Sample records for a549 lung tumor

  1. [Effect of ginseng rare ginsenoside components combined with paclitaxel on A549 lung cancer].

    PubMed

    Yang, Lei; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2018-04-01

    Traditional Chinese medicine combined with anticancer drugs is a new direction of clinical cancer therapy in recent years. In this study, the optimal ratio of ginseng rare ginsenoside components and paclitaxel was optimized by MTT method, and the proliferative, apoptotic and anti-tumor effects of lung cancer A549 cells were investigated. It was found that the inhibitory effect on the proliferation of lung cancer A549 cells was the same as that on paclitaxel when the ratio of rare ginseng rare ginsenoside components to paclitaxel was 4∶6. Further studies showed that the combined therapy significantly increased the inductive effect of apoptosis in A549 cells, and up-regulated the expression of caspase-3 protein and down-regulated the ratio of Bcl-2/Bax. The tumor-bearing mice model showed that the combination therapy of ginseng rare ginsenoside components and paclitaxel could significantly inhibit the growth of tumor and alleviate the toxic and side effects of paclitaxel on liver. A multi-component system of ginseng rare ginsenoside components-paclitaxel was established in this paper. The proliferation and growth of lung cancer A549 cells were inhibited by paclitaxel-induced apoptosis, the dosage of paclitaxel and the toxicity of paclitaxel were reduced, and the effect of anti-lung cancer was enhanced, which provided a theoretical basis for later studies and clinical application. Copyright© by the Chinese Pharmaceutical Association.

  2. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-06-22

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.

  3. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunmao; Ding, Chao; Kong, Minjian

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lungmore » cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  4. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com; Zhang, Tao; Ti, Xinyu

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities ofmore » curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.« less

  5. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  6. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    PubMed

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  7. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  8. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm) 4 (pip)] 2+ (1) and [Ru(MeIm) 4 (4-npip)] 2+ (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  9. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai, E-mail: tomsyu@163.com; Huang, Liangqian; Qiao, Pengyun

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. Thesemore » findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.« less

  10. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells.

    PubMed

    Shi, Wei; Deng, Jiagang; Tong, Rongsheng; Yang, Yong; He, Xia; Lv, Jianzhen; Wang, Hailian; Deng, Shaoping; Qi, Ping; Zhang, Dingding; Wang, Yi

    2016-04-01

    Mangiferin, which is a C‑glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth‑inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via downregulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer.

  12. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer

    PubMed Central

    Ge, Xin; Jiang, Cheng-Fei; Shi, Zhu-Mei; Li, Dong-Mei; Liu, Wei-Tao; Yu, Xiaobo; Shu, Yong-Qian

    2016-01-01

    Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. In this study, we explored miR-137's role in the chemosensitivity of lung cancer. We found that the expression level of miR-137 is down-regulated in the human lung cancer tissues and the resistant cells strains: A549/paclitaxel(A549/PTX) and A549/cisplatin (A549/CDDP) when compared with lung cancer A549 cells. Moreover, we found that overe-expression of miR-137 inhibited cell proliferation, migration, cell survival and arrest the cell cycle in G1 phase in A549/PTX and A549/CDDP. Furthermore, Repression of miR-137 significantly promoted cell growth, migration, cell survival and cell cycle G1/S transition in A549 cells. We further demonstrated that the tumor suppressive role of miR-137 was mediated by negatively regulating Nuclear casein kinase and cyclin-dependent kinase substrate1(NUCKS1) protein expression. Importantly, miR-137 inhibits A549/PTX, A549/CDDP growth and angiogenesis in vivo. Our study is the first to identify the tumor suppressive role of over-expressed miR-137 in chemosensitivity. Identification of a novel miRNA-mediated pathway that regulates chemosensitivity in lung cancer will facilitate the development of novel therapeutic strategies in the future. PMID:26989074

  13. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  14. β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway.

    PubMed

    Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi

    2014-05-01

    β-elemene (β-ELE) is a new anticancer drug extracted from Curcuma zedoaria Roscoe and has been widely used to treat malignant tumors. Recent studies have demonstrated that β-ELE reverses the drug resistance of tumor cells. To explore the possible mechanisms of action of β-ELE, we investigated its effects on cisplatin-resistant human lung adenocarcinoma A549/DDP cells. The effects of β-ELE on the growth of A549/DDP cells in vitro were determined by MTT assay. Apoptosis was assessed by fluorescence microscopy with Hoechst 33258 staining and flow cytometry with Annexin V-FITC/PI double staining. Mitochondrial membrane potential was assessed using JC-1 fluorescence probe and laser confocal scanning microscopy, and intracellular reactive oxygen species levels were measured by 2',7'-dichlorofluorescein-diacetate staining and flow cytometry. Cytosolic glutathione content was determined using GSH kits. The expression of cytochrome c, caspase-3, procaspase-3 and the Bcl-2 family proteins was assessed by western blotting. The results demonstrated that β-ELE inhibited the proliferation of A549/DDP cells in a time- and dose-dependent manner. Furthermore, β-ELE enhanced the sensitivity of A549/DDP cells to cisplatin and reversed the drug resistance of A549/DDP cells. Consistent with a role in activating apoptosis, β-ELE decreased mitochondrial membrane potential, increased intracellular reactive oxygen species concentration and decreased the cytoplasmic glutathione levels in a time- and dose-dependent manner. The combination of β-ELE and cisplatin enhanced the protein expression of cytochrome c, caspase-3 and Bad, and reduced protein levels of Bcl-2 and procaspase-3 in the A549/DDP lung cancer cells. These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug

  15. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  16. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  17. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    PubMed

