

    2017-01-01

    KCC2 is a neuron-specific K+-Cl– cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2. PMID:29028184

  9. Foxp2 regulates neuronal differentiation and neuronal subtype specification.

    PubMed

    Chiu, Yi-Chi; Li, Ming-Yang; Liu, Yuan-Hsuan; Ding, Jing-Ya; Yu, Jenn-Yah; Wang, Tsu-Wei

    2014-07-01

    Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain. © 2014 Wiley Periodicals, Inc.

  10. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato.

    PubMed

    Du, Minmin; Zhao, Jiuhai; Tzeng, David T W; Liu, Yuanyuan; Deng, Lei; Yang, Tianxia; Zhai, Qingzhe; Wu, Fangming; Huang, Zhuo; Zhou, Ming; Wang, Qiaomei; Chen, Qian; Zhong, Silin; Li, Chang-Bao; Li, Chuanyou

    2017-08-01

    The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato ( Solanum lycopersicum ) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea , MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes. © 2017 American Society of Plant Biologists. All rights reserved.

  11. The protein phosphatase 2A catalytic subunit StPP2Ac2b acts as a positive regulator of tuberization induction in Solanum tuberosum L.

    PubMed

    Muñiz García, María Noelia; Muro, María Catalina; Mazzocchi, Luciana Carla; País, Silvia Marina; Stritzler, Margarita; Schlesinger, Mariana; Capiati, Daniela Andrea

    2017-02-01

    This study provides the first genetic evidence for the role of PP2A in tuberization, demonstrating that the catalytic subunit StPP2Ac2b positively modulates tuber induction, and that its function is related to the regulation of gibberellic acid metabolism. The results contribute to a better understanding of the molecular mechanism controlling tuberization induction, which remains largely unknown. The serine/threonine protein phosphatases type 2A (PP2A) are implicated in several physiological processes in plants, playing important roles in hormone responses. In cultivated potato (Solanum tuberosum), six PP2A catalytic subunits (StPP2Ac) were identified. The PP2Ac of the subfamily I (StPP2Ac1, 2a and 2b) were suggested to be involved in the tuberization signaling in leaves, where the environmental and hormonal signals are perceived and integrated. The aim of this study was to investigate the role of PP2A in the tuberization induction in stolons. We selected one of the catalytic subunits of the subfamily I, StPP2Ac2b, to develop transgenic plants overexpressing this gene (StPP2Ac2b-OE). Stolons from StPP2Ac2b-OE plants show higher tuber induction rates in vitro, as compared to wild type stolons, with no differences in the number of tubers obtained at the end of the process. This effect is accompanied by higher expression levels of the gibberellic acid (GA) catabolic enzyme StGA2ox1. GA up-regulates StPP2Ac2b expression in stolons, possibly as part of the feedback system by which the hormone regulates its own level. Sucrose, a tuber-promoting factor in vitro, increases StPP2Ac2b expression. We conclude that StPP2Ac2b acts in stolons as a positive regulator tuber induction, integrating different tuberization-related signals mainly though the modulation of GA metabolism.

  12. Transcriptional Regulation of CYP2D6 Expression

    PubMed Central

    Pan, Xian; Ning, Miaoran

    2017-01-01

    CYP2D6-mediated drug metabolism exhibits large interindividual variability. Although genetic variations in the CYP2D6 gene are well known contributors to the variability, the sources of CYP2D6 variability in individuals of the same genotype remain unexplained. Accumulating data indicate that transcriptional regulation of CYP2D6 may account for part of CYP2D6 variability. Yet, our understanding of factors governing transcriptional regulation of CYP2D6 is limited. Recently, mechanistic studies of increased CYP2D6-mediated drug metabolism in pregnancy revealed two transcription factors, small heterodimer partner (SHP) and Krüppel-like factor 9, as a transcriptional repressor and an activator, respectively, of CYP2D6. Chemicals that increase SHP expression (e.g., retinoids and activators of farnesoid X receptor) were shown to downregulate CYP2D6 expression in the humanized mice as well as in human hepatocytes. This review summarizes the series of studies on the transcriptional regulation of CYP2D6 expression, potentially providing a basis to better understand the large interindividual variability in CYP2D6-mediated drug metabolism. PMID:27698228

  13. 15 CFR 2.2 - Provisions of law and regulations thereunder.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Provisions of law and regulations thereunder. 2.2 Section 2.2 Commerce and Foreign Trade Office of the Secretary of Commerce PROCEDURES FOR... rise to the claim, by reason of the same subject matter. (b) Subsection (a) section 2675 of said Title...

