Science.gov

Sample records for a4 parity violation

  1. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. PMID:25919812

  2. Parity violation in electron scattering

    NASA Astrophysics Data System (ADS)

    Souder, P.; Paschke, K. D.

    2016-02-01

    By comparing the cross sections for left- and right-handed electrons scattered from various unpolarized nuclear targets, the small parity-violating asymmetry can be measured. These asymmetry data probe a wide variety of important topics, including searches for new fundamental interactions and important features of nuclear structure that cannot be studied with other probes. A special feature of these experiments is that the results are interpreted with remarkably few theoretical uncertainties, which justifies pushing the experiments to the highest possible precision. To measure the small asymmetries accurately, a number of novel experimental techniques have been developed.

  3. Parity Violation in Electron Scattering

    SciTech Connect

    Beise, Elizabeth

    2007-10-26

    About thirty years ago, electron scattering from nucleons was used [1] to identify, and then measure, the properties of the weak interaction, the only force of nature known to violate the symmetry parity. The basic technique has not fundamentally changed, which is to look for a small asymmetry in count rate from scattering a polarized electron beam from an unpolarized target. Since then, parity-violating (PV) electron scattering has developed substantially, a result of significant improvements in polarized electron beams, accelerator advancements, and developments in cryogenic targets that make it possible to carry out experiments with much higher statistical precision. In the last decade PV experiments have focused on using the complementary electron-quark flavor coupling of the weak interaction to identify and place limits on contributions of strange quark-antiquark pairs to the charge and magnetism of the proton. This observable provides a unique window into the structure of the proton since strange quark contributions can arise only from the sea of quarks and gluons that are responsible for the vast majority of the nucleon's mass. This paper will report on recent results aimed at this goal, along with a brief overview of future directions.

  4. Parity violation in low-energy

    SciTech Connect

    Martin Savage

    2001-12-01

    Parity violation in low-energy nuclear observables is included in the pionless effective field theory. The model-independent relation between the parity-violating asymmetry in polarized np -> d gamma and the non-nucleon part of the deuteron anapole moment is discussed. The asymmetry in np -> d gamma computed with KSW power-counting, and recently criticized by Desplanques, is discussed.

  5. Models of dynamical R-parity violation

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kuflik, Eric; Slone, Oren; Volansky, Tomer

    2015-06-01

    The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.

  6. Parity violation in deep inelastic scattering

    SciTech Connect

    Souder, P.

    1994-04-01

    AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.

  7. Parity violation in the compound nucleus

    SciTech Connect

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-06-10

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized.

  8. Understanding parity violation in molecular systems.

    PubMed

    Faglioni, Francesco; Lazzeretti, Paolo

    2002-01-01

    Parity-violation energy (E(PV)) due to weak nuclear interactions between nucleons and electrons in chiral molecular systems provides a fundamental tool to verify our understanding of electronic behavior in complex systems. We used both a relativistic and a nonrelativistic approach to study a number of simple molecules and analyze the corresponding E(PV) in terms of intuitive electrodynamic concepts. We developed a qualitative model to predict the sign of E(PV) and its behavior against selected geometric distortions. Our model provides a valuable tool to screen large sets of molecules and select interesting candidates for more expensive investigations. PMID:11800715

  9. Parity violation in the compound nucleus

    SciTech Connect

    Mitchell, G.E.; Crawford, B.E.; Grossmann, C.A.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Penttilae, S.; Seestrom, S.J.; Smith, D.A.; Yen, Y.; Yuan, V.W.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N.R.; Sharapov, E.I.; Stephenson, S.L.

    1999-06-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized. {copyright} {ital 1999 American Institute of Physics.}

  10. Dispersion corrections to parity violating electron scattering

    SciTech Connect

    Gorchtein, M.; Horowitz, C. J.; Ramsey-Musolf, M. J.

    2010-08-04

    We consider the dispersion correction to elastic parity violating electron-proton scattering due to {gamma}Z exchange. In a recent publication, this correction was reported to be substantially larger than the previous estimates. In this paper, we study the dispersion correction in greater detail. We confirm the size of the disperion correction to be {approx}6% for the QWEAK experiment designed to measure the proton weak charge. We enumerate parameters that have to be constrained to better than relative 30% in order to keep the theoretical uncertainty for QWEAK under control.

  11. Observation of a Large Atomic Parity Violation Effect in Ytterbium

    SciTech Connect

    Tsigutkin, K.; Dounas-Frazer, D.; Family, A.; Stalnaker, J. E.; Yashchuk, V. V.; Budker, D.

    2009-08-14

    Atomic parity violation has been observed in the 6s{sup 2} {sup 1}S{sub 0}->5d6s {sup 3}D{sub 1} 408-nm forbidden transition of ytterbium. The parity-violating amplitude is found to be 2 orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of neutron distributions and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition.

  12. Bilinear R-parity violation with flavor symmetry

    NASA Astrophysics Data System (ADS)

    Bazzocchi, F.; Morisi, S.; Peinado, E.; Valle, J. W. F.; Vicente, A.

    2013-01-01

    Bilinear R-parity violation (BRPV) provides the simplest intrinsically super-symmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry A 4 with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles θ 13 and θ 23 in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.

  13. Muon anomaly and dark parity violation.

    PubMed

    Davoudiasl, Hooman; Lee, Hye-Sung; Marciano, William J

    2012-07-20

    The muon anomalous magnetic moment exhibits a 3.6σ discrepancy between experiment and theory. One explanation requires the existence of a light vector boson, Z(d) (the dark Z), with mass 10-500 MeV that couples weakly to the electromagnetic current through kinetic mixing. Support for such a solution also comes from astrophysics conjectures regarding the utility of a U(1)(d) gauge symmetry in the dark matter sector. In that scenario, we show that mass mixing between the Z(d) and ordinary Z boson introduces a new source of "dark" parity violation, which is potentially observable in atomic and polarized electron scattering experiments. Restrictive bounds on the mixing (m(Z(d))/m(Z))δ are found from existing atomic parity violation results, δ2<2×10(-5). Combined with future planned and proposed polarized electron scattering experiments, a sensitivity of δ2∼10(-6) is expected to be reached, thereby complementing direct searches for the Z(d) boson. PMID:22861837

  14. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  15. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect

    Paschke, Kent D,

    2013-11-01

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  16. Hadronic parity violation in few-body systems

    SciTech Connect

    L. Girlanda, R. Schiavilla, M. Viviani, A. Kievsky, L.E. Marcucci

    2009-06-01

    Recent interest, both from experimental and theoretical point of view, on hadronic parity violation is reviewed, with particular emphasis on an effective theory description. After discussing the minimal form of the parity-violating NN contact e ective Lagrangian, we concentrate on the calculation of the neutron spin rotation in vec n - d scattering at zero energy. We find that this observable is sensitive to the long-range component of the parity-violating NN pontential due to the pion exchange, and that it is expected to be one order of magnitude larger than in vec n - p scattering.

  17. Polarized electron scattering, new physics and dark parity violation

    SciTech Connect

    Marciano, William J.

    2013-11-07

    'New Physics' sensitivities of polarized electron scattering asymmetries, atomic parity violation, m{sub W} and sin{sup 2} θ{sub W} (Z pole measurements) are compared. The utility of low Q{sup 2} polarized electron scattering for probing parity violating 'dark boson' effects is discussed. A possible determination of the weak charge Q{sub w}({sup 12}C) to about ±0.3% via elastic e-Carbon scattering is advocated.

  18. Observation of an unusually large atomic parity-violation effect

    NASA Astrophysics Data System (ADS)

    Tsigutkin, Konstantin

    2010-03-01

    We report on observation of a large parity-violation effect in the atoms of ytterbium (Yb). This left-right asymmetry appears naturally in the Standard Model, and is associated with the exchange of a virtual heavy ``gauge" boson between subatomic particles. Eventually, parity violation has been observed and precisely measured by a number of groups in several different atoms, culminating in a 0.3% measurement in cesium (Cs) by Carl Wieman and co-workers at Boulder. The parity-violating amplitude of the 6x^2 ^1S0 -> 5d6s ^3D1 408-nm forbidden transition of ytterbium is found to be two orders of magnitude larger than in cesium. This is the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of the parity violation effects for different Yb isotopes in order to test the effect of the neutron distributions within the nucleus and detect the so-called ``anapole moment" by comparing parity-violating amplitudes for various hyperfine components of the transition. So far, Cs is the only system where such a moment has been detected. Measurements of anapole moments are important for understanding the electroweak interactions within the nucleus which are hard to probe by other means.

  19. Parity-violating PVDIS with SoLID

    SciTech Connect

    Paul Souder

    2012-04-01

    An experiment designed to measure parity violation in the deep inelastic scattering of electrons from deuterium by using a novel solenoidal spectrometer (SoLID) has recently been approved at JLab. The main goal of the experiment is to make a precise measurement of the parity-violating coupling of the electron to the axial current of the quark. By covering a broad range of kinematics, the experiment will also search for charge symmetry violation in the structure functions. In addition the experiment is sensitive to di-quarks.

  20. Parity Violation in Composite Inelastic Dark Matter Models

    SciTech Connect

    Lisanti, Mariangela; Wacker, Jay G.; /SLAC

    2010-08-26

    Recent experimental results indicate that the dark matter sector may have a non-minimal structure with a spectrum of states and interactions. Inelastic scattering has received particular attention in light of DAMA's annual modulation signal. Composite inelastic dark matter (CiDM) provides a dynamical origin for the mass splittings in inelastic dark matter models. We show that higher dimensional operators in the CiDM Lagrangian lead to an admixture of inelastic and elastic scattering in the presence of parity violation. This scenario is consistent with direct detection experiments, even when parity violation is nearly maximal. We present an effective field theory description of such models and discuss the constraints from direct detection experiments. The CiDM model with parity violation has non-trivial phenomenology because of the multiple scattering channels that are allowed.

  1. Parity violation in composite inelastic dark matter models

    SciTech Connect

    Lisanti, Mariangela; Wacker, Jay G.

    2010-09-01

    Recent experimental results indicate that the dark matter sector may have a nonminimal structure with a spectrum of states and interactions. Inelastic scattering has received particular attention in light of DAMA's annual modulation signal. Composite inelastic dark matter (CiDM) provides a dynamical origin for the mass splittings in inelastic dark matter models. We show that higher dimensional operators in the CiDM Lagrangian lead to an admixture of inelastic and elastic scattering in the presence of parity violation. This scenario is consistent with direct detection experiments, even when parity violation is nearly maximal. We present an effective field theory description of such models and discuss the constraints from direct detection experiments. The CiDM model with parity violation has nontrivial phenomenology because of the multiple scattering channels that are allowed.

  2. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect

    Paschke, K. D.

    2013-11-07

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable A{sub PV} - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  3. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    SciTech Connect

    Reimer, Paul; Bosted, Peter; Arrington, John; Mkrtchyan, Hamlet; Zheng, Xiaochao

    2006-05-16

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q2, low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (~ 0.5 × 10-4) these studies may be completed with in a relatively brief period.

  4. Nuclear beta-decay, Atomic Parity Violation, and New Physics

    SciTech Connect

    Michael Ramsey-Musolf

    2000-08-01

    Determinations of vuds with super-allowed Fermi beta-decay in nuclei and of the weak charge of the cesium in atomic parity-violation deviate from the Standard Model predictions by 2 sigma or more. In both cases, the Standard Model over-predicts the magnitudes of the relevant observables. I discuss the implications of these results for R-parity violating (RPV) extensions of the minimal supersymmetric Standard Model. I also explore the possible consequences for RPV supersymmetry of prospective future low-energy electroweak measurements.

  5. R-parity violation and sneutrino resonances at muon colliders

    SciTech Connect

    Feng, J.L.

    1998-01-01

    In supersymmetric models with R-parity violation, sneutrinos may be produced as channel resonances at {mu}{sup +}{mu}{sup {minus}} colliders. The authors demonstrate that, for R-parity violating couplings as low as 10{sup {minus}4}, sneutrino resonances may be observed and may be exploited to yield high precision SUSY parameter measurements. The excellent beam energy resolution of muon colliders may also be used to resolve MeV level splitting between CP-even and CP-odd sneutrino mass eigenstates.

  6. Parity-violating electric-dipole transitions in helium

    NASA Technical Reports Server (NTRS)

    Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.

    1980-01-01

    The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question

  7. Parity violation in low-energy neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-01-15

    Parity-violating effects for low-energy elastic neutron deuteron scattering are calculated for Desplanques, Donoghue, and Holstein (DDH) and effective field theory types of weak potentials in a distorted-wave Born approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The resulting relation between physical observables and low-energy constants can be used to fix low-energy constants from experiments. Potential model dependencies of parity-violating effects are discussed.

  8. Status of Theory and Experiment in Hadronic Parity Violation

    NASA Astrophysics Data System (ADS)

    Snow, W. M.; Ahmed, M. W.; Bowman, J. D.; Crawford, C.; Fomin, N.; Gao, H.; Gericke, M. T.; Gudkov, V.; Holstein, B. R.; Howell, C. R.; Huffman, P.; van Oers, W. T. H.; Penttilä, S.; Wu, Y. K.

    2016-02-01

    Hadronic parity violation uses quark-quark weak interactions to probe nonperturbative strong interaction dynamics through two nonperturbative QCD scales: ΛQCD and the fine-tuned MeV scales of NN bound states in low energy nuclear physics. The current and projected availability of high-intensity neutron and photon sources coupled with ongoing experiments and continuing developments in theoretical methods provide the opportunity to greatly expand our understanding of hadronic parity violation in few-nucleon systems. The current status of these efforts and future plans are discussed.

  9. Measurements of parity violation in neutron-nucleus reactions

    SciTech Connect

    Seestrom, S.J.; Bowman, C.D.; Bowman, J.D.; Knudson, J.; Mortensen, R.; Penttila, S.; Szymanski, J.J.; Wender, S.A.; Yoo, S.H.; Yuan, V.W. ); Frankle, C.M.; Gould, C.R.; Haase, D.G.; Mitchell, G.E. Triangle Universities Nuclear Lab., Durham, NC ); Roberson, N.R.; Zhu, X. (Duke Univ., Durham, NC

    1991-01-01

    In this talk I describe a new generation of experiments studying the weak interaction between nucleons. Measurements of the effect of this interaction are few in number and the significance of the observed effects are generally small. It is well known that the weak interaction violates parity. This was first experimentally established by C. S. Wu through measurement of an asymmetry of electrons emitted in the beta-decay of polarized {sup 60}Co. The measured asymmetry was large because beta decay is a weak interaction process. For a process in which the strong interaction can contribute, we expect much smaller asymmetries, of order 10{sup {minus}7}. In the work I will describe here we study the effects of the weak interaction through the signal of the parity violation associated with that interaction. There are two basic classes of experiment used to detect parity violation. The first relies on the measurement of a cross section or width that would vanish if parity were conserved. One example of this type of experiment in nuclear physics is the decay of an unnatural parity state to a 0+ nucleus and an {alpha}-particle. Such measurements have been made for two nuclei: {sup 16}O(2{sup {minus}}) {implies} {sup 12} C(g.s) + {alpha} and {sup 20}N{var epsilon}(1{sup +}) {implies} {sup 16} O(g.s) + {alpha}. Parity-violating widths as small as of 10{sup {minus}10} eV have been measured in these experiments. The second class of experiments involves a measurement of pseudo-scalar observables which are odd under parity inversion. These involve correlations between spin and linear angular momenta, for example circular polarization of {gamma}-rays ({sigma}{sub {gamma}} {center dot} {kappa}{sub {gamma}}) or longitudinal analyzing power ({sigma}{sub p} {center dot} {kappa}{sub p}). 20 refs., 6 figs.

  10. Polarized electrons for parity violation experiments at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Poelker, Matthew

    2016-03-01

    Since 1998, noteworthy electron scattering experiments at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab have employed parity violation as a tool to probe hadronic structure. These experiments, together with experiments performed at other labs, have quantified the strange quark-antiquark pair contribution to the elastic electroweak form factors of the nucleon. More recently, the focus of parity-violation electron scattering experiments at CEBAF has shifted to making precise measurements of the weak mixing angle, θw, and the search for physics beyond the Standard Model. Following the successful completion of the CEBAF energy upgrade, a new era of physics experimentation begins. Experiments at traditional ``parity violation'' Halls A and C can expect to receive polarized beam at 11 GeV. This contribution discusses the characteristics of polarized beams at higher energy, focusing on the helicity-correlated beam properties. The talk also describes planned accelerator improvements that should make it possible to successfully complete proposed parity violation experiments that are more challenging than those completed to date. This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177.

  11. Universal extra dimension: Violation of Kaluza-Klein parity

    SciTech Connect

    Bhattacherjee, Biplob

    2009-01-01

    The minimal universal extra dimension (mUED) model respects the Kaluza-Klein (KK) parity (-1){sup n}, where n is the KK number. However, it is possible to have interactions located at only one of the two fixed points of the S{sub 1}/Z{sub 2} orbifold. Such asymmetric interactions violate the KK parity. This kills the cold dark matter component of UED but also removes the upper bound on the inverse compactification radius, and thus nonobservation of the KK excitations even at the Large Hadron Collider does not necessarily invalidate the model. Apart from the decay of the lightest n=1 KK excitation, this leads to collider signals which are markedly different from those in the mUED scenario. The phenomenological consequences of such KK-parity violating terms are explored.

  12. Cosmological behavior of a parity and charge-parity violating varying alpha theory

    SciTech Connect

    Maity, Debaprasad; Chen, Pisin

    2011-04-15

    In this paper we construct a phenomenological model in which the time variation of the fine-structure constant, {alpha}, is induced by a parity and charge-parity (PCP) violating interaction. Such a PCP violation in the photon sector has a distinct physical origin from that in the conventional models of this kind. We calculate the cosmological birefringence so induced in our model and show that it in turn produces a new nonvanishing multipole moment correlation between the temperature and the polarization anisotropies in the CMB spectrum. We have also calculated the amount of optical rotation due to a strong background magnetic field and the effect of our new PCP violating term on the variation of {alpha} during the cosmic evolution. We found that only in the radiation dominated era can the contribution of the new PCP violating term to the variation of {alpha} be nonvanishing.

  13. Measurement of parity violation in electron-quark scattering

    NASA Astrophysics Data System (ADS)

    The Jefferson Lab Pvdis Collaboration; Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; de Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; Lerose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2014-02-01

    Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u-C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.

  14. Measurement of parity violation in electron–quark scattering

    SciTech Connect

    Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman,; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2014-02-05

    Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks chirality preference when participating in the weak force, which have been measured directly3, 4 only once in the past 40?years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u???C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.

  15. Measurement of parity violation in electron-quark scattering.

    PubMed

    2014-02-01

    Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future. PMID:24499917

  16. Quantum gravity, torsion, parity violation, and all that

    SciTech Connect

    Freidel, Laurent; Minic, Djordje; Takeuchi, Tatsu

    2005-11-15

    We discuss the issue of parity violation in quantum gravity. In particular, we study the coupling of fermionic degrees of freedom in the presence of torsion and the physical meaning of the Immirzi parameter from the viewpoint of effective field theory. We derive the low-energy effective Lagrangian which turns out to involve two parameters: one measuring the nonminimal coupling of fermions in the presence of torsion, the other being the Immirzi parameter. In the case of nonminimal coupling the effective Lagrangian contains an axial-vector interaction leading to parity violation. Alternatively, in the case of minimal coupling there is no parity violation and the effective Lagrangian contains only the usual axial-axial interaction. In this situation the real values of the Immirzi parameter are not at all constrained. On the other hand, purely imaginary values of the Immirzi parameter lead to violations of unitarity for the case of nonminimal coupling. Finally, the effective Lagrangian blows up for the positive and negative unit imaginary values of the Immirzi parameter.

  17. Parity-violating DIS at 12 GeV

    SciTech Connect

    Souder, Paul

    2007-06-01

    The advent of the 12-GeV upgrade at JLab will present an excellent opportunity to study parity violation in deep inelastic scattering at high values of x. The physics issues in this domain include charge symmetry violation, quark-quark correlations in the nucleon, and tests of the Standard Model. This program will require a high-luminosity detector with high acceptance for scattering angles up to about 35°. A possible design for a solenoidal spectrometer that meets this requirement is suggested.

  18. Parity Violating Electron Scattering and Strangeness in the Nucleon

    SciTech Connect

    Maas, Frank E.

    2008-10-13

    A measurement of the weak form factor of the proton allows a flavor separation of the strangeness contribution to the electromagnetic form factors. The weak form factor is accessed experimentally by the measurement of a parity violating (PV) asymmetry in the scattering of polarized electrons on unpolarized protons. An extended experimental program to measure these parity violating asymmetries has been performed and is going on at different accelerators. After the first round of experiments allowing a separation of the strangeness form factors G{sub E}{sup s} and G{sub M}{sup s} at a Q{sup 2}-value of 0.1 (GeV/c){sup 2}, new, preliminary results have been achieved at 0.23 (GeV/c){sup 2}.

  19. Spontaneous parity violation and SUSY strong gauge theory

    SciTech Connect

    Haba, Naoyuki; Ohki, Hiroshi

    2012-07-27

    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking.

  20. Nuclear Spin Dependent Parity Violation in Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Altuntas, Emine; Cahn, Sidney; Demille, David; Kozlov, Mikhail

    2016-05-01

    Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138 Ba19 F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137 Ba19 F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.

  1. Precision tests of parity violation over cosmological distances

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan P.; Keating, Brian G.; Johnson, Bradley R.

    2016-01-01

    Recent measurements of the cosmic microwave background (CMB) B-mode polarization power spectrum by the BICEP2 and POLARBEAR experiments have demonstrated new precision tools for probing fundamental physics. Regardless of origin, the detection of sub-μK CMB polarization represents a technological tour de force. Yet more information may be latent in the CMB's polarization pattern. Because of its tensorial nature, CMB polarization may also reveal parity-violating physics via a detection of cosmic polarization rotation. Although current CMB polarimeters are sensitive enough to measure one degree-level polarization rotation with >5σ statistical significance, they lack the ability to differentiate this effect from a systematic instrumental polarization rotation. Here, we motivate the search for cosmic polarization rotation from current CMB data as well as independent radio galaxy and quasar polarization measurements. We argue that an improvement in calibration accuracy would allow the unambiguous measurement of parity- and Lorentz-violating effects. We describe the CalSat space-based polarization calibrator that will provide stringent control of systematic polarization angle calibration uncertainties to 0.05° - an order of magnitude improvement over current CMB polarization calibrators. CalSat-based calibration could be used with current CMB polarimeters searching for B-mode polarization, effectively turning them into probes of cosmic parity violation, `for free' - i.e. without the need to build dedicated instruments.

  2. Strange vector form factors from parity-violating electron scattering

    SciTech Connect

    Kent Paschke, Anthony Thomas, Robert Michaels, David Armstrong

    2011-06-01

    The simplest models might describe the nucleon as 3 light quarks, but this description would be incomplete without inclusion of the sea of glue and qbar q pairs which binds it. Early indications of a particularly large contribution from strange quarks in this sea to the spin and mass of the nucleon motivated an experimental program examining the role of these strange quarks in the nucleon vector form factors. The strangeness form factors can be extracted from the well-studied electromagnetic structure of the nucleon using parity-violation in electron-nuclear scattering to isolate the effect of the weak interaction. With high luminosity and polarization, and a very stable beam due to its superconducting RF cavities, CEBAF at Jefferson Lab is a precision instrument uniquely well suited to the challenge of measurements of the small parity-violating asymmetries. The techniques and results of the two major Jefferson Lab experimental efforts in parity-violation studies, HAPPEX and G0, as well as efforts to describe the strange form factors in QCD, will be reviewed.

  3. Parity violation in atomic ytterbium: Experimental sensitivity and systematics

    SciTech Connect

    Tsigutkin, K.; Dounas-Frazer, D.; Family, A.; Stalnaker, J. E.; Yashchuk, V. V.; Budker, D.

    2010-03-15

    We present a detailed description of the observation of parity violation in the {sup 1}S{sub 0}-{sup 3}D{sub 1} 408-nm forbidden transition of ytterbium, a brief report of which appeared earlier. Linearly polarized 408-nm light interacts with Yb atoms in crossed E and B fields. The probability of the 408-nm transition contains a parity-violating term, proportional to ({center_dot}B)[(Ex){center_dot}B], arising from interference between the parity-violating amplitude and the Stark amplitude due to the E field ( is the electric field of the light). The transition probability is detected by measuring the population of the {sup 3}P{sub 0} state, to which 65% of the atoms excited to the {sup 3}D{sub 1} state spontaneously decay. The population of the {sup 3}P{sub 0} state is determined by resonantly exciting the atoms with 649-nm light to the 6s7s {sup 3}S{sub 1} state and collecting the fluorescence resulting from its decay. Systematic corrections due to E-field and B-field imperfections are determined in auxiliary experiments. The statistical uncertainty is dominated by parasitic frequency excursions of the 408-nm excitation light due to the imperfect stabilization of the optical reference with respect to the atomic resonance. The present uncertainties are 9% statistical and 8% systematic. Methods of improving the accuracy for future experiments are discussed.

  4. Lepton flavor violation and cosmological constraints on R-parity violation

    SciTech Connect

    Endo, Motoi; Hamaguchi, Koichi; Iwamoto, Sho E-mail: hama@hep-th.phys.s.u-tokyo.ac.jp

    2010-02-01

    In supersymmetric standard models R-parity violating couplings are severely constrained, since otherwise they would erase the existing baryon asymmetry before the electroweak transition. It is often claimed that this cosmological constraint can be circumvented if the baryon number and one of the lepton flavor numbers are sufficiently conserved in these R-parity violating couplings, because B/3−L{sub i} for each lepton flavor is separately conserved by the sphaleron process. We discuss the effect of lepton flavor violation on the B−L conservation, and show that even tiny slepton mixing angles θ{sub 12}∼>O(10{sup −4}) and θ{sub 23},θ{sub 13}∼>O(10{sup −5}) will spoil the separate B/3−L{sub i} conservation. In particular, if lepton flavor violations are observed in experiments such as MEG and B-factories, it will imply that all the R-parity violating couplings must be suppressed to avoid the B−L erasure. We also discuss the implication for the decay of the lightest MSSM particle at the LHC.

  5. Atomic Parity Violation and Related Physics in Ytterbium

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri Robert

    Atomic parity violation has been observed in the 408 nm 1 S0→3D1 forbidden transition of ytterbium. The parity violating amplitude is 8.7(1.4)e-10 ea0, two orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity violating amplitude yet observed. This also opens the way to future measurements of neutron skins and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition. We present a detailed description of the observation. Linearly polarized 408 nm light interacts with ytterbium atoms in crossed electric (E) and magnetic fields (B). The probability of the 1 S0→3D1 transition contains a parity-violating term, proportional to E'B[( E'xE B], arising from interference between the amplitudes of transitions induced by the electroweak interaction and the Stark effect ((E' is the optical electric field). The transition probability is detected by measuring the population of the metastable 3P0 state, to which 65% of the atoms excited to the 3D1 state spontaneously decay. The population of the 3P0 state is determined by resonantly exciting the atoms with 649 nm light to the 3S1 state and collecting the fluorescence resulting from its decay. Systematic corrections due to imperfections in the applied electric and magnetic fields are determined in auxiliary experiments. The statistical uncertainty is dominated by parasitic frequency excursions of the 408-nm excitation light due to imperfect stabilization of the optical reference with respect to the atomic resonance. The present uncertainties are 9% statistical and 8% systematic. Methods of improving the accuracy for the future experiments are discussed. We further present a measurement of the dynamic scalar and tensor polarizabilities of ytterbium's 3D1 state. The polarizabilities were measured by analyzing the spectral

  6. Jefferson Lab injector development for next generation parity violation experiments

    NASA Astrophysics Data System (ADS)

    Grames, J.; Hansknect, J.; Poelker, M.; Suleiman, R.