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  18. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  19. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    PubMed

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    Objective: To observe the growth and metastasis of lung cancer promoted by bone marrow derived mesenchymal stem cells (BMSCs) in tumor microenvironment and investigate the underlined mechanisms. Methods: Specific chemotaxis of BMSCs towards lung cancer was observed, and the tumor growth and metastasis were assessed in vivo . Furthermore, CD34 expression determined by immunohistochemistry was used to assess the microvessel density (MVD), and the expressions of GFP and α-SMA determined by immunofluorescence were used to detect the BMSCs derived mesenchymal cells. We investigated the effect of BMSCs on migration, invasion of lung cancer cells including A549 and H446 cells by using scratch assays and Transwell Assay in vitro. We also explored the effect of BMSCs on epithelial mesenchymal transition of A549 and H446 cells by observing the phenotype transition and E-Cadherin protein expression detected by Western blot. At last, we screened the potentially key soluble factors by enzyme linked immunosorbent assay (ELISA). Results: In NOD mice, labeled BMSCs injected via tail vein were special chemotaxis to tumor cells, and promoted the tumor growth [the time of tumor formation in A549+ BMSCs and A549 alone was (5.0±1.5) days and (10.0±3.6) days, respectively, P <0.05; the time of tumor formation in H446+ BMSCs and H446 alone was (5.2±1.5) days and (12.0±2.0) days, respectively, P <0.05]. The tumor incidence of A549+ BMSCs was 100%, significantly higher than 66.7% of A549 alone ( P <0.05), while the tumor incidence of H446+ BMSCs was 83.0%, significantly higher than 50.0% of H446 alone ( P <0.05). The BMSCs also increased the tumor volume [the tumor volume of A549+ BMSCs and A549 alone was (193.0±42.3) mm(3) and (97.8±42.9) mm(3,) respectively, P <0.05; the tumor volume of H446+ BMSCs and H446 alone was (78.6±34.8) mm(3) and (25.3±12.7) mm(3,) respectively, P <0.05] and facilitated the tumor metastasis (the tumor metastatic incidence of A549+ BMSCs and A549 alone

  20. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  1. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  2. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines

    PubMed Central

    Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar

    2016-01-01

    Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773

  4. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line.

    PubMed

    Zhou, Zhongping; Tang, Miaomiao; Liu, Yi; Zhang, Zhuyi; Lu, Rongzhu; Lu, Jian

    2017-04-01

    Apigenin (APG), a widely distributed flavonoid in vegetables and fruits, with low toxicity, and a nonmutagenic characteristic, has been reported to have many targets. Evidence indicates that APG can inhibit the proliferation, migration, invasion, and metastasis of some tumor cells, but the mechanism, specifically in lung cancer, is unclear. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway regulates a diverse set of cellular functions relevant to the growth and progression of lung cancer, including proliferation, survival, migration, and invasion. Our results showed that APG exerted anti-proliferation, anti-migration, and anti-invasion effects in A549 human lung cancer cells by targeting the PI3K/Akt signaling pathway. 3-(4, 5-dimethylthiszol-2-yl)-2, 5-diphenytetrazolium bromide assay and colony formation assay showed that APG suppressed cell proliferation in a dose-dependent and time-dependent manner. Cell motility and invasiveness were assayed using a wound healing and Transwell assay, suggesting that APG inhibited the migration and invasion of A549 cells. Western blot analyses were carried out to examine the Akt signaling pathways. The results confirmed that APG decreased Akt expression and its activation. Then, cells were transfected with Akt-active and Akt-DN plasmids separately. The migration and invasion of A549 cells were significantly changed, constitutively activating Akt or knocking down Akt, indicating that APG can suppress the migration and invasion of lung cancer cells by modulating the PI3K/Akt signaling pathway. Furthermore, the results indicated that APG not only suppressed phosphorylation of Akt, thereby preventing its activation, but also inhibited its downstream gene expression of matrix metalloproteinases-9, glycogen synthase kinase-3β, and HEF1. Together, APG is a new inhibitor of Akt in lung cancer and a potential natural compound for cancer chemoprevention.

  5. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  6. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    PubMed

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  7. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis.

    PubMed

    Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J

    2005-02-01

    A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.

  8. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway.

    PubMed

    Wang, Junjian; Huang, Shaoxiang

    2018-03-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro . MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro , which may provide a novel approach for clinical treatment.

  9. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway

    PubMed Central

    Wang, Junjian; Huang, Shaoxiang

    2018-01-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment. PMID:29467859

  10. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer.

    PubMed

    Cai, Yong; Sheng, Zhao-Ying; Chen, Yun; Bai, Chong

    2014-01-01

    To explore the effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer (NSCLC). NSCNC cell line A549 was selected to explore the effect of Withaferin A on A549 cellular proliferation, apoptosis and the PI3K/Akt signal pathway capable of regulating tumor biological behavior by assessment of cellular proliferation, cellular apoptotic rates and cellular cycling as well as by immuno-blotting. Withaferin A could inhibit A549 cellular proliferation and the control rate was dosage-dependent (P<0.05), which also increased time-dependently with the same dosage of Withaferin A (P<0.05). The apoptotic indexes in A549 cells treated with 0, 2.5, 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A for 48 h were significantly different (P<0.05). In addition, the apoptotic rates of each group in both early and advanced stages were higher than those in 0 μmol·L-1 (P<0.05), which were evidently higher after 48 h than those after 24 h (P<0.05). A549 cells treated by Withaferin A for 48 h were markedly lower in Bcl-2 level and obviously higher in Bax and cleaved caspase-3 levels than those treated by 0 μmol·L-1 Withaferin A (P<0.05), and there were significant differences among 5, 10 and 20 μmol·L-1 Withaferin A (P<0.05). The ratios of A549 cells treated by Withaferin A for 48 h in G0/G1 stage were higher than those in 0 μmol·L-1 , while those in S and G2/M stages were obviously lower than those in G2/M stage, and there were significant differences in 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A (P<0.05). Additionally, p-Akt/Akt values were in reverse association with dosage, and the differences were significant (P<0.05). Withaferin A can inhibit the proliferation and apoptosis of A549 cells by suppressing activation of the PI3K/Akt pathways.

