The supersymmetric model we developed for the evolution of the genetic code is elaborated. Energy considerations in nucleic acid strand modelling, using sl(2) polarity spin and sl(2/(1)) family box quartet symmetry, lead for the case of codons and anticodons to assignments of codons to 64-dimensional sl(6/(1)) ~= ...
NASA Astrophysics Data System (ADS)
In this talk we discuss the role of non-Abelian family symmetry in constructing realistic grand unified theories capable of providing an explanation of the quark and lepton masses and mixings.
Energy Citations Database
We consider the impact of imposing generalized CP symmetries on the Higgs sector of the two-Higgs-doublet model, and identify three classes of symmetries. Two of these classes constrain the scalar potential parameters to an exceptional region of parameter space, which respects either a Z{sub 2} discrete flavor symmetry or a U(1) ...
I review the possibility that the underlying theory of weak interactions possesses a family symmetry, either global or local. The spontaneous symmetry breaking of this symmetry leads to important phenomenological implications: the existence of Goldstone bosons, the familons in the case of global ...
We study the impact of a set of horizontal symmetries on the requirements for producing the baryon asymmetry of the universe via leptogenesis. We find that Abelian horizontal symmetries lead to a simple description of the parameters describing leptogenesis in terms of the small expansion parameter that arises from spontaneous symmetry ...
The supersymmetric model of [1] for the evolution of the genetic code is elaborated. Energy considerations in nucleic acid strand modelling, using sl(2) polarity spin and sl(2=1) family box quartet symmetry, lead for the case of codons and anticodons to assignments of codons to 64-dimensional sl(6=1) ' A(5; 0) ...
E-print Network
Solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5 (SLC25A5, also known as A0396) is a protein localized to the inner mitochondrial membrane.
NSDL National Science Digital Library
A model is presented for the structure and evolution of the eukaryotic and vertebrate mitochondrial genetic codes, based on the representation theory of the Lie superalgebra A(5,0) ? sl(6/1). A key role is played by pyrimidine and purine exchange symmetries in codon quartets.
PubMed Central
We discuss a new family of solutions of the Grad-Shafranov (GS) equation that describes D-shaped toroidal plasma equilibria with sharp gradients at the plasma edge. These solutions have been derived by exploiting the continuous Lie symmetry properties of the GS equation and in particular a special type of 'weak' ...
Examines family members' use of conflict styles within family triads in the launching stage of the family life cycle. Compares use of conflict style across family members. Indicates that most families use symmetrically integrative conflict styles--use of distributive or passive-indirect styles ...
ERIC Educational Resources Information Center
The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in...
National Technical Information Service (NTIS)
The exact alignment of the Yukawa structures on multi-Higgs doublet models provides cancellation of tree-level flavour changing couplings of neutral scalar fields. We show that family symmetries can provide a suitable justification for the Yukawa alignment.
The connection between the form of the neutrino mass matrix and the problem of family symmetry is discussed. 16 references.
DOE Information Bridge
Certain complex structures are logically regarded as intergrowths of chemically or topologically discrete modules. When the proportions of these components vary systematically a polysomatic series is created, whose construction provides a basis for understanding defects, symmetry alternation and trends in physical properties. Here, we describe the polysomatic ...
PubMed
In orbifold models, gauge, Higgs, and the matter fields can be unified in one multiplet from the compactification of higher dimensional supersymmetric gauge theory. We study how three families of chiral fermions can be unified in the gauge multiplet. The bulk gauge interaction includes the Yukawa interactions to generate masses for quarks and leptons after the electroweak ...
Accurate statistical models for hyperspectral imaging (HSI) data distribution are useful for many applications. A family of elliptically contoured distribution (ECD) has been investigated to model the unimodal ground cover classes. In this paper we propose to test the elliptical symmetry of real unimodal HSI clutters which will answer the question whether ...
We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such ``indirect'' models we discuss the D-term flavon vacuum alignments which are required for such an accidental ...
The fundamental concept underlying all algebraic models of nuclear structure is dynamical symmetry. Realistic nuclear systems, however, often require the associated symmetry to be broken in order to allow for a proper description of some observed (basic) features. A recently introduced symmetry scheme, called `partial dynamical ...
Some restrictions imposed upon Grand Unified Theories by dynamical symetry breakdown are examined. They are shown that, in particular, theories SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the ...