    2011-11-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  7. Parity-violating and anisotropic correlations in pseudoscalar inflation

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Shiraishi, Maresuke

    2015-01-01

    A pseudo-scalar inflaton field can have interesting phenomenological signatures associated with parity violation. The existing analyses of these signatures typically assume statistical isotropy. In the present work we instead investigate the possibility that a pseudo-scalar inflaton is coupled to a vector field carrying a small but non-negligible vacuum expectation value (vev) coherent over our Hubble patch. We show that, in such case, correlators involving the primordial curvature perturbations and gravitational waves violate both statistical isotropy and parity symmetry. We compute the Cosmic Microwave Background (CMB) temperature anisotropies (T) and polarization (E/B) generated by these primordial modes. The CMB two-point correlation functions present distinct signals of broken rotational and parity invariance. Specifically, we find non-vanishing TT, TE, EE and BB correlators between l1 and l2 = l1 ± 1 multipoles, and non-vanishing TB and EB correlators between l1 and l2 = l1 ± 2 multipoles. Such signatures are specific of the models under consideration and they cannot be generated if one of parity and isotropy is preserved. As a specific example we consider the simple case in which the vector field has just an "electric" background component decaying in the standard way as a-2. In this case a strong scale-dependent quadrupolar modulation of the primordial power spectra is generated and we find that almost noiseless data of the large-scale temperature and E-mode polarization anisotropies (like, e.g., the ones provided by WMAP or Planck) should be able to constrain the quadrupolar amplitude coefficients g2M of the primordial scalar power spectrum (normalized at the pivot scale comparable to the present horizon size k-10 = 14 Gpc) down to g2M = 30 (68%CL).

  8. Parity-violating and anisotropic correlations in pseudoscalar inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Shiraishi, Maresuke; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: maresuke.shiraishi@pd.infn.it

    2015-01-01

    A pseudo-scalar inflaton field can have interesting phenomenological signatures associated with parity violation. The existing analyses of these signatures typically assume statistical isotropy. In the present work we instead investigate the possibility that a pseudo-scalar inflaton is coupled to a vector field carrying a small but non-negligible vacuum expectation value (vev) coherent over our Hubble patch. We show that, in such case, correlators involving the primordial curvature perturbations and gravitational waves violate both statistical isotropy and parity symmetry. We compute the Cosmic Microwave Background (CMB) temperature anisotropies (T) and polarization (E/B) generated by these primordial modes. The CMB two-point correlation functions present distinct signals of broken rotational and parity invariance. Specifically, we find non-vanishing TT, TE, EE and BB correlators between ℓ{sub 1} and ℓ{sub 2} = ℓ{sub 1} ± 1 multipoles, and non-vanishing TB and EB correlators between ℓ{sub 1} and ℓ{sub 2} = ℓ{sub 1} ± 2 multipoles. Such signatures are specific of the models under consideration and they cannot be generated if one of parity and isotropy is preserved. As a specific example we consider the simple case in which the vector field has just an ''electric'' background component decaying in the standard way as a{sup −2}. In this case a strong scale-dependent quadrupolar modulation of the primordial power spectra is generated and we find that almost noiseless data of the large-scale temperature and E-mode polarization anisotropies (like, e.g., the ones provided by WMAP or Planck) should be able to constrain the quadrupolar amplitude coefficients g{sub 2M} of the primordial scalar power spectrum (normalized at the pivot scale comparable to the present horizon size k{sup −1}{sub 0} = 14 Gpc) down to g{sub 2M} = 30 (68%CL)

  9. Observation of parity violation in the Omega- ---> Lambda K- decay

    SciTech Connect

    Lu, L.C.; Burnstein, R.A.; Chakravorty, A.; Chen, Y.C.; Choong, W.-S.; Clark, K.; Dukes, E.C.; Durandet, C.; Felix, J.; Fu, Y.; Gidal, G.; Gustafson, H.R.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C.M.; Jones, T.D.; Kaplan, D.M.; Longo, M.J.; Luebke, W.; Luk, K.-B.; /Taiwan, Inst. Phys. /UC, Berkeley /Fermilab /Guanajuato U. /IIT, Chicago /Lausanne U. /LBL, Berkeley /Michigan U. /South Alabama U. /Virginia U.

    2005-05-01

    The {alpha} decay parameter in the process {Omega}{sup -} {yields} {Lambda}K{sup -} has been measured from a sample of 4.50 million unpolarized {Omega}{sup -} decays recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78 {+-} 0.19(stat) {+-} 0.16(syst)] x 10{sup -2}. This is the first unambiguous evidence for a nonzero {alpha} decay parameter, and hence parity violation, in the {Omega}{sup -} {Lambda}K{sup -} decay.

  10. Parity Violation in Forward Angle Elastic Electron Proton Scattering

    SciTech Connect

    Krishna Kumar

    1999-07-01

    HAPPEX is a new experiment to probe the strange structure of the nucleon with parity violating electron scattering. We describe the physics motivation, provide an experimental overview and report on the results from the first data run. The asymmetry for the elastic scattering of 3.3 GeV electrons off target protons at a scattering angle of 12.5 degrees was measured to a precision of 15% of itself. The contribution from strange quark form factors was found to be zero within the experimental and theoretical uncertainties.

  11. U(1) prime dark matter and R-parity violation

    SciTech Connect

    Brahm, D.E.

    1990-04-01

    Attempts to understand physics beyond the Standard Model must face many phenomenological constraint, from recent Z{sup {degree}} data, neutral current measurements, cosmology and astrophysics, neutrino experiments, tests of lepton-and baryon-number conservation and CP violation, and many other ongoing experiments. The most interesting models are those which are allowed by current data, but offer predictions which can soon be experimentally confirmed or refuted. Two classes of such models are explored in this dissertation. The first, containing an extra U(1){prime} gauge group, has a dark matter candidate which could soon be detected. The second, incorporating supersymmetry with R-parity violation, predicts rare Z{sup {degree}} decays at LEP; some of these models can already be ruled out by LEP data and gluino searches at the Tevatron. 54 refs., 31 figs.

  12. Finite-Q^2 Corrections to Parity-Violating DIS

    SciTech Connect

    T. Hobbs; W. Melnitchouk

    2008-01-23

    Parity-violating deep inelastic scattering (PVDIS) has been proposed as an important new tool to extract the flavor and isospin dependence of parton distributions in the nucleon. We discuss finite-$Q^2$ effects in PVDIS asymmetries arising from subleading kinematical corrections and longitudinal contributions to the $\\gamma Z$ interference. For the proton, these need to be accounted for when extracting the $d/u$ ratio at large $x$. For the deuteron, the finite-$Q^2$ corrections can distort the effects of charge symmetry violation in parton distributions, or signals for physics beyond the standard model. We further explore the dependence of PVDIS asymmetries for polarized targets on the $u$ and $d$ helicity distributions at large $x$.

  13. Parity-violating electroweak asymmetry in {rvec e} p scattering

    SciTech Connect

    Konrad Aniol; David Armstrong; Todd Averett; Maud Baylac; Etienne Burtin; John Calarco; Gordon Cates; Christian Cavata; Zhengwei Chai; C. Chang; Jian-Ping Chen; Eugene Chudakov; Evaristo Cisbani; Marius Coman; Daniel Dale; Alexandre Deur; Pibero Djawotho; Martin Epstein; Stephanie Escoffier; Lars Ewell; Nicolas Falletto; John Finn; Kevin Fissum; A.Fleck; Bernard Frois; Salvatore Frullani; Haiyan Gao; Franco Garibaldi; Ashot Gasparian; G.Gerstner; Ronald Gilman; Oleksandr Glamazdin; Javier Gomez; Viktor Gorbenko; Jens-Ole Hansen; F. Hersman; Douglas Higinbotham; Richard Holmes; Maurik Holtrop; Thomas Humensky; Sebastien Incerti; Mauro Iodice; Cornelis de Jager; David Jardillier; Xiaodong Jiang; Mark Jones; J.Jorda; Christophe Jutier; Kahl; James Kelly; Donghee Kim; Min Kim; Minsuk Kim; Ioannis Kominis; Edgar Kooijman; Kevin Kramer; Krishna Kumar; Michael Kuss; John LeRose; Raffaele De Leo; M.Leuschner; David Lhuillier; Meihua Liang; Nilanga Liyanage; R.Lourie; Richard Madey; Sergey Malov; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Jacques Martino; Peter Mastromarino; Kathy McCormick; Justin McIntyre; Zein-Eddine Meziani; Robert Michaels; Brian Milbrath; Gerald Miller; Joseph Mitchell; Ludyvine Morand; Damien Neyret; Charles Perdrisat; Gerassimos Petratos; Roman Pomatsalyuk; John Price; David Prout; Vina Punjabi; Thierry Pussieux; Gilles Quemener; Ronald Ransome; David Relyea; Yves Roblin; Julie Roche; Gary Rutledge; Paul Rutt; Marat Rvachev; Franck Sabatie; Arunava Saha; Paul Souder; Marcus Spradlin; Steffen Strauch; Riad Suleiman; Jeffrey Templon; Tatsuo Terasawa; J.Thompson; Raphael Tieulent; Luminita Todor; Baris Tonguc; Paul Ulmer; Guido Urciuoli; Branislav Vlahovic; Krishni Wijesooriya; R.Wilson; Bogdan Wojtsekhowski; Rhett Woo; Wang Xu; Imran Younus; C. Zhang

    2004-02-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A = -15.05 {+-} 0.98(stat) {+-} 0.56(syst) ppm at the kinematic point <{theta}{sub lab}> = 12.3{sup o} and = 0.477 (GeV/c){sup 2}. Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors G{sub E}{sup s} + 0.392G{sub M}{sup s} = 0.014 {+-} 0.020 {+-} 0.010 where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.

  14. Zeroth-order regular approximation approach to molecular parity violation

    SciTech Connect

    Berger, Robert; Langermann, Norbert; Wuellen, Christoph van

    2005-04-01

    We present an ab initio (quasirelativistic) two-component approach to the computation of molecular parity-violating effects which is based on the zeroth-order regular approximation (ZORA). As a first application, we compute the parity-violating energy differences between various P and M conformations of C{sub 2}-symmetric molecules belonging to the series H{sub 2}X{sub 2} with X=O, S, Se, Te, Po. The results are compared to previously reported (relativistic) four-component Dirac-Hartree-Fock-Coulomb (DHFC) data. Relative deviations between ZORA and DHFC values are well below 2% for diselane and the heavier homologs whereas somewhat larger relative deviations are observed for the lighter homologs. The larger deviations for lighter systems are attributed to the (nonlocal) exchange terms coupling large and small components, which have been neglected in the present ZORA implementation. For heavier systems these play a minor role, which explains the good performance of the ZORA approach. An excellent performance, even for lighter systems, is expected for a related density-functional-theory-based ZORA because then the exchange terms coupling large and small components are absent.

  15. Measurement of Parity Violation in np Capture: the NPDGamma Experiment

    PubMed Central

    Page, Shelley A.; Bowman, J. D.; Carlini, R. D.; Case, T.; Chupp, T. E.; Coulter, K. P.; Dabaghyan, M.; Desai, D.; Freedman, S. J.; Gentile, T. R.; Gericke, M. T.; Gillis, R. C.; Greene, G. L.; Hersman, F. W.; Ino, T.; Ishimoto, S.; Jones, G. L.; Lauss, B.; Leuschner, M. B.; Losowski, B.; Mahurin, R.; Masuda, Y.; Mitchell, G. S.; Nann, H.; Penttila, S. I.; Ramsay, W. D.; Santra, S.; Seo, P.-N.; Sharapov, E. I.; Smith, T. B.; Snow, W. M.; Wilburn, W. S.; Yuan, V.; Zhu, H.

    2005-01-01

    The NPDGamma experiment will measure the parity-violating directional gamma ray asymmetry Aγ in the reaction n→+p→d+γ. Ultimately, this will constitute the first measurement in the neutron-proton system that is sensitive enough to challenge modern theories of nuclear parity violation, providing a theoretically clean determination of the weak pion-nucleon coupling. A new beam-line at the Los Alamos Neutron Science Center (LANSCE) delivers pulsed cold neutrons to the apparatus, where they are polarized by transmission through a large volume polarized 3He spin filter and captured in a liquid para-hydrogen target. The 2.2 MeV gamma rays from the capture reaction are detected in an array of CsI(Tl) scintillators read out by vacuum photodiodes operated in current mode. We will complete commissioning of the apparatus and carry out a first measurement at LANSCE in 2004–05, which would provide a statistics-limited result for Aγ accurate to a standard uncertainty of ±5 × 10−8 level or better, improving on existing measurements in the neutron-proton system by a factor of 4. Plans to move the experiment to a reactor facility, where the greater flux would enable us to make a measurement with a standard uncertainty of ±1 × 10−8, are actively being pursued for the longer term. PMID:27308121

  16. Parity violation in the CMB bispectrum by a rolling pseudoscalar

    SciTech Connect

    Shiraishi, Maresuke; Ricciardone, Angelo; Saga, Shohei E-mail: angelo.ricciardone@pd.infn.it

    2013-11-01

    We investigate parity-violating signatures of temperature and polarization bispectra of the cosmic microwave background (CMB) in an inflationary model where a rolling pseudoscalar produces large equilateral tensor non-Gaussianity. By a concrete computation based on full-sky formalism, it is shown that resultant CMB bispectra have nonzero signals in both parity-even (ℓ{sub 1}+ℓ{sub 2}+ℓ{sub 3} = even) and parity-odd (ℓ{sub 1}+ℓ{sub 2}+ℓ{sub 3} = odd) spaces, and are almost uncorrelated with usual scalar-mode equilateral bispectra. These characteristic signatures and polarization information help to detect such tensor non-Gaussianity. Use of both temperature and E-mode bispectra potentially improves of 400% the detectability with respect to an analysis with temperature bispectrum alone. Considering B-mode bispectrum, the signal-to-noise ratio may be able to increase by 3 orders of magnitude. We present the 1σ uncertainties of a parameter depending on a coupling constant and a rolling condition for the pseudoscalar expected in the Planck and the proposed PRISM experiments.

  17. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory

    SciTech Connect

    Maity, Debaprasad; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-09-14

    In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of magnetized plasma. According to our model, the polarization and intensity of the CMB would be affected when traversing through the ICM due to non-trivial scalar photon interactions. We have calculated the evolution of such polarization and intensity collectively, known as the stokes parameters of the CMB photon during its journey through the ICM and tested our results against the Sunyaev-Zel'dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP violating parameter, {beta}, and a scale of alpha variation {omega}. Using the derived constrained on the photon-to-scalar conversion probability, {bar P}{sub {gamma}{yields}{phi}}, for Coma cluster in ref.[34] we found a contour plot in the ({omega},{beta}) parameter plane. The {beta} = 0 line in this parameter space corresponds to well-studied Maxwell-dilaton type models which has lower bound on {omega} {approx}> 6.4 x 10{sup 9} GeV. In general, as the absolute value of {beta} increases, lower bound on {omega} also increases. Our model in general predicts the modification of the CMB polarization with a non-trivial dependence on the parity violating coupling parameter {beta}. However, it is unconstrained in this particular study. We show that this effect can in principle be detected in the future measurements on CMB polarization such that {beta} can also be constrained.

  18. Nuclear Parity-Violation in Effective Field Theory

    SciTech Connect

    Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck

    2005-02-21

    We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.

  19. Primordial magnetic fields and dynamos from parity violated torsion

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2012-05-01

    It is well known that torsion induced magnetic fields may seed galactic dynamos, but the price one pays for that is the conformal and gauge invariance breaks and a tiny photon mass. More recently I have shown [L.C. Garcia de Andrade, Phys. Lett. B 468 (2011) 28] that magnetic fields decay in a gauge invariant non-minimal coupling theory of torsion is slow down, which would allow for dynamo action to take place. In this Letter, by adding a parity violation term of the type Rɛ to the non-coupling term, a magnetic dynamo equation is obtained. From dynamo equation it is shown that torsion terms only appear in the dynamo equation when diffusion in the cosmic plasma is present. Torsion breaks the homogeneity of the magnetic field in the universe. Since Zeldovich anti-dynamo theorem assumes that the spacetime should be totally flat, torsion is responsible for violation of anti-dynamo theorem in 2D spatial dimensions. Contrary to previous results torsion induced primordial magnetic fields cannot seed galactic dynamos since from torsion and diffusion coefficient the decaying time of the magnetic field is 106yrs, which is much shorter than the galaxy age.

  20. Hadronic electric dipole moments in R-parity violating supersymmetry

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey

    2006-06-01

    We calculate the electric dipole moments (EDM) of the neutral {sup 199}Hg atom, neutron and deuteron within a generic R-parity violating SUSY model (Re{sub p} SUSY) on the basis of a one-pion-exchange model with CP-odd pion-nucleon interactions. We consider two types of the Re{sub p} SUSY contributions to the above hadronic EDMs: via the quark chromoelectric dipole moments (CEDM) and CP-violating 4-quark interactions. We demonstrate that the former contributes to all the three studied EDMs while the latter appears only in the nuclear EDMs via the CP-odd nuclear forces. We find that the Re{sub p} SUSY induced 4-quark interactions arise at tree level through the sneutrino exchange and involve only s and b quarks. Therefore, their effect in hadronic EDMs is determined by the strange and bottom-quark sea of the nucleon. From the null experimental results on the hadronic EDMs we derive the limits on the imaginary parts of certain products Im({lambda}{sup '}{lambda}{sup '}*) of the trilinear Re{sub p}-couplings and show that the currently best limits come from the {sup 199}Hg EDM experiments. We demonstrate that some of these limits are better than those existing in the literature. We argue that future storage ring experiments on the deuteron EDM are able to improve these limits by several orders of magnitude.

  1. γZ corrections to forward-angle parity-violating ep scattering

    SciTech Connect

    Alex Sibirtsev; Blunden, Peter G.; Melnitchouk, Wally; Thomas, Anthony W.

    2010-07-30

    We use dispersion relations to evaluate the γZ box contribution to parity-violating electron scattering in the forward limit, taking into account constraints from recent JLab data on electroproduction in the resonance region as well as high energy data from HERA. The correction to the asymmetry is found to be 1.2 +- 0.2% at the kinematics of the JLab Qweak experiment, which is well within the limits required to achieve a 4% measurement of the weak charge of the proton.

  2. γZ corrections to forward-angle parity-violating ep scattering

    DOE PAGESBeta

    Alex Sibirtsev; Blunden, Peter G.; Melnitchouk, Wally; Thomas, Anthony W.

    2010-07-30

    We use dispersion relations to evaluate the γZ box contribution to parity-violating electron scattering in the forward limit, taking into account constraints from recent JLab data on electroproduction in the resonance region as well as high energy data from HERA. The correction to the asymmetry is found to be 1.2 +- 0.2% at the kinematics of the JLab Qweak experiment, which is well within the limits required to achieve a 4% measurement of the weak charge of the proton.

  3. Can R-parity violation hide vanilla supersymmetry at the LHC?

    NASA Astrophysics Data System (ADS)

    Asano, Masaki; Rolbiecki, Krzysztof; Sakurai, Kazuki

    2013-01-01

    Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by R-parity. However, if R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the U DD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than TeV are already excluded in the constrained minimal supersymmetric standard model with the R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with the R-parity violation. We compare how the R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.

  4. Parity Violation in Forward Angle Elastic Electron-Proton Scattering

    SciTech Connect

    Miller, IV, Grady Wilson

    2001-01-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point ({theta}_lab = 12.3 deg. and (Q^2) = 0.48 (GeV/c)^2) is chosen to provide sensitivity to the strange electric form factor G^s_E. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) +/- 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies G^S_E + 0.39 G^s_M = 0.023 +/- 0.040 +/- 0.026 ({delta}G^n_E), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor G^n_E . This result represents the first experimental constraint of the strange electric form factor.

  5. Relativistic gravity and parity-violating nonrelativistic effective field theories

    NASA Astrophysics Data System (ADS)

    Wu, Chaolun; Wu, Shao-Feng

    2015-06-01

    We show that the relativistic gravity theory can offer a framework to formulate the nonrelativistic effective field theory in a general coordinate invariant way. We focus on the parity violating case in 2 +1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the nonrelativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as the holographic dictionary in the context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed, which captures universal geometric properties and generates nonuniversal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled nonrelativistic fluids in magnetic field. In particular, by identifying the shift function in the gravity as a minus of guiding center velocity, we obtain the Hall viscosity with its relation to Landau orbital angular momentum density proportional to Wen-Zee shift. Our formalism has a good projection to lowest Landau level.

  6. Electroweak constraints from atomic parity violation and neutrino scattering

    SciTech Connect

    Hobbs, Timothy; Rosner, Jonathan L.

    2010-07-01

    Precision electroweak physics can provide fertile ground for uncovering new physics beyond the standard model (SM). One area in which new physics can appear is in so-called 'oblique corrections', i.e., next-to-leading-order expansions of bosonic propagators corresponding to vacuum polarization. One may parametrize their effects in terms of quantities S and T that discriminate between conservation and nonconservation of isospin. This provides a means of comparing the relative contributions of precision electroweak experiments to constraints on new physics. Given the prevalence of strongly T-sensitive experiments, there is an acute need for further constraints on S, such as provided by atomic parity-violating experiments on heavy atoms. We evaluate constraints on S arising from recently improved calculations in the Cs atom. We show that the top quark mass m{sub t} provides stringent constraints on S within the context of the SM. We also consider the potential contributions of next-generation neutrino scattering experiments to improved (S,T) constraints.

  7. Z{yields}jets+{gamma} as a signal for R-parity violation

    SciTech Connect

    Hewett, J.L.

    1992-02-01

    Supersymmetric models with explicit R-parity violation can induce new rare decay modes of the Z boson into single supersymmetric particles. Here, the rate and signature for one such decay, Z {yields} {tilde {upsilon}} {gamma}, is examined, where it is found that the rate is at least an order of magnitude smaller than that for the process Z{yields} H{gamma}, even with larger values of the R-parity violating couplings.

  8. Z yields jets+. gamma. as a signal for R-parity violation

    SciTech Connect

    Hewett, J.L.

    1992-02-01

    Supersymmetric models with explicit R-parity violation can induce new rare decay modes of the Z boson into single supersymmetric particles. Here, the rate and signature for one such decay, Z {yields} {tilde {upsilon}} {gamma}, is examined, where it is found that the rate is at least an order of magnitude smaller than that for the process Z{yields} H{gamma}, even with larger values of the R-parity violating couplings.

  9. CP violation in bilinear R-parity violation and its consequences for the early universe

    NASA Astrophysics Data System (ADS)

    Chériguène, Asma; Porod, Werner; Liebler, Stefan

    2014-09-01

    Supersymmetric models with bilinear R-parity violation (BRpV) provide a framework for neutrino masses and mixing angles to explain neutrino oscillation data. We consider CP violation within the new physical phases in BRpV and discuss their effect on the generation of neutrino masses and the decays of the lightest supersymmetric particle (LSP), being a light neutralino with mass ˜100 GeV, at next-to-leading order. The decays affect the lepton and via sphaleron transitions the baryon asymmetry in the early universe. For a rather light LSP, asymmetries generated before the electroweak phase transition via e.g. the Affleck-Dine mechanism are reduced up to 2 orders of magnitude, but are still present. On the other hand, the decays of a light LSP themselves can account for the generation of a lepton and baryon asymmetry, the latter in accordance with the observation in our universe, since the smallness of the BRpV parameters allows for an out-of-equilibrium decay and sufficiently large CP violation is possible consistent with experimental bounds from the nonobservation of electric dipole moments.

  10. Parity Violation in Proton-Proton Scattering at 47 Mev.

    NASA Astrophysics Data System (ADS)

    Tanner, Danelle Mary

    A measurement of parity-violation in proton-proton scattering at 47 MeV has been completed by observing the longitudinal analyzing power. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). where (sigma)('+)((sigma)('-)) is the scattering cross section for positive (negative) helicity. Polarized protons from an atomic beam ion source were accelerated by the 224-cm Texas A&M University cyclotron to an energy of 50 MeV, producing a vertically polarized beam. A superconducting solenoid magnet precessed the beam polarization into the horizontal plane after which a 47.6(DEGREES) bending magnet precessed the polarization into the longtitudinal direction (p(,z) = 0.69 (+OR-) 0.02). RF transitions reversed the polarization direction every 21 msec. Protons scattered from the high pressure ((DBLTURN)37 atm), 42-cm long H(,2) gas target were detected by four plastic scintillators located in the target chamber. Photomultiplier tubes amplified the light from the scintillators, providing a signal proportional to the scattered beam intensity. A lock-in amplifier (LIA) synchronized to the spin-flip frequency compared the scattered intensity to the total beam intensity, measured with a Faraday cup. The output of the LIA was integrated for one second and then read by an ADC. Polarimeters were used to monitor both beam intensity and polarization profiles. A series of tests were performed to determine the role of spurious asymmetries due to changes in beam position and angle, and due to beam intensity modulations correlated with the spin reversal. The result after correction for beam intensity modulation was A(,z) = -(4.6 (+OR-) 2.6) x 10('-7). A more conservative result, taking into account all of the possible spurious asymmetries was A(,z) = -(4.6 (+OR-) 4.2) x 10('-7).

  11. Measurement of the RMS Parity Violating Matrix Element in URANIUM-239

    NASA Astrophysics Data System (ADS)

    Zhu, Xianzhou (Joe).

    We report the first determination of the Root -Mean-Square (RMS) parity violating matrix element in a compound nucleus (CN) system, ^{239 }U. The experiment was performed using the intense pulsed epithermal neutron beam available at the Los Alamos Neutron Scattering Center (LANSCE). The helicity dependence of neutron transmission through a spin zero target (^{238}U) is measured for neutron energies from 6 eV to 300 eV. Parity violation is analyzed on 17 p-wave resonances among which five show 2sigma or larger effects. The largest is a 7sigma effect at the 63.5 eV resonance which shows a parity violating asymmetry of p = 2.6%. A likelihood analysis is performed on these 17 parity violating asymmetries, and the RMS parity violating matrix element is determined for the first time to be M = 0.59_sp{-0.25}{+0.50} meV which corresponds to a parity violating spreading width ofGamma^{PV} = (1.0 {+1.7atop -0.8} ) times 10^{-7} {rm eV}.Using statistical nuclear spectroscopy, we are able to relate M to the effective nucleon-nucleon (NN) interaction. The result is | alpha_{p}| ~ (4 {+4atop -2} ) times 10^{-7} where alpha_{p} is the ratio of the parity violating strength to the parity conserving strength in the effective NN interaction. This agrees qualitatively with the estimate of free NN interaction. The consistency of the experimental measurement with expectation suggests that the manifestation of parity violating NN interaction in CN is understood. It is a challenging problem for the theorists to relate the RMS matrix element in the CN to the underlying NN interaction, therefore providing alternative ways to determine the Desplanques -Donoghue-Holstein (DDH) parameters of the NN interaction. The success of the parity violation study also validates the proposed experiment of studying the time reversal symmetry violation utilizing the large enhancement in the CN.

  12. Is cosmic parity violation responsible for the anomalies in the WMAP data?

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon H. S.

    2008-03-01

    In this Letter, I argue that a parity violating extension to general relativity can simultaneously explain the observed loss in power and provides a first step for explaining the alignment at a preferred axis (‘Axis of Evil’) in the low multipole moments of the WMAP data. This observational possibility also provides an experimental window for an inflationary leptogenesis mechanism arising from large-scale parity violation. Similar to the arguments of Contaldi, Peloso, Kofman and Linde, large scale power is suppressed from the backreaction of the parity violating term by inducing a velocity dependent potential. We also argue that this modification can supress power of odd parity multipoles on large scales, a pattern that is observed in the WMAP alignment anomaly.