  11. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  12. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  13. [Apoptosis inducing effect of Hechanpian on human lung adenocarcinoma A549 cells].

    PubMed

    Xiong, Shao-Quan; Zhou, Dai-Han; Lin, Li-Zhu

    2010-06-01

    To study the apoptosis inducing effects of Hechanpian (HCP) on human lung adenocarcinoma A549 cells. HCP containing rat serum was prepared and applied on A549 cells. The cell growth inhibition rate was tested by MTT assay; the effect of HCP on cell apoptosis was observed with Propidium iodide (PI) staining and flow cytometry analysis; the mRNA expression of epidermal growth factor receptor (EGFR) was detected through RT-PCR. The growth of A549 cells was obviously inhibited after being treated by HCP containing serum, and the cells presented an apoptotic change. The cell apoptosis rate after treated by serum containing 10% and 20% HCP was 20.5% and 33.2%, respectively, significantly higher than that in the control (6.1% in cells didn't treated with HCP, P < 0.05). Compared with control, EGFR mRNA expression in HCP treated cells was significantly lower (P < 0.05). HCP has apoptosis inducing effect on A549 cell, and its molecular mechanism is probably correlated with the inhibition of EGFR gene transcription.

  14. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway

    PubMed Central

    2011-01-01

    Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176

  15. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  16. Cytochrome c oxidase is activated by the oncoprotein Ras and is required for A549 lung adenocarcinoma growth

    PubMed Central

    2012-01-01

    Background Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). Results We found that the introduction of activated H-RasV12 into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. Conclusion Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents. PMID:22917272

  17. Trehalose Liposomes Suppress the Growth of Tumors on Human Lung Carcinoma-bearing Mice by Induction of Apoptosis In Vivo.

    PubMed

    Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko

    2017-11-01

    Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  19. A549 Cells: Lung Carcinoma Cell Line for Adenovirus | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.

  20. Cytotoxic Effects of 24-Methylenecyloartanyl Ferulate on A549 Nonsmall Cell Lung Cancer Cells through MYBBP1A Up-Regulation and AKT and Aurora B Kinase Inhibition.

    PubMed

    Doello, Sofia; Liang, Zhibin; Cho, Il Kyu; Kim, Jung Bong; Li, Qing X

    2018-04-11

    Lung cancer is the second most prevalent cancer. Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer. The low efficacy in current chemotherapies impels us to find new alternatives to prevent or treat NSCLC. Rice bran oil is cytotoxic to A549 cells, a NSCLC cell line. Here, we identified 24-methylenecyloartanyl ferulate (24-mCAF) as the main component responsible for the cytotoxicity in A549 cells. An iTRAQ-based quantitative proteomics analysis revealed that 24-mCAF inhibits cell proliferation and activates cell death and apoptosis. 24-mCAF induces up-regulation of Myb binding protein 1A (MYBBP1A), a tumor suppressor that halts cancer progression. 24-mCAF inhibits the activity of AKT and Aurora B kinase, two Ser/Thr kinases involved in MYBBP1A regulation and that represent important targets in NSCLC. This study provides the first insight of the effect of 24-mCAF, the main component of rice bran oil, on A459 cells at the cellular and molecular levels.

  1. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    PubMed

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    PubMed

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  3. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    PubMed Central

    Boost, Kim A; Sadik, Christian D; Bachmann, Malte; Zwissler, Bernhard; Pfeilschifter, Josef; Mühl, Heiko

    2008-01-01

    Background Production of interferon (IFN)-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL)-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8. PMID:18801189

  4. Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells

    PubMed Central

    Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3–5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G2/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G2/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression. PMID:23335992

  5. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less

  6. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation.

    PubMed

    Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun

    2016-12-01

    A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 4-Methoxychalcone Enhances Cisplatin-Induced Oxidative Stress and Cytotoxicity by Inhibiting the Nrf2/ARE-Mediated Defense Mechanism in A549 Lung Cancer Cells

    PubMed Central

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling. PMID:24046186

  8. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    PubMed

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  9. Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP.

    PubMed

    Wei, Yunyan; Wu, Shuangshuang; Xu, Wei; Liang, Yan; Li, Yue; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Cisplatin is the standard first-line chemotherapeutic agent for the treatment of non-small cell lung cancer (NSCLC). However, resistance to chemotherapy has been a major obstacle in the management of NSCLC. Aldehyde dehydrogenase 1A1 (ALDH1A1) overexpression has been observed in a variety of cancers, including lung cancer. The purpose of this study was to investigate the effect of ALDH1A1 expression on cisplatin resistance and explore the mechanism responsible. Reverse transcriptase-PCR was applied to measure the messenger RNA expression of ALDH1A1, while Western blot assay was employed to evaluate the protein expression of ALDH1A1, B-cell lymphoma 2, Bcl-2-like protein 4, phospho-protein kinase B (p-AKT) and AKT. A short hairpin RNA was used to knockdown ALDH1A1 expression. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effect of ALDH1A1 decrease on cell viability. The cell apoptotic rate was tested using flow cytometry assay. ALDH1A1 is overexpressed in cisplatin resistant cell line A549/DDP, compared with A549. ALDH1A1 depletion significantly decreased A549/DDP proliferation, increased apoptosis, and reduced cisplatin resistance. In addition, the phosphoinositide 3-kinase (PI3K) / AKT pathway is activated in A549/DDP, and ALDH1A1 knockdown reduced the phosphorylation level of AKT. Moreover, the combination of ALDH1A1-short hairpin RNA and PI3K/AKT pathway inhibitor LY294002 markedly inhibited cell viability, enhanced apoptotic cell death, and increased cisplatin sensitivity. These results suggest that ALDH1A1 depletion could reverse cisplatin resistance in human lung cancer cell line A549/DDP, and may act as a potential target for the treatment of lung cancers resistant to cisplatin. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  10. [Overexpression of Keap1 inhibits the cell proliferation and metastasis and overcomes the drug resistance in human lung cancer A549 cells].