  14. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    USDA-ARS?s Scientific Manuscript database

    Genes that regulate osteoclast development and function under physiological and disease conditions remain incompletely understood. Shp2, a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, was implicated in regulating M-CSF and RANKL-evoked signaling, its role in osteoclastogenesis an...

  15. miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3' untranslated region of CCND2 and CCNE2.

    PubMed

    Zhou, Jian; Ju, Wei-Qiang; Yuan, Xiao-Peng; Zhu, Xiao-Feng; Wang, Dong-Ping; He, Xiao-Shun

    2016-02-01

    The deficiency of liver regeneration needs to be addressed in the fields of liver surgery, split liver transplantation and living donor liver transplantation. Researches of microRNAs would broaden our understandings on the mechanisms of various diseases. Our previous research confirmed that miR-26a regulated liver regeneration in mice; however, the relationship between miR-26a and its target, directly or indirectly, remains unclear. Therefore, the present study further investigated the mechanism of miR-26a in regulating mouse hepatocyte proliferation. An established mouse liver cell line, Nctc-1469, was transfected with Ad5-miR-26a-EGFP, Ad5-anti-miR-26a-EGFP or Ad5-EGFP vector. Cell proliferation was assessed by MTS, cell apoptosis and cell cycle by flow cytometry, and gene expression by Western blotting and quantitative real-time PCR. Dual-luciferase reporter assays were used to test targets of miR-26a. Compared with the Ad5-EGFP group, Ad5-anti-miR-26a-EGFP down-regulated miR-26a and increased proliferation of hepatocytes, with more cells entering the G1 phase of cell cycle (82.70%+/-1.45% vs 75.80%+/-3.92%), and decreased apoptosis (5.50%+/-0.35% vs 6.73%+/-0.42%). CCND2 and CCNE2 were the direct targeted genes of miR-26a. miR-26a down-regulation up-regulated CCND2 and CCNE2 expressions and down-regulated p53 expression in Nctc-1469 cells. On the contrary, miR-26a over-expression showed the opposite results. miR-26a regulated mouse hepatocyte proliferation by directly targeting the 3' untranslated regions of cyclin D2/cyclin E2; miR-26a also regulated p53-mediated apoptosis. Our data suggested that miR-26a may be a promising regulator in liver regeneration.

  16. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kito, Hiroaki; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto; Yamamura, Hisao

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cyclemore » progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.« less

  17. Epigenetic regulation of RGS2 (Regulator of G-protein signaling 2) in chemoresistant ovarian cancer cells.

    PubMed

    Cacan, Ercan

    2017-06-01

    Regulator of G-protein signaling 2 (RGS2) is a GTPase-activating protein functioning as an inhibitor of G-protein coupled receptors (GPCRs). RGS2 dysregulation was implicated in solid tumour development and RGS2 downregulation has been reported in prostate and ovarian cancer progression. However, the molecular mechanism by which RGS2 expression is suppressed in ovarian cancer remains unknown. The expression and epigenetic regulation of RGS2 in chemosensitive and chemoresistant ovarian cancer cells were determined by qRT-PCR and chromatin immunoprecipitation assays, respectively. In the present study, the molecular mechanisms contributing to the loss of RGS2 expression were determined in ovarian cancer. The data indicated that suppression of RGS2 gene in chemoresistant ovarian cancer cells, in part, due to accumulation of histone deacetylases (HDACs) and DNA methyltransferase I (DNMT1) at the promoter region of RGS2. Inhibition of HDACs or DNMTs significantly increases RGS2 expression. These results suggest that epigenetic changes in histone modifications and DNA methylation may contribute to the loss of RGS2 expression in chemoresistant ovarian cancer cells. The results further suggest that class I HDACs and DNMT1 contribute to the suppression of RGS2 during acquired chemoresistance and support growing evidence that inhibition of HDACs/DNMTs represents novel therapeutic approaches to overcome ovarian cancer chemoresistance.

  18. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium.

    PubMed

    Laurent, Virgine; Sengupta, Anamika; Sánchez-Bretaño, Aída; Hicks, David; Tosini, Gianluca

    2017-12-01

    Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT 1 ) or type 2 (MT 2 ) in a melatonin-proficient background and have shown that removal of MT 1 and MT 2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT 1 and MT 2 knock-out mice. Our data indicate that in MT 1 and MT 2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT 1 and MT 2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells.