  13. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    NASA Astrophysics Data System (ADS)

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; de Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; Lerose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Širca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.; Pvdis Collaboration

    2015-04-01

    The parity-violating asymmetries between a longitudinally polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep-inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  14. Measurements of Parity-Violating Asymmetries in Electron-Deuteron Scattering in the Nucleon Resonance Region

    NASA Astrophysics Data System (ADS)

    Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, H.; King, P.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2013-08-01

    We report on parity-violating asymmetries in the nucleon resonance region measured using inclusive inelastic scattering of 5-6 GeV longitudinally polarized electrons off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232). They provide a verification of quark-hadron duality—the equivalence of the quark- and hadron-based pictures of the nucleon—at the (10-15)% level in this electroweak observable, which is dominated by contributions from the nucleon electroweak γZ interference structure functions. In addition, the results provide constraints on nucleon resonance models relevant for calculating background corrections to elastic parity-violating electron scattering measurements.

  15. First Order QED Corrections to the Parity-Violating Asymmetry in Moller Scattering

    SciTech Connect

    Zykunov, Vladimir A.; Suarez, Juan; Tweedie, Brock A.; Kolomensky, Yury G.; /UC, Berkeley

    2005-08-15

    We compute a full set of the first order QED corrections to the parity-violating observables in polarized Moeller scattering. We employ a covariant method of removing infrared divergences, computing corrections without introducing any unphysical parameters. When applied to the kinematics of the SLAC E158 experiment, the QED corrections reduce the parity violating asymmetry by 4.5%. We combine our results with the previous calculations of the first-order electroweak corrections and obtain the complete {Omicron}({alpha}) prescription for relating the experimental asymmetry A{sub LR} to the low-energy value of the weak mixing angle sin{sup 2} {theta}{sub W}. Our results are applicable to the recent measurement of A{sub LR} by the SLAC E158 collaboration, as well as to the future parity violation experiments.

  16. Constrained gamma-Z interference corrections to parity-violating electron scattering

    SciTech Connect

    Hall, Nathan Luke; Blunden, Peter Gwithian; Melnitchouk, Wally; Thomas, Anthony W.; Young, Ross D.

    2013-07-01

    We present a comprehensive analysis of gamma-Z interference corrections to the weak charge of the proton measured in parity-violating electron scattering, including a survey of existing models and a critical analysis of their uncertainties. Constraints from parton distributions in the deep-inelastic region, together with new data on parity-violating electron scattering in the resonance region, result in significantly smaller uncertainties on the corrections compared to previous estimates. At the kinematics of the Qweak experiment, we determine the gamma-Z box correction to be Re\\box_{gamma-Z}^V = (5.61 +- 0.36) x 10^{-3}. The new constraints also allow precise predictions to be made for parity-violating deep-inelastic asymmetries on the deuteron.

  17. Parity-Violating Neutron Spin Rotation in a Liquid Parahydrogen Target

    PubMed Central

    Markoff, Diane M.

    2005-01-01

    Our understanding of hadronic parity violation is far from clear despite nearly 50 years of theoretical and experimental progress. Measurements of low-energy parity-violating observables in nuclear systems are the only accessible means to study the flavor-conserving weak hadronic interaction. To reduce the uncertainties from nuclear effects, experiments in the few and two-body system are essential. The parity-violating rotation of the transverse neutron polarization vector about the momentum axis as the neutrons traverse a target material has been measured in heavy nuclei and few nucleon systems using reactor cold neutron sources. We describe here an experiment to measure the neutron spin-rotation in a parahydrogen target (n-p system) using pulsed cold-neutrons from the fundamental symmetries beam line at the Spallation Neutron Source under construction at the Oak Ridge National Laboratory. PMID:27308123

  18. Spontaneous parity and charge-conjugation violations at real isospin and imaginary baryon chemical potentials

    NASA Astrophysics Data System (ADS)

    Kouno, Hiroaki; Kishikawa, Mizuho; Sasaki, Takahiro; Sakai, Yuji; Yahiro, Masanobu

    2012-01-01

    The phase structure of two-flavor QCD is investigated at real isospin and imaginary quark chemical potentials by using the Polyakov-loop extended Nambu-Jona-Lasinio model. In the region, parity symmetry is spontaneously broken by the pion-superfluidity phase transition, whereas charge-conjugation symmetry is spontaneously violated by the Roberge-Weiss transition. The chiral (deconfinement) crossover at zero isospin and quark chemical potentials is a remnant of the parity (charge-conjugation) violation. The interplay between the parity and charge-conjugation violations are analyzed, and it is investigated how the interplay is related to the correlation between the chiral and deconfinement crossovers at zero isospin and quark chemical potentials.

  19. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    SciTech Connect

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, none; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  20. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE PAGESBeta

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; et al

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  1. Measurements of parity-violating asymmetries in electron-deuteron scattering in the nucleon resonance region.

    PubMed

    Wang, D; Pan, K; Subedi, R; Deng, X; Ahmed, Z; Allada, K; Aniol, K A; Armstrong, D S; Arrington, J; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Camsonne, A; Canan, M; Cates, G D; Chen, J-P; Chudakov, E; Cisbani, E; Dalton, M M; de Jager, C W; De Leo, R; Deconinck, W; Deur, A; Dutta, C; El Fassi, L; Flay, D; Franklin, G B; Friend, M; Frullani, S; Garibaldi, F; Giusa, A; Glamazdin, A; Golge, S; Grimm, K; Hafidi, K; Hansen, O; Higinbotham, D W; Holmes, R; Holmstrom, T; Holt, R J; Huang, J; Hyde, C E; Jen, C M; Jones, D; Kang, H; King, P; Kowalski, S; Kumar, K S; Lee, J H; LeRose, J J; Liyanage, N; Long, E; McNulty, D; Margaziotis, D J; Meddi, F; Meekins, D G; Mercado, L; Meziani, Z-E; Michaels, R; Mihovilovic, M; Muangma, N; Myers, K E; Nanda, S; Narayan, A; Nelyubin, V; Nuruzzaman; Oh, Y; Parno, D; Paschke, K D; Phillips, S K; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Rider, K; Riordan, S; Roche, J; Rubin, J; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Souder, P A; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Urciuoli, G M; Waidyawansa, B; Wojtsekhowski, B; Ye, L; Zhao, B; Zheng, X

    2013-08-23

    We report on parity-violating asymmetries in the nucleon resonance region measured using inclusive inelastic scattering of 5-6 GeV longitudinally polarized electrons off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232). They provide a verification of quark-hadron duality-the equivalence of the quark- and hadron-based pictures of the nucleon-at the (10-15)% level in this electroweak observable, which is dominated by contributions from the nucleon electroweak γZ interference structure functions. In addition, the results provide constraints on nucleon resonance models relevant for calculating background corrections to elastic parity-violating electron scattering measurements. PMID:24016222

  2. Neutrinos in anomaly mediated supersymmetry breaking with R-parity violation

    SciTech Connect

    Campos, F. de; Diaz, M.A.; Lineros, R.A.; Eboli, O.J.P.; Mercadante, P.G.; Magro, M.B.

    2005-03-01

    We show that a supersymmetric standard model exhibiting anomaly mediated supersymmetry breaking can generate naturally the observed neutrino mass spectrum as well mixings when we include bilinear R-parity violation interactions. In this model, one of the neutrinos gets its mass due to the tree-level mixing with the neutralinos induced by the R-parity violating interactions while the other two neutrinos acquire their masses due to radiative corrections. One interesting feature of this scenario is that the lightest supersymmetric particle is unstable and its decay can be observed at high energy colliders, providing a falsifiable test of the model.

  3. Search for supersymmetric particles with R-parity violation in Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Bosisio, L.; Della Marina, R.; Ganis, G.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Kim, H. Y.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    Searches for supersymmetric particles produced in e +e - interactions at the Z peak have been performed under the assumptions that R-parity is not conserved, that the dominant R-parity violating coupling involves only leptonic fields, and that the lifetime of the lightest supersymmetric particle can be neglected. In a data sample collected by the ALEPH detector at LEP up to 1993, and corresponding to almost two million hadronic Z decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation.

  4. Reappraisal of two-loop contributions to the fermion electric dipole moments in R-parity violating supersymmetric models

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka; Sato, Toru; Kubota, Takahiro

    2012-06-01

    We reexamine the R-parity violating contribution to the fermion electric and chromo-electric dipole moments in the two-loop diagrams. It is found that the leading Barr-Zee-type two-loop contribution is smaller than the result found in previous works, and that electric dipole moment experimental data provide looser limits on R-parity violating couplings.

  5. Parity violation in the elastic scattering from the proton in Hall A

    SciTech Connect

    Souder, Paul

    1992-06-01

    We are planning to measure the parity-violating electroweak asymmetry in the scattering of polarized electrons from hydrogen. We expect to obtain unique information about the weak form factors of the nucleon emphasizing the possible contributions of strange quarks to the weak vector matrix elements involved. Helium and deuterium and other possible targets of interest.

  6. Time reversal invariance violating and parity conserving effects in neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-08-15

    Time reversal invariance violating and parity conserving effects for low-energy elastic neutron-deuteron scattering are calculated for meson exchange and effective field theory type potentials in a distorted wave-born approximation using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.

  7. Constrained γZ correction to parity-violating electron scattering

    SciTech Connect

    Hall, N. L.; Thomas, A. W.; Young, R. D.; Blunden, P. G.; Melnitchouk, W.

    2013-11-07

    We update the calculation of γZ interference corrections to the weak charge of the proton. We show how constraints from parton distributions, together with new data on parity-violating electron scattering in the resonance region, significantly reduce the uncertainties on the corrections compared to previous estimates.

  8. Constrained {gamma}Z correction to parity-violating electron scattering

    SciTech Connect

    Hall, Nathan Luk; Blunden, Peter Gwithian; Melnitchouk, Wally; Thomas, Anthony W.; Young, Ross D.

    2013-11-01

    We update the calculation of {gamma}Z interference corrections to the weak charge of the proton. We show how constraints from parton distributions, together with new data on parity-violating electron scattering in the resonance region, significantly reduce the uncertainties on the corrections compared to previous estimates.

  9. Time reversal invariance violating and parity conserving effects in proton-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Song, Young-Ho; Lazauskas, Rimantas; Gudkov, Vladimir

    2016-06-01

    Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton-deuteron scattering with proton energies up to 2 MeV. The distorted-wave Born approximation is employed to estimate TVPC matrix elements, based on hadronic wave functions, obtained by solving three-body Faddeev-Merkuriev equations in configuration space with realistic potentials.

  10. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    SciTech Connect

    Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon

    2010-09-15

    Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  11. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    SciTech Connect

    Bernhard Lauss; J.D. Bowman; R. Carlini; T.E. Chupp; W. Chen; S. Corvig; M. Dabaghyan; D. Desai; S.J. Freeman; T.R. Gentile; M.T. Gericke; R.C. Gillis; G.L. Greene; F.W. Hersman; T. Ino; T. Ito; G.L. Jones; M. Kandes; M. Leuschner; B. Lozowski; R. Mahurin; M. Mason; Y. Masuda; J. Mei; G.S. Mitchell; S. Muto; H. Nann; S.A. Page; S.I. Penttila; W.D. Ramsay; S. Santra; P.-N. Seo; E.I. Sharapov; T.B. Smith; W.M. Snow; W.S. Wilburn; V. Yuan; H. Zhu

    2005-10-24

    The NPD{gamma} experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the {gamma} emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ({pi} NN) coupling constant (line integral){sub {pi}}{sup l}.

  12. Testing for parity violation in nuclei using spin density matrices for nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Barrett, B. R.; Giraud, B. G.

    2015-06-01

    The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.

  13. Parity Violation in Proton-Proton Scattering at Intermediate Energies

    DOE R&D Accomplishments Database

    Yuan, V.; Frauenfelder, H.; Harper, R. W.; Bowman, J. D.; Carlini, R.; MacArthur, D. W.; Mischke, R. E.; Nagle, D. E.; Talaga, R. L.; McDonald, A. B.

    1986-05-01

    Results of a measurement of parity nonconservation in the anti p-p total cross sections at 800-MeV are presented. The dependence of transmission on beam properties and correction for systematic errors are discussed. The measured longitudinal asymmetry is A{sub L} = (+2.4 +- 1.1(statistical) +- 0.1(systematic)) x 10{sup -7}. A proposed experiment at 230 MeV is discussed.

  14. Parity violation in the nucleon-nucleon interaction

    SciTech Connect

    Haeberli, W.

    1981-01-01

    A short review is presented of experiments designed to detect parity nonconservation (PNC) in the interaction between nucleons. A recent measurement of PNC in proton-proton scattering is described, and some of the methods which were developed to reduce systematic errors to less than or equal to 2 x 10/sup -8/ are discussed. The results of this experiment and of other measurements on PNC are compared to theoretical predictions.

  15. Minimal gauged U(1) B-L model with spontaneous R parity violation.

    PubMed

    Barger, Vernon; Pérez, Pavel Fileviez; Spinner, Sogee

    2009-05-01

    We study the minimal gauged U(1) B-L supersymmetric model and show that it provides an attractive theory for spontaneous R-parity violation. Both U(1) B-L and R parity are broken by the vacuum expectation value of the right-handed sneutrino (proportional to the soft supersymmetry masses), thereby linking the B-L and soft SUSY scales. In this context we find a consistent mechanism for generating neutrino masses and a realistic mass spectrum, all without extending the Higgs sector of the minimal supersymmetry standard model. We discuss the most relevant collider signals and the connection between the Z' gauge boson and R-parity violation. PMID:19518859

  16. A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Q{sub weak} Apparatus

    SciTech Connect

    Beminiwattha, Rakitha S.

    2013-12-01

    After a decade of preparations, the Q{sub weak} experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q{sub weak}. Because this quantity is suppressed in the Standard Model, a 4% result will significantly constrain new physics at the TeV scale while providing the most precise measurement of sin{sup 2}{theta}{sub W} at low energies. Operationally, we measure the small (about -0.220 ppm) parity violating asymmetry in electron-proton scattering in integrating mode while flipping the longitudinal polarization of the electrons up to 1000 times per second. Potential sources of new, parity violating interactions between electrons and light quarks include a Z', lepto-quarks, and parity violating SUSY interactions. The result presented here is based on the data taken during an initial two weeks period which included a 16.7% measurement of the parity violating electron-proton ({vec e}p) scattering asymmetry, A=-0.279{+-}0.035(stat.){+-}0.031(syst.) ppm at Q{sup 2}=0.0250{+-}0.0006(GeV){sup 2}. The weak charge of the proton is extracted by performing a global analysis on parity violating electron scattering (PVES) asymmetries on nuclear targets and it is Q{sub W}{sup p}=0.064{+-}0.012. Then effective vector couplings of the up/down quarks (C{sub 1u}/C{sub 1d}) and weak charge of the neutron are extracted by combining precise {sup 133}Cs atomic parity violating (APV) measurement and PVES measurements. The result is a proof of principle for the analysis of the full Q{sub weak} data to be completed in the near future.

  17. Theoretical determination of parity-violating vibrational frequency differences between the enantiomers of chiral molecules.

    PubMed

    Viglione, Rosario G

    2004-11-22

    A perturbation treatment has been used to compute the leading first- and second-order parity-violating corrections to the vibrational energy levels of a chiral molecule. Assuming the molecular equilibrium geometry as expansion point of both parity-violating and parity-conserving potential-energy surfaces, it is shown that these corrections, i.e., harmonic and anharmonic contributions, are of the same order of magnitude and that none of them can be neglected for a realistic determination of vibrational frequency differences. Numerical tests based on ab initio MP2 force fields and quantum-relativistic calculations of the parity-violating potential for each normal mode of PHBrF and AsHBrF molecules confirm this conclusion. In particular, it is shown that a normal mode of AsHBrF is characterized by one of the largest vibrational frequency difference ever found--the prediction is approximately 0.1 Hz--only one order of magnitude less than the presumed resolution limit of current experimental investigations. PMID:15549870

  18. Parity Violation in Exclusive B arrow γ Kππ

    NASA Astrophysics Data System (ADS)

    Bornheim, Adolf

    2003-04-01

    We present a study of radiative B meson decays into Kππγ using 13.4 fb-1 of e^+e^- data taken with the CLEO detector near the Υ(4S) resonance. By constructing a parity odd observable from the Kππ we are able to study the polarization of the photon from the radiative B decay. According to the standard model the photon from b arrow sγ (barb arrow barsγ) decays should have left-handed (right-handed) polarization, a prediction untested to date. We employ a maximum likelihood fit method to search for all possible charge combinations of the Kππγ final state in charged and neutral B meson decays and to investigate the photon polarization.

  19. Measurement of the Parity-Violating Asymmetries in Electron-Deuteron Scattering in the Nucleon Resonance Region

    DOE PAGESBeta

    Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; Deng, Xiaoyan

    2013-08-22

    We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.

  20. First Observation of the Parity Violating Asymmetry in Moller Scattering

    SciTech Connect

    Younus, Imran; /Syracuse U.

    2005-07-06

    This thesis reports on the E158 experiment at Stanford Linear Accelerator Center (SLAC), which has made the first observation of the parity non-conserving asymmetry in Moller scattering. Longitudinally polarized 48 GeV electrons are scattered off unpolarized (atomic) electrons in a liquid hydrogen target with an average Q{sup 2} of 0.027 GeV{sup 2}. The asymmetry in this process is proportional to (1/4 - sin{sup 2}{theta}{sub W}), where sin{sup 2} {theta}{sub W} gives the weak mixing angle. The thesis describes the experiment in detail, with a particular focus on the design and construction of the electromagnetic calorimeter. This calorimeter was the primary detector in the experiment used to measure the flux of the scattered Moller electrons and eP electrons. It employed the quartz fiber calorimetry technique, and was built at Syracuse University. The preliminary results from the first experimental data taken in spring 2002 give A{sub PV} = -151.9 {+-} 29.0(stat) {+-} 32.5(syst) parts per billion. This in turn gives sin{sup 2} {theta}{sub W} = 0.2371 {+-} 0.0025 {+-} 0.0027, which is consistent with the Standard Model prediction (0.2386 {+-} 0.0006).

  1. Probing (g -2 )μ at the LHC in the paradigm of R -parity violating MSSM

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amit; Chakraborty, Sabyasachi

    2016-04-01

    The measurement of the anomalous magnetic moment of the muon exhibits a long-standing discrepancy compared to the standard model prediction. In this paper, we concentrate on this issue in the framework of the R -parity violating minimal supersymmetric standard model. Such a scenario provides a substantial contribution to the anomalous magnetic moment of the muon while satisfying constraints from low energy experimental observables as well as the neutrino mass. In addition, we point out that the implication of such operators satisfying muon g -2 are immense from the perspective of the LHC experiment, leading to a spectacular four muon final state. We propose an analysis in this particular channel which might help to settle the debate of R -parity violation as a probable explanation for (g -2 )μ.

  2. Experiments probing parity violation using electrons at GeV energy

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochao

    2016-03-01

    Sixty years after the first discovery of parity violation in electroweak interactions, parityviolating electron scattering (PVES) has become a tool not only in establishing the Standard Model of electroweak physics and studying the subatomic structure of the nucleon, but also in exploring possible new physics beyond the Standard Model. In this talk, I will review progress of PVES using GeV-energy electron beams focusing on recent results from Jefferson Lab. At the end of the talk, I'd like to keep the prospective that as we progress more and more towards a thorough understanding of electroweak physics, we may also want to investigate how parity violation could affect our everyday life.

  3. Search for R-parity violating supersymmetry in two-muon and four-jet topologies.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Amos, N; Anderson, E W; Arnoud, Y; Avila, C; Baarmand, M M; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Borcherding, F; Bos, K; Bose, T; Brandt, A; Breedon, R; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Chung, M; Claes, D; Clark, A R; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A C; Cutts, D; Davis, G A; Davis, K; De, K; de Jong, S J; Del Signore, K; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Ducros, Y; Dudko, L V; Duensing, S; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Fahland, T; Feher, S; Fein, D; Ferbel, T; Filthaut, F; Fisk, H E; Fisyak, Y; Flattum, E; Fleuret, F; Fortner, M; Fox, H; Frame, K C; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Gilmartin, R; Ginther, G; Gómez, B; Gómez, G; Goncharov, P I; González Solís, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Graham, G; Grannis, P D; Green, J A; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Gupta, A; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Khanov, A; Kharchilava, A; Kim, S K; Klima, B; Knuteson, B; Ko, W; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kotwal, A V; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mauritz, K M; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M; Da Motta, H; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Negroni, S; Nunnemann, T; O'Neil, D; Oguri, V; Olivier, B; Oshima, N; Padley, P; Pan, L J; Papageorgiou, K; Para, A; Parashar, N; Partridge, R; Parua, N; Paterno, M; Patwa, A; Pawlik, B; Perkins, J; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Raja, R; Rajagopalan, S; Ramberg, E; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Roco, M; Royon, C; Rubinov, P; Ruchti, R; Rutherfoord, J; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Sen, N; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Singh, H; Singh, J B; Sirotenko, V; Slattery, P; Smith, E; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stephens, R W; Stichelbaut, F; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Vaniev, V; Van Kooten, R; Varelas, N; Vertogradov, L S; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, H; Wang, Z-M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yamin, P; Yasuda, T; Yatsunenko, Y A; Yip, K; Youssef, S; Yu, J; Yu, Z; Zanabria, M; Zhang, X; Zheng, H; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2002-10-21

    We present results of a search for R-parity-violating decay of the neutralino chi;01, taken as the lightest supersymmetric particle, to a muon and two jets. The decay proceeds through a lepton-number violating coupling lambda(')(2jk) (j=1,2; k=1,2,3), with R-parity conservation in all other production and decay processes. In the absence of candidate events from 77.5+/-3.9 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron in pp collisions at sqrt[s]=1.8 TeV, and with an expected background of 0.18+/-0.03+/-0.02 events, we set limits on squark and gluino masses within the framework of the minimal low-energy supergravity-supersymmetry model. PMID:12398658

  4. Detailed analysis of two-boson exchange in parity-violating e-p scattering

    SciTech Connect

    J. A. Tjon, P. G. Blunden, W. Melnitchouk

    2009-05-01

    We present a comprehensive study of two-boson exchange (TBE) corrections in parity-violating electron-proton elastic scattering. Within a hadronic framework, we compute contributions from box (and crossed box) diagrams in which the intermediate states are described by nucleons and Delta baryons. The Delta contribution is found to be much smaller than the nucleon one at backward angles (small epsilon), but becomes dominant in the forward scattering limit (epsilon near 1), where the nucleon contribution vanishes. The dependence of the corrections on the input hadronic form factors is small for Q^2 < 1 GeV^2, but becomes significant at larger Q^2. We compute the nucleon and Delta TBE corrections relevant for recent and planned parity-violating experiments, with the total corrections ranging from -1% for forward angles to 1-2% at backward kinematics.

  5. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  6. Proposed Measurement of the Parity-Violating Neutron Spin Rotation in 4He

    SciTech Connect

    Micherdzinska, A. M.; Bass, C. D.; Dawkins, J. M.; Findley, T. D.; Horton, J. C.; Luo, D.; Sarsour, M.; Snow, W. M.; Heckel, B. R.; Swanson, H. E.; Markoff, D. M.

    2006-07-11

    Weak interactions between u and d quarks induce weak interactions between nucleons. These weak-interaction effects can be isolated from strong interactions using parity-violation (PV). The nucleon-nucleon (NN) weak interaction amplitudes are constrained by neither theory nor experiment. We describe a proposed measurement of PV neutron spin rotation in liquid helium {phi}PV(n,{alpha}) that is scheduled to run in 2006 with a sensitivity of 3x10-7 rad/m.

  7. Puzzles in B{yields}{pi}{pi},{pi}K decays: Possible implications for R-parity violating supersymmetry

    SciTech Connect

    Yang Yadong; Wang, Rumin; Lu, G.R.

    2006-01-01

    Recent experiments suggest that certain data of B{yields}{pi}{pi},{pi}K decays are inconsistent with the standard model expectations. We try to explain the discrepancies with R-parity violating supersymmetry. By employing the QCD factorization approach, we study these decays in the minimal supersymmetric standard model with R-parity violation. We show that R-parity violation can resolve the discrepancies in both B{yields}{pi}{pi} and B{yields}{pi}K decays, and find that in some regions of parameter space all these requirements, including the CP averaged branching ratios and the direct CP asymmetries, can be satisfied. Furthermore, we have derived stringent bounds on relevant R-parity violating couplings from the latest experimental data, and some of these constraints are stronger than the existing bounds.

  8. Determination of the Proton's Weak Charge via Parity Violating Electron Scattering

    SciTech Connect

    Hoskins, Joshua Russell

    2015-08-01

    The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q2=0.025 (GeV/c)2 in order to provide the first direct measurement of the proton's weak charge, Qpw. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.

  9. NPDGamma: A measurement of the parity-violating gamma asymmetry Aγ in n-p capture

    NASA Astrophysics Data System (ADS)

    Gillis, R. C.; Alarcon, R.; Balascuta, S.; Barrón-Palos, L.; Bowman, J. D.; Carlini, R. D.; Chen, W.; Chupp, T. E.; Crawford, C.; Covrig, S.; Dabaghyan, M.; Fomin, N.; Freedman, S. J.; Gentile, T. R.; Gericke, M. T.; Greene, G. L.; Hersman, F. W.; Ino, T.; Jones, G. L.; Lauss, B.; Leuschner, M.; Lozowski, W. R.; Mahurin, R.; Masuda, Y.; Mei, J.; Mitchell, G. S.; Muto, S.; Nann, H.; Page, S. A.; Penttilä, S. I.; Ramsay, W. D.; Salas-Bacci, A.; Santra, S.; Sharma, M.; Seo, P.-N.; Sharapov, E. I.; Smith, T. B.; Snow, W. M.; Wilburn, W. S.; Yuan, V.

    2010-07-01

    The NPDGamma Experiment measures the parity-violating correlation Aγ between neutron spin and photon momentum in the reaction vec n + p → d + γ. Knowledge of Aγ and other parity-violating observables in few-body nuclear systems will provide constraints for a parameterized description of ΔS = 0 parity-violating phenomena free from complications of nuclear structure. The NPDGamma experiment uses a polarized cold pulsed neutron beam, a liquid parahydrogen target, and a cylindrical array of 48 CsI(Tl) scintillation detectors operated in current mode to search for the asymmetry. NPDGamma recently completed the first phase of the program to measure Aγ at the Los Alamos Neutron Science Center with the preliminary result Aγ = (-1.2 ± 2.1(stat.) ± 0.1(sys.)) × 10-7, reproducing the previous upper limit from a measurement at a reactor facility. We discuss the theoretical background and experimental method and report on preliminary analysis of the LANSCE data. The second phase of the program to measure Aγ is in progress at the Spallation Neutron Source at Oak Ridge National Laboratory.

  10. Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab

    SciTech Connect

    Dalton, Mark M.

    2014-01-01

    Hall A at Jefferson Lab has recently completed three experiments done using the technique of parity-violating electron scattering. Taken together these experiments are a good demonstration of the versatility of this approach. Looking forward, there are two very large scale parity-violation experiments approved to run in Hall A in the 12 GeV era. These experiments represent a significant increase in precision and technical requirements.

  11. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC.

    SciTech Connect

    VOGELSANG,W.; PERDEKAMP, M.; SURROW, B.

    2007-04-26

    The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of {radical}s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory. Also, new observables

  12. Line Shifts in Rotational Spectra of Polyatomic Chiral Molecules Caused by the Parity Violating Electroweak Interaction

    NASA Astrophysics Data System (ADS)

    Stohner, J.; Quack, M.