    PubMed

    Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M

    2016-06-23

    To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(P<0.05). Compared with the invasive A549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (P<0.01). The IC50s of carboplatin in A549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.

  11. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis

    PubMed Central

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-01-01

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1–5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1–5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention. PMID:29565268

  12. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis.

    PubMed

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-03-22

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana , has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.

  13. Synergistic Antitumor Effect of Oligogalacturonides and Cisplatin on Human Lung Cancer A549 Cells.

    PubMed

    Huang, Cian-Song; Huang, Ai-Chun; Huang, Ping-Hsiu; Lo, Diana; Wang, Yuh-Tai; Wu, Ming-Chang

    2018-06-14

    Cisplatin (DPP), a clinically potent antineoplastic agent, is limited by its severe adverse effects. The aim of this study was to investigate the effect of oligogalacturonides (OGA) and DDP on human lung cancer A549 cells. The combined use of OGA and DDP had a synergistic effect on the growth inhibition of A549 cells, changed the cell cycle distribution, and enhanced apoptotic response, especially in sequential combination treatment group of DDP 12 h + OGA 12 h. Western blot analyses showed that the combination treatment of OGA and DDP upregulated Bax, p53, and Caspase-3 and downregulated Bcl-2 proteins. More importantly, DDP-induced toxicity was attenuated by OGA and DDP combination treatment in normal HEK293 cells. Our data suggests that the combined use of OGA from natural sources and DDP could be an important new adjuvant therapy for lung cancer as well as offer important insights for reducing kidney toxicity of DDP and delaying the development of DDP resistance.

  14. Plasmodium circumsporozoite protein suppresses the growth of A549 cells via inhibiting nuclear transcription factor κB.

    PubMed

    Deng, Xu-Feng; Zhou, Dong; Liu, Quan-Xing; Zheng, Hong; Ding, Yan; Xu, Wen-Yue; Min, Jia-Xin; Dai, Ji-Gang

    2018-05-01

    Blocking the activation of nuclear factor κB (NF-κB) is a promising strategy for the treatment of non-small cell lung cancer. The circumsporozoite protein (CSP), a key component of the sporozoite stage of the malaria parasite, was previously reported to block NF-κB activation in hepatocytes. Therefore, in the present study, the effect of CSP on the growth of the human lung cancer cell line, A549, was investigated. It was demonstrated that transfection with a recombinant plasmid expressing CSP was able to inhibit the proliferation of A549 cells in a dose-dependent manner and induce the apoptosis of A549 cells. A NF-κB gene reporter assay indicated that CSP and its nuclear localization signal (NLS) motif were able to equally suppress the activation of NF-κB following stimulation with human recombinant tumor necrosis factor (TNF)-α in A549 cells. Furthermore, western blot analysis indicated that NLS did not affect the phosphorylation and degradation of IκB, but was able to markedly inhibit the nuclear translocation of NF-κB in TNF-α stimulated A549 cells. Therefore, the data suggest that CSP may be investigated as a potential novel NF-κB inhibitor for the treatment of lung cancer.

  15. Establishment of an orthotopic lung cancer model in nude mice and its evaluation by spiral CT.

    PubMed

    Liu, Xiang; Liu, Jun; Guan, Yubao; Li, Huiling; Huang, Liyan; Tang, Hailing; He, Jianxing

    2012-04-01

    To establish a simple and highly efficient orthotopic animal model of lung cancer cell line A549 and evaluate the growth pattern of intrathoracic tumors by spiral CT. A549 cells (5×10(6) mL(-1)) were suspended and inoculated into the right lung of BALB/c nude mice via intrathoracic injection. Nude mice were scanned three times each week by spiral CT after inoculation of lung cancer cell line A549. The survival time and body weight of nude mice as well as tumor invasion and metastasis were examined. Tissue was collected for subsequent histological assay after autopsia of mice. The tumor-forming rate of the orthotopic lung cancer model was 90%. The median survival time was 30.7 (range, 20-41) days. The incidence of tumor metastasis was 100%. The mean tumor diameter and the average CT value gradually increased in a time-dependent manner. The method of establishing the orthotopic lung cancer model through transplanting A549 cells into the lung of nude mice is simple and highly successful. Spiral CT can be used to evaluate intrathoracic tumor growth in nude mice vividly and dynamically.