Possible advantages of replacing the Peccei-Quinn U(1) quasisymmetry by a group of genuine flavor symmetries are pointed out. Characteristic neutral Nambu-Goldstone bosons will arise, which might be observed in rare K or ..mu.. decays. The formulation of Lagrangians embodying these ideas is discussed schematically.
The family of t-designs are an important family of statistical designs. Their importance is due to their statistical optimalities, desirable symmetries for analyses and interpretations, and uses for constructing other important designs and structures such...
We derive a trace formula for systems that exhibit an approximate continuous symmetry. It interpolates between the sum over continuous families of periodic orbits that holds in the case of exact continuous symmetry, and the discrete sum over isolated orbits that holds when the symmetry is completely broken. It is ...
We examine a recently proposed symmetry/condition by Friedberg and Lee in a framework where three right-handed neutrinos are added to the spectrum of the three-family minimal standard model. It is found that the right-handed neutrinos are very special, with respect to this symmetry. In the symmetry limit the ...
Based on a specific model with U(3) family gauge symmetry at 103 TeV scale, we show its experimental signatures to search for. Since the gauge symmetry is introduced with a special purpose, its gauge coupling constant and gauge boson mass spectrum are not free. The current structure in this model leads to family ...
A class of nonsupersymmetric extensions of the standard model is proposed in which there is a multiplicity of light scalar doublets in a multiplet of a nonabelian family group with the standard model Higgs doublet. Anthropic tuning makes the latter light, and consequently the other scalar doublets remain light because of the family ...
of the broken symmetry which predicts the existence of at least three families of quarks in nature" Makoto Kobayashi Button 1/4 of prize Button Japan Button born 1944 More...
Science.gov Websites
The existence of maximal and minimal mixing angles in the neutrino mixing matrix motivates the search for extensions to the standard model that may explain these angles. A previous study [C. I. Low and R. R. Volkas, Phys. Rev. D 68,, 033007 (2003)], began a systematic search to find the minimal extension to the standard model that explains these mixing angles. It was found that in the minimal ...
We discuss the twisting of gauge symmetry in noncommutative gauge theories and show how this can be generalized to a whole continuous family of twisted gauge invariances. The physical relevance of these twisted invariances is discussed.
The neutrino oscillation data are in very good agreement with the tribimaximal mixing pattern: sin?2?23=1/2, sin?2?12=1/3, and sin?2?13=0. Attempts to generate this pattern based on finite family symmetry groups typically assume that the family symmetry is broken into different subgroups in the charged-lepton and ...
Discrete non-Abelian gauge symmetries appear to be the most advantageous candidates for a family symmetry. We present a predictive SO(10) SUSY GUT model with D{sub 3}xU(1) family symmetry (D{sub 3} is the dihedral group of order 6). The hierarchy in fermion masses is generated by the ...
We define the cohomogeneity one string, string with continuous symmetries, as its world surface is tangent to a Killing vector field of a target space. We classify the Killing vector fields by an equivalence relation using isometries of the target space. We find that the equivalence classes of Killing vectors in Minkowski spacetime are partitioned into seven ...
We present a characterization of the second-order ordinary differential equations (ODEs) that can be linearized by means of certain nonlocal transformations. This characterization is given in terms of the coefficients of the equation and also determines the second-order ODEs that admit ?-symmetries and first integrals of some specific forms. Systematic methods to find these ...
Alport Syndrome (AS) is transmitted as an X-linked dominant trait in the majority of families, the defective gene being COL4A5 at Xq22. In the remaining cases AS appears to be autosomally inherited. Recently, mutations in COL4A3 and COL4A4 genes at 2q35-q37 were identified in families with autosomal recessive AS. ...
We present the symmetry realization of the phenomenologically viable Frampton�Glashow�Marfatia (FGM) two zero texture neutrino mass matrices in the flavor basis within the framework of the type (I+II) seesaw mechanism natural to SO(10) grand unification. A small Abelian cyclic symmetry group Z is used to realize these textures except for class C for ...
In this paper we show how some flavor symmetries may be derived from the heterotic string, when compactified on a 6D orbifold. In the body of the paper we focus on the D{sub 4} family symmetry, recently obtained in Z{sub 3}xZ{sub 2} orbifold constructions. We show how this flavor symmetry constrains fermion masses, ...