    PubMed

    Park, Eui-Jung; Kwon, Tae-Hwan

    2015-06-01

    The kidney collecting duct is an important renal tubular segment for the regulation of body water and salt homeostasis. Water reabsorption in the collecting duct cells is regulated by arginine vasopressin (AVP) via the vasopressin V2-receptor (V2R). AVP increases the osmotic water permeability of the collecting duct cells through aquaporin-2 (AQP2) and aquaporin-3 (AQP3). AVP induces the apical targeting of AQP2 and transcription of AQP2 gene in the kidney collecting duct principal cells. The signaling transduction pathways resulting in the AQP2 trafficking to the apical plasma membrane of the collecting duct principal cells, include AQP2 phosphorylation, RhoA phosphorylation, actin depolymerization and calcium mobilization, and the changes of AQP2 protein abundance in water balance disorders have been extensively studied. These studies elucidate the underlying cellular and molecular mechanisms of body water homeostasis and provide the basis for the treatment of body water balance disorders.

  20. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency

    PubMed Central

    Chen, Cheng; Zhu, Changhong; Huang, Jian; Zhao, Xian; Deng, Rong; Zhang, Hailong; Dou, Jinzhuo; Chen, Qin; Xu, Ming; Yuan, Haihua; Wang, Yanli; Yu, Jianxiu

    2015-01-01

    Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K48-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. PMID:26582366

  1. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function.

    PubMed

    Gu, Yue; Jones, Amanda E; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M; Townes, Tim M; Klug, Christopher A; Chen, Dongquan; Wang, Hengbin

    2016-01-05

    Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.

  2. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  3. Regulation of E2s: A Role for Additional Ubiquitin Binding Sites?

    PubMed

    Middleton, Adam J; Wright, Joshua D; Day, Catherine L

    2017-11-10

    Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte.

    PubMed

    Tang, An; Shi, Peiliang; Song, Anying; Zou, Dayuan; Zhou, Yue; Gu, Pengyu; Huang, Zan; Wang, Qinghua; Lin, Zhaoyu; Gao, Xiang

    2016-06-02

    Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1(st) meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes.

  5. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.

    PubMed

    Ishida, Tetsuya; Hattori, Sayoko; Sano, Ryosuke; Inoue, Kayoko; Shirano, Yumiko; Hayashi, Hiroaki; Shibata, Daisuke; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Okada, Kiyotaka; Wada, Takuji

    2007-08-01

    Arabidopsis thaliana TRANSPARENT TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is expressed in young leaves, trichomes, seed coats, and root hairless cells. An examination of several trichome and root hair mutants indicates that MYB and bHLH genes regulate TTG2 expression. Two MYB binding sites in the TTG2 5' regulatory region act as cis regulatory elements and as direct targets of R2R3 MYB transcription factors such as WEREWOLF, GLABRA1, and TRANSPARENT TESTA2. Mutations in TTG2 cause phenotypic defects in trichome development and seed color pigmentation. Transgenic plants expressing a chimeric repressor version of the TTG2 protein (TTG2:SRDX) showed defects in trichome formation, anthocyanin accumulation, seed color pigmentation, and differentiation of root hairless cells. GLABRA2 (GL2) expression was markedly reduced in roots of ProTTG2:TTG2:SRDX transgenic plants, suggesting that TTG2 is involved in the regulation of GL2 expression, although GL2 expression in the ttg2 mutant was similar to that in the wild type. Our analysis suggests a new step in a regulatory cascade of epidermal differentiation, in which complexes containing R2R3 MYB and bHLH transcription factors regulate the expression of TTG2, which then regulates GL2 expression with complexes containing R2R3 MYB and bHLH in the differentiation of trichomes and root hairless cells.

  6. Unraveling the regulation of mTORC2 using logical modeling.

    PubMed

    Thobe, Kirsten; Sers, Christine; Siebert, Heike

    2017-01-19

    The mammalian target of rapamycin (mTOR) is a regulator of cell proliferation, cell growth and apoptosis working through two distinct complexes: mTORC1 and mTORC2. Although much is known about the activation and inactivation of mTORC1, the processes controlling mTORC2 remain poorly characterized. Experimental and modeling studies have attempted to explain the regulation of mTORC2 but have yielded several conflicting hypotheses. More specifically, the Phosphoinositide 3-kinase (PI3K) pathway was shown to be involved in this process, but the identity of the kinase interacting with and regulating mTORC2 remains to be determined (Cybulski and Hall, Trends Biochem Sci 34:620-7, 2009). We performed a literature search and identified 5 published hypotheses describing mTORC2 regulation. Based on these hypotheses, we built logical models, not only for each single hypothesis but also for all combinations and possible mechanisms among them. Based on data provided by the original studies, a systematic analysis of all models was performed. We were able to find models that account for experimental observations from every original study, but do not require all 5 hypotheses to be implemented. Surprisingly, all hypotheses were in agreement with all tested data gathered from the different studies and PI3K was identified as an essential regulator of mTORC2. The results and additional data suggest that more than one regulator is necessary to explain the behavior of mTORC2. Finally, this study proposes a new experiment to validate mTORC1 as second essential regulator.