  16. Establishment of an orthotopic lung cancer model in nude mice and its evaluation by spiral CT

    PubMed Central

    Liu, Xiang; Liu, Jun; Guan, Yubao; Li, Huiling; Huang, Liyan; Tang, Hailing

    2012-01-01

    Objective To establish a simple and highly efficient orthotopic animal model of lung cancer cell line A549 and evaluate the growth pattern of intrathoracic tumors by spiral CT. Methods A549 cells (5×106 mL-1) were suspended and inoculated into the right lung of BALB/c nude mice via intrathoracic injection. Nude mice were scanned three times each week by spiral CT after inoculation of lung cancer cell line A549. The survival time and body weight of nude mice as well as tumor invasion and metastasis were examined. Tissue was collected for subsequent histological assay after autopsia of mice. Results The tumor-forming rate of the orthotopic lung cancer model was 90%. The median survival time was 30.7 (range, 20-41) days. The incidence of tumor metastasis was 100%. The mean tumor diameter and the average CT value gradually increased in a time-dependent manner. Conclusions The method of establishing the orthotopic lung cancer model through transplanting A549 cells into the lung of nude mice is simple and highly successful. Spiral CT can be used to evaluate intrathoracic tumor growth in nude mice vividly and dynamically. PMID:22833819

  17. Combined treatment with apatinib and docetaxel in A549 xenograft mice and its cellular pharmacokinetic basis.

    PubMed

    Feng, Si-Qi; Wang, Guang-Ji; Zhang, Jing-Wei; Xie, Yuan; Sun, Run-Bin; Fei, Fei; Huang, Jing-Qiu; Wang, Ying; Aa, Ji-Ye; Zhou, Fang

    2018-05-17

    Apatinib, a small-molecule inhibitor of VEGFR-2, has attracted much attention due to its encouraging anticancer activity in third-line clinical treatment for many malignancies, including non-small cell lung cancer (NSCLC). Its usage in second-line therapy with chemotherapeutic drugs is still under exploration. In this study we investigated the antitumor effect of apatinib combined with docetaxel against NSCLC and its cellular pharmacokinetic basis. A549 xenograft nude mice were treated with apatinib (100 mg/kg every day for 20 days) combined with docetaxel (8 mg/kg, ip, every four days for 5 times). Apatinib significantly enhanced the antitumor effect of docetaxel and alleviated docetaxel-induced liver damage as well as decreased serum transaminases (ALT and AST). LC-MS/MS analysis revealed that apatinib treatment significantly increased the docetaxel concentration in tumors (up to 1.77 times) without enhancing the docetaxel concentration in the serum, heart, liver, lung and kidney. Furthermore, apatinib decreased docetaxel-induced upregulation of P-glycoprotein in tumors. The effects of apatinib on the uptake, efflux and subcellular distribution of docetaxel were investigated in A549 and A549/DTX (docetaxel-resistant) cells in vitro. A cellular pharmacokinetic study revealed that apatinib significantly increased cellular/subcellular accumulation (especially in the cytosol) and decreased the efflux of docetaxel in A549/DTX cells through P-gp, while apatinib exerted no significant effect on the cellular pharmacokinetics of docetaxel in A549 cells. Consequently, the IC 50 value of docetaxel in A549/DTX cells was more significantly decreased by apatinib than that in A549 cells. These results demonstrate that apatinib has potential for application in second-line therapy combined with docetaxel for NSCLC patients, especially for docetaxel-resistant or multidrug-resistant patients.

  18. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  19. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells.

    PubMed

    Xiong, Fei; Jiang, Miao; Huang, Zhenzhou; Chen, Meijuan; Chen, Kejun; Zhou, Jing; Yin, Lian; Tang, Yuping; Wang, Mingyan; Ye, Lihong; Zhan, Zhen; Duan, Jinao; Fu, Haian; Zhang, Xu

    2014-03-01

    In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic

  20. MLKL-PITPα signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells.

    PubMed

    Jing, Lin; Song, Fei; Liu, Zhenyu; Li, Jianghua; Wu, Bo; Fu, Zhiguang; Jiang, Jianli; Chen, Zhinan

    2018-02-01

    Necroptosis has been reported to be involved in cisplatin-induced cell death, but the mechanisms underlying the occurrence of necroptosis are not fully elucidated. In this study, we show that apart from apoptosis, cisplatin induces necroptosis in A549 cells. The alleviation of cell death by two necroptosis inhibitors-necrostatin-1 (Nec-1) and necrosulfonamide (NSA), and the phosphorylation of mixed lineage kinase domain-like protein (MLKL) at serine 358, suggest the involvement of receptor-interacting protein kinase 1 (RIPK1)-RIPK3-MLKL signaling in cisplatin-treated A549 cells. Additionally, the initiation of cisplatin-induced necroptosis relies on autocrine tumor necrosis factor alpha (TNF-α). Furthermore, we present the first evidence that phosphatidylinositol transfer protein alpha (PITPα) is involved in MLKL-mediated necroptosis by interacting with the N terminal MLKL on its sixth helix and the preceding loop, which facilitates MLKL oligomerization and plasma membrane translocation in necroptosis. Silencing of PITPα expression interferes with MLKL function and reduces cell death. Our data elucidate that cisplatin-treated lung cancer cells undergo a new type of programmed cell death called necroptosis and shed new light on how MLKL translocates to the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity.