    2009-06-01

    Are findings in high-energy physics of any importance in molecular spectroscopy ? The answer is clearly `yes'. Energies of enantiomers were considered as exactly equal in an achiral environment, e.g. the gas phase. Today, however, it is well known that this is not valid. The violation of mirror-image symmetry (suggested theoretically and confirmed experimentally in 1956/57) was established in the field of nuclear, high-energy, and atomic physics since then, and it is also the cause for a non-zero energy difference between enantiomers. We expect today that the violation of mirror-image symmetry (parity violation) influences chemistry of chiral molecules as well as their spectroscopy. Progress has been made in the quantitative theoretical prediction of possible spectroscopic signatures of molecular parity violation. The experimental confirmation of parity violation in chiral molecules is, however, still open. Theoretical studies are helpful for the planning and important for a detailed analysis of rovibrational and tunneling spectra of chiral molecules. We report results on frequency shifts in rotational, vibrational and tunneling spectra of some selected chiral molecules which are studied in our group. If time permits, we shall also discuss critically some recent claims of experimental observations of molecular parity violation in condensed phase systems. T. D. Lee, C. N. Yang, Phys. Rev., 104, 254 (1956) C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, Phys. Rev., 105, 1413 (1957) M. Quack, Angew. Chem. Intl. Ed., 28, 571 (1989) Angew. Chem. Intl. Ed., 41, 4618 (2002) M. Quack, J. Stohner, Chimia, 59, 530 (2005) M. Quack, J. Stohner, M. Willeke, Ann Rev. Phys. Chem. 59, 741 (2008) M. Quack, J. Stohner, Phys. Rev. Lett., 84, 3807 (2000) M. Quack, J. Stohner, J. Chem. Phys., 119, 11228 (2003) J. Stohner, Int. J. Mass Spectrometry 233, 385 (2004) M. Gottselig, M. Quack, J. Stohner, M. Willeke, Int. J. Mass Spectrometry 233, 373 (2004) R. Berger, G

  13. Difference in direct charge-parity violation between charged and neutral B meson decays.

    PubMed

    Lin, S-W; Unno, Y; Hou, W-S; Chang, P; Adachi, I; Aihara, H; Akai, K; Arinstein, K; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Balagura, V; Barberio, E; Bay, A; Bedny, I; Bitenc, U; Bondar, A; Bozek, A; Bracko, M; Browder, T E; Chang, M-C; Chao, Y; Chen, A; Chen, K-F; Chen, W T; Cheon, B G; Chiang, C-C; Chistov, R; Cho, I-S; Choi, S-K; Choi, Y; Choi, Y K; Cole, S; Dalseno, J; Danilov, M; Dash, M; Drutskoy, A; Eidelman, S; Epifanov, D; Fratina, S; Fujikawa, M; Furukawa, K; Gabyshev, N; Goldenzweig, P; Golob, B; Ha, H; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Hokuue, T; Hoshi, Y; Hsiung, Y B; Hyun, H J; Iijima, T; Ikado, K; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwabuchi, M; Iwasaki, M; Iwasaki, Y; Kah, D H; Kaji, H; Kataoka, S U; Kawai, H; Kawasaki, T; Kibayashi, A; Kichimi, H; Kikutani, E; Kim, H J; Kim, S K; Kim, Y J; Kinoshita, K; Korpar, S; Kozakai, Y; Krizan, P; Krokovny, P; Kumar, R; Kuo, C C; Kuzmin, A; Kwon, Y-J; Lee, M J; Lee, S E; Lesiak, T; Li, J; Liu, Y; Liventsev, D; Mandl, F; Marlow, D; McOnie, S; Medvedeva, T; Mimashi, T; Mitaroff, W; Miyabayashi, K; Miyake, H; Miyazaki, Y; Mizuk, R; Mori, T; Nakamura, T T; Nakano, E; Nakao, M; Nakazawa, H; Nishida, S; Nitoh, O; Noguchi, S; Nozaki, T; Ogawa, S; Ogawa, Y; Ohshima, T; Okuno, S; Olsen, S L; Ozaki, H; Pakhlova, G; Park, C W; Park, H; Peak, L S; Pestotnik, R; Peters, M; Piilonen, L E; Poluektov, A; Sahoo, H; Sakai, Y; Schneider, O; Schümann, J; Schwartz, A J; Seidl, R; Senyo, K; Sevior, M E; Shapkin, M; Shen, C P; Shibuya, H; Shidara, T; Shinomiya, S; Shiu, J-G; Shwartz, B; Singh, J B; Sokolov, A; Somov, A; Stanic, S; Staric, M; Sumisawa, K; Sumiyoshi, T; Suzuki, S; Tajima, O; Takasaki, F; Tamura, N; Tanaka, M; Tawada, M; Taylor, G N; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Uehara, S; Ueno, K; Uglov, T; Uno, S; Urquijo, P; Ushiroda, Y; Usov, Y; Varner, G; Varvell, K E; Vervink, K; Villa, S; Wang, C C; Wang, C H; Wang, M-Z; Watanabe, Y; Wedd, R; Wicht, J; Won, E; Yabsley, B D; Yamaguchi, A; Yamashita, Y; Yamauchi, M; Yoshida, M; Yuan, C Z; Yusa, Y; Zhang, C C; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2008-03-20

    Equal amounts of matter and antimatter are predicted to have been produced in the Big Bang, but our observable Universe is clearly matter-dominated. One of the prerequisites for understanding this elimination of antimatter is the nonconservation of charge-parity (CP) symmetry. So far, two types of CP violation have been observed in the neutral K meson (K(0)) and B meson (B(0)) systems: CP violation involving the mixing between K(0) and its antiparticle (and likewise for B(0) and ), and direct CP violation in the decay of each meson. The observed effects for both types of CP violation are substantially larger for the B(0) meson system. However, they are still consistent with the standard model of particle physics, which has a unique source of CP violation that is known to be too small to account for the matter-dominated Universe. Here we report that the direct CP violation in charged B(+/-)-->K(+/-)pi(0) decay is different from that in the neutral B(0) counterpart. The direct CP-violating decay rate asymmetry, (that is, the difference between the number of observed B(-)-->K(-)pi(0) event versus B(+)-->K(+) pi(0) events, normalized to the sum of these events) is measured to be about +7%, with an uncertainty that is reduced by a factor of 1.7 from a previous measurement. However, the asymmetry for versus B(0)-->K(+)pi(-) is at the -10% level. Although it is susceptible to strong interaction effects that need further clarification, this large deviation in direct CP violation between charged and neutral B meson decays could be an indication of new sources of CP violation-which would help to explain the dominance of matter in the Universe. PMID:18354478

  14. Search for r-parity violating supersymmetry in the multilepton final state

    SciTech Connect

    Attal, Alon J.; /UCLA

    2006-11-01

    This thesis presents a search for physics beyond the standard model of elementary particles in events containing three or more charged leptons in the final state. The search is based on an R-parity violating supersymmetric model that assumes supersymmetric particles are pair produced at hadron colliders and the R-parity violating coupling is small enough so that these particles ''cascade'' decay into the lightest supersymmetric particle. The lightest supersymmetric particle may only decay into two charged leptons (electrons or muons) plus a neutrino through a lepton number violating interaction. Proton-antiproton collision events produced with {radical} s= 1.96 TeV are collected between March 2002 and August 2004 with an integrated luminosity of 346 pb{sup -1}. R-parity violating supersymmetry is sought for in two data samples, one with exactly three leptons and one with four or more leptons. The trilepton sample has a modest background primarily from Drell-Yan events where an additional lepton is a result of photon conversions or jet misidentification while the four or more lepton sample has an extremely low background. In the three lepton samples 6 events are observed while in the four or more lepton sample zero events are observed. These results are consistent with the standard model expectation and are interpreted as mass limits on the lightest neutralino and lightest chargino particles. The neutralino mass is constrained to be heavier than 97.7 to 110.4 GeV/c{sup 2}, while the chargino mass is constrained to be heavier than 185.3 to 202.7 GeV/c{sup 2}, depending on the supersymmetry scenario.

  15. Parity violation in {sup 232}Th neutron resonances above 250 eV

    SciTech Connect

    Sharapov, E. I.; Bowman, J. D.; Crawford, B. E.; Delheij, P. P. J.; Frankle, C. M.; Iinuma, M.; Knudson, J. N.; Lowie, L. Y.; Lynch, J. E.; Masaike, A.

    2000-02-01

    The analysis of parity nonconservation (PNC) measurements performed on {sup 232}Th by the TRIPLE Collaboration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten statistically significant parity violations have the same sign. However, at higher energies PNC effects of both signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target. Although the limited experimental energy resolution precluded analysis in terms of the longitudinal asymmetry, parity violations were observed and the cross section differences for positive and negative neutron helicities were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for which longitudinal asymmetries were obtained previously. For energies below 250 eV, the p-wave neutron strength functions for the J=1/2 and J=3/2 states were extracted: S{sub 1/2}{sup 1}=(1.68{+-}0.61)x10{sup -4} and S{sub 3/2}{sup 1}=(0.75{+-}0.18)x10{sup -4}. The data provide constraints on the properties of local doorway states proposed to explain the PNC sign effect in thorium. (c) 2000 The American Physical Society.

  16. New signatures and limits on R-parity violation from resonant squark production

    NASA Astrophysics Data System (ADS)

    Monteux, Angelo

    2016-03-01

    We discuss resonant squark production at the LHC via baryonic R-parity violating interactions. The cross section easily exceeds pair-production and a new set of signatures can be used to probe squarks, particularly stops. These include dijet resonances, same-sign top quarks and four-jet resonances with large b-jet multiplicities, as well as the possibility of displaced neutralino decays. We use publicly available searches at √{s}=8 TeV and first results from collisions at √{s}=13 TeV to set upper limits on R-parity violating couplings, with particular focus on simplified models with light stops and neutralinos. The exclusion reach of these signatures is comparable to R-parity-conserving searches, {m}_{tilde{t}} ≃ 500-700 GeV. In addition, we find that O(1) couplings involving the stop can be excluded well into the multi-TeV range, and stress that searches for single- and pair-produced four-jet resonances will be necessary to exclude sub-TeV stops for a natural SUSY spectrum with light higgsinos.

  17. Exploring neutrino physics at LHC via R-parity violating SUSY

    NASA Astrophysics Data System (ADS)

    Mitsou, Vasiliki A.

    2015-07-01

    R-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its R-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this paper, RPV scenarios where neutrino masses are naturally generated are discussed, namely RPV through bilinear terms (bRPV) and the "μ from ν" supersymmetric standard model (μνSSM). The latter is characterised by a rich Higgs sector that easily accommodates a 125-GeV Higgs boson. The phenomenology of such models at the LHC is reviewed, giving emphasis on final states with displaced objects, and relevant results obtained by LHC experiments are presented. The implications for dark matter for these theoretical proposals is also addressed.

  18. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a {Rho} even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

  19. CURRENT STATUS OF THE G0 PARITY VIOLATION EXPERIMENT CARRIED OUT AT JEFFERSON LABORATORY

    SciTech Connect

    Bimbot, L.

    2010-12-01

    Among experiments looking for strangeness in nuclear systems, electron scattering parity-violation type experiments aim mainly at measuring the strange quark contributions to the form factors of the proton. They can be accessed by measuring asymmetry in longitudinally polarized electron elastic scattering on hydrogen. The parity-violating asymmetry is measured at the ~ 10-7 level of accuracy, and when combined with the electromagnetic form factors of the proton, the strange form factors can be determined. The full separation of form factors according to quark flavour requires measurements at forward angle on hydrogen and at backward angle on proton and deuteron. The experimental setups used for the G0 experiment in the two different configurations will be described. The status of the analysis and the current results will be presented and discussed in relation with other experiments past and planned. The G0 forward angle measurement(2) detected the recoil proton with a segmented detector covering, for one incident energy, different Q2 bins ranging from 0.1 to 1.0 (GeV/c)2. This measurement provided a linear combination of strange magnetic and strange electric form factors for each Q2. In the backward angle configuration, electrons were detected and just one Q2 value was covered at a given incident energy. Due to time limitation, only two cases have been studied: Q2 ~ 0.63 and 0.23 (GeV/c)2. These values were chosen to be directly comparable with results from other experiments. By combining backward and forward configuration measurements it is possible to extract separately the electric and the magnetic strange form factors. The measurements are complete. The analysis, still in progress, will be described. A few comments will also be made regarding some other aspects of physics accessible in simultaneous measurements: neutral current in N transition parity violation in inclusive - production and 2 contribution to elastic scattering.

  20. Measurement of parity-violating asymmetry in deep inelastic scattering at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochao

    2015-04-01

    Symmetry permeates nature and is fundamental to all laws of physics. One example is mirror symmetry, also called ``parity symmetry''. It implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering played a key role in establishing, and now testing, the Standard Model of particle physics. One particular set of the quantities accessible through measurements of parity-violating electron scattering are the vector-electron axial-vector-quark weak couplings, called C2 q's, measured directly only once in the past 40 years. We report here on a new measurement of the parity-violating asymmetry in electron-quark scattering, that has yielded a specific combination 2C2 u -C2 d five times more precise than the earlier result. (Here u and d stand respectively for the up and the down quarks.) These results are the first evidence, at more than the 95% confidence level, that the C2 q's are non-zero as predicted by the electroweak theory. They lead to constraints on new interactions beyond the Standard Model, particularly on those whose laws change when the quark chirality is flipped between left and right. In today's particle physics research that is focused on colliders such as the LHC, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. In addition to deep inelastic scattering, we will report on measurement of the asymmetry in the nucleon resonance region. These data exhibit for the first time that the quark-hadron duality may work for electroweak observables at the (10--15)% level throughout the whole resonance region. At the end I will give a brief outlook on the future PVDIS program using the Jefferson Lab 12 GeV beam, which will not only provide more precise measurement of C2 q, but also for sin2 θW and for

  1. Measurement of the Neutron Radius of Pb208 through Parity Violation in Electron Scattering

    NASA Astrophysics Data System (ADS)

    Abrahamyan, S.; Ahmed, Z.; Albataineh, H.; Aniol, K.; Armstrong, D. S.; Armstrong, W.; Averett, T.; Babineau, B.; Barbieri, A.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bielarski, T.; Boeglin, W.; Camsonne, A.; Canan, M.; Carter, P.; Cates, G. D.; Chen, C.; Chen, J.-P.; Hen, O.; Cusanno, F.; Dalton, M. M.; de Leo, R.; de Jager, K.; Deconinck, W.; Decowski, P.; Deng, X.; Deur, A.; Dutta, D.; Etile, A.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Fuchey, E.; Garibaldi, F.; Gasser, E.; Gilman, R.; Giusa, A.; Glamazdin, A.; Gomez, J.; Grames, J.; Gu, C.; Hansen, O.; Hansknecht, J.; Higinbotham, D. W.; Holmes, R. S.; Holmstrom, T.; Horowitz, C. J.; Hoskins, J.; Huang, J.; Hyde, C. E.; Itard, F.; Jen, C.-M.; Jensen, E.; Jin, G.; Johnston, S.; Kelleher, A.; Kliakhandler, K.; King, P. M.; Kowalski, S.; Kumar, K. S.; Leacock, J.; Leckey, J., IV; Lee, J. H.; Lerose, J. J.; Lindgren, R.; Liyanage, N.; Lubinsky, N.; Mammei, J.; Mammoliti, F.; Margaziotis, D. J.; Markowitz, P.; McCreary, A.; McNulty, D.; Mercado, L.; Meziani, Z.-E.; Michaels, R. W.; Mihovilovic, M.; Muangma, N.; Muñoz-Camacho, C.; Nanda, S.; Nelyubin, V.; Nuruzzaman, N.; Oh, Y.; Palmer, A.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Poelker, B.; Pomatsalyuk, R.; Posik, M.; Puckett, A. J. R.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Riordan, S.; Rogan, P.; Ron, G.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Slifer, K.; Solvignon, P.; Souder, P. A.; Sperduto, M. L.; Subedi, R.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Troth, W.; Urciuoli, G. M.; Waidyawansa, B.; Wang, D.; Wexler, J.; Wilson, R.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yim, V.; Zana, L.; Zhan, X.; Zhang, J.; Zhang, Y.; Zheng, X.; Zhu, P.

    2012-03-01

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from Pb208. APV is sensitive to the radius of the neutron distribution (Rn). The result APV=0.656±0.060(stat)±0.014(syst)ppm corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp=0.33-0.18+0.16fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  2. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    DOE PAGESBeta

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; Armstrong, David; Armstrong, Whitney; Averett, Todd; Babineau, Benjamin; Barbieri, A.; Bellini, Vincenzo; Beminiwattha, Rakitha; et al

    2012-03-15

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb. APV is sensitive to the radius of the neutron distribution (Rn). The result APV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  3. Electroweak Radiative Corrections to the Parity-violating Asymmetry for SLAC Experiment E158

    SciTech Connect

    Zykunov, Vladimir A.; /Gomel State Tech. U.

    2012-04-04

    Electroweak radiative corrections to observable quantities of Moeller scattering of polarized particles are calculated. We emphasize the contribution induced by infrared divergent parts of cross section. The covariant method is used to remove infrared divergences, so that our results do not involve any unphysical parameters. When applied to the kinematics of SLAC E158 experiment, these corrections reduce the parity violating asymmetry by about -6.5% at E = 48 GeV and y = 0.5, and kinematically weighted 'hard' bremsstrahlung effect for SLAC E158 is {approx} 1%.

  4. Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    SciTech Connect

    Ito, Takeyasu; Averett, Todd; Barkhuff, David; Batigne, Guillaume; Beck, Douglas; Beise, Elizabeth; Blake, A.; Breuer, Herbert; Carr, Robert; Clasie, Benjamin; Covrig, Silviu; Danagoulian, Areg; Dodson, George; Dow, Karen; Dutta, Dipangkar; Farkhondeh, Manouchehr; Filippone, Bradley; FRANKLIN, W.; Furget, Christophe; Gao, Haiyan; Gao, Juncai; Gustafsson, Kenneth; Hannelius, Lars; Hasty, R.; Allen, Alice; Herda, M.C.; Jones, CE; King, Paul; Korsch, Wolfgang; Kowalski, Stanley; Kox, Serge; Kramer, Kevin; Lee, P.; Liu, Jinghua; Martin, Jeffery; McKeown, Robert; Mueller, B.; Pitt, Mark; Plaster, Bradley; Quemener, Gilles; Real, Jean-Sebastien; Ritter, J.; Roche, Julie; Savu, V.; Schiavilla, Rocco; Seely, Charles; Spayde, Damon; Suleiman, Riad; Taylor, S.; Tieulent, Raphael; Tipton, Bryan; Tsentalovich, E.; Wells, Steven; Yang, Bin; Yuan, Jing; Yun, Junho; Zwart, Townsend

    2004-03-01

    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2 = 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A = z3.51±0.57 (stat)±0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2 = 0.091 (GeV/c)2, which are also consistent with theoretical predictions.

  5. Weak charge of the proton: loop corrections to parity-violating electron scattering

    SciTech Connect

    Wally Melnitchouk

    2011-05-01

    I review the role of two-boson exchange corrections to parity-violating elastic electron–proton scattering. Direct calculations of contributions from nucleon and Delta intermediate states show generally small, [script O](1–2%), effects over the range of kinematics relevant for proton strangeness form factor measurements. For the forward angle Qweak experiment at Jefferson Lab, which aims to measure the weak charge of the proton, corrections from the gammaZ box diagram are computed within a dispersive approach and found to be sizable at the E~1 GeV energy scale of the experiment.

  6. Parity violation in nucleon-nucleus elastic scattering within a phenomenological single particle model

    NASA Astrophysics Data System (ADS)

    Avishai, Y.

    1983-08-01

    Using a phenomenological neutron-40Ca strong and weak potentials at low energy we calculate the asymmetry A in the total cross section between positive and negative incoming helicity states, the asymmetry I in the differential elastic cross sections, and the neutron spin rotation angle dφdz. In general, max |IA|>>1. Taking into account the relevant cross sections, it turns out that sometimes, measuring I (instead of A) can save a substantial amount of beam time. NUCLEAR REACTIONS Parity violation, asymmetries, neutron spin rotation, σ-->.p--> interactions, neutron-nucleus scattering, phenomenological weak and strong nucleon-nucleus optical potential.

  7. Parity-Violating Electron Scattering and the Electric and Magnetic Strange Form Factors of the Nucleon

    SciTech Connect

    Armstrong, David S.; McKeown, Robert

    2012-11-01

    Measurement of the neutral weak vector form factors of the nucleon provides unique access to the strange quark content of the nucleon. These form factors can be studied using parity-violating electron scattering. A comprehensive program of experiments has been performed at three accelerator laboratories to determine the role of strange quarks in the electromagnetic form factors of the nucleon. This article reviews the remarkable technical progress associated with this program, describes the various methods used in the different experiments, and summarizes the physics results along with recent theoretical calculations.

  8. R -parity violation and light neutralinos at SHiP and the LHC

    NASA Astrophysics Data System (ADS)

    de Vries, Jordy; Dreiner, Herbi K.; Schmeier, Daniel

    2016-08-01

    We study the sensitivity of the proposed SHiP experiment to the L Q D operator in R -parity violating supersymmetric theories. We focus on single neutralino production via rare meson decays and the observation of downstream neutralino decays into charged mesons inside the SHiP decay chamber. We provide a generic list of effective operators and decay width formulas for any λ' coupling and show the resulting expected SHiP sensitivity for a widespread list of benchmark scenarios via numerical simulations. We compare this sensitivity to expected limits from testing the same decay topology at the LHC with ATLAS.

  9. Measurement of the neutron radius of 208Pb through parity violation in electron scattering.

    PubMed

    Abrahamyan, S; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Averett, T; Babineau, B; Barbieri, A; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bielarski, T; Boeglin, W; Camsonne, A; Canan, M; Carter, P; Cates, G D; Chen, C; Chen, J-P; Hen, O; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, D; Etile, A; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gasser, E; Gilman, R; Giusa, A; Glamazdin, A; Gomez, J; Grames, J; Gu, C; Hansen, O; Hansknecht, J; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Hyde, C E; Itard, F; Jen, C-M; Jensen, E; Jin, G; Johnston, S; Kelleher, A; Kliakhandler, K; King, P M; Kowalski, S; Kumar, K S; Leacock, J; Leckey, J; Lee, J H; LeRose, J J; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; McCreary, A; McNulty, D; Mercado, L; Meziani, Z-E; Michaels, R W; Mihovilovic, M; Muangma, N; Muñoz-Camacho, C; Nanda, S; Nelyubin, V; Nuruzzaman, N; Oh, Y; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, B; Pomatsalyuk, R; Posik, M; Puckett, A J R; Quinn, B; Rakhman, A; Reimer, P E; Riordan, S; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Slifer, K; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Zhu, P

    2012-03-16

    We report the first measurement of the parity-violating asymmetry A(PV) in the elastic scattering of polarized electrons from 208Pb. A(PV) is sensitive to the radius of the neutron distribution (R(n)). The result A(PV)=0.656±0.060(stat)±0.014(syst) ppm corresponds to a difference between the radii of the neutron and proton distributions R(n)-R(p)=0.33(-0.18)(+0.16) fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus. PMID:22540469

  10. Tau and muon lepton flavor violations in the littlest Higgs model with T parity

    SciTech Connect

    Goto, Toru; Okada, Yasuhiro; Yamamoto, Yasuhiro

    2011-03-01

    Lepton flavor violation in {tau} and {mu} processes is studied in the littlest Higgs model with T parity. We consider various asymmetries defined in polarized {tau} and {mu} decays. Correlations among branching ratios and asymmetries are shown in the following lepton flavor violation processes: {mu}{sup +}{yields}e{sup +}{gamma}, {mu}{sup +}{yields}e{sup +}e{sup +}e{sup -}, {mu}{sup -}A{yields}e{sup -}A (A=Al, Ti, Au, and Pb), {tau}{sup +}{yields}{mu}{sup +}{gamma}, {tau}{sup +}{yields}{mu}{sup +}{mu}{sup +}{mu}{sup -}, {tau}{sup +}{yields}{mu}{sup +}e{sup +}e{sup -}, {tau}{sup +}{yields}{mu}{sup +}P (P={pi}{sup 0}, {eta} and {eta}{sup '}), {tau}{sup +}{yields}{mu}{sup +}V (V={rho}{sup 0}, {omega} and {phi}), {tau}{sup +}{yields}e{sup +}{gamma}, {tau}{sup +}{yields}e{sup +}e{sup +}e{sup -}, {tau}{sup +}{yields}e{sup +}{mu}{sup +}{mu}{sup -}, {tau}{sup +}{yields}e{sup +}P, {tau}{sup +}{yields}e{sup +}V, {tau}{sup +}{yields}{mu}{sup +}{mu}{sup +}e{sup -} and {tau}{sup +}{yields}e{sup +}e{sup +}{mu}{sup -}. It is shown that large parity asymmetries and time-reversal asymmetries are allowed in {mu}{sup +}{yields}e{sup +}e{sup +}e{sup -}. For {tau} lepton flavor violation processes, sizable asymmetries are possible reflecting characteristic chirality structure of lepton flavor violating interactions in this model.

  11. R -parity violation in a warped GUT scale Randall-Sundrum framework

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Iyer, A. M.; Sridhar, K.

    2016-03-01

    We consider a modified Randall-Sundrum (RS) framework between the Planck scale and the grand unified theory (GUT) scale. In this scenario, RS works as a theory of flavor and not as a solution to the hierarchy problem. The latter is resolved by supersymmetrizing the bulk, so that the minimal supersymmetric standard model is the effective four-dimensional theory. Matter fields are localized in the bulk in order to fit fermion-mass and mixing data. If R -parity violating (Rp) terms are allowed in the superpotential, their orders of magnitude throughout flavor space are then predicted, resulting in rich flavor textures. If the Rp contributions to neutrino masses are somewhat suppressed, then lepton-number violating models exist which explain the neutrino oscillation data while not being in contradiction with current experimental bounds. Another promising model is one where baryon number is violated and Dirac neutrino masses result solely from fermion localization. We sketch the likely discovery signatures of the baryon-number and the lepton-number violating cases.

  12. Towards an Atomic Parity Violation Measurement with Laser Trapped Francium at ISAC

    NASA Astrophysics Data System (ADS)

    Collister, R.; Tandecki, M.; Gwinner, G.; Zhang, J.; Orozco, L.; Behr, J. A.; Pearson, M. R.; Gomez-Garcia, E.; Aubin, S.

    2012-10-01

    The neutral atom trap for parity violation measurements at TRIUMF has recently accepted its first radioactive beam. The longest lived francium isotopes have half-lives of minutes, requiring us to produce them with the online mass separator of the ISAC facility. The ion beam is embedded into a catcher made of yttrium foil where it is neutralized. Subsequently, the foil is rotated and heated to release a pulse of atomic francium into the laser trap cell. Francium isotopes 207, 209 and 221 have successfully been cooled and confined in a magneto-optical trap, a crucial first step for later experiments. The next online measurements are planned for November 2012 where two physics goals will be pursued. Firstly, the hyperfine anomaly will be probed via high precision spectroscopy on the atomic D1 transition in order to investigate the nuclear magnetization distribution. This will be followed by ionization cross-section measurements from the 7p3/2 state to evaluate this as a potential problematic trap loss mechanism for future parity violation measurements.

  13. The effective chiral Lagrangian from dimension-six parity and time-reversal violation

    SciTech Connect

    Vries, J. de; Mereghetti, E.; Timmermans, R.G.E.; Kolck, U. van

    2013-11-15

    We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with hadronic and electromagnetic interactions that originate from them, which serves as the basis for calculations of low-energy observables. The form of the effective interactions depends on the chiral properties of these operators. We develop a power-counting scheme and calculate within this scheme, as an example, the parity- and time-reversal-violating pion–nucleon form factor. We also discuss the electric dipole moments of the nucleon and light nuclei. -- Highlights: •Classification of T-odd dimension-six sources based on impact on observables. •Building of the chiral Lagrangian for each dimension-six source. •Calculation of the PT-odd pion–nucleon form factor for each source. •Discussion of hadronic EDMs for each source and comparison with the theta term.

  14. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    NASA Astrophysics Data System (ADS)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  15. Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab

    SciTech Connect

    Sulkosky, Vincent A.; et. al.,

    2015-03-01

    We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.

  16. Polarizations in decays B{sub u,d}{yields}VV and possible implications for R-parity violating supersymmetry

    SciTech Connect

    Yang Yadong; Wang, Rumin; Lu, G.R.