  7. Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish.

    PubMed

    Elbaz, Idan; Lerer-Goldshtein, Tali; Okamoto, Hitoshi; Appelbaum, Lior

    2015-04-01

    Neuronal-activity-regulated pentraxin (NARP/NPTX2/NP2) is a secreted synaptic protein that regulates the trafficking of glutamate receptors and mediates learning, memory, and drug addiction. The role of NPTX2 in regulating structural synaptic plasticity and behavior in a developing vertebrate is indefinite. We characterized the expression of nptx2a in larvae and adult zebrafish and established a transcription activator-like effector nuclease (TALEN)-mediated nptx2a mutant (nptx2a(-/-)) to study the role of Nptx2a in regulating structural synaptic plasticity and behavior. Similar to mammals, the zebrafish nptx2a was expressed in excitatory neurons in the brain and spinal cord. Its expression was induced in response to a mechanosensory stimulus but did not change during day and night. Behavioral assays showed that loss of Nptx2a results in reduced locomotor response to light-to-dark transition states and to a sound stimulus. Live imaging of synapses using the transgenic nptx2a:GAL4VP16 zebrafish and a fluorescent presynaptic synaptophysin (SYP) marker revealed reduced synaptic density in the axons of the spinal motor neurons and the anterodorsal lateral-line ganglion (gAD), which regulate locomotor activity and locomotor response to mechanosensory stimuli, respectively. These results suggest that Nptx2a affects locomotor response to external stimuli by mediating structural synaptic plasticity in excitatory neuronal circuits. © FASEB.

  8. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2006-03-01

    Cholesterol Depletion Enhances Chitin Phagocytosis-Induced Macrophage Activation. Abstract will be presented at AAI Meeting at Boston in May 2006...presented at AAI Meeting at Boston in May 2006. Task 2. Tsuji S, M Yamashita Tsuji, A Nishiyama, Y Shibata. Molecular structure of human and mouse...interlectin-1 and comparison of binding to a mycobacterial galactofuranosyl residue. Abstract will be presented at AAI Meeting at Boston in May 2006

  9. IGF1 regulates PKM2 function through Akt phosphorylation

    PubMed Central

    Salani, Barbara; Ravera, Silvia; Amaro, Adriana; Salis, Annalisa; Passalacqua, Mario; Millo, Enrico; Damonte, Gianluca; Marini, Cecilia; Pfeffer, Ulrich; Sambuceti, Gianmario; Cordera, Renzo; Maggi, Davide

    2015-01-01

    Pyruvate kinase M2 (PKM2) acts at the crossroad of growth and metabolism pathways in cells. PKM2 regulation by growth factors can redirect glycolytic intermediates into key biosynthetic pathway. Here we show that IGF1 can regulate glycolysis rate, stimulate PKM2 Ser/Thr phosphorylation and decrease cellular pyruvate kinase activity. Upon IGF1 treatment we found an increase of the dimeric form of PKM2 and the enrichment of PKM2 in the nucleus. This effect was associated to a reduction of pyruvate kinase enzymatic activity and was reversed using metformin, which decreases Akt phosphorylation. IGF1 induced an increased nuclear localization of PKM2 and STAT3, which correlated with an increased HIF1α, HK2, and GLUT1 expression and glucose entrapment. Metformin inhibited HK2, GLUT1, HIF-1α expression and glucose consumption. These findings suggest a role of IGFIR/Akt axis in regulating glycolysis by Ser/Thr PKM2 phosphorylation in cancer cells. PMID:25790097

  10. Trek2a regulates gnrh3 expression under control of melatonin receptor Mt1 and α2-adrenoceptor.

    PubMed

    Loganathan, Kavinash; Moriya, Shogo; Parhar, Ishwar S

    2018-02-12

    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K + ) channel-related K + (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α 2 -adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α 2 -adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α 2 -adrenoceptor. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened ormore » eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.« less

  12. Indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804) is a potent modulator of LPS-stimulated macrophage functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babcock, Abigail S.; Anderson, Amy L.; Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634