We discuss within the framework of the ERG how chiral symmetry is realized in a linear sigma model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the ...
We show that for Green�Schwarz superstring in AdS3 � S3, the one-parameter family of flat currents retains a zero-curvature condition and keeps the variation relations under ?-symmetry, diffeomorphism, local Lorentz SO(1, 2) � SO(3) and global PSU(1, 1|2)2 symmetry transformations respectively. This indicates that the flat ...
Twins of the first and second kind are found to be indistinguishable in crystals of high symmetry. A basis for the symmetry dependence is found which will delineate some situations where this is expected. Namely, when the space group of the twinned crystals is the same and contains the transformation operator which relates the two crystals, and when the ...
To a first approximation, the quark mixing matrix has ?q13=?q23=0, whereas the lepton mixing matrix has ?l23=?/4. We show how this structure may be understood if the family symmetry is Q8, the quaternion group of eight elements. We find three viable scenarios for the Majorana neutrino mass matrix, each depending on four parameters and predicting a specific ...
We present a grand unified model based on SO(10) with a {delta}(27) family symmetry. Fermion masses and mixings are fitted and agree well with experimental values. An extended seesaw mechanism plays a key role in the generation of the leptonic mixing, which is approximately tribimaximal.
A new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry is proposed. The Higgs fields responsible for the breaking of family symmetry, the flavons, are natural inflaton candidates or waterfall fields in hybrid inflation. This ...
We discuss the predictivity of family symmetries for the soft supersymmetry breaking parameters in the framework of supergravity. We show that unknown details of the messenger sector and the supersymmetry breaking hidden sector enter into the soft parameters, making it difficult to obtain robust predictions. We find that there are specific choices of ...
The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are ...
Reported herein is the discovery of a novel family of "clicked" estradiol-based LMWGs whose gelation ability highly depends on the gelator symmetry. These LMWGs that gel different organic solvents in the presence of H(2)O even at concentrations as low as 0.04 wt% are readily accessible using "click" chemistry. PMID:21860849
This paper is devoted to the study of the crystal families with cubic symmetries and to the mathematical construction of all their point-symmetry groups. The mono cubic crystal families of n-dimensional space (E(n)) are defined and a list of these families is given for spaces E4, E5, E6 and E7 ...
Single crystals of the title compounds were prepared using a BaCl2 flux and investigated by X-ray diffraction methods using MoK? radiation and a charge coupled device (CCD) detector. The crystal structures of these two new compounds were solved and refined in the hexagonal symmetry with space group P63/mmc, a=5.851(1)�, ...
The present study examined salivary alpha-amylase (sAA), a putative marker of adrenergic activity, in family members engaging in family conflict discussions. We examined symmetry among family members' sAA levels at baseline and in response to a conflict discussion. The relation between a history of interparental ...
We analyze the structure of a recently proposed effective field theory (EFT) for the generation of quark and lepton mass ratios and mixing angles, based on the spontaneous breaking of an SU(3) family gauge symmetry at a high scale F. We classify the Yukawa operators necessary to seed the masses, making use of the continuous global ...
An unorthodox unified theory is developed to describe external and internal attributes and symmetries of fundamental fermions, quarks and leptons. Basic ingredients of the theory are an algebra which consists of all the triple-direct-products of Dirac ?-matrices and a triple-spinor-field, called a triplet field, defined on the algebra. The algebra possesses three commutative ...
A new approach for the analysis of partial differential equations is developed which is characterized by a simultaneous use of higher and conditional symmetries. Higher symmetries of the Schr{umlt o}dinger equation with an arbitrary potential are investigated. Nonlinear determining equations for potentials are solved using reductions to Weierstrass, ...
We derive generalizations of the semiclassical trace formula of Gutzwiller (J. Math. Phys. 12, 343 (1971)) and Balian and Bloch (Ann. Phys. 69, 76 (1972)) that are valid for systems exhibiting continuous symmetries. In particular, we consider symmetries for which the associated set of conserved quantities Poisson-commute. For these systems, the periodic ...
We obtain a supersymmetric three family chiral SU(6) grand unification model with the global family symmetry SU(3)family from the use of F-theory. This model has nice features, for instance, all the fermion masses are reasonably generated and result in only one pair of Higgs doublets, giving the doublet-triplet ...