    2005-07-01

    Recently BABAR and Belle have measured anomalous large transverse polarizations in some pure penguin B{yields}VV decays, which might be inconsistent with the standard model expectations. We try to explore its implications for R-parity violating (RPV) supersymmetry. The QCD factorization approach is employed for the hadronic dynamics of B decays. We find that it is possible to have parameter spaces solving the anomaly. Furthermore, we have derived stringent bounds on relevant R-parity violating couplings from the experimental data, which is useful for further studies of RPV phenomena.

  17. High resolution GHz and THz (FTIR) spectroscopy and theory of parity violation and tunneling for 1,2-dithiine (C4H4S2) as a candidate for measuring the parity violating energy difference between enantiomers of chiral molecules.

    PubMed

    Albert, S; Bolotova, I; Chen, Z; Fábri, C; Horný, L'; Quack, M; Seyfang, G; Zindel, D

    2016-08-01

    We report high resolution spectroscopic results of 1,2-dithiine-(1,2-dithia-3,5-cyclohexadiene, C4H4S2) in the gigahertz and terahertz spectroscopic ranges and exploratory theoretical calculations of parity violation and tunneling processes in view of a possible experimental determination of the parity violating energy difference ΔpvE in this chiral molecule. Theory predicts that the parity violating energy difference between the enantiomers in their ground state (ΔpvE ≃ 1.1 × 10(-11)(hc) cm(-1)) is in principle measurable as it is much larger than the calculated tunneling splitting for the symmetrical potential ΔE± < 10(-24) (hc) cm(-1). With a planar transition state for stereomutation at about 2500 cm(-1) tunneling splitting becomes appreciable above 2300 cm(-1). This makes levels of well-defined parity accessible to parity selection by the available powerful infrared lasers and thus useful for one of the existing experimental approaches towards molecular parity violation. The new GHz spectroscopy leads to greatly improved ground state rotational parameters for 1,2-dithiine. These are used as starting points for the first successful analyses of high resolution interferometric Fourier transform infrared (FTIR, THz) spectra of the fundamentals ν17 (1308.873 cm(-1) or 39.23903 THz), ν22 (623.094 cm(-1) or 18.67989 THz) and ν3 (1544.900 cm(-1) or 46.314937 THz) for which highly accurate spectroscopic parameters are reported. The results are discussed in relation to current efforts to measure ΔpvE. PMID:27439591

  18. Laser-cooled RaF as a promising candidate to measure molecular parity violation

    SciTech Connect

    Isaev, T. A.; Berger, R.; Hoekstra, S.

    2010-11-15

    The parameter W{sub a}, which characterizes nuclear-spin-dependent parity violation (PV) in the molecular spin-rotational Hamiltonian, was computed with a quasirelativistic Hartree-Fock approach for radium fluoride (RaF) and found to be one of the largest absolute values predicted so far. The peculiar electronic structure of RaF leads to highly diagonal Franck-Condon matrices between the energetically lowest two electronic states, which qualifies RaF for direct laser cooling. A subset of diatomic molecules with a wide range of internal structures suitable for this cooling technique is also indicated. As trapped cold molecules offer superior coherence times, RaF can be considered promising for high-precision experiments aimed at molecular PV.

  19. Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation

    NASA Astrophysics Data System (ADS)

    de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.

    2016-08-01

    If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields NˆC and S ˆ . We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining 125 GeV without resort to heavy stops.

  20. Highly Forbidden Transitions in Alkalis: Preparations for a Parity Violation Experiment

    NASA Astrophysics Data System (ADS)

    Oliveira, Claudia

    Preparatory steps for the experimental investigation of the highly forbidden 5s → 6s transition in rubidium using an atom trap and laser cooling are reported. A magneto-optical trap (MOT) has been assembled including saturation spectroscopy and a dichroic vapor laser lock. A frequency-doubled diode laser system has been installed to perform the spectroscopy of the forbidden transition with cold Rb atoms in the trap. The properties of the ns → n's transition in the presence of an external electric field have been investigated theoretically. A first measurement will be exploring the Stark-induced transition amplitude and the very faint magnetic dipole amplitude. The rubidium experiment is a precursor study for a long-term project at TRIUMF, Canada's National Laboratory for nuclear and particle physics, to measure atomic parity violation in the equivalent 7s → 8s transition in francium, the heaviest alkali atom which has no stable isotopes.

  1. Parity violating asymmetry with nuclear medium effects in deep inelastic e → scattering

    NASA Astrophysics Data System (ADS)

    Haider, H.; Sajjad Athar, M.; Singh, S. K.; Ruiz Simo, I.

    2015-08-01

    Recently parity violating asymmetry (APV) in the Deep Inelastic Scattering (DIS) of polarized electrons (e →) from deuterons has been measured at JLab and there exist future plans to measure this asymmetry from nuclear targets. In view of this we study nuclear medium effects in APV in the DIS of e → from some nuclear targets like 12C, 56Fe and 208Pb. The effects of Fermi motion, binding energy and nucleon correlations are taken into account through the nucleon spectral function calculated in a local density approximation for nuclei. The pion and rho cloud contributions have also been taken into account. This model has been earlier used to study nuclear medium effects in the electromagnetic and weak interaction induced processes. The results are presented and discussed in view of the future JLab experiments.

  2. Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Kom, C. H.; Hanussek, M.

    2012-03-01

    The program SOFTSUSY can calculate tree-level neutrino masses in the R-parity violating minimal supersymmetric standard model (MSSM) with real couplings. At tree-level, only one neutrino acquires a mass, in contradiction with neutrino oscillation data. Here, we describe an extension to the SOFTSUSY program which includes one-loop R-parity violating effects' contributions to neutrino masses and mixing. Including the one-loop effects refines the radiative electroweak symmetry breaking calculation, and may result in up to three massive, mixed neutrinos. This paper serves as a manual to the neutrino mass prediction mode of the program, detailing the approximations and conventions used. Program summaryProgram title: SOFTSUSY Catalogue identifier: ADPM_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 93 291 No. of bytes in distributed program, including test data, etc.: 1 288 618 Distribution format: tar.gz Programming language: C++, Fortran Computer: Personal computer Operating system: Tested on Linux 4.x Word size: 32 bits Classification: 11.1, 11.6 Catalogue identifier of previous version: ADPM_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 232 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of neutrino masses and the neutrino mixing matrix at one-loop level in the R-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high or weak-scale boundary condition on supersymmetry breaking parameters and R-parity violating parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested iterative algorithm

  3. Upper bound on parity-violating neutron spin rotation in {sup 4}He

    SciTech Connect

    Snow, W. M.; Luo, D.; Walbridge, S. B.; Crawford, B. E.; Gan, K.; Micherdzinska, A. M.; Opper, A. K.; Heckel, B. R.; Swanson, H. E.; Sharapov, E. I.; Zhumabekova, V.

    2011-02-15

    We report an upper bound on parity-violating neutron spin rotation in {sup 4}He. This experiment is the most sensitive search for neutron-weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. The experiment was performed at the NG-6 slow-neutron beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Our result for the neutron spin rotation angle per unit length in {sup 4}He is d{phi}/dz=[+1.7{+-}9.1(stat.){+-}1.4(sys.)]x10{sup -7} rad/m. The statistical uncertainty is smaller than current estimates of the range of possible values of d{phi}/dz in n+{sup 4}He.

  4. Pion dominance in R-parity violating supersymmetry induced neutrinoless double beta decay

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Simkovic, Fedor; Kovalenko, Sergey

    2008-06-01

    At the quark level there are basically two types of contributions of R-parity violating supersymmetry (Re{sub p} SUSY) to neutrinoless double beta decay: the short-range contribution involving only heavy virtual superpartners and the long-range one with the virtual squark and neutrino. Hadronization of the effective operators, corresponding to these two types of contributions, may in general involve virtual pions in addition to close on-mass-shell nucleons. From the previous studies it is known that the short-range contribution is dominated by the pion exchange. In the present paper we show that this is also true for the long-range Re{sub p} SUSY contribution. Therefore, we conclude that the Re{sub p} SUSY contributes to the neutrinoless double beta decay dominantly via charged pion exchange between the decaying nucleons.

  5. Measurement of the Strange Quark Contribution to Nucleon Structure Through Parity-Violating Electron Scattering

    SciTech Connect

    Ellis, Colleen

    2010-01-01

    The G0 backward angle experiment, completed in Hall C of the Thomas Jefferson National Accelerator Facility (TJNAF), measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q2 = 0.22 and 0.63 (GeV/c)2. The asymmetries are sensitive to strange quark contributions to currents in the nucleon and the nucleon axial-vector current. The results indicate strange quark contributions of ≤ 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. This was also the first measurement of the anapole moment effects in the axial-vector current at these four-momentum transfers.

  6. {gamma}Z corrections to forward-angle parity-violating ep scattering

    SciTech Connect

    Sibirtsev, A.; Blunden, P. G.; Melnitchouk, W.; Thomas, A. W.

    2010-07-01

    We use dispersion relations to evaluate the {gamma}Z box contribution to parity-violating electron scattering in the forward limit arising from the axial-vector coupling at the electron vertex. The calculation makes full use of the critical constraints from recent JLab data on electroproduction in the resonance region as well as high-energy data from HERA. At the kinematics of the Q{sub weak} experiment, this gives a correction of 0.0047{sub -0.0004}{sup +0.0011} to the standard model value 0.0713(8) of the proton weak charge. While the magnitude of the correction is highly significant, the uncertainty is within the anticipated experimental uncertainty of {+-}0.003.

  7. 750 GeV diphoton excess explained by a resonant sneutrino in R -parity violating supersymmetry

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Dev, P. S. Bhupal; Renner, S. A.; Sakurai, Kazuki

    2016-06-01

    We explain the recent excess seen by ATLAS and CMS experiments at around 750 GeV in the diphoton invariant mass as a narrow-width sneutrino decaying to diphotons via a stau loop in R -parity violating supersymmetry. The stau mass is predicted to be somewhere between half the resonant sneutrino mass and half the sneutrino mass plus 14 GeV. The scenario also predicts further signal channels at an invariant mass of 750 GeV, the most promising being into dijets and W W . We also predict a left-handed charged slepton decaying into W Z and W γ at a mass 750-754 GeV.

  8. R-parity violation in flavor-changing neutral current processes and top quark decays

    NASA Astrophysics Data System (ADS)

    Agashe, K.; Graesser, M.

    1996-10-01

    We show that supersymmetric R-parity-breaking (R/p) interactions always result in flavor changing neutral current processes. Within a single coupling scheme, these processes can be avoided in either the charge +2/3 or the charge -1/3 quark sector, but not both. These processes are used to place constraints on R/p couplings. The constraints on the first and the second generations are better than those existing in the literature. The R/p interactions may result in new top quark decays. Some of these violate electron-muon universality or produce a surplus of b quark events in tt¯ decays. Results from the CDF experiment are used to bound these R/p couplings.

  9. Parity Violation in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect

    Xiaochao Zheng

    2006-05-16

    The parity-violating asymmetry in e-$^2$H deep inelastic scattering (DIS) can be used to extract the weak neutral-current coupling constants $C_{2q}$. A measurement of this asymmetry at two $Q^2$ values is planned at Jefferson Lab. Results from this experiment will provide a value of $2C_{2u}-C_{2d}$ to a precision of $\\pm 0.03$, a factor of eight improvement over our current knowledge. If all hadronic effects can be understood, this results will provide information on possible extensions of the Standard Model, complementary to other experiments dedicated to new physics searches. Presented here are the physics motivation, experimental setup, potential hadronic effects and their implications, and the future of PV DIS at Jefferson Lab.

  10. Flavor anomalies at the LHC and the R -parity violating supersymmetric model extended with vectorlike particles

    NASA Astrophysics Data System (ADS)

    Huang, Weicong; Tang, Yi-Lei

    2015-11-01

    In this paper, we consider a solution to explain the three discrepancies with the standard model (SM) predictions in flavor observables, i.e., anomalies in B →K*μ+μ- and RK=B (B →K μ+μ-)/B (B →K e+e-) at the LHCb and an excess in h →μ τ at the CMS in the context of R-parity violating (RPV) supersymmetry. We demonstrate that these anomalies can be explained within a unified framework: the minimal supersymmetry model (MSSM) extended with 5 +5 ¯ vectorlike (VL) particles. The new trilinear RPV couplings involving VL particles in our model can solve the b →s anomalies, and the mixing between the SM-like Higgs boson and the VL sneutrino can yield the extra h →μ τ decay mode.

  11. Parity violation in deep inelastic scattering at JLab 6 GeV.

    SciTech Connect

    Zheng, X.; Arrington, J.; Geesaman, D. F.; Hafidi, K.; Holt, R. J.; Jackson, H. E.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Zeidman, B.; Physics

    2007-01-01

    The parity-violating asymmetry in e-2H deep inelastic scattering (DIS) can be used to extract the weak neutral-current coupling constants C 2q . A measurement of this asymmetry at two Q 2 values is planned at Jefferson Lab. Results from this experiment will provide a value of 2C 2u - C 2d to a precision of {+-}0.03, a factor of eight improvement over our current knowledge. If all hadronic effects can be understood, this result will provide information on possible extensions of the Standard Model, complementary to other experiments dedicated to new physics searches. Presented here are the physics motivation, experimental setup, potential hadronic effects and their implications, and the future of PV DIS at Jefferson Lab.

  12. Search for bosonic stop decays in R-parity violating supersymmetry in e+ p collisions at HERA

    NASA Astrophysics Data System (ADS)

    Aktas, A.; Andreev, V.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J. C.; Böhme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Bröker, H.-B.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Coppens, Y. R.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E. A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Flügge, G.; Fomenko, A.; Foresti, I.; Formánek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grässler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K. H.; Höting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Krüger, K.; Kückens, J.; Kuhr, T.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laycock, P.; Lebedev, A.; Leißner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nagovizin, V.; Nankov, K.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Ossoskov, G.; Ozerov, D.; Paramonov, A.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Pöschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlák, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L. N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zohrabyan, H.; Zomer, F.; H1 Collaboration

    2004-10-01

    A search for scalar top quarks in R-parity violating supersymmetry is performed in e+ p collisions at HERA using the H1 detector. The data, taken at √{ s} = 319GeV and 301 GeV, correspond to an integrated luminosity of 106pb-1. The resonant production of scalar top quarks t˜ in positron quark fusion via an R-parity violating Yukawa coupling λ‧ is considered with the subsequent bosonic stop decay t˜ →b˜ W. The R-parity violating decay of the sbottom quark b˜ → dνbare and leptonic and hadronic W decays are considered. No evidence for stop production is found in the search for bosonic stop decays nor in a search for the direct R-parity violating decay t˜ → eq. Mass dependent limits on λ‧ are obtained in the framework of the minimal supersymmetric Standard Model. Stop quarks with masses up to 275GeV can be excluded at the 95% confidence level for a Yukawa coupling of electromagnetic strength.

  13. Probing the R-parity violating supersymmetric effects in the exclusive c → d/sℓ+νℓ decays

    NASA Astrophysics Data System (ADS)

    Wang, Ru-Min; Zhu, Jie; Sheng, Jin-Huan; Liu, Mo-Lin; Xu, Yuan-Guo

    2015-12-01

    A lot of branching ratios of the exclusive c → d / sℓ+νℓ (ℓ = e , μ) decays have been quite accurately measured by CLEO-c, BELLE, BABAR, BES(I, II, III), ALEPH and MARKIII Collaborations. We probe the R-parity violating supersymmetric effects in the exclusive c → d / sℓ+νℓ decays. From the latest experimental measurements, we obtain new upper limits on the relevant R-parity violating coupling parameters within the decays, and many upper limits are obtained for the first time. Using the constrained new parameter spaces, we predict the R-parity violating effects on the observables, which have not been measured yet. We find that the R-parity violating effects due to slepton exchange could be large on the branching ratios of Dd/s →e+νe decays and the normalized forward-backward asymmetries of Du/d → π / Kℓ+νℓ as well as Ds → Kℓ+νℓ decays, and the constrained squark exchange couplings have negligible effects in the exclusive c → d / sℓ+νℓ decays. Our results in this work could be used to probe new physics effects in the leptonic decays as well as the semileptonic decays, and will correlate with searches for direct supersymmetric signals at LHC and BESIII.

  14. Measurement of the Parity-Violating directional Gamma-ray Asymmetry in Polarized Neutron Capture on ^35Cl

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia

    2012-03-01

    The NPDGamma experiment aims to measure the parity-odd correlation between the neutron spin and the direction of the emitted photon in neutron-proton capture. A parity violating asymmetry (to be measured to 10-8) from this process can be directly related to the strength of the hadronic weak interaction between nucleons. As part of the commissioning runs on the Fundamental Neutron Physics beamline at the Spallation Neutron Source at ORNL, the gamma-ray asymmetry from the parity-violating capture of cold neutrons on ^35Cl was measured, primarily to check for systematic effects and false asymmtries. The current precision from existing world measurements on this asymmetry is at the level of 10-6 and we believe we can improve it. The analysis methodology as well as preliminary results will be presented.

  15. R-parity violating effects in top quark flavor-changing neutral-current production at LHC

    SciTech Connect

    Cao Junjie; Heng Zhaoxia; Yang Jinmin; Wu Lei

    2009-03-01

    In the minimal supersymmetric model the R-parity violating top quark interactions, which are so far weakly constrained, can induce various flavor-changing neutral-current (FCNC) productions for the top quark at the large hadron collider (LHC). In this work we assume the presence of the B-violating couplings and examine their contributions to the FCNC productions proceeding through the parton processes cg{yields}t, gg{yields}tc, cg{yields}t{gamma}, cg{yields}tZ and cg{yields}th. We find that all these processes can be greatly enhanced relative to the R-parity preserving predictions. In the parameter space allowed by current experiments, all the production channels except cg{yields}th can reach the 3{sigma} sensitivity, in contrast to the R-parity preserving case in which only cg{yields}t can reach the 3{sigma} sensitivity.

  16. Parity-Violating Neutron Spin Rotation in Hydrogen and Deuterium and the Predictive Power of EFT

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.

    2013-10-01

    One of the least-explored sectors of the Standard Model is the weak part of the nuclear force. Experiments on hadronic parity-violation (PV) at low energies require one comprehensive theoretical framework with reliable error-estimates to: check data consistency; subtract binding effects; and extract the PV interaction strengths. ``Pion-less'' Effective Field Theory is such a method with minimal theoretical bias. Different PV parameters are probed in np and nd spin rotation. Using naïve dimensional analysis, the signal for standard target densities is. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. We also show that PV 3-nucleon interactions are suppressed in the nd -system, despite the non-perturbative renormalisation of parity-conserving 3-nucleon interactions. Therefore, few-nucleon experiments can dis-entangle PV 2-nucleon interactions at the 10%-level without introducing new unknowns. Supported in part by the US National Science Foundation under CAREER award PHY- 0645498, by the US Department of Energy under contract DE-FG02-95ER-40907, and by University Facilitating Funds of the George Washington University.

  17. Studying double charm decays of B{sub u,d} and B{sub s} mesons in the MSSM with R-parity violation

    SciTech Connect

    Kim, C. S.; Wang Rumin; Yang Yadong

    2009-03-01

    Motivated by the possible large direct CP asymmetry of B{sub d}{sup 0}{yields}D{sup +}D{sup -} decays measured by the Belle Collaboration, we investigate double charm B{sub u,d} and B{sub s} decays in the minimal supersymmetric standard model with R-parity violation. We derive the bounds on relevant R-parity violating couplings from the current experimental data, which show quite consistent measurements among relative collaborations. Using the constrained parameter spaces, we explore R-parity violating effects on other observables in these decays, which have not been measured or have not been well measured yet. We find that the R-parity violating effects on the mixing-induced CP asymmetries of B{sub d}{sup 0}{yields}D{sup (}*{sup )+}D{sup (}*{sup )-} and B{sub s}{sup 0}{yields}D{sub s}{sup (}*{sup )+}D{sub s}{sup (}*{sup )-} decays could be very large; nevertheless, the R-parity violating effects on the direct CP asymmetries could not be large enough to explain the large direct CP violation of B{sub d}{sup 0}{yields}D{sup +}D{sup -} from Belle. Our results could be used to probe R-parity violating effects and will correlate with searches for direct R-parity violating signals in future experiments.

  18. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  19. Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter

    SciTech Connect

    Wu, E. Y. S.; Church, S.; Hinderks, J.; Rusholme, B.; Thompson, K. L.; Ade, P.; Gear, W. K.; Gupta, S.; Rajguru, N.; Turner, A. H.; Bock, J.; Leitch, E.; Bowden, M.; Brown, M. L.; Cahill, G.; Murphy, J. A.; O'Sullivan, C.; Castro, P. G.; Culverhouse, T.; Friedman, R. B.

    2009-04-24

    We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible 'cosmological birefringence' to be 0.55 deg. {+-}0.82 deg. (random) {+-}0.5 deg. (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200violating interactions to <2x10{sup -43} GeV (68% confidence limit). This is the best constraint to date on electrodynamic parity violation on cosmological scales.

  20. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the “observability” of absolute time direction as well as absolute handedness-left or right- are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical- chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discus as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  1. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the 'observability' of absolute time direction as well as absolute handedness - left or right - are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical-chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discuss as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  2. Parity-violating nucleon-nucleon force in the 1/N(c) expansion.

    PubMed

    Phillips, Daniel R; Samart, Daris; Schat, Carlos

    2015-02-13

    Several experimental investigations have observed parity violation (PV) in nuclear systems-a consequence of the weak force between quarks. We apply the 1/N(c) expansion of QCD to the P-violating T-conserving component of the nucleon-nucleon (NN) potential. We show there are two leading-order operators, both of which affect p[over →]p scattering at order N(c). We find an additional four operators at order N(c)(0)sin(2)θ(W) and six at O(1/N(c)). Pion exchange in the PV NN force is suppressed by 1/N(c) and sin(2)θ(W), providing a quantitative explanation for its nonobservation up to this time. The large-N(c) hierarchy of other PV NN force mechanisms is consistent with estimates of the couplings in phenomenological models. The PV observed in p[over →]p scattering data is compatible with natural values for the strong and weak coupling constants: there is no evidence of fine-tuning. PMID:25723213

  3. Spontaneous CP violation in A4 flavor symmetry and leptogenesis

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Kang, Sin Kyu; Kim, C. S.

    2013-06-01

    We propose a simple renormalizable model for the spontaneous CP violation based on SU(2)L×U(1)Y×A4 symmetry in a radiative seesaw mechanism, which can be guaranteed by an extra Z2 symmetry. In our model CP is spontaneously broken at high energies, after the breaking of flavor symmetry, by a complex vacuum expectation value of the A4 triplet and gauge-singlet scalar field. We show that the spontaneously generated CP phase could become a natural source of leptogenesis, and also investigate CP violation at low energies in the lepton sector and show how the CP phases in the Pontecorvo-Maki-Nakagawa-Sakata formalism could arise through a spontaneous symmetry-breaking mechanism. As a numerical study, interestingly, we show that the normal mass hierarchy favors relatively large values of θ13, large deviations from maximality of θ23<π/4, and the Dirac-CP phase 0°≤δCP≤50° and 300°≤δCP≤360°. For the inverted hierarchy case, the experimentally measured values of θ13 favors θ23>π/4 and discrete values of δCP around 100°, 135°, 255°, and 300°. Finally, with a successful leptogenesis our numerical results give more predictive values on the Dirac CP phase: for the normal mass hierarchy 1°≲δCP≲10° and for inverted one δCP˜100°, 135°, 300°.

  4. Outlook of an Improved Measurement of Parity Violation in Moeller Scattering at JLab (e2ePV)

    SciTech Connect

    Mack, David

    2008-06-01

    Jefferson Laboratory has the potential to make a dramatically improved measurement of parity violation in Moeller scattering (e + e â e + e). In the context of the Standard Model, the measurement would yield the best determination of sin2  W at low energy ( sin2  W = ±0.00025), and one of the best at any energy scale. As a new physics search via the running of the weak mixing angle, the experiment would have unparalleled sensitivity to new parity-violating e ? e interactions, probing electron substructure to 29 TeV (95% CL). In terms of specific models, pulls of 6A are allowed in R-parity violating SUSY, about 5A in E6 Z2, and almost 3A in R-parity conserving SUSY. The latter makes an improved Moeller measurement complementary to searches for SUSY loop-induced Electric Dipole Moments. Interpretability limits are well below the projected experimental error. A conceptual design for a 12 GeV JLab experiment is presented.

  5. Search for charginos and neutralinos with R-parity violation at √s = 130 and 136 GeV

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lunch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Searches for charginos and neutralinos produced in e +e - collisions at centre-of-mass energies of 130 and 136 GeV have been performed under the assumptions that R-parity is not conserved, that the dominant R-parity violating coupling involves only leptonic fields, and that the lifetime of the lightest supersymmetric particle can be neglected. In the 5.7 pb -1 data sample collected by ALEPH, no candidate events were found. As a result, chargino and neutralino masses and couplings are constrained and the domains previously excluded at LEP1 are extended.

  6. Search for r-parity violating supersymmetry in multilepton final states with the D0 detector

    SciTech Connect

    Kaefer, Daniela; /Aachen, Tech. Hochsch.

    2006-11-01

    Results obtained from a search for the trilepton signature {mu}{mu}{ell} (with {ell} = e, or {mu}) are combined with two complementary searches for the trilepton signatures ee{ell} and eer and interpreted in the framework of R-parity violating Supersymmetry. Pairwise, R-parity conserving production of the supersymmetric particles is assumed, followed by R-parity violating decays via an LL{bar E}-operator with one dominant coupling {lambda}{sub 122}. An LL{bar E}-operator couples two weak isospin doublet and one singlet (s)lepton fields and thus violates lepton number conservation. The data, collected with the D0 detector at the Fermilab proton-antiproton collider Tevatron, corresponds to an integrated luminosity of {integral} L dt = 360 {+-} 23 pb{sup -1}. No evident is observed, while 0.41 {+-} 0.11(stat) {+-} 0.07(sys) events are expected from Standard Model processes. The resulting 95% confidence level cross section limits on new physics producing a {mu}{mu}{ell} signature in the detector are of the order of 0.020 to 0.136 pb. They are interpreted in two different supersymmetry scenarios: the mSUGRA and the MSSM model. The corresponding lower limits on the masses of the lightest neutralino ({tilde {chi}}{sub 1}{sup 0}) and the lightest chargino ({tilde {chi}}{sub 1}{sup {+-}}) in case of the mSUGRA model are found to be in the range of: mSUGRA, {mu} > 0: M({tilde {chi}}{sub 1}{sup 0}) {approx}> 115-128 GeV and M({tilde {chi}}{sub 1}{sup {+-}}) {approx}> 215-241 GeV; mSUGRA, {mu} < 0: ({tilde {chi}}{sub 1}{sup 0}) {approx}> 101-114 GeV and M({tilde {chi}}{sub 1}{sup {+-}}) {approx}> 194-230 GeV, depending on the actual values of the model parameters: m{sub 0}, m{sub 1/2}, A{sub 0}, tan{beta}, and {mu}. The first and second parameters provide the boundary conditions for the masses of the supersymmetric spin-0 and spin-1/2 particles, respectively, while A{sub 0} gives the universal value for the trilinear couplings at the GUT scale. The parameter tan {beta} denotes

  7. Parity-violating CMB correlators with non-decaying statistical anisotropy

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Shiraishi, Maresuke

    2015-07-01

    We examine the effect induced on cosmological correlators by the simultaneous breaking of parity and of statistical isotropy. As an example of this, we compute the scalar-scalar, scalar-tensor, tensor-tensor and scalar-scalar-scalar cosmological correlators in presence of the coupling Script L = f(phi) ( - 1/4 F2 + γ/4 F ~F ) between the inflaton phi and a vector field with vacuum expectation value A. For a suitably chosen function f, the energy in the vector field ρA does not decay during inflation. This results in nearly scale-invariant signatures of broken statistical isotropy and parity. Specifically, we find that the scalar-scalar correlator of primordial curvature perturbations includes a quadrupolar anisotropy, Pζ(k) = P(k)[1+g*(hat kṡÂ)2], and a (angle-averaged) scalar bispectrum that is a linear combination of the first 3 Legendre polynomials, Bζ(k1, k2, k3) = ∑L cL PL (hat k1 ṡ hat k2) P(k1) P(k2) + 2 perms , with c0:c1:c2=2-3:1 (c1≠0 is a consequence of parity violation, corresponding to the constant 0γ ≠ ). The latter is one of the main results of this paper, which provides for the first time a clear example of an inflationary model where a non-negligible c1 contribution to the bispectrum is generated. The scalar-tensor and tensor-tensor correlators induce characteristic signatures in the Cosmic Microwave Background temperature anisotropies (T) and polarization (E/B modes); namely, non-diagonal contributions to langleal1m1a*l2m2rangle, with |l1 - l2| = 1 in TT, TE, EE and BB, and |l1 - l2| = 2 in TB and EB. The latest CMB bounds on the scalar observables (g*, c0, c1 and c2), translate into the upper limit ρA / ρphi lesssim 10-9 at 0γ=. We find that the upper limit on the vector energy density becomes much more stringent as γ grows.