    PubMed

    Mu, Xiyan; Fang, Chunju; Zhou, Jing; Xi, Yufeng; Zhang, Li; Wei, Yuquan; Yi, Tao; Wu, Yang; Zhao, Xia

    2016-01-01

    Human umbilical endothelial cells (HUVECs) have been proved as an effective whole-cell vaccine inhibiting tumor angiogenesis. However, HUVECs divide a very limited number of passages before entering replicative senescence, which limits its application for clinical situation. Here, we fused HUVECs with human pulmonary adenocarcinoma cell line A549s and investigated the anti-tumor immunity of the hybrids against mice Lewis lung cancer. HUVECs were fused with A549s using polyethylene glycol and were sorted by flow cytometry. The fusion cells (HUVEC-A549s) were confirmed by testing the expression of telomerase and VE-cadherin, the senescence-associated β-galactosidase activity, and tube formation ability. HUVEC-A549s were then irradiated and injected into the C57BL/6 mice of protective, therapeutic, and metastatic models. The mechanism of the anti-tumor immunity was explored by analyzing mice sera, spleen T lymphocytes, tumor microenvironment, and histological changes. HUVEC-A549s coexpressed tumor and endothelial markers and maintained the vascular function of tube forming at passage 30 without showing signs of senescence. HUVEC-A549s could induce protective and therapeutic anti-tumor activity for LL(2) model and presented stronger activity against metastasis than HUVECs. Both humoral and cellular immunity were participated in the anti-angiogenic activity, as HUVECs-neutralizing IgG and HUVECs-toxic lymphocytes were increased. Angiogenic mediators (VEGF and TGF-β) and tumor microenvironment cells MDSCs and Tregs were also diminished. Our findings might provide a novel strategy for HUVECs-related immunotherapy, and this vaccine requires lower culture condition than primary HUVECs while enhancing the anti-tumor immunity.

  2. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    PubMed

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  3. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549

    PubMed Central

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-01-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin. PMID:28928819

  4. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.

    PubMed

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-09-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.

  5. Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells.

    PubMed

    Pääkkö, P; Rämet, M; Vähäkangas, K; Korpela, N; Soini, Y; Turunen, S; Jaworska, M; Gillissen, A

    1998-01-01

    A number of genotoxic chemicals and agents, such as benzo(a)pyrene and ultraviolet light, are able to induce nuclear accumulation of p53 protein. Usually, this response is transient and a consequence of stabilization of the wild-type p53 protein. After withdrawal of the exposure, the amount of p53 protein returns to a normal level within hours or a few days. We have studied the p53 response to the exposure of crocidolite asbestos in A-549 lung carcinoma cells using three different methods, i.e., p53 immunohistochemistry, Western blotting and metabolic labelling followed by p53 immunoprecipitation. With these techniques we demonstrate a dose-dependent p53 nuclear response to crocidolite exposure. The half-life of p53 protein in A-549 lung carcinoma cells cultured in serum-free media increased from 30 up to 80 min, and the protein reacted with a wild-type specific antibody suggesting that it was in a wild-type conformation. In situ 3'-end labelling of A-549 cells demonstrated a dose-dependent increase in apoptotic activity. Our data support the idea that increased apoptotic activity, induced by crocidolite, is mediated by p53.

  6. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    PubMed

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    PubMed

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  8. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  9. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  10. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  11. Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

    PubMed Central

    2013-01-01

    Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549

  12. Inhibition of Raf-MEK-ERK and hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line.

    PubMed

    Lee, Sau Har; Jaganath, Indu Bala; Manikam, Rishya; Sekaran, Shamala Devi

    2013-10-20

    Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.

  13. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokas, Emmanouil, E-mail: emmanouil.fokas@yahoo.d; Haenze, Joerg; Kamlah, Florentine

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas aftermore » IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.« less

  14. SUSD2 is frequently downregulated and functions as a tumor suppressor in RCC and lung cancer.

    PubMed

    Cheng, Yingying; Wang, Xiaolin; Wang, Pingzhang; Li, Ting; Hu, Fengzhan; Liu, Qiang; Yang, Fan; Wang, Jun; Xu, Tao; Han, Wenling

    2016-07-01

    Sushi domain containing 2 (SUSD2) is type I membrane protein containing domains inherent to adhesion molecules. There have been few reported studies on SUSD2, and they have mainly focused on breast cancer, colon cancer, and HeLa cells. However, the expression and function of SUSD2 in other cancers remain unclear. In the present study, we conducted an integrated bioinformatics analysis based on the array data from the GEO database and found a significant downregulation of SUSD2 in renal cell carcinoma (RCC) and lung cancer. Western blotting and quantitative RT-PCR (qRT-PCR) confirmed that SUSD2 was frequently decreased in RCC and lung cancer tissues compared with the corresponding levels in normal adjacent tissues. The restoration of SUSD2 expression inhibited the proliferation and clonogenicity of RCC and lung cancer cells, whereas the knockdown of SUSD2 promoted A549 cell growth. Our findings suggested that SUSD2 functions as a tumor suppressor gene (TSG) in RCC and lung cancer.

  15. [The effect and mechanism of vinorelbine on cisplatin resistance of human lung cancer cell line A549/DDP].

    PubMed

    Qi, Chunsheng; Gao, Sen; Li, Huiqiang; Gao, Weizhen

    2014-02-01

    Drug resistance is a major obstacle on lung cancer treatment and Vinorelbine is an effective drug to inhibition of tumor proliferation and metastasis. In this study, we investigated the effect and mechanism of Vinorelbine on reversing the cisplatin resistance of human lung cancer A549/DDP cell line. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, MTS assay was employed to determine the effect of the cisplatin sensitivity of tumor cells, flow cytometry to determine the apoptosis rate and change of Rh-123 content; Western blot to determine the expression of MDR1, Bcl-2, surviving, PTEN, caspase-3/8 and phosphorylation level of Akt (p-Akt); Real-time PCR was to determine the mRNA expression of MDR1, Bcl-2, survivin and PTEN. Finally the transcriptional activities of NF-κB, Twist and Snail were determined by reporter gene system. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, the sensitivity of cancer cells to cisplatin was increased by 1.91- and 2.54- folds respectively, flow cytometry showed that the content of Rh-123 was elevated 1.93- and 2.95- folds and apoptosis rate was increased 2.25- and 3.82- folds, Western blot showed that the expression of multidrug resistance related proteins MDR, Bcl-2 and survivin were downregulated, caspase-3/8 and PTEN was upregulated, phosphorylation of Akt was downregulated as well, real-time assay showed that the mRNA expression of MDR1 was downregulated 43.5% and 25.8%, Bcl-2 was downregulated 57.3% and 34.1%, survivin was downregulated 37.6% and 12.4%, PTEN was upregulated 183.4% and 154.2%, the transcriptional activities of NF-κB was downregulated 53.2% and 34.5%, Twist was downregulated 61.4% and 33.5%, and Snail was downregulated 57.8% and 18.7%. Vinorelbine treatment led to increase of cisplatin sensitivity of A549/DDP cells and the mechanisms included the regulation of PTEN/AKT/NF-κB signal pathway to decreased drug resistance gene expression and increased pro-apoptosis gene expression.