It was recently proposed that a large N limit of a family of minimal model CFTs is dual to a certain higher spin gravity theory in AdS3, where the 't Hooft coupling constant of the CFT is related to a deformation parameter of the higher spin algebra. We identify the asymptotic symmetry algebra of the higher spin theory for generic 't Hooft parameter, and ...
If fourth family condensates are responsible for electroweak symmetry breaking then they may also break approximate global symmetries. Among the resulting pseudo-Goldstone bosons are those that can have diquark quantum numbers. We describe the variety of diquarks and their decay modes, and we find aspects that are particular to the ...
Inhaled glucocorticoid (GC) therapy is a vital part of the management of chronic asthma. GCs are metabolized by members of the cytochrome P450 3A family in both liver and lung, but the enzymes are differentially expressed. Selective inhibition of one or more P450 3A enzymes could substantially modify target and systemic concentrations of GCs. In this study, we have evaluated ...
Log Odds of Carrying an Ancestral Mutation in BRCA1 or BRCA2 for a Defined Personal and Family History in an Ashkenazi Jewish Woman (LAMBDA) Apicella C1,2, Andrews L3, Hodgson SV4, Fisher SA4, Lewis CM4, Solomon E4,Tucker K3, Friedlander M3, Bankier A5,
Cancer.gov
We emphasize that the vanishing of the CP asymmetry in leptogenesis, previously observed for models with tribimaximal mixing and family symmetry, may be traced to a property of the type I seesaw mechanism satisfied by such models known as form dominance, corresponding to the case of a diagonal Casas-Ibarra R-matrix. Form dominance leads to vanishing ...
We propose a supersymmetric A4�SU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass mee relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A4 family ...
We consider several neutrino mass models in an extra-dimensional setting on a quantitative level. All the models are set in a five-dimensional scenario, with the standard model (SM) particles living on a brane, while three additional SM gauge singlets live in the bulk of an extra dimension, which is compactified on a S{sup 1}/Z{sub 2} orbifold. The spontaneous breaking of an additional, continuous ...
The LHC is set to achieve a total 14 TeV collision energy for every pair of protons colliding. At this energy it will be possible to study interactions of the SM particles that may contain particles beyond it. We therefore will continue improving our understanding of particle physics, at the very least. Ideally many particles would be discovered and its interactions would be studied. A framework ...
We observe that a recently proposed supersymmetric model with Q6 flavor symmetry admits a new CP violating ground state. A new sum rule for the quark mixing parameters emerges, which is found to be consistent with data. Simple extensions of the model to the neutrino sector suggest an inverted hierarchical mass spectrum with nearly maximal CP violation (|?MNS|??/2). Besides ...
In the simplest (nonquiver) unified theories, fermion families are often treated sequentially and a flavor symmetry may act similarly. As an alternative with nonsequential flavor symmetry, we consider a model based on the group (T'�Z2)global�[SU(3)4]local which combines the predictions of T' flavor symmetry ...
We discuss the possibilities for determining the parameters of the Standard Model by extending its symmetries. Supersymmetry combined with a stage of unification is capable of determining the magnitude of the gauge couplings and explaining the pattern of spontaneous breaking. We consider how further family symmetries may determine the ...
The icosahedral symmetry I ? A5 of the atomic d shell can arise from the symmetries of the five-dimensional d orbital space through the subgroup chain SO(5) ? SO(3) ? I or O(5) ? S6 ? S5 ? I. In the latter case the symmetric group S5 can be generated from I ? A5 by addition ...
A model is presented for the structure and evolution of the eukaryotic and vertebrate mitochondrial genetic codes, based on the representation theory of the Lie superalgebra A(5; 0) ' sl(6=1). A key role is played by pyrimidine and purine exchange symmetries in codon quartets. The application of group theoretical methods to ...
The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group L = ZP (a product of one axial point group P and one infinite cyclic group Z of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO3 nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector L = ...
Advantages accruing to theories with spontaneous breakdown of flavor symmetries are reviewed. A possible experimental signature in rare K decays is discussed. One particularly attractive breakdown scheme is pointed out. The history of the U(1) problem is briefly discussed, including recent ideas regarding axions. The relevance of Cavendish-type experiments in testing for ...
A brief overview of Grand Unified Models is presented with some attention paid to their predictions for neutrino oscillations. Given the well-known features of the two non-unified standard models, SM and MSSM, a listing of the features of classes of unified models is given, where a GUT flavor symmetry and/or family symmetry are ...