  8. New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors

    SciTech Connect

    Konrad Aniol; David Armstrong; Todd Averett; Maud Baylac; Etienne Burtin; John Calarco; Gordon Cates; Christian Cavata; Zhengwei Chai; C. Chang; Jian-Ping Chen; Eugene Chudakov; Evaristo Cisbani; Marius Coman; Daniel Dale; Alexandre Deur; Pibero Djawotho; Martin Epstein; Stephanie Escoffier; Lars Ewell; Nicolas Falletto; John Finn; A. Fleck; Bernard Frois; Salvatore Frullani; Juncai Gao; Franco Garibaldi; Ashot Gasparian; G. M. Gerstner; Ronald Gilman; Oleksandr Glamazdin; Javier Gomez; Viktor Gorbenko; Jens-ole Hansen; F. Hersman; Douglas Higinbotham; Richard Holmes; Maurik Holtrop; Thomas Humensky; Sebastien Incerti; Mauro Iodice; Cornelis De Jager; Johann Jardillier; Xiaodong Jiang; Mark Jones; J. Jorda; Christophe Jutier; W. Kahl; James Kelly; Donghee Kim; M. -J. Kim; Minsuk Kim; Ioannis Kominis; Edgar Kooijman; Kevin Kramer; Krishna Kumar; Michael Kuss; John LeRose; Raffaele De Leo; M. Leuschner; David Lhuillier; Meihua Liang; Nilanga Liyanage; R. Lourie; Richard Madey; Sergey Malov; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Jacques Martino; Peter Mastromarino; Kathy McCormick; Justin McIntyre; Zein-Eddine Meziani; Robert Michaels; Brian Milbrath; Gerald Miller; Joseph Mitchell; Ludyvine Morand; Damien Neyret; Gerassimos Petratos; Roman Pomatsalyuk; John Price; David Prout; Thierry Pussieux; Gilles Quemener; Ronald Ransome; David Relyea; Yves Roblin; Julie Roche; Gary Rutledge; Paul Rutt; Marat Rvachev; Franck Sabatie; Arunava Saha; Paul Souder; Marcus Spradlin; Steffen Strauch; Riad Suleiman; Jeffrey Templon; T. Teresawa; James Thompson; Raphael Tieulent; Luminita Todor; Baris Tonguc; Paul Ulmer; Guido Urciuoli; Branislav Vlahovic; Krishni Wijesooriya; R. Wilson; Bogdan Wojtsekhowski; Rhett Woo; Wang Xu; Imran Younus; C. Zhang

    2001-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) {+-} 0.56(syst) ppm at the kinematic point theta{sub lab} = 12.3 degrees and Q{sup 2} = 0.477 (GeV/c){sup 2}. The measurement implies that the value for the strange form factor (G{sub E}{sup s} + 0.392 G{sub M}{sup s})/(G{sub M}{sup p} {mu}{sub p}) = 0.069 +- 0.056 +- 0.039, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a ''strained'' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization.

  9. Measurement of parity-violating spin asymmetries in W± production at midrapidity in longitudinally polarized p +p collisions

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-03-01

    We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W±/Z decays, produced in longitudinally polarized p +p collisions at center of mass energies of √{s }=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W -boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb-1 , which exceeds previous PHENIX published results by a factor of more than 27. These high Q2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly MW/√{s }=0.16 .

  10. Explaining a CMS e e j j excess with R -parity violating supersymmetry and implications for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01

    A recent CMS search for the right-handed gauge boson WR reports an interesting deviation from the Standard Model. The search has been conducted in the e e j j channel and has shown a 2.8 σ excess around me e j j˜2 TeV . In this work, we explain the reported CMS excess with R -parity violating supersymmetry. We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an R -parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay (0 ν β β ) experiments. GERDA Phase-II will probe a significant portion of the good-fit parameter space.

  11. Contribution of two-boson exchange with {delta}(1232) excitation to parity-violating elastic electron-proton scattering

    SciTech Connect

    Nagata, Keitaro; Kao, C. W.; Zhou Haiqing; Yang Shinnan

    2009-06-15

    We study the leading electroweak corrections in the precision measurement of the strange form factors. Specifically, we calculate the two-boson exchange (TBE), two-photon exchange (TPE) plus {gamma}Z exchange ({gamma}ZE), and corrections with {delta}(1232) excitation to the parity-violating asymmetry of the elastic electron-proton scattering. The interplay between nucleon and {delta} contributions is found to depend strongly on the kinematics, as {delta}{sub {delta}} begins as negligible at backward angles but becomes very large and negative and dominant at forward angles, while {delta}{sub N} always stays positive and decreases monotonically with increasing {epsilon}. The total TBE corrections to the extracted values of G{sub E}{sup s}+{beta}G{sub M}{sup s} in recent experiments of HAPPEX and G0 are, depending on kinematics, found to be large and range between 13% and -75%, but are found to be small in the case of A4 experiments.

  12. Measurement of the Parity-Violating Neutron Spin Rotation in (4) He.

    PubMed

    Bass, C D; Dawkins, J M; Luo, D; Micherdzinska, A; Sarsour, M; Snow, W M; Mumm, H P; Nico, J S; Huffman, P R; Markoff, D M; Heckel, B R; Swanson, H E

    2005-01-01

    In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φ PV ( n ,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φ PV ( n ,α) = (8.0 ±14(stat) ±2.2(syst)) ×10(-7) rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10(-7) rad/m. PMID:27308122

  13. A measurement of parity-violating asymmetries in the G0 experiment in forward mode

    SciTech Connect

    Silviu Doru Covrig

    2004-09-28

    The G0 experiment in Hall C at Jefferson Lab measures the parity-violating asymmetry in elastic electron scattering off hydrogen and quasielastic electron scattering off deuterium in the Q^2 range from 0.1 to 1 (GeV)^2 in both forward and backward running modes by using a longitudinally polarized electron beam on unpolarized liquid targets. By measuring three independent asymmetries, one in forward running mode off liquid hydrogen and two in backward running mode, one off liquid hydrogen and one off liquid deuterium, the experiment aims to perform for the first time a complete separation and mapping of the strange vector form factors of the nucleon (G_M^s, G_E^s) and the isovector axial form factor (G_A^e(T=1)) in three Q^2 bins over the Q^2 range from 0.1 to 1 (GeV/c)^2. To complete the physics program in both forward and backward modes it will take about five years. To accomplish the forward running mode program some 100 C of data are needed. This thesis is based on 9 C of physics data taken during the first chekout of the G^0 apparatus during October 2002 - January 2003.

  14. The ascent of parity-violation: exochirality in the solar system and beyond

    PubMed

    MacDermott

    2000-01-01

    We review recent developments stemming from Stephen Mason's work on the origin of homochirality, focusing in particular on the parity-violating energy difference (PVED) between enantiomers. We summarize results of calculations of the PVED--both our own and those of other groups--which show that the natural enantiomers are indeed favoured by the weak force in most cases. The PVED has become important not only to explain the selection of the L-amino acids in the origin of life, but also as a "molecular footprint" of fundamental physics, leading to proposals to derive values of the Weinberg angle from future spectroscopic measurements of the PVED. The new field of exochirality--chirality outside the Earth--is now taking off, with reports of excesses of L-amino acids in meteorites, and proposals to look for homochirality as a signature of life on other planets and even in other solar systems. If it was indeed the PVED that determined life's handedness, we would expect to find L-amino acids rather than D everywhere in the universe. PMID:10857054

  15. Measurement Of Neutron Radius In Lead By Parity Violating Scattering Flash ADC DAQ

    SciTech Connect

    Ahmed, Zafar

    2012-06-01

    This dissertation reports the experiment PREx, a parity violation experiment which is designed to measure the neutron radius in {sup 208}Pb. PREx is performed in hall A of Thomas Jefferson National Accelerator Facility from March 19th to June 21st. Longitudionally polarized electrons at energy 1 GeV scattered at and angle of {theta}{sub lab} = 5.8 {degrees} from the Lead target. Beam corrected pairty violaing counting rate asymmetry is (A{sub corr} = 594 ± 50(stat) ± 9(syst))ppb at Q{sup 2} = 0.009068GeV {sup 2}. This dissertation also presents the details of Flash ADC Data Acquisition(FADC DAQ) system for Moller polarimetry in Hall A of Thomas Jefferson National Accelerator Facility. The Moller polarimeter measures the beam polarization to high precision to meet the specification of the PREx(Lead radius experiment). The FADC DAQ is part of the upgrade of Moller polarimetery to reduce the systematic error for PREx. The hardware setup and the results of the FADC DAQ analysis are presented

  16. Role of particle masses in the magnetic field generation driven by the parity violating interaction

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim

    2016-09-01

    Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.

  17. Precision determination of electroweak coupling from atomic parity violation and implications for particle physics.

    PubMed

    Porsev, S G; Beloy, K; Derevianko, A

    2009-05-01

    We carry out high-precision calculation of parity violation in a cesium atom, reducing theoretical uncertainty by a factor of 2 compared to previous evaluations. We combine previous measurements with calculations and extract the weak charge of the 133Cs nucleus, QW=-73.16(29)expt(20)theor. The result is in agreement with the standard model (SM) of elementary particles. This is the most accurate to-date test of the low-energy electroweak sector of the SM. In combination with the results of high-energy collider experiments, we confirm the energy dependence (or "running") of the electroweak force over an energy range spanning 4 orders of magnitude (from approximately 10 MeV to approximately 100 GeV). Additionally, our result places constraints on a variety of new physics scenarios beyond the SM. In particular, we increase the lower limit on the masses of extra Z bosons predicted by models of grand unification and string theories. PMID:19518856

  18. Parity Violating Deep Inelastic Electron Scattering from the Deuteron at 6 GeV

    SciTech Connect

    Pan, Kai

    2013-02-01

    An experiment that measured the parity violating (PV) asymmetry Ad in e-2H deep inelastic scattering (DIS) at Q2 ~ 1.10 and 1.90 (GeV/c)2 and xB ~ 0.3 was completed in experimental Hall A at the Thomas Jefferson National Accelerator Facility. The asymmetry can be used to extract the neutral weak coupling combination (2C2u-C2d), providing a factor of five to six improvement over the current world data. To achieve this precision, asymmetries of the 10-4 level needed to be measured at event rates up to 500 kHz with high electron detection efficiency and high pion background rejection capability. A specialized scaler-based counting data acquisition system (DAQ) with hardware-based particle identification was successfully implemented. The statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes and the experimental goal of 3-4% statistical uncertainty was achieved. The design and performance of the new DAQ system is presented with the preliminary asymmetry results given in the end.

  19. New physics contribution to Bs→μ+μ- within R-parity violating supersymmetric models

    NASA Astrophysics Data System (ADS)

    Yeghiyan, Gagik

    2013-08-01

    We revisit the problem of new physics (NP) contribution to the branching ratio of the Bs→μ+μ- decay in light of the recent observation of this decay by LHCb. We consider R-parity violating (RPV) supersymmetric models as a primary example—recently one has reported stringent constraints on the products of the RPV coupling constants that account for the Bs→μ+μ- transition at the tree level. We argue that despite the fact that the LHCb measurement of the B(Bs→μ+μ-) is in a remarkable agreement with the Standard Model (SM) prediction, there is still a room for a significant new physics contribution to the B(Bs→μ+μ-), as the sign of the Bs→μ+μ- transition amplitude may be opposite to that of the Standard Model; alternatively the amplitude may have a large phase. We conduct our analysis mainly for the case of real RPV couplings. We find that taking into account the scenario with the sign flip of the Bs→μ+μ- amplitude (as compared to that of the SM) makes the bounds on the RPV coupling products significantly weaker. Also, we discuss briefly how our results are modified if the RPV couplings have large phases. In particular, we examine the dependence of the derived bounds on the phase of the NP amplitude.

  20. Measurement of the Parity-Violating Neutron Spin Rotation in 4He

    PubMed Central

    Bass, C. D.; Dawkins, J. M.; Luo, D.; Micherdzinska, A.; Sarsour, M.; Snow, W. M.; Mumm, H. P.; Nico, J. S.; Huffman, P. R.; Markoff, D. M.; Heckel, B. R.; Swanson, H. E.

    2005-01-01

    In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φPV (n,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φPV (n,α) = (8.0 ±14(stat) ±2.2(syst)) ×10−7 rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10−7 rad/m. PMID:27308122

  1. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants. PMID:17328593

  2. Constraining parity violation in gravity with measurements of neutron-star moments of inertia

    SciTech Connect

    Yunes, Nicolas; Psaltis, Dimitrios; Oezel, Feryal; Loeb, Abraham

    2010-03-15

    Neutron stars are sensitive laboratories for testing general relativity, especially when considering deviations where velocities are relativistic and gravitational fields are strong. One such deviation is described by dynamical, Chern-Simons modified gravity, where the Einstein-Hilbert action is modified through the addition of the gravitational parity-violating Pontryagin density coupled to a field. This four-dimensional effective theory arises naturally both in perturbative and nonperturbative string theory, loop quantum gravity, and generic effective field theory expansions. We calculate here Chern-Simons modifications to the properties and gravitational fields of slowly spinning neutron stars. We find that the Chern-Simons correction affects only the gravitomagnetic sector of the metric to leading order, thus introducing modifications to the moment-of-inertia but not to the mass-radius relation. We show that an observational determination of the moment-of-inertia to an accuracy of 10%, as is expected from near-future observations of the double pulsar, will place a constraint on the Chern-Simons coupling constant of {xi}{sup 1/4} < or approx. 5 km, which is at least three-orders of magnitude stronger than the previous strongest bound.

  3. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect

    Wang, Diancheng

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q2 values of 1.1 and 1.9 (GeV/c)2. The asymmetry at Q2=1.9 (GeV/c)2 can be used to extract the weak coupling combination 2C2u - C2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first APV data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for APV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  4. Energy dependence of the parity-violating asymmetry of circularly polarized photons in dγ-> --> np in pionless effective field theory

    NASA Astrophysics Data System (ADS)

    Vanasse, Jared; Schindler, Matthias

    2015-10-01

    At low energies parity-violating interactions between nucleons are described by five low energy constants. The aim of hadronic parity-violation is to cleanly obtain these from experiment, for which few-body systems and pionless effective field theory are ideally suited. In this talk I will discuss the calculation of the parity violating asymmetry in the cross sections for circularly polarized photons on an unpolarized deuteron target in dγ-> --> np using pionless effective field theory. Using this calculation with estimates for the parity-violating low energy constants I will show the ideal energy at which such an experiment should be performed. This experiment is of particular interest as it is a possible future experiment at an upgraded High Intensity Gamma-Ray Source at the Triangle Universities Nuclear Laboratory.

  5. R-parity violating supersymmetric Barr-Zee type contributions to the fermion electric dipole moment with weak gauge boson exchange

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka; Sato, Toru; Kubota, Takahiro

    2013-06-01

    The contribution of the R-parity violating trilinear couplings in the supersymmetric model to the fermion electric dipole moment is analyzed at the two-loop level. We show that in general, the Barr-Zee type contribution to the fermion electric dipole moment with the exchange of W and Z bosons is not small compared to the currently known photon exchange one with R-parity violating interactions. We will then give new upper bounds on the imaginary parts of R-parity violating couplings from the experimental data of the electric dipole moments of the electron and of the neutron. The effect due to bilinear R-parity violating couplings, which needs to be investigated separately, is not included in our analyses.

  6. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE PAGESBeta

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; Rakhman, A.; Souder, P. A.; Dalton, M. M.; Liyanage, N.; Paschke, K. D.; Saenboonruang, K.; Silwal, R.; et al

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor FW(more » $$\\bar{q}$$), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm-1. We find FW($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. As a result, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.« less

  7. Zeroth order regular approximation approach to parity violating nuclear magnetic resonance shielding tensors.

    PubMed

    Nahrwold, Sophie; Berger, Robert

    2009-06-01

    In this paper, a quasirelativistic two-component zeroth order regular approximation (ZORA) density functional theory (DFT) approach to the calculation of parity violating (PV) resonance frequency differences between the nuclear magnetic resonance (NMR) spectra of enantiomers is presented and the systematics of PV NMR shielding constants in C(2)-symmetric dihydrogen dichalcogenides (H(2)X(2) with X=(17)O, (33)S, (77)Se, (125)Te, (209)Po) are investigated. The typical sin(2alpha)-like dependence of the PV NMR frequency splittings on the dihedral angle alpha is observed for the entire series. As for the scaling behavior of the effect with the nuclear charge Z of X, the previously reported Z(2.5+/-0.5) scaling in the nonrelativistic limit is reproduced and a scaling of approximately Z(3) for the paramagnetic and Z(5) for the spin-orbit coupling contribution to the frequency splitting is observed in the relativistic framework. The paramagnetic and spin-orbit coupling contributions are typically of opposite sign for the molecular structures studied herein and the maximum scaling of the total ZORA frequency splitting (i.e., the sum of the two contributions) is Z(3.9) for H(2)Po(2). Thus, an earlier claim for a spin-orbit coupling contribution scaling with up to Z(7) for H(2)Po(2) and the erratic dihedral angle dependence obtained for this compound within a four-component Dirac-Hartree-Fock-Coulomb study is not confirmed at the DFT level. The maximum NMR frequency splitting reported here is of the order of 10 mHz for certain clamped conformations of H(2)Po(2) inside a static magnetic field with magnetic flux density of 11.7 T. Frequency splittings of this size have been estimated to be detectable with present day NMR spectrometers. Thus, a NMR route toward molecular PV appears promising once suitable compounds have been identified. PMID:19508050

  8. Parity violation in neutron-proton capture—The NPDGamma experiment

    NASA Astrophysics Data System (ADS)

    Gericke, Michael; Page, S.; Ramsay, D.; Alarcon, R.; Balascuta, S.; Barron, L.; Bowman, J. D.; Carlini, R. D.; Chen, W.; Chupp, T. E.; Crawford, C.; Covrig, S.; Dabaghyan, M.; Freedman, S. J.; Gentile, T. R.; Gillis, R. C.; Greene, G. L.; Hersman, F. W.; Ino, T.; Jones, G. L.; Lauss, B.; Leuschner, M.; Losowki, B.; Mahurin, R.; Masuda, Y.; Mei, J.; Mitchell, G. S.; Muto, S.; Nann, H.; Penttilä, S. I.; Salas-Bacci, A.; Santra, S.; Seo, P.-N.; Sharapov, E.; Sharma, M.; Smith, T.; Snow, W. M.; Wilburn, W. S.; Yuan, V.

    2009-12-01

    The NPDGamma collaboration has recently completed the first phase of a measurement to determine the size of the weak nucleon-nucleon interaction from cold neutron capture on a liquid hydrogen target. In the framework of the nearly 30 year old DDH model [B. Desplanques, J.F. Donoghue, B.R. Holstein, Annals of Physics 124 (1980) 449], the measured process is explained in terms of the weak pion-nucleon coupling, while the framework of modern effective field theory parameterizes the measured process in terms of the S13-P13, long range transition (essentially the Danilov parameter ρt) [S.L. Zhu et al., Nuclear Physics A 748 (2005) 435; C.-P. Liu, Phys. Rev. C 75 (2007) 065501]. The couplings in terms of either model are directly proportional to the parity violating up-down asymmetry in the angular distribution of gamma rays with respect to the neutron spin direction in the reaction n⇒+p→d+γ. The asymmetry has a predicted size of 5×10-8 and the aim of the NPDGamma collaboration is to measure it to 20%. The first phase of the measurement was completed at the Los Alamos National Laboratory Neutron Science Center Spallation Source with a preliminary result of (-1.1±2.1 stat.±0.2 sys.)×10-7. Here, we report on the measurements and the results obtained so far. The experiment is currently being installed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, for the remainder of its run time.

  9. Determination of the weak charge of the proton through parity violating asymmetry measurements in the elastic e+p scattering

    NASA Astrophysics Data System (ADS)

    Subedi, Adesh

    The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2θ W. The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z° pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 muA on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb--May 2011, is done to extract a blinded parity violating asymmetry of size--299.7 +/- 13.4 (stat.) +/- 17.2 (syst.) +/- 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 +/- 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2θW = 0.23429 +/- 0.00211.

  10. Infrared laser induced population transfer and parity selection in 14NH3: A proof of principle experiment towards detecting parity violation in chiral molecules

    NASA Astrophysics Data System (ADS)

    Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.

    2015-12-01

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for

  11. Infrared laser induced population transfer and parity selection in {sup 14}NH{sub 3}: A proof of principle experiment towards detecting parity violation in chiral molecules

    SciTech Connect

    Dietiker, P.; Miloglyadov, E.; Quack, M. Schneider, A.; Seyfang, G.

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all

  12. Infrared laser induced population transfer and parity selection in (14)NH3: A proof of principle experiment towards detecting parity violation in chiral molecules.

    PubMed

    Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for

  13. Examination of higher-order twist contributions in parity-violating deep-inelastic electron-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco

    2010-12-01

    We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single four-quark operator. We reformulate the Bjorken-Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist-four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, RγZ, is identical to that for purely electromagnetic scattering, Rγ, up to perturbative and power-suppressed contributions. This result simplifies the interpretation of the asymmetry in terms of other possible novel hadronic and electroweak contributions. We use the results of MIT Bag Model calculations to estimate contributions of the relevant twist-four operator to the leading term in the asymmetry as a function of Bjorken x and Q2. We compare these estimates with possible leading twist corrections from violation of charge symmetry in the parton distribution functions.

  14. Galileogenesis: A new cosmophenomenological zip code for reheating through R-parity violating coupling

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Dasgupta, Arnab

    2014-05-01

    In this paper we introduce an idea of leptogenesis scenario in higher derivative gravity induced DBI Galileon framework aka Galileogenesis in presence of one-loop R-parity violating couplings in the background of a low energy effective supergravity setup derived from higher dimensional string theory framework. We have studied extensively the detailed feature of reheating constraints and the cosmophenomenological consequences of thermal gravitino dark matter in light of PLANCK and PDG data. Finally, we have also established a direct cosmophenomenological connection among dark matter relic abundance, reheating temperature and tensor-to-scalar ratio in the context of DBI Galileon inflation. Higher order correction terms in the gravity sector are introduced in the effective action as a perturbative correction to the Einstein-Hilbert counterpart coming from the computation of Conformal Field Theory disk amplitude at the two loop level [34-36]. The matter sector encounters the effect of N=1, D=4 supergravity motivated DBI Galileon interaction which is embedded in the D3 brane. Additionally, we have considered the effect of R-parity violating interactions [37-40] in the matter sector which provide a convenient framework for quantifying quark and lepton-flavor violating effects. The low energy UV protective effective action for the proposed cosmophenomenological model is described by [31,32]: S=∫d4x √{-g}[K(Φ,X)-G(Φ,X)□Φ+B1R+(B2RRαβγδ-4B3RRαβ+B4R2)+B5] where the model dependent characteristic functions K(Φ,X) and G(Φ,X) are the implicit functions of Galileon and its kinetic counterpart is X=-1/2 >g∂μΦ∂νΦ. Additionally, Bi∀i are the self-coupling constants of graviton degrees of freedom appearing via dimensional reduction from higher dimensional string theory. Specifically B5 be the effective four dimensional cosmological constant. In general, B2≠B3≠B4 which implies that the quadratic curvature terms originated from two loop correction to the

  15. Searching for Local Parity Violation in Heavy Ion Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Riley, Charles Kent

    Quantum chromodynamics (QCD) is the theory that concerns how the strong force interacts with subatomic particles. Topological configurations that interpolate between vacuum states have been shown to play an important role in the quark-gluon plasma (QGP), believed to be created in heavy ion collisions. The possible existence of P -odd domains in the QGP combined with an external magnetic field that is produced in mid-central collisions may be the ingredients necessary for the so-called chiral magnetic effect (CME). The CME is the consequence of topological features called sphalerons (that are created in the hot QCD matter) in the presence of a strong magnetic field, and it induces a separation of negatively and positively charged particles along the direction of the field. This separation varies its orientation from event to event, resulting in the expectation value of any P -odd observable to vanish, making it necessary to measure the variation in fluctuations. Any indication of a real charge dipole moment could be evidence for local parity violation (LPV), which would have profound implications on our understanding of the natural world. In this dissertation, charge dependent azimuthal correlations are used to measure the charge separation fluctuations in gold ion collisions at STAR. There are three primary analyses: measuring charge distributions as a function of beam energy, by selecting specific hadron species to filter background effects, and for uranium ion collisions. The beam energy analysis shows that a small charge separation shrinks with diminishing beam energy, eventually vanishing at the lowest energies. The kaon-pion correlations are performed to eliminate specific background effects unrelated to the CME, and behave consistently with results using all types of hadrons. The uranium analysis attempts to distinguish how much of the azimuthal correlations are influenced by elliptic anisotropy, suggesting the signal is coming from a mixture of CME and

  16. Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems

    SciTech Connect

    Viviani, Michele; Baroni, Alessandro; Girlanda, Luca; Kievsky, Alejandro; Marcucci, Laura E.; Schiavilla, Rocco

    2014-06-01

    Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleonnucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (chiEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the {sup 3}He( {vector n},p){sup 3}H chargeexchange reaction. Methods: The chiEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A = 2–-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from chiEFT. In the case of the A = 3–-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h^1_pi and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The chiEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.

  17. Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    SciTech Connect

    Muether, Mathew

    2010-08-05

    The G0 collaboration has measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q{sup 2} = 0.22 and 0.63 GeV{sup 2}. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of <10% of the charge and magnetic nucleon form factors at these four-momentum transfers. They also provide the first measurement of anapole moment effects in the axial current at these four-momentum transfers.

  18. Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    SciTech Connect

    Mathew Muether

    2010-08-01

    The G0 collaboration has measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q2 = 0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of <10% of the charge and magnetic nucleon form factors at these four-momentum transfers. They also provide the first measurement of anapole moment effects in the axial current at these four-momentum transfers.

  19. Nuclear physics aspects involved in studies of low-Q parity-violating electron scattering from nuclei

    SciTech Connect

    Donnelly, T. W.; Moreno, O.

    2013-11-07

    The parity-violating asymmetry in polarized electron scattering from nuclei can be used to extract information on nuclear and nucleon structure, as well as to determine the values of Standard Model electroweak couplings. To achieve the latter, high precision is needed both in the measured asymmetry and in the underlying nuclear structure theory. For the former a few tenths of a percent may be attainable; for the latter the present discussions have the dual goal of ascertaining both the sizes of various nuclear structure related effects and of providing estimates of their uncertainties.

  20. Sfermion loop contribution to the two-loop level fermion electric dipole moment in R-parity violating supersymmetric models

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka

    2012-10-01

    We evaluate the Barr-Zee-type two-loop level contribution to the fermion electric and chromo-electric dipole moments with sfermion loop in R-parity violating supersymmetric models. It is found that the Barr-Zee-type fermion dipole moment with sfermion loop acts destructively to the currently known fermion loop contribution, and that it has small effect when the mass of squarks or charged sleptons in the loop is larger than or comparable to that of the sneutrinos, but cannot be neglected if the sneutrinos are much heavier than loop sfermions.