  16. In vitro effects of nicotine on the non-small-cell lung cancer line A549.

    PubMed

    Gao, Tao; Zhou, Xue-Liang; Liu, Sheng; Rao, Chang-Xiu; Shi, Wen; Liu, Ji-Chun

    2016-04-01

    To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (p< 0.05 each). A significant decrease in cell numbers was observed on staining (p< 0.05). Significant changes in the size and shape of cells and concomitant changes in cytoskeletons and organelles were observed by immunofluorescence and electron microscope observation (p< 0.05). The growth inhibitory effects of nicotine on A549 cells were found to be dose-dependent.

  17. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  18. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    PubMed

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of

  19. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells.

    PubMed

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.

  20. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    PubMed

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  1. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells.

    PubMed

    Huang, Zhuqing; Yang, Guotao; Shen, Tao; Wang, Xiaoning; Li, Haizhen; Ren, Dongmei

    2017-05-01

    Dehydrobruceine B (DHB) is a quassinoid isolated from Brucea javanica. We have shown previously that DHB induced apoptosis on two kinds of lung cancer cell lines, A549 and NCI-H292. In the present study, we investigated the interactions of DHB and cisplatin (CDDP) on apoptotic-related cancer cell death. Synergistic effects on cell proliferation and apoptosis were observed when A549 cells were treated with DHB plus CDDP. DHB combined CDDP exposure increased depolarization of mitochondrial membrane potential (MMP) and release of cytochrome c from mitochondria into the cytoplasm. The combination treatment also enhanced protein expression of Bax, reduced the protein levels of Bcl-xL and Bcl-2, and increased the cleavage of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP). These results indicated that DHB sensitized A549 cells to cisplatin by regulating the mitochondrial apoptotic pathway. High constitutive expression of Nrf2 was found in A549 cells, which enhance the resistance of cancer cells to chemotherapeutic agents including cisplatin. DHB reduced the protein levels of Nrf2 and its target genes, which may contribute to the increase of intracellular ROS level, consequently, induced mitochondria apoptosis. These results generated a rationale for further investigation of DHB combined with CDDP as a potential therapeutic strategy in lung cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition.

    PubMed

    Bi, Xiuli; Xia, Xichun; Mou, Teng; Jiang, Bowen; Fan, Dongdong; Wang, Peng; Liu, Yafei; Hou, Yue; Zhao, Yuqing

    2014-11-05

    Numerous compounds isolated from Ginseng have been shown to exhibit various biological activities, including antioxidant, anti-carcinogenic, anti-mutagenic, and anti-tumor activities. Recent research has focused on the potential values of these compounds in the prevention and treatment of human cancers. The anti-tumor activity of 25-hydroxyprotopanaxadiol (25-OH-PPD), a natural compound isolated from Panax ginseng, has been established in previous study. In the current study, we investigated the anti-tumor activity of three derivatives of 25-OH-PPD, namely xl, 1c, and 8b with respect to lung cancer. All three compounds significantly inhibited the growth of the human lung cancer cells A549 and H460. Oral administration of these compounds significantly inhibited the growth of xenograft tumors in mice without affecting body weight. Further mechanistic study demonstrated that these compounds could decrease the expression levels of β-catenin and its downstream targets Cyclin D1, CDK4, and c-myc in lung cancer cells. Taken together, the results suggested that the anti-growth activity exerted by these 25-OH-PPD derivatives against lung cancer cells probably involved β-catenin-mediated signaling pathway, a finding that could have important implication for chemotherapeutic strategy aiming at the treatment of lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  4. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells.

    PubMed

    Hsu, Ya-Ling; Hung, Jen-Yu; Tsai, Ying-Ming; Tsai, Eing-Mei; Huang, Ming-Shyan; Hou, Ming-Feng; Kuo, Po-Lin

    2015-02-18

    This study has two novel findings: it is not only the first to demonstrate that tumor-associated dendritic cells (TADCs) facilitate lung and breast cancer metastasis in vitro and in vivo by secreting inflammatory mediator CC-chemokine ligand 2 (CCL2), but it is also the first to reveal that 6-shogaol can decrease cancer development and progression by inhibiting the production of TADC-derived CCL2. Human lung cancer A549 and breast cancer MDA-MB-231 cells increase TADCs to express high levels of CCL2, which increase cancer stem cell features, migration, and invasion, as well as immunosuppressive tumor-associated macrophage infiltration. 6-Shogaol decreases cancer-induced up-regulation of CCL2 in TADCs, preventing the enhancing effects of TADCs on tumorigenesis and metastatic properties in A549 and MDA-MB-231 cells. A549 and MDA-MB-231 cells enhance CCL2 expression by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the activation of STAT3 induced by A549 and MDA-MB-231 is completely inhibited by 6-shogaol. 6-Shogaol also decreases the metastasis of lung and breast cancers in mice. 6-Shogaol exerts significant anticancer effects on lung and breast cells in vitro and in vivo by targeting the CCL2 secreted by TADCs. Thus, 6-shogaol may have the potential of being an efficacious immunotherapeutic agent for cancers.