In this paper it is shown that the see-saw model of quark mass generation within the SU(3){sub H} gauge horizontal symmetry scheme automatically satisfies the Nelson-Barr criteria for a natural solution of the strong CP-problem if the spontaneous character of CP-violation is supposed. Some possibilities for spontaneous CP-violation are discussed.
This paper presents a new family of classical integrable systems with O(n) and Sp(2k) symmetry. It is shown that these systems can be regarded as lattice analogs of models of the nonlinear Schroedinger equation on symmetric spaces. An example of a O(n)-invariant classical discrete magnet with local Hamiltonian is constructed.
An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti-de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner-Nordstr�m-anti-de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of ...
An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti-de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner-Nordstroem-anti-de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of ...
An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner Nordstr�m anti de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of ...
The Schlesinger equations S ( n, m) describe monodromy preserving deformations of order m Fuchsian systems with n + 1 poles. They can be considered as a family of commuting time-dependent Hamiltonian systems on the direct product of n copies of m � m matrix algebras equipped with the standard linear Poisson bracket. In this paper we present a new canonical Hamiltonian ...
X-ray fiber diffraction data were obtained and helical pitch and symmetry were determined for seven members of the family Potyviridae, including representatives from the genera Potyvirus, Rymovirus, and Tritimovirus. The diffraction patterns are similar, as expected. There are, however, significant variations in the symmetries, as ...
.Willi, "Measurement and Simulation of Laser Imprinting and Consequent Rayleigh-Taylor growth", Phys.Rev.Lett.76, 1643 of three-dimensional Rayleigh-Taylor instability", Phys.Fluids A5, 1904 (1993); X.L.Li, "A numerical study of development of the #12;30 Rayleigh-Taylor instability in 3D geometry", Doklady Physics 44, 491 (1999) (Doklady
The structure of a mixed sodium-neodymium aluminate has been investigated on a single crystal. It reveals hexagonal symmetry (SG P6m2, Z = 1) and the unit cell (a = 5.57, c = 22.25 A) is described as an alternate stacking of half ..beta..-alumina unit cell and half magnetoplumbite unit cell. This leads to an ordering between the layers ...
The superimposed gravitational field of a string and a family of axisymmetric walls is analyzed. The resulting axisymmetric system is a topological defect. A striking observational feature is the appearance of a double-ring image from a distant point source. 26 refs.
We explore the existence of time reparameterization symmetry in p-spin models. Using the Martin�Siggia�Rose generating functional, we analytically probe the long time dynamics. We perform a renormalization group analysis where we systematically integrate over short timescale fluctuations. We find three families of stable fixed points and study the ...
The report has four independent sections. (1) 'Test-Synthesis Evaluation' reports a statistical study of a family of linear-programming test-synthesis procedures; a 'best' method is definitely established. (2) 'Symmetry Types for Threshold Logic' is a tut...
An introduction to the Standard Electroweak Model is given. The three sectors of the Model are briefly reviewed. Some of the topics discussed are symmetries, the number of families, top quark, Higgs boson, CP violation and baryon asymmetry of the Universe. The author also gives a list of some open questions in physics.
We review the prototype model of a grand unified theory on the orbifold S{sup 1}/Z{sub 2} and discuss topics related to the choice of boundary conditions; the dynamical rearrangement of gauge symmetry and the equivalence classes of BCs. We explore a family unification scenario by orbifolding.
A brief description and complete listings of the SOC finite-difference computer code and its related family of codes are given.
An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.
), at the Tevatron. The observation of this narrow state has invited speculation that an exotic form of matter made of particles discovered in terms of families of particles called multiplets. The particles in a multiplet) and strange (s). They are described by an underlying mathematical symmetry called SU(3). Ordinary matter
The seesaw mechanism can play a key role in the generation of the leptonic mixing in unified models. We consider an unified model with a family symmetry and extended seesaw, and obtain viable fermion masses and mixing (leptonic mixing is close to tri-bi-maximal).
The theory of superstrings is reviewed, including the current status of families of elementary particles; mass predictions; symmetry breaking; quantization of the general relativity theory of gravitation; and self- consistent quantum field theories./aip/.