  1. Low energy tests of the standard model: the 12 GeV parity violation program at Jefferson Laboratory

    SciTech Connect

    Krishna S. Kumar

    2010-06-01

    We discuss the current status and prospects of an experimental program of parity-violating asymmetry measurements in the scattering of longitudinally polarized electrons off unpolarized fixed targets. In particular, we focus on those measurements where judicious choices of target species and kinematics allows the theoretical predictions to be made purely in terms of fundamental electroweak couplings with little theoretical uncertainty. If such asymmetries are measured with sufficient precision, they are sensitive to new physics at the TeV scale. After reviewing recent results, two new experimental initiatives called MOLLER and SoLID being designed for the Jefferson Laboratory 12 GeV upgrade are discussed.

  2. Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment.

    SciTech Connect

    D. Androic, D. S. Armstrong, J. Arvieux†, S. L. Bailey, D. H. Beck, E. J. Beise, J. Benesch,; F. Benmokhtar, L. Bimbot, J. Birchall, P. Bosted, H. Breuer, C. L. Capuano, Y.-C. Chao, A. Coppens,; C. A. Davis, C. Ellis, G. Flores, G. Franklin, C. Furget, D. Gaskell, M. T. W. Gericke, J. Grames,; G. Guillard, J. Hansknecht, T. Horn, M. Jones, P. M. King, W. Korsch, S. Kox, L. Lee, J. Liu,; A. Lung, J. Mammei, J. W. Martin, R. D. McKeown, M. Mihovilovic, A. Micherdzinska, H. Mkrtchyan, M. Muether, S. A. Page, V. Papavassiliou, S. F. Pate, S. K. Phillips, P. Pillot, M. L. Pitt, M. Poelker, B. Quinn, W. D. Ramsay, J.-S. Real, J. Roche, P. Roos, J. Schaub, T. Seva, N. Simicevic, G. R. Smith, D. T. Spayde, M. Stutzman, R. Suleiman, V. Tadevosyan, W. T. H. van Oers, M. Versteegen, E. Voutier, W. Vulcan, S. P. Wells, S. E. Williamson, S.A. Wood

    2010-01-01

    We have measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q2=0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon and the nucleon axial-vector current. The results indicate strange quark contributions of ≲10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial-vector current at these four-momentum transfers.

  3. Measurement of the parity-violating asymmetry in inclusive electroproduction of π- near the Delta0 resonance

    DOE PAGESBeta

    Androic, D.; Armstrong, D. S.; Bailey, S. L.; Beck, D. H.; Beise, E. J.; Benesch, J.; Benmokhtar, F.; Bimbot, L.; Birchall, J.; Bosted, P.; et al

    2012-03-20

    The parity-violating (PV) asymmetry of inclusive π- production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasi-free photoproduction off the neutron via the Δ0 resonance. In the context of heavy-baryon chiral perturbation theory (HBχPT), this asymmetry is related to a low energy constant dΔ- that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated dΔ- in a model benchmarked by the large asymmetries seen in hyperon weakmore » radiative decays, and predicted potentially large asymmetries for this process, ranging from Aγ- = -5.2 to +5.2 ppm. The measurement performed in this work leads to Aγ- = -0.36 ± 1.06 ± 0.37 ± 0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to Vud/Vus. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form-factors using PV electron scattering.« less

  4. Implications of Higgs boson to diphoton decay rate in the bilinear R-parity violating supersymmetric model

    NASA Astrophysics Data System (ADS)

    Hundi, Raghavendra Srikanth

    2013-06-01

    The Large Hadron Collider has recently discovered a Higgs-like particle having a mass around 125 GeV and also indicated that there is an enhancement in the Higgs to diphoton decay rate as compared to that in the standard model. We have studied implications of these discoveries in the bilinear R-parity violating supersymmetric model, whose main motivation is to explain the nonzero masses for neutrinos. The R-parity violating parameters in this model are ɛ and bɛ, and these parameters determine the scale of neutrino masses. If the enhancement in the Higgs to diphoton decay rate is true, then we have found ɛ≳0.01GeV and bɛ˜1GeV2 in order to be compatible with the neutrino oscillation data. Also, in the above mentioned analysis, we can determine the soft masses of sleptons (mL) and CP-odd Higgs boson mass (mA). We have estimated that mL≳300GeV and mA≳700GeV. We have also commented on the allowed values of ɛ and bɛ, in case there is no enhancement in the Higgs to diphoton decay rate. Finally, we present a model to explain the smallness of ɛ and bɛ.

  5. Probing R -parity violating supersymmetric effects in the exclusive b →c ℓ-ν¯ℓ decays

    NASA Astrophysics Data System (ADS)

    Wang, Ru-Min; Zhu, Jie; Gan, Hua-Min; Fan, Ying-Ying; Chang, Qin; Xu, Yuan-Guo

    2016-05-01

    Motivated by recent results from the LHCb, BABAR, and Belle Collaborations on B →D(*)ℓ-ν¯ ℓ decays, which significantly deviate from the Standard Model and hint at the possible new physics beyond the Standard Model, we probe the R -parity violating supersymmetric effects in Bc-→ℓ-ν¯ ℓ and B →D(*)ℓ-ν¯ ℓ decays. We find the following: (i) B (Bc-→e-ν¯ e) and B (Bc-→μ-ν¯ μ) are sensitive to the constrained slepton exchange couplings. (ii) The normalized forward-backward asymmetries of B →D e-ν¯ e decays have been greatly affected by the constrained slepton exchange couplings, and their signs could be changed. (iii) All relevant observables in the exclusive b →c τ-ν¯ τ decays and ratios R (D(*)) are sensitive to the slepton exchange coupling, and R (D*) could be enhanced by the constrained slepton exchange coupling to reach each 95% confidence level experimental ranges from BABAR, Belle, and LHCb but not the lower limit of the 95% confidence level experimental average. Our results in this work could be used to probe R -parity violating effects and will correlate with searches for direct supersymmetric signals at the running LHCb and the forthcoming Belle-II.

  6. Measurement of the Neutron Radius of 208Pb Through Parity Violation in Electron Scattering

    SciTech Connect

    Saenboonruang, Kiadtisak

    2013-05-01

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, Rn, of a heavy nucleus and the proton radius, Rp, to be in the order of several percent. To accurately obtain the difference, Rn-Rp, which is essentially a neutron skin, the Jefferson Lab Lead (208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scattering angle of 5° . Since Z0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of Rn with respect to Rp. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 107 helicity-window quadruplets. The measured parity-violating electroweak asymmetry APV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, Rn-Rp = 0.33+0.16-0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  7. Determination of the weak charge of the proton through parity violating asymmetry measurements in the elastic e+p scattering

    SciTech Connect

    Subedi, Adesh

    2014-12-01

    The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2(theta_W). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z0 pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating asymmetry of size -299.7 ± 13.4 (stat.) ± 17.2 (syst.) ± 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 ± 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2(theta_W) = 0.23429 ± 0.00211.

  8. Parity violation in nuclear magnetic resonance frequencies of chiral tetrahedral tungsten complexes NWXYZ (X, Y, Z = H, F, Cl, Br or I)

    SciTech Connect

    Nahrwold, Sophie Berger, Robert; Schwerdtfeger, Peter

    2014-01-14

    Density functional theory within the two-component quasi-relativistic zeroth-order regular approximation (ZORA) is used to predict parity violation shifts in {sup 183}W nuclear magnetic resonance shielding tensors of chiral, tetrahedrally bonded tungsten complexes of the form NWXYZ (X, Y, Z = H, F, Cl, Br or I), as well as for the heavier systems NWHAtF and NWH(117)F for comparison. The calculations reveal that sub-mHz accuracy is required to detect such tiny effects in this class of compounds, and that parity violation effects are very sensitive to the choice of ligands.

  9. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium

    PubMed Central

    Komives, A.; Sint, A. K.; Bowers, M.; Snow, M.

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter. PMID:27308125

  10. Constraint on R-parity violating MSSM at the one-loop level from CP-odd N-N interaction

    SciTech Connect

    Yamanaka, Nodoka; Sato, Toru; Kubota, Takahiro

    2011-10-21

    Minimal supersymmetric standard model with R-parity violation (RPVMSSM) contributes to the P-, CP-odd four-quark interaction. The P-, CP-odd four-quark interaction is constrained by the new {sup 199}Hg EDM experimental data. It is then possible to constrain R-parity violating (RPV) couplings from the {sup 199}Hg EDM data. In this talk, we analyze the RPV contribution to the P-, CP-odd four-quark interaction at the one-loop level to give constraints on RPV parameters.

  11. Parity-violating effects in an exotic perturbation of the rigid rotator

    NASA Astrophysics Data System (ADS)

    Pallares-Rivera, A.; Kirchbach, M.

    2015-03-01

    The perturbation of the free rigid rotator by the trigonometric Scarf potential is shown to conserve its energy excitation patterns and change only the wave functions towards spherical harmonics rescaled by a function of an unspecified parity, or mixtures of such rescaled harmonics of equal magnetic quantum numbers and different angular momenta. In effect, no parity can be assigned to the states of the rotational bands emerging in this exotic way, and the electric dipole operator is allowed to acquire non-vanishing expectation values.

  12. The Qweak Experiment: Measurement of the Elastic Parity-Violating e-p Asymmetry at Low Q2

    NASA Astrophysics Data System (ADS)

    Subedi, Adesh; Qweak Collaboration

    2013-10-01

    Q-weak part 1. The Qweak experiment at Jefferson laboratory has measured the parity-violating asymmetry in e-p elastic scattering at Q2 = 0.025 (GeV/c)2, employing longitudinally polarized electrons incident on a 34.5 cm long liquid hydrogen target. The measurement was performed using an integrating mode apparatus with a set of eight quartz Cerenkov detectors placed radially along the beam axis. The resulting measured asymmetry is then corrected for various effects, including false asymmetries generated by helicity-correlated beam properties, backgrounds from aluminum target windows and the beamline, and the beam polarization. The results of the experiment's commissioning run will be reported, which consist of approximately 1/25th of the total data collected during the full measurement. This talk will focus on the Qweak apparatus and the analysis to determine the asymmetry. A value of the physics asymmetry from the experiment's commissioning run will be presented.

  13. Parity-Violating Electron Scattering from {sup 4}He and the Strange Electric Form Factor of the Nucleon

    SciTech Connect

    Aniol, Konrad; Armstrong, David; Averett, Todd; Benaoum, Hachemi; Bertin, Pierre; Burtin, Etienne; Cahoon, Jason; Cates, Gordon; Chang, C; Chao, Yu-Chiu; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Decowski, Piotr; Deepa, Deepa; Ferdi, Catherine; Feuerbach, Robert; Finn, John; Frullani, Salvatore; Fuoti, Kirsten; Garibaldi, Franco; Gilman, Ronald; Glamazdin, Oleksandr; Gorbenko, V; Grames, Joseph; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Humensky, Thomas; Ibrahim, Hassan; Jager, Cornelis De; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kowalski, Stanley; Kumar, Krishna; Lambert, Daniel; Laviolette, Peter; LeRose, John; Lhuillier, David; Liyanage, Nilanga; Margaziotis, Demetrius; Mazouz, Malek; McCormick, Kathy; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Camacho, Carlos Munoz; Nanda, Sirish; Nelyubin, Vladimir; Neyret, Damien; Paschke, Kent; Poelker, Benard; Pomatsalyuk, Roman; Qiang, Yi; Reitz, Bodo; Roche, Julie; Saha, Arunava; Singh, Jaideep; Snyder, Ryan; Souder, Paul; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Vacheret, Antonin; Voutier, Eric; Wang, Kebin; Wilson, R; Wojtsekhowski, Bogdan; Zheng, Xiaochao

    2005-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle {theta}{sub lab} = 5.7 degrees and a four-momentum transfer Q{sup 2} = 0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV} = 6.72 {+-} 0.84 (stat) {+-} 0.21 (syst) parts per million yields a value of G{sub E}{sup s} = -0.038 {+-} 0.042 (stat) {+-} 0.010 (syst), consistent with zero.

  14. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    SciTech Connect

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; Armstrong, David; Armstrong, Whitney; Averett, Todd; Babineau, Benjamin; Barbieri, A.; Bellini, Vincenzo; Beminiwattha, Rakitha; Benesch, Jay; Benmokhtar, Fatiha; Bierlarski, Trevor; Boeglin, Werner; Camsonne, Alexandre; Canan, Mustafa; Carter, Philip; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Hen, O.; Cusanno, Francesco; Dalton, Mark; De Leo, Raffaele; De Jager, Cornelis; Deconinck, Wouter; Decowski, Piotr; Deng, Xiaoyan; Deur, Alexandre; Dutta, Dipangkar; Etile, Asenath; Flay, David; Franklin, Gregg; Friend, Megan; Frullani, Salvatore; Fuchey, Eric; Garibaldi, Franco; Gasser, Estelle; Gilman, Ronald; Guisa, Antonio; Glamazdin, Oleksandr; Gomez, Javier; Grames, Joseph; Gu, Chao; Hansen, Jens-Ole; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Horowitz, Charles; Hoskins, Joshua; Huang, Jin; Hyde, Charles; Itard, Florian; Jen, Chun-Min; Jensen, Eric; Jin, Ge; Johnston, Sereres; Kelleher, Aidan; Kliakhandler, Konstantin; King, Paul; Kowalski, Stanley; Kumar, Krishna; Leacock, John; Leckey, John; Lee, Jeong Han; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Lubinsky, Nicholas; Mammei, Juliette; Mammoliti, Francesco; Margaziotis, Demetrius; Markowitz, Pete; McCreary, Amber; McNulty, Dustin; Mercado, Luis; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Muangma, Navaphon; Munoz Camacho, Carlos; Nanda, Sirish; Nelyubin, Vladimir; Nuruzzaman, .; Oh, Yongseok; Palmer, Alvin; Parno, Diana; Paschke, Kent; Phillips, Sarah; Poelker, Benard; Pomatsalyuk, Roman; Posik, Matthew; Puckett, Andrew; Quinn, Brian; Rakhman, A.; Reimer, Paul; Riordan, Seamus; Rogan, Patrick; Ron, Guy; Russo, Guiseppe; Saenboonruang, Kiadtisak; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Silwal, Rupesh; Sirca, Simon; Slifer, Karl; Solvignon-Slifer, Patricia; Souder, Paul; Leda Sperduto, Maria; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Sutera, Concetta; Tobias, William; Troth, Wolfgang; Urciuoli, Guido; Buddhini Waidyawansa, Dinayadura; Wang, Diancheng; Wexler, Jonathan; Wilson, Richard; Wojtsekhowski, Bogdan; Yan, Xinhu; Yao, Huan; Ye, Yunxiu; Ye, Zhiohong; Yim, Vireak; Zana, Lorenzo; Zhan, Xiaohui; Zhang, Jixie; Zhang, Y.; Zheng, Xiaochao; Zhu, Pengjia

    2012-03-15

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb. APV is sensitive to the radius of the neutron distribution (Rn). The result APV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  15. The G0 experiment: Apparatus for parity-violating electron scattering measurements at forward and backward angles

    NASA Astrophysics Data System (ADS)

    Androić, D.; Armstrong, D. S.; Arvieux, J.; Asaturyan, R.; Averett, T. D.; Bailey, S. L.; Batigne, G.; Beck, D. H.; Beise, E. J.; Benesch, J.; Benmokhtar, F.; Bimbot, L.; Birchall, J.; Biselli, A.; Bosted, P.; Breuer, H.; Brindza, P.; Capuano, C. L.; Carlini, R. D.; Carr, R.; Chant, N.; Chao, Y.-C.; Clark, R.; Coppens, A.; Covrig, S. D.; Cowley, A.; Dale, D.; Davis, C. A.; Ellis, C.; Falk, W. R.; Fenker, H.; Finn, J. M.; Forest, T.; Franklin, G.; Frascaria, R.; Furget, C.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Griffioen, K. A.; Grimm, K.; Guillard, G.; Guillon, B.; Guler, H.; Gustafsson, K.; Hannelius, L.; Hansknecht, J.; Hasty, R. D.; Hawthorne Allen, A. M.; Horn, T.; Ito, T. M.; Johnston, K.; Jones, M.; Kammel, P.; Kazimi, R.; King, P. M.; Kolarkar, A.; Korkmaz, E.; Korsch, W.; Kox, S.; Kuhn, J.; Lachniet, J.; Laszewski, R.; Lee, L.; Lenoble, J.; Liatard, E.; Liu, J.; Lung, A.; MacLachlan, G. A.; Mammei, J.; Marchand, D.; Martin, J. W.; Mack, D. J.; McFarlane, K. W.; McKee, D. W.; McKeown, R. D.; Merchez, F.; Mihovilovic, M.; Micherdzinska, A.; Mkrtchyan, H.; Moffit, B.; Morlet, M.; Muether, M.; Musson, J.; Nakahara, K.; Neveling, R.; Niccolai, S.; Nilsson, D.; Ong, S.; Page, S. A.; Papavassiliou, V.; Pate, S. F.; Phillips, S. K.; Pillot, P.; Pitt, M. L.; Poelker, M.; Porcelli, T. A.; Quéméner, G.; Quinn, B. P.; Ramsay, W. D.; Rauf, A. W.; Real, J.-S.; Ries, T.; Roche, J.; Roos, P.; Rutledge, G. A.; Schaub, J.; Secrest, J.; Seva, T.; Simicevic, N.; Smith, G. R.; Spayde, D. T.; Stepanyan, S.; Stutzman, M.; Suleiman, R.; Tadevosyan, V.; Tieulent, R.; van de Wiele, J.; van Oers, W. T. H.; Versteegen, M.; Voutier, E.; Vulcan, W. F.; Wells, S. P.; Warren, G.; Williamson, S. E.; Woo, R. J.; Wood, S. A.; Yan, C.; Yun, J.; Zeps, V.

    2011-08-01

    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part-per-million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cherenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.

  16. Improved direct measurement of the parity-violation parameter Ab using a mass tag and momentum-weighted track charge.

    PubMed

    Abe, Kenji; Abe, Koya; Abe, T; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; de Groot, N; de Sangro, R; Dong, D N; Doser, M; Dubois, R; Erofeeva, I; Eschenburg, V; Fahey, S; Falciai, D; Fernandez, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Muller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Staengle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Va'vra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2003-04-11

    We present an improved direct measurement of the parity-violation parameter A(b) in the Z boson-b-quark coupling using a self-calibrating track-charge technique applied to a sample enriched in Z-->bb events via the topological reconstruction of the B hadron mass. Manipulation of the Stanford Linear Collider electron-beam polarization permits the measurement of A(b) to be made independently of other Z-pole coupling parameters. From the 1996-1998 sample of 400,000 hadronic Z decays, produced with an average beam polarization of 73.4%, we find A(b)=0.906+/-0.022(stat)+/-0.023(syst). PMID:12731908

  17. Parity-Violating Electron Scattering from {sup 4}He and the Strange Electric Form Factor of the Nucleon

    SciTech Connect

    Aniol, K.A.; Margaziotis, D.J.; Armstrong, D.S.; Averett, T.; Finn, J.M.; Holmstrom, T.; Kelleher, A.; Moffit, B.; Sulkosky, V.; Benaoum, H.; Holmes, R.; Souder, P.A.; Bertin, P.Y.; Ferdi, C.

    2006-01-20

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle <{theta}{sub lab}>=5.7 deg. and a four-momentum transfer Q{sup 2}=0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV}=(6.72{+-}0.84{sub (stat)}{+-}0.21{sub (syst)})x10{sup -6} yields a value of G{sub E}{sup s}=-0.038{+-}0.042{sub (stat)}{+-}0.010{sub (syst)}, consistent with zero.

  18. Two-Photon-Exchange and {gamma}Z-Exchange Corrections to Parity-Violating Elastic Electron-Proton Scattering

    SciTech Connect

    Zhou Haiqing; Kao Chungwen; Yang Shinnan

    2007-12-31

    Leading electroweak corrections play an important role in precision measurements of the strange form factors. We calculate the two-photon-exchange (TPE) and {gamma}Z-exchange corrections to the parity-violating asymmetry of the elastic electron-proton scattering in a simple hadronic model including the finite size of the proton. We find both can reach a few percent and are comparable in size with the current experimental measurements of strange-quark effects in the proton neutral weak current. The effect of {gamma}Z exchange is in general larger than that of TPE, especially at low momentum transfer Q{sup 2}{<=}1 GeV{sup 2}. Their combined effects on the values of G{sub E}{sup s}+G{sub M}{sup s} extracted in recent experiments can be as large as -40% in certain kinematics.

  19. CERN LHC signals for a neutrino mass model with bilinear R-parity violating minimal anomaly mediated supersymmetry

    SciTech Connect

    Campos, F. de; Diaz, M. A.; Eboli, O. J. P.; Magro, M. B.; Porod, W.; Skadhauge, S.

    2008-06-01

    We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb{sup -1}. We also compare the displaced vertex reaches of the LHC and Tevatron.

  20. Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a {Rho}-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

  1. Calculations of the neutron skin and its effect in atomic parity violation

    SciTech Connect

    Brown, B. A.; Derevianko, A.; Flambaum, V. V.

    2009-03-15

    We perform calculations for the neutron skin of nuclei and its contribution to atomic parity nonconservation (PNC) in many isotopes of Cs, Ba, Sm, Dy, Yb, Tl, Pb, Bi, Fr, and Ra. Three problems are addressed: (i) neutron-skin-induced errors to single-isotope PNC, (ii) the possibility of measuring neutron skin using atomic PNC, and (iii) neutron-skin-induced errors for ratios of PNC effects in different isotopes. In the latter case the correlations in the neutron skin values for different isotopes lead to cancellations of the errors; this makes the isotopic ratio method a competitive tool in a search for new physics beyond the standard model.

  2. Confirmation of parity violation in the {gamma} decay of {sup 180}Hf{sup m}

    SciTech Connect

    Stone, J. R.; Goldring, G.; Hass, M.; Lakshmi, S.; Stone, N. J.; Severijns, N.; Kraev, I. S.; Wauters, F.; Zakoucky, D.; Giles, T.; Lindroos, M.; Koester, U.

    2007-08-15

    This paper reports measurements made using the technique of online nuclear orientation which reexamine the {gamma} decay of isomeric {sup 180}Hf{sup m} and specifically the 501 keV 8{sup -}6{sup +} transition. The irregular admixture of E2 to M2/E3 multipolarity in this transition, deduced from the forward-backward asymmetry of its angular distribution, has for decades stood as the prime evidence for parity mixing in nuclear states. The experiment, based on ion implantation of the newly developed mass-separated {sup 180}Hf{sup m} beam at the CERN online isotope mass separator (ISOLDE) facility into an iron foil maintained at millikelvin temperatures, produces higher degrees of polarization than were achieved in previous studies of this system. The value found for the E2/M2 mixing ratio, {epsilon}=-0.0324(16)(19), is in close agreement with the previous published average value {epsilon}=-0.030(2), in full confirmation of the presence of the irregular E2 admixture in the 501 keV transition. The temperature dependence of the forward-backward asymmetry has been measured over a more extended range of nuclear polarization than previously possible, giving further evidence for parity mixing of the 8{sup -} and 8{sup +} levels and the deduced E2/M2 mixing ratio.

  3. Violations of parity and charge conjugation in the {theta} vacuum with imaginary chemical potential

    SciTech Connect

    Kouno, Hiroaki; Sakai, Yuji; Sasaki, Takahiro; Kashiwa, Kouji; Yahiro, Masanobu

    2011-04-01

    Charge conjugation (C) and parity (P) are exact symmetries at {theta}={pi} and {Theta}{identical_to}{mu}/(iT)={pi}, where {theta} is the parameter of the so-called {theta} vacuum, {mu} is the imaginary quark-number chemical potential and T is the temperature. Spontaneous breakings of these discrete symmetries are investigated by the Polyakov-loop extended Nambu-Jona-Lasinio model. At zero T, P symmetry is spontaneously broken while C symmetry is conserved. As T increases, P symmetry is restored just after C symmetry is spontaneously broken, so that either P or C symmetry or both the symmetries are spontaneously broken for any T. The chiral-symmetry restoration and the deconfinement transition at {theta}={Theta}=0 are remnants of the P restoration and the C breaking at {theta}={Theta}={pi}, respectively.

  4. Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N → Δ Transition

    SciTech Connect

    Leacock, John D.

    2012-10-16

    Qweak will determine the weak charge of the proton, Qp{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. QpW has a firm Standard Model prediction and is related to the weak mixing angle, sin2 ΦW, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N → Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, dΔ. The elastic asymmetry at Q2 = 0.0252 ± 0.0007 GeV2 was measured to be Aep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q2 = 0, the value of the proton's weak charge was measured to be QpW = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 σ of the Standard Model prediction of QpW = 0.0705 ± 0.0008. The N → Δ inelastic asymmetry at Q2 = 0.02078 ± 0.0005 GeV2 and W = 1205 MeV was measured to be Ainel = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be dΔ = 5.8 ± 22gπ, and, if the result of the G0 experiment is included, dΔ = 5.8 ± 17gπ. This result rules out suggested large values of dΔ motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second

  5. Measuring the anti-quark contribution to the proton spin using parity violating W production in polarized proton proton collisions

    NASA Astrophysics Data System (ADS)

    Gal, Ciprian

    Since the 1980s the spin puzzle has been at the heart of many experimental measurements. The initial discovery that only ~30% of the spin of the proton comes from quarks and anti-quarks has been refined and cross checked by several other deep inelastic scattering (DIS) and semi inclusive DIS (SIDIS) experiments. Through measurements of polarized parton distribution functions (PDFs) the individual contributions of the u, d, u, d, quarks have been measured. The flavor separation done in SIDIS experiments requires knowledge of fragmentation functions (FFs). However, due to the higher uncertainty of the anti-quark FFs compared to the quark FFs, the quark polarized PDFs (Deltau(x), Delta d(x)) are significantly better constrained than the anti-quark distributions (Deltau( x), Deltad(x). By accessing the anti-quarks directly through W boson production in polarized proton-proton collisions (ud → W+ → e+/mu+ and du→ W- → e-/mu-), the large FF uncertainties are avoided and a cleaner measurement can be done. The parity violating single spin asymmetry of the W decay leptons can be directly related to the polarized PDFs of the anti-quarks. The W+/- → e+/- measurement has been performed with the PHENIX central arm detectors at √s=510 GeV at the Relativistic Heavy Ion Collider (RHIC) and is presented in this thesis. Approximately 40 pb-1 of data from the 2011 and 2012 was analyzed and a large parity violating single spin asymmetry for W+/- has been measured. The combined data for 2011 and 2012 provide a single spin asymmetry for both charges: W+: -0.27 +/- 0.10(stat) +/- 0.01(syst) W -: 0.28 +/- 0.16(stat) +/- 0.02(syst) These results are consistent with the different theoretical predictions at the 1sigma level. The increased statistical precision enabled and required a more careful analysis of the background contamination for the this measurement. A method based on Gaussian Processes for Regression has been employed to determine this background contribution. This

  6. Searching for R-parity violation at run-II of the tevatron.

    SciTech Connect

    Allanach, B.; Banerjee, S.; Berger, E. L.; Chertok, M.; Diaz, M. A.; Dreiner, H.; Eboli, O. J. P.; Harris, B. W.; Hewett, J.; Magro, M. B.; Mondal, N. K.; Narasimham, V. S.; Navarro, L.; Parua, N.; Porod, W.; Restrepo, D. A.; Richardson, P.; Rizzo, T.; Seymour, M. H.; Sullivan, Z.; Valle, J. W. F.; de Campos, F.