    2013-01-01

    Indirubin is a deep-red bis-indole isomer of indigo blue, both of which are biologically active ingredients in Danggui Longhui Wan, an ancient Chinese herbal tea mixture used to treat neoplasia and chronic inflammation and to enhance detoxification of xenobiotics. Multiple indirubin derivatives have been synthesized and shown to inhibit cyclin-dependent kinases (CDKs) and glycogen-synthase kinase (GSK-3β) with varying degrees of potency. Several indirubins are also aryl hydrocarbon receptor (AhR) agonists, with AhR-associated activities covering a wide range of potencies, depending on molecular structure. This study examined the effects of indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804), a novel indirubin with potent STAT3 inhibitory properties,more » on basal and LPS-inducible activities in murine RAW264.7 macrophages. Using a focused commercial qRT-PCR array platform (SuperArray®), the effects of E804 on expression of a suite of genes associated with stress and toxicity were determined. Most genes up-regulated by LPS treatment were suppressed by E804; including LPS-induced expression of pro-inflammatory cytokines and receptors, apoptosis control genes, and oxidative stress response genes. Using qRT-PCR as a follow up to the commercial arrays, E804 treatment suppressed LPS-induced COX-2, iNOS, IL-6 and IL-10 gene expression, though the effects on iNOS and COX-2 protein expression were less dramatic. E804 also inhibited LPS-induced secretion of IL-6 and IL-10. Functional endpoints, including iNOS and lysozyme enzymatic activity, phagocytosis of fluorescent latex beads, and intracellular killing of bacteria, were also examined, and in each experimental condition E804 suppressed activities. Collectively, these results indicate that E804 is a potent modulator of pro-inflammatory profiles in LPS-treated macrophages. -- Highlights: ► RAW 264.7 macrophages were treated with 1 μM Indirubin E804, 1 μg/ml LPS, or both. ► E804 suppresses LPS

  13. Dead cell phagocytosis and innate immune checkpoint

    PubMed Central

    Yoon, Kyoung Wan

    2017-01-01

    The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations. PMID:28768566

  14. The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia.

    PubMed

    Di Costanzo, Antonella; Del Gaudio, Nunzio; Conte, Lidio; Dell'Aversana, Carmela; Vermeulen, Michiel; de Thé, Hugues; Migliaccio, Antimo; Nebbioso, Angela; Altucci, Lucia

    2018-05-01

    Polycomb group (PcG) proteins regulate transcription, playing a key role in stemness and differentiation. Deregulation of PcG members is known to be involved in cancer pathogenesis. Emerging evidence suggests that CBX2, a member of the PcG protein family, is overexpressed in several human tumors, correlating with lower overall survival. Unraveling the mechanisms regulating CBX2 expression may thus provide a promising new target for anticancer strategies. Here we show that the HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. We identify CBX4 and RNF4 as the E3 SUMO and E3 ubiquitin ligase, respectively, and describe the specific molecular mechanism regulating CBX2 protein stability. Finally, we show that CBX2-depleted leukemic cells display impaired proliferation, underscoring its critical role in regulating leukemia cell tumorogenicity. Our results show that SAHA affects CBX2 stability, revealing a potential SAHA-mediated anti-leukemic activity though SUMO2/3 pathway.

  15. Early Induction of NRF2 Antioxidant Pathway by RHBDF2 Mediates Rapid Cutaneous Wound Healing

    PubMed Central

    Hosur, Vishnu; Burzenski, Lisa M.; Stearns, Timothy M.; Farley, Michelle L.; Sundberg, John P.; Wiles, Michael V.; Shultz, Leonard D.

    2017-01-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15 min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15 min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. PMID:28268192

  16. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    PubMed

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network.

    PubMed

    Anderson, David J; Kaplan, David I; Bell, Katrina M; Koutsis, Katerina; Haynes, John M; Mills, Richard J; Phelan, Dean G; Qian, Elizabeth L; Leitoguinho, Ana Rita; Arasaratnam, Deevina; Labonne, Tanya; Ng, Elizabeth S; Davis, Richard P; Casini, Simona; Passier, Robert; Hudson, James E; Porrello, Enzo R; Costa, Mauro W; Rafii, Arash; Curl, Clare L; Delbridge, Lea M; Harvey, Richard P; Oshlack, Alicia; Cheung, Michael M; Mummery, Christine L; Petrou, Stephen; Elefanty, Andrew G; Stanley, Edouard G; Elliott, David A

    2018-04-10

    Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease.

  18. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  19. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  20. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...