An unusual feature of the superconductivity in molybdenum carbides is that their Tc's are generally the highest yet reported for compounds with similar crystal structures and in some cases for entire symmetry classifications. MoC1-x has the highest Tc for...
It is argued that massive neutrinos with masses 0(eV) and 0(KeV) can be naturally incorporated in the standard model with only left-handed neutrinos by assuming the existence of a fourth lepton family and of an approximate global symmetry that keeps the n...
A one-parameter family of perturbed Debye-Huckel's models, all sharing the inherent spherical symmetry of the classical theory, is introduced and solved in a closed form. When the deformation parameter is set equal to zero one regains the Debye-Huckel's m...
The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thu...
We show that the Frobenius group T=Z?Z is a suitable family symmetry group, to study neutrino oscillations. Our approach is to catalog all possibilities within an effective field theory approach, assuming only SU(2) � U(1), supplemented by family symmetry. We will use tribimaximal mixing as a guide to place a ...
This proceedings note introduces aspects of the authors' work relating mirror symmetry and integral variations of Hodge structure. The emphasis is on their classification of the integral variations of Hodge structure which can underly families of Calabi-Yau threefolds over the thrice-punctured sphere with b^3 = 4, or equivalently h^{2,1} = 1, and the ...
We study a family of non-Abelian topological models in a lattice that arise by modifying the Kitaev model through the introduction of single-qudit terms. The effect of these terms amounts to a reduction in the discrete gauge symmetry with respect to the original systems, which corresponds to a generalized mechanism of explicit symmetry ...
The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin{sup 2}{theta}{sub {omega}} = 3/8 at the string scale, without ...
We argue that presymmetry, a hidden predynamical electroweak quark-lepton symmetry that explains the fractional charges and triplication of families, must be extended beyond the Standard Model as to have a residual presymmetry that embraces partner particles and includes the strong sector, so accounting for the twin or mirror partners proposed to alleviate ...
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous ...
We consider O'Raifeartaigh-like models with explicit R-symmetry breaking and analyze the vacuum landscape. Taking such models as candidates for the hidden sector, we analyze the gauge mediation of the supersymmetry breaking, focusing on the effects produced by R-symmetry breaking. First, we construct families of non-R-symmetric models ...
The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated ...
Without assuming any specific flavor symmetry and/or any specific mass-matrix forms, it is demonstrated that if an unbroken flavor symmetry exists, we cannot obtain the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix V and the Maki-Nakagawa-Sakata (MNS) lepton mixing matrix U except for those between two families for the case with ...
The vibrational {open_quotes}spin{close_quotes} operator is introduced, which permits the full description of a family of coupled quasi-degenerate vibrational states of a rigid molecule. The quasi-degeneracy within this approach can be ascribed to the existence, for a major concentration to the examined intramolecular motion, of an extended symmetry group ...
A newly discovered family of Fe-based superconductors is isostructural with the so-called 122 family of Fe pnictides but has a qualitatively different doping state. Early experiments indicate that superconductivity is nodeless, yet prerequisites for the s� nodeless state (generally believed to be realized in Fe superconductors) are missing. It is ...
In this Letter, we realize the tri-bimaximal mixing in the lepton sector in the context of minimal seesaw in which only two right-handed neutrinos are introduced, with the discrete group S4 as the family symmetry. In order to constrain the form of superpotential, a Z3 symmetry is also introduced. In the model, the mass matrices for ...
To a first approximation, the quark mixing matrix has {theta}{sub 13}{sup q}={theta}{sub 23}{sup q}=0, whereas the lepton mixing matrix has {theta}{sub 23}{sup l}={pi}/4. We show how this structure may be understood if the family symmetry is Q{sub 8}, the quaternion group of eight elements. We find three viable scenarios for the Majorana neutrino mass ...
Given a group-invariant quasi-free state on the algebra of canonical commutation relations (CCR), we show how group averaging techniques can be used to obtain a symmetry-reduced CCR algebra and reduced quasi-free state. When the group is compact, this method of symmetry reduction leads to standard results which can be obtained using other methods. When the ...
Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf ...
In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincar� invariant theories in flat spacetime, the differences between the Belinfante ...
At special loci in their moduli spaces, Calabi Yau manifolds are endowed with discrete symmetries. Over the years, such spaces have been intensely studied and have found a variety of important applications. As string compactifications they are phenomenologically favored, and considerably simplify many important calculations. Mathematically, they provided the framework for the ...