    1999-06-22

    The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by R{sub P} decay, (a) via LQD{sup c} and (b) via LLE{sup c}; (2) how to distinguish resonant slepton production from Z{prime} or W{prime} production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQD{sup c}; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLE{sup c}, (b) via LQD{sup c}, and (c) via U{sup c}D{sup c}D{sup c}, respectively; and (8) top quark and top squark decays in spontaneous R{sub P}.

  7. A scaler-based data acquisition system for measuring parity-violating asymmetry in deep inelastic scattering

    SciTech Connect

    Subedi, Ramesh R.; Wang, Diancheng; Pan, Kai; Deng, Xiaoyan; Michaels, Robert W.; Shahinyan, Albert; Wojtsekhowski, Bogdan B.; Zheng, Xiaochao

    2013-10-01

    An experiment that measured the parity violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10^-4 level needed to be measured at event rates up to 500 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: The pion contamination in the electron samples was controlled at the order of 2 × 10^-4 or below with an electron efficiency of higher than 91% throughout the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.2%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.

  8. SLAC's polarized electron source laser system and minimization of electron beam helicity correlations for the E-158 parity violation experiment

    NASA Astrophysics Data System (ADS)

    Humensky, T. B.; Alley, R.; Brachmann, A.; Browne, M. J.; Cates, G. D.; Clendenin, J.; deLamare, J.; Frisch, J.; Galetto, T.; Hughes, E. W.; Kumar, K. S.; Mastromarino, P.; Sodja, J.; Souder, P. A.; Turner, J.; Woods, M.

    2004-04-01

    SLAC E-158 is an experiment designed to make the first measurement of parity violation in M øller scattering. E-158 will measure the right-left cross-section asymmetry, ALRM øller , in the elastic scattering of a 45-GeV polarized electron beam from unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of ˜10 -7 to an accuracy of better than 10 -8. To make this measurement, the photoemission-based polarized electron source requires an intense circularly polarized laser beam and the ability to quickly switch between right- and left-helicity polarization states with minimal right-left helicity-correlated asymmetries in the resulting beam parameters (intensity, position, angle, spot size, and energy), beamALR's. This laser beam is produced by a unique SLAC-designed flashlamp-pumped Ti:Sapphire laser and is directed through a carefully designed set of polarization optics. We analyze the transport of nearly circularly polarized light through the optical system and identify several mechanisms that generate beamALR's. We show that the dominant effects depend linearly on particular polarization phase shifts in the optical system. We present the laser system design and a discussion of the suppression and control of beamALR's. We also present results on beam performance from engineering and physics runs for E-158.

  9. A scaler-based data acquisition system for measuring parity-violating asymmetry in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Subedi, R.; Wang, D.; Pan, K.; Deng, X.; Michaels, R.; Reimer, P. E.; Shahinyan, A.; Wojtsekhowski, B.; Zheng, X.

    2013-10-01

    An experiment that measured the parity-violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10-4 level needed to be measured at event rates up to 600 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: the pion contamination in the electron samples was controlled at the order of 2×10-4 or below with an electron efficiency of higher than 91% during most of the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.5%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.

  10. Calculation of energy levels, {ital E}1 transition amplitudes, and parity violation in francium

    SciTech Connect

    Dzuba, V.A.; Flambaum, V.V.; Sushkov, O.P.

    1995-05-01

    Many-body perturbation theory in the screened Coulomb interaction was used to calculate energy levels, {ital E}1 trransition amplitudes, and the parity-nonconserving (PNC) {ital E}1 amplitude of the 7{ital s}-8{ital s} transition in francium. The method takes into account the core-polarization effect, the second-order correlations, and the three dominating sequences of higher-order correlation diagrams: screening of the electron-electron interaction, particle-hole interaction, and the iterations of the self-energy operator. The result for the PNC amplitude for {sup 223}Fr is {ital E}1(7{ital s}-8{ital s})=(1.59{plus_minus}{similar_to}1%){times}10{sup {minus}10}{ital iea}{sub {ital B}}({minus}{ital Q}{sub {ital W}}/{ital N}), where {ital Q}{sub {ital W}} is the weak charge of the nucleus, {ital N}=136 is the number of neutrons, {ital e}={vert_bar}{ital e}{vert_bar} is the elementary charge, and {ital a}{sub {ital B}} is the Bohr radius. Our prediction for the position of the 8{ital s} energy level of Fr, which has not been measured yet, is 13 110 cm{sup {minus}1} below the limit of the continuous spectrum. The accuracy of the calculations was controlled by comparison with available experimental data and analogous calculations for cesium. It is estimated to be {similar_to}0.1% for the energy levels and {similar_to}1% for the transition amplitudes.

  11. Large-Nc limit reduces the number of independent few-body parity-violating low-energy constants in pionless effective field theory

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias R.; Springer, Roxanne P.; Vanasse, Jared

    2016-02-01

    The symmetries of the standard model dictate that for very low energies, where nucleon dynamics can be described in terms of a pionless effective field theory ( EFT(π / ) ) , the leading-order parity-violating nucleon-nucleon Lagrangian contains five independent unknown low-energy constants (LECs). We find that imposing the approximate symmetry of QCD that appears when the number of colors Nc becomes large reduces the number of independent LECs to two at leading order in the combined EFT(π / ) and large-Nc expansions. We also find a relation between the two isoscalar LECs in the large-Nc limit. This has important implications for the number of experiments and/or lattice calculations necessary to confirm this description of physics. In particular, we find that a future measurement of the parity-violating asymmetry in γ ⃗d →n p together with the existing result for parity-violating p ⃗p scattering would constrain all leading-order (in the combined expansion) LECs. This is a considerable improvement on the previous understanding of the system.

  12. Including R-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY3.0

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Bernhard, M. A.

    2010-01-01

    Current publicly available computer programs calculate the spectrum and couplings of the minimal supersymmetric standard model under the assumption of R-parity conservation. Here, we describe an extension to the SOFTSUSY program which includes R-parity violating effects. The user provides a theoretical boundary condition upon the high-scale supersymmetry breaking R-parity violating couplings. Successful radiative electroweak symmetry breaking, electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the R-parity violating mode of the program, detailing the approximations and conventions used. Program summaryProgram title:SOFTSUSY v3.0 Catalogue identifier: ADPM_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 75 927 No. of bytes in distributed program, including test data, etc.: 570 916 Distribution format: tar.gz Programming language: C++, Fortran Computer: Personal computer Operating system: Tested on Linux 4.x Word size: 32 bits Classification: 11.6 Catalogue identifier of previous version: ADPM_v1_0 Journal reference of previous version: Comput. Phys. Comm. 143 (2002) 305 Does the new version supersede the previous version?: Yes Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the R-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high-scale boundary condition on supersymmetry breaking parameters and R parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa

  13. Light Gluinos in Hiding: Reconstructing R-Parity Violating Decays at the Tevatron

    SciTech Connect

    Raklev, A.R.; Salam, G.P.; Wacker, J.G.; /SLAC

    2012-04-19

    If gluinos exist with masses less than 200 GeV, they are copiously produced at the Tevatron, but still may not have been discovered if they decay through baryon number violating operators. We show that using cuts on jet substructure can enable a discovery with existing data and even determine the gluino's mass. This contribution has demonstrated that the Tevatron can discover new light colored particles that decay into complicated hadronic final states, by using events where these particles are produced at high p{sub T} and their boosted decay products are collimated. The recently developed techniques using jet substructure can effectively separate signal from background, allowing the new particle to appear as a jet-mass resonance. This work is a proof-of-principle, but there is significantly more work to be done. Neither of the Tevatron's two detectors have calorimetry that is as finely segmented as the LHC detectors, where most studies have been done so far, and this may reduce the jet mass resolution and restrict the Tevatron reach. Some of this resolution loss may be recovered by using tracking information, particularly at CDF [99]. On the theoretical side, the optimal cuts and jet-size for a given mass have not been determined, nor have other jet algorithms such as Cambridge/Aachen been studied. Switching to a more inclusive analysis may also improve sensitivity. The primary challenge is to keep signal efficiency high due to the low number of gluinos in the high p{sub T} tail, e.g. with m{sub {tilde g}} = 150 GeV we see 18% of gluinos with p{sub T} > 350 GeV reconstructed using R = 1.0. Therefore it may be beneficial to search for one narrow gluino candidate jet with tight constraints recoiling against another wide jet-size gluino candidate jet. The application of loose substructure cuts to the jets of the ordinary di-jet search is also interesting. If the squarks become light enough that associated squark-gluino production or squark pair production becomes

  14. Evaluation of Coupled Perturbed and Density Functional Methods of Computing the Parity-Violating Energy Difference between Enantiomers

    NASA Astrophysics Data System (ADS)

    MacDermott, A. J.; Hyde, G. O.; Cohen, A. J.

    2009-03-01

    We present new coupled-perturbed Hartree-Fock (CPHF) and density functional theory (DFT) computations of the parity-violating energy difference (PVED) between enantiomers for H2O2 and H2S2. Our DFT PVED computations are the first for H2S2 and the first with the new HCTH and OLYP functionals. Like other “second generation” PVED computations, our results are an order of magnitude larger than the original “first generation” uncoupled-perturbed Hartree-Fock computations of Mason and Tranter. We offer an explanation for the dramatically larger size in terms of cancellation of contributions of opposing signs, which also explains the basis set sensitivity of the PVED, and its conformational hypersensitivity (addressed in the following paper). This paper also serves as a review of the different types of “second generation” PVED computations: we set our work in context, comparing our results with those of four other groups, and noting the good agreement between results obtained by very different methods. DFT PVEDs tend to be somewhat inflated compared to the CPHF values, but this is not a problem when only sign and order of magnitude are required. Our results with the new OLYP functional are less inflated than those with other functionals, and OLYP is also more efficient computationally. We therefore conclude that DFT computation offers a promising approach for low-cost extension to larger biosystems, especially polymers. The following two papers extend to terrestrial and extra-terrestrial amino acids respectively, and later work will extend to polymers.

  15. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    SciTech Connect

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; Rakhman, A.; Souder, P. A.; Dalton, M. M.; Liyanage, N.; Paschke, K. D.; Saenboonruang, K.; Silwal, R.; Franklin, G. B.; Friend, M.; Quinn, B.; Kumar, K. S.; McNulty, D.; Mercado, L.; Riordan, S.; Wexler, J.; Michaels, R. W.; Urciuoli, G. M.

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor FW($\\bar{q}$), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $\\bar{q}$ = 0.475 fm-1. We find FW($\\bar{q}$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW($\\bar{q}$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. As a result, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.

  16. Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

    SciTech Connect

    Pan, Jie

    2012-01-01

    The goal of the Q-weak experiment is to make a measurement of the proton's weak charge QWp = 1 - 4 sin2W2(θW2(θWWp by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q2 = 0.026 (GeV/c)2 and forward angles (8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.

  17. A liquid parahydrogen target for the measurement of a parity-violating gamma asymmetry in n⇒+p→d+γ

    NASA Astrophysics Data System (ADS)

    Santra, S.; Barrón Palos, L.; Blessinger, C.; Bowman, J. D.; Chupp, T. E.; Covrig, S.; Crawford, C.; Dabaghyan, M.; Dadras, J.; Dawkins, M.; Gericke, M. T.; Fox, W.; Gillis, R. C.; Leuschner, M. B.; Lozowski, B.; Mahurin, R.; Mason, M.; Mei, J.; Nann, H.; Penttila, S. I.; Salas-Bacci, A.; Sharma, M.; Snow, W. M.; Wilburn, W. S.

    2010-08-01

    A 16 l liquid parahydrogen target has been developed for a measurement of the parity-violating γ-asymmetry in the capture of polarized cold neutrons on protons in the n⇒+p→d+γ reaction by the NPDGamma collaboration. The target system was carefully designed to meet the stringent requirements on systematic effects for the experiment and also to satisfy hydrogen safety requirements. The target was designed to preserve the neutron polarization during neutron scattering on liquid hydrogen (LH 2), optimize the statistical sensitivity to the n⇒+p→d+γ reaction, minimize backgrounds coming from neutron interaction with the beam windows of the target cryostat, minimize LH 2 density fluctuations which can introduce extra noise in the gamma asymmetry signal, and control systematic effects. The target incorporates two mechanical refrigerators, two ortho-para convertors, an aluminum cryostat, an aluminum target vessel shielded with 6Li-rich plastic, a hydrogen fill/vent line with a passive recirculation loop to establish and maintain the equilibrium ortho-para ratio, a hydrogen relief system coupled to a vent stack, a gas handling system, and an alarm and interlock system. Low Z, nonmagnetic materials were used for the target vessel and cryostat. Pressure and temperature sensors monitored the thermodynamic state of the target. Relative neutron transmission measurements were used to monitor the parahydrogen fraction of the target. The target was thoroughly tested and successfully operated during the first phase of the NPDGamma experiment conducted at the FP12 beam line at Los Alamos Neutron Science Center (LANSCE). An upgraded version of the target system will be used in the next stage of the experiment, which will be performed at the Fundamental Neutron Physics Beam (FnPB) line of the Spallation Neutron Source at Oak Ridge National Laboratory.

  18. Bs,d0→μμ¯ and B→Xsγ in the R-parity violating MSSM

    NASA Astrophysics Data System (ADS)

    Dreiner, H. K.; Nickel, K.; Staub, F.

    2013-12-01

    The recent measurements of Bs0→μμ¯ decay candidates at the LHC consistent with the standard model rate and the improving upper limits for Bd0→μμ¯ can strongly constrain beyond the standard model physics. For example, in supersymmetric models with broken R-parity (RpV), they restrict the size of the new couplings. We use the combination of the public software packages SARAH and SPheno to derive new bounds on several combinations of RpV couplings. We improve existing limits for the couplings which open tree-level decay channels and state new limits for combinations which induce loop contributions. This is the first study which performs a full one-loop analysis of these observables in the context of R-parity violation. It turns out that at one loop despite the strong experimental limits only combinations of R-parity violating couplings are constrained which include third generation fermions. We compare our limits with those obtained via B→Xsγ and discuss the differences.

  19. Nonzero θ13 and CP violation in a model with A4 flavor symmetry

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Kang, Sin Kyu

    2012-11-01

    Motivated by recent observations of nonzero θ13 from the Daya Bay and RENO experiments, we propose a renormalizable neutrino model with A4 discrete symmetry accounting for deviations from the tri-bimaximal mixing pattern of the neutrino mixing matrix indicated by neutrino oscillation data. In the model, the light neutrino masses can be generated by radiative corrections, and we show how the light neutrino mass matrix can be diagonalized by the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix whose entries are determined by the current neutrino data, including the Daya Bay result. We show that the origin of the deviations from the tri-bimaximal mixing is nondegeneracy of the neutrino Yukawa coupling constants, and unremovable CP phases in the neutrino Yukawa matrix give rise to both low energy CP violation measurable from neutrino oscillation and high energy CP violation.

  20. Search for R -Parity Violating Supersymmetry Using Like-Sign Dielectrons in p[ovr p] Collisions at [radical] (s) =1. 8 TeV

    SciTech Connect

    Blair, R.E.; Byrum, K.L.; Kovacs, E.; Kuhlmann, S.E.; LeCompte, T.; Nodulman, L. ); Breccia, L.; Brunetti, R.; Deninno, M.; Fiori, I.; Mazzanti, P. ); Behrends, S.; Bensinger, J.; Blocker, C.; Kirsch, L.; Lamoureux, J.I. ); Bonushkin, Y.; Hauser, J.; Lindgren, M. ); Amadon, A.; Berryhill, J.; Contreras, M.; Culbertson, R.; Frisch, H.; Grosso-Pilcher, C.; Hohlmann, M.; Nakaya, T. ); Cronin-Hennessy, D.; Dittmann, J.R.; Goshaw, A.T.; Khazins, D.; Kowald, W.; Oh, S.H. ); Albrow, M.G.; Atac, M.; Beretvas, A.; Berge, J.P.; Biery, K.; Binkley, M.; Buckley-Geer,

    1999-09-01

    We present a search for like-sign dielectron plus multijet events using 107 pb[sup [minus]1] of data in p[ovr p] collisions at [radical] (s) =1.8 TeV collected in 1992[endash]1995 by the CDF experiment. Finding no events that pass our selection, we set [sigma][times]BR limits on two supersymmetric processes that can produce this experimental signature: gluino-gluino or squark-antisquark production with R -parity violating decays of the charm squark or lightest neutralino via a nonzero [lambda][sup [prime

  1. Direct Measurement of Parity Violation in the Coupling of Z0 Bosons to b Quarks Using a Mass Tag and Momentum-Weighted Track Charge

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abe, K.; Abe, T.; Adam, I.; Akagi, T.; Allen, N. J.; Arodzero, A.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bauer, J. M.; Bellodi, G.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolen, B.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'Orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; D'Oliveira, A.; Dong, D. N.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hart, E. L.; Harton, J. L.; Hasan, A.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, R.; King, M. E.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.-J. S.; Liu, X.; Liu, M. X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, H.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Vannini, C.; Va'Vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Wagner, D. L.; Waite, A. P.; Walston, S.; Wang, J.; Ward, C.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    1998-08-01

    We present a direct measurement of the parity-violation parameter Ab using a self-calibrating track-charge technique. In the SLAC Linear Collider Large Detector (SLD) experiment we observe hadronic decays of Z0 bosons produced in collisions between longitudinally polarized electrons and unpolarized positrons at the SLAC Linear Collider. A sample of bb¯ events is selected using the topologically reconstructed mass of B hadrons. From our 1993-1995 sample of approximately 150 000 hadronic Z0 decays, we obtain Ab = 0.911+/-0.045\\(stat\\)+/-0.045\\(syst\\).

  2. Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting limits

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Stadnik, Y. V.; Dzuba, V. A.; Flambaum, V. V.; Leefer, N.; Budker, D.

    2014-11-01

    We propose methods and present calculations that can be used to search for evidence of cosmic fields by investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole moments, that they induce in atoms. The results are used to constrain important fundamental parameters describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Calculations of the effects induced by pseudoscalar and pseudovector fields are performed for H, Li, Na, K, Cu, Rb, Ag, Cs, Ba, Ba+ , Dy, Yb, Au, Tl, Fr, and Ra+ . Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with these calculations to directly place limits on the interaction strength between the temporal component, b0, of a static pseudovector cosmic field and the atomic electrons, with the most stringent limit of |b0e|<7 ×10-15 GeV , in the laboratory frame of reference, coming from Dy. From a measurement of the nuclear anapole moment of Cs, and a limit on its value for Tl, we also extract limits on the interaction strength between the temporal component of this cosmic field, as well as a related tensor cosmic-field component d00, with protons and neutrons. The most stringent limits of |b0p|<4 ×10-8 GeV and |d00p|<5 ×10-8 for protons and |b0n|<2 ×10-7 GeV and |d00n|<2 ×10-7 for neutrons (in the laboratory frame) come from the results using Cs. Axions may induce oscillating parity- and time reversal-violating effects in atoms and molecules through the generation of oscillating nuclear magnetic quadrupole and Schiff moments, which arise from P - and T -odd intranuclear forces and from the electric dipole moments of constituent nucleons. Nuclear spin-independent parity nonconservation effects may be enhanced in diatomic molecules possessing close pairs of

  3. Cross section and parity-violating spin asymmetries of W± boson production in polarized p + p collisions at sqrt[s] = 500 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Alexander, J; Al-Ta'ani, H; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belmont, R; Ben-Benjamin, J; Bennett, R; Berdnikov, A; Berdnikov, Y; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dairaku, S; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Hanks, J; Han, R; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; Hemmick, T K; Hester, T; He, X; Hill, J C; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Lichtenwalner, P; Lim, S H; Linden Levy, L A; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Ogilvie, C A; Okada, K; Oka, M; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rukoyatkin, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Togawa, M; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; Young, G R; Younus, I; You, Z; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S; Zolin, L

    2011-02-11

    Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = -0.86(-0.14) (+0.30) and A(L)(e-) = 0.88(-0.71) (+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of sqrt[s] = 500 GeV with the PHENIX detector at RHIC. These e± come mainly from the decay of W± and Z0 bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W± to the light quarks. The observed electron and positron yields were used to estimate W± boson production cross sections for the e± channels of σ(pp → W+ X) × BR(W+ → e+ ν(e)) = 144.1 ± 21.2(stat)(-10.3) (+3.4) (syst) ± 21.6(norm)  pb, and σ(pp → W- X) × BR(W- → e- ν[over ¯](e)) = 31.7 ± 12.1(stat)(-8.2) (+10.1) (syst) ± 4.8(norm)  pb. PMID:21405459

  4. Search for R-parity violating decays of a top squark in proton-proton collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Rurua, L.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-09-01

    The results of a search for a supersymmetric partner of the top quark (top squark), pair-produced in proton-proton collisions at √{ s} = 8 TeV, are presented. The search, which focuses on R-parity violating, chargino-mediated decays of the top squark, is performed in final states with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected with the CMS detector at the LHC in 2012. The data are found to be in agreement with the standard model expectation, and upper limits are placed on the top squark pair production cross section at 95% confidence level. Assuming a 100% branching fraction for the top squark decay chain, t ˜ → t χ˜1 ± , χ˜1 ± →ℓ± + jj , top squark masses less than 890 (1000) GeV for the electron (muon) channel are excluded for the first time in models with a single nonzero R-parity violating coupling λijk‧ (i , j , k ≤ 2), where i , j , k correspond to the three generations.

  5. Search for R-parity violating decays of a top squark in proton-proton collisions at $\\sqrt{s}$ = 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2016-01-01

    The results of a search for a supersymmetric partner of the top quark (top squark), pair-produced in proton-proton collisions at $\\sqrt{s} =$ 8 TeV, are presented. The search, which focuses on R-parity violating, chargino-mediated decays of the top squark, is performed in final states with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected with the CMS detector at the LHC in 2012. The data are found to be in agreement with the standard model expectation, and upper limits are placed on the top squark pair production cross section at 95% confidence level. Assuming a 100% branching fraction for the top squark decay chain, $ \\mathrm{ \\tilde{t} \\to t \\tilde{\\chi}^{\\pm}_1,\\, \\tilde{\\chi}^{\\pm}_1 \\to \\ell^\\pm+jj } $, top squark masses less than 890 (1000) GeV for the electron (muon) channel are excluded for the first time in models with a single nonzero R-parity violating coupling $\\lambda^{\\prime}_{ijk}$ $(i,j,k \\leq 2)$, where $i,j,k$ correspond to the three generations.

  6. Search for R-parity violating decays of a top squark in proton-proton collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.

    2016-09-01

    The results of a search for a supersymmetric partner of the top quark (top squark), pair-produced in proton-proton collisions at √{ s} = 8 TeV, are presented. The search, which focuses on R-parity violating, chargino-mediated decays of the top squark, is performed in final states with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected with the CMS detector at the LHC in 2012. The data are found to be in agreement with the standard model expectation, and upper limits are placed on the top squark pair production cross section at 95% confidence level. Assuming a 100% branching fraction for the top squark decay chain, t ˜ → t χ˜1±, χ˜1± →ℓ± + jj, top squark masses less than 890 (1000) GeV for the electron (muon) channel are excluded for the first time in models with a single nonzero R-parity violating coupling λijk‧ (i, j, k ≤ 2), where i, j, k correspond to the three generations.

  7. Cross Section and Parity-Violating Spin Asymmetries of W{sup {+-}} Boson Production in Polarized p+p Collisions at {radical}(s)=500 GeV

    SciTech Connect

    Adare, A.; Kinney, E.; Linden Levy, L. A.; Nagle, J. L.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Brooks, M. L.; Butsyk, S.; Guo, L.; Jiang, X.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.

    2011-02-11

    Large parity-violating longitudinal single-spin asymmetries A{sub L}{sup e+}=-0.86{sub -0.14}{sup +0.30} and A{sub L}{sup e-}=0.88{sub -0.71}{sup +0.12} are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of {radical}(s)=500 GeV with the PHENIX detector at RHIC. These e{sup {+-}} come mainly from the decay of W{sup {+-}} and Z{sup 0} bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W{sup {+-}} to the light quarks. The observed electron and positron yields were used to estimate W{sup {+-}} boson production cross sections for the e{sup {+-}} channels of {sigma}(pp{yields}W{sup +}X)xBR(W{sup +}{yields}e{sup +}{nu}{sub e})=144.1{+-}21.2(stat){sub -10.3}{sup +3.4}(syst){+-}21.6(norm) pb, and {sigma}(pp{yields}W{sup -}X)xBR(W{sup -}{yields}e{sup -}{nu}{sub e})=31.7{+-}12.1(stat){sub -8.2}{sup +10.1}(syst){+-}4.8(norm) pb.

  8. Search for the production of single sleptons through R-parity violation in pp; collisions at square root (s) =1.8 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Anderson, E W; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Breedon, R; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Claes, D; Clark, A R; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A C; Cutts, D; Davis, G A; De, K; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Ducros, Y; Dudko, L V; Duensing, S; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Fein, D; Ferbel, T; Filthaut, F; Fisk, H E; Fisyak, Y; Flattum, E; Fleuret, F; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Gilmartin, R; Ginther, G; Gómez, B; Goncharov, P I; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Grannis, P D; Green, J A; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Gupta, A; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Khanov, A; Kharchilava, A; Kim, S K; Klima, B; Knuteson, B; Ko, W; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M; Da Motta, H; Mutaf, Y D; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Olivier, B; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Raja, R; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Roco, M; Royon, C; Rubinov, P; Ruchti, R; Rutherfoord, J; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Singh, H; Sirotenko, V; Slattery, P; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stephens, R W; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Vaniev, V; Kooten, R Van; Varelas, N; Vertogradov, L S; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, H; Wang, Z-M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yamin, P; Yasuda, T; Yatsunenko, Y A; Yip, K; Youssef, S; Yu, J; Zanabria, M; Zhang, X; Zheng, H; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2002-12-23

    We report the first search for supersymmetric particles via s-channel production and decay of smuons or muon sneutrinos at hadronic colliders. The data for the two-muon and two-jets final states were collected by the D0 experiment and correspond to an integrated luminosity of 94+/-5 pb(-1). Assuming that R parity is violated via the single coupling lambda'211, the number of candidate events is in agreement with expectation from the standard model. Exclusion contours are given in the (m(0),m(1/2)) and (m(x),m(v)) planes for lambda(')(211)=0.09, 0.08, and 0.07. PMID:12484810

  9. Lepton flavor violating signals of the littlest Higgs model with T parity via e{sup +}e{sup -} and {gamma}{gamma} collisions at the ILC

    SciTech Connect

    Ma Wei; Yue Chongxing; Zhang Jiao; Sun Yanbin

    2010-11-01

    Taking into account the constraints on the free parameters of the littlest Higgs model with T parity (called the LHT model) from some rare decay processes, such as {mu}{yields}e{gamma} and {mu}{yields}3e, we consider the contributions of the LHT model to the lepton flavor violating (LFV) processes e{sup +}e{sup -}{yields}l{sub i}l{sub j} and {gamma}{gamma}{yields}l{sub i}l{sub j} (i{ne}j). We find that the LHT model can indeed produce significant contributions to these LFV processes and its LFV signal might have a chance of being observed in the future International Linear Collider experiments.

  10. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B4C and 27Al

    PubMed Central

    Gericke, M. T.; Bowman, J. D.; Carlini, R. D.; Chupp, T. E.; Coulter, K. P.; Dabaghyan, M.; Desai, D.; Freedman, S. J.; Gentile, T. R.; Gillis, R. C.; Greene, G. L.; Hersman, F. W.; Ino, T.; Ishimoto, S.; Jones, G. L.; Lauss, B.; Leuschner, M. B.; Losowski, B.; Mahurin, R.; Masuda, Y.; Mitchell, G. S.; Muto, S.; Nann, H.; Page, S. A.; Penttila, S. I.; Ramsay, W. D.; Santra, S.; Seo, P.-N.; Sharapov, E. I.; Smith, T. B.; Snow, W. M.; Wilburn, W. S.; Yuan, V.; Zhu, H.

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and 27Al are zero to with- in 2 × 10−6 and 7 × 10−7, respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary. PMID:27308124