The possible utility of spinor representations of large orthogonal internal-symmetry groups is explored. The repetitive structure of families is incorporated quite naturally, but there is a difficulty with extra ''conjugate'' families having V+A weak currents. Possible methods for removing these ...
The neutrino oscillation data are in very good agreement with the tribimaximal mixing pattern: sin{sup 2{theta}}{sub 23}=1/2, sin{sup 2{theta}}{sub 12}=1/3, and sin{sup 2{theta}}{sub 13}=0. Attempts to generate this pattern based on finite family symmetry groups typically assume that the family symmetry is broken ...
It is well known that equilibrium in a cosymmetric system in the general position is a member of a one-parameter family. In the present paper the Lyapunov-Schmidt method and the method of the central manifold are used to analyze bifurcations of such a family of equilibria as well as internal bifurcations: transitions of the type focus-node, node-saddle, ...
Geometric derivations and mathematical formulas have shown how the symmetrical patterns of plants, animals and crystals, follow similar mathematical solutions. These transformations have had the great value of indicating relationships between different types of patterns. However, they could neither shed light on the material processes that led to the emergence of symmetries in ...
have been medical, legal, family, etc., and they must be supported by appropriate documentation indicating that the information you have submitted is true and complete. If additional documentary evidence. With your appeal, you must enclose the appropriate supporting documentation. ..../2 #12;Page 2 It is your
have been medical, legal, family, etc., and they must be supported by appropriate documentation indicating that the information you have submitted is true and complete. If additional documentary evidence appeal, you must enclose the appropriate supporting documentation. ..../2 #12;Page 2 It is your
...standards are applicable? (a) Davis-Bacon wage rates. (1) As described in...the Secretary of Labor under the Davis-Bacon Act (40 U.S.C. 276a-276a-5...acquire single family housing, the Davis-Bacon wage rates apply to the...
Code of Federal Regulations, 2011
The nonlinear dynamics of periodic motion for elastic structures are investigated. By exploiting the underlying symmetry of the structure, the linearized dynamics problem is solved efficiently. Using these solutions as approximations, the existence of solution branches for the nonlinear dynamics is proved using bifurcation theorems and group theoretic ideas. The technique is ...
I construct predictive models of neutrino mass and mixing that have fewer parameters, both in the lepton sector and overall, than the default seesaw model. The predictions are {theta}{sub 13}=0 and one massless neutrino, with the models having a Z{sub 4} or Z{sub 2} symmetry and just one extra degree of freedom: one real singlet Higgs field. It has been shown that models with ...
We construct a new family of compact orbifolds O4(?) with a positive self dual Einstein metric and a one-dimensional group of isometries. Together with another family, introduced in Boyer et al. (2002) [7] and here denoted by O4(?), these examples classify all 4-dimensional orbifolds that are quaternion K�hler quotients by a torus of real Grassmannians.
see below. 10 #12;4 Instability of Nariai asymptotics within the Kantowski- Sachs family 4.1 Ansatz by the translation subgroup of the Kantowski- Sachs symmetry group. The motivation for this choice of coordinates the Kantowski-Sachs family So far we have shown that all Kantowski-Sachs solutions of our initial value problem
We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z{sub 6} chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with ...
On the basis of a chiral symmetry transformation, we predict an isovector component for the family of light scalar mesons, i.e. partners of the ?-meson. Such a contribution may be necessary to tune the equation of state of nuclear matter in order to comply with severe constraints from a recent analysis of observational macroscopic properties of neutron ...
the transformation T(fy) by these common information invariances, many widely observed probability distributions Commonly observed patterns follow a few families of probability distributions. For example, Gaussian of distributions related? Why are there so few families, when the possible patterns are essentially infinite
We discuss the ADHMN construction for SU(N) monopoles and show that a particular simplification arises in studying charge N{minus}1 monopoles with minimal symmetry breaking. Using this we construct families of tetrahedrally symmetric SU(4) and SU(5) monopoles. In the moduli space approximation, the SU(4) one-parameter family describes ...
In this talk I outline work done in collaboration with R.J. Zhang and T. Kobayashi. We show how to construct the equivalent of three family orbifold GUTs in five dimensions from the heterotic string. I focus on one particular model with E(6) gauge symmetry in 5D, the third family and Higgs doublet coming from the 5D bulk and the first ...