  5. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells).

    PubMed

    Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha

    2017-05-01

    Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-04

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  7. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factormore » κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.« less

  8. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  9. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer.

    PubMed

    Geng, Jian; Li, Xiao; Zhou, Zhanmei; Wu, Chin-Lee; Dai, Meng; Bai, Xiaoyan

    2015-04-10

    Enhancer of Zeste Homologue 2 (EZH2) accounts for aggressiveness and unfavorable prognosis of tumor. We investigated the mechanisms and signaling pathways of EZH2 in non-small cell lung carcinoma (NSCLC) progression. Increased expression of EZH2, vascular endothelial growth factor-A (VEGF-A) and AKT phosphorylation correlated with differentiation, lymph node metastasis, size and TNM stage in NSCLC. There was a positive correlation between EZH2 and VEGF-A expression and high EZH2 expression, as an independent prognostic factor, predicted a shorter overall survival time for NSCLC patients. The expression of VEGF-A and phosphorylated Ser(473)-AKT, cell proliferation, migration and metastasis were enhanced in EZH2-overexpressing A549 cells, but inhibited in parental H2087 cells with EZH2 silencing or GSK126 treatment. AKT activity was enhanced by recombinant human VEGF-165 but suppressed by bevacizumab. An AKT inhibitor MK-2206 blocked VEGF-A expression and AKT phosphorylation in parental H2087 and EZH2-overexpressing A549 cells. EZH2 activity was not affected by either VEGF-A stimulation/depletion or MK-2206 inhibition. These results demonstrate that EZH2 promotes lung cancer progression via the VEGF-A/AKT signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  11. Increased hydrostatic pressure enhances motility of lung cancer cells.

    PubMed

    Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.

  12. Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells.

    PubMed

    Su, Zhenzhong; Wang, Ke; Li, Ranwei; Yin, Jinzhi; Hao, Yuqiu; Lv, Xuejiao; Li, Junyao; Zhao, Lijing; Du, Yanwei; Li, Ping; Zhang, Jie

    2016-02-29

    Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells' growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells. Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts. Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and

  13. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    PubMed Central

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201’s cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799

  14. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    PubMed

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.

  15. SiRNA/DOX lodeded chitosan based nanoparticles: Development, Characterization and in vitro evaluation on A549 lung cancer cell line.

    PubMed

    Seifi-Najmi, M; Hajivalili, M; Safaralizadeh, R; Sadreddini, S; Esmaeili, S; Razavi, R; Ahmadi, M; Mikaeili, H; Baradaran, B; Shams-Asenjan, K; Yousefi, M

    2016-09-30

    High-mobility group AT-hook2 (HMGA2), involved in epithelial mesenchymal transition (EMT) process, has a pivotal role in lung cancer metastasis. Lung cancer therapy with HMGA2 suppressing small interfering RNA (siRNA) has been introduced recently while doxorubicin (DOX) has been used as a frequent cancer chemotherapy agent. Both reagents have been faced with obstacles in clinic which make them ineffective. NanoParticles (NPs) provided a platform for efficient co delivery of the anticancer drugs. The aim of this study was production and in vitro characterization of different pharmacological groups (siRNA, DOX or siRNA-DOX) of carboxymethyl dextran thrimethyl chitosan nanoparticles (CMDTMChiNPs) on cytotoxicity, gene expression, apoptosis and migration of metastatic lung cancer cell line (A-549). CMDTMChiNPs were synthesized and encapsulated with siRNA, DOX or siRNA-DOX. Then the effects of HMGA2 siRNA and DOX co delivery was assessed in A549 viability and target genes (HMGA2, Ecadherin, vimentin and MMP9) by MTT and real time PCR, respectively. In addition capability of apoptosis induction and anti-migratory features of formulated NPs were analyzed by flowcytometry and wound healing assays. SiRNA-DOX-CMDTM ChiNPs approximate size were 207±5 with poly dispersity index (PDI) and zeta potential of 0.4 and 16.3±0.3, respectively. NPs loaded with DOX and siRNA were the most efficient drug formulations in A549 cell cytotoxicity, altering of EMT markers, apoptosis induction and migration inhibition. Generally our results showed that co delivery of HMGA2 siRNA and DOX by novel designed CMDTMChiNPs is a new therapeutic approach with great potential efficiency for lung cancer treatment.

  16. TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ.

    PubMed

    Qin, Xia; Qiu, Feng; Zou, Zhen

    2017-11-04

    Lung cancer, in particular, non-small cell lung cancer (NSCLC), is the leading cause of cancer-related mortality. Cis-Diamminedichloroplatinum (cisplatin, CDDP) as first-line chemotherapy for NSCLC, but resistance occurs frequently. We previously reported that Tripartite motif protein 25 (TRIM25) was highly expressed in cisplatin-resistant human lung adenocarcinoma A549 cells (A549/CDDP) in comparison with its parental A549 cells. Herein, we take a further step to demonstrate the association of TRIM25 and cisplatin resistance and also the underlying mechanisms. Knockdown of TRIM25 by RNA interference in A549/CDDP cells decreased half maximal inhibitory concentration (IC 50 ) values and promoted apoptosis in response to cisplatin, whereas overexpression of TRIM25 had opposite effects. More importantly, we found that concomitant knockdown of 14-3-3σ and TRIM25 absolutely reversed the decreased MDM2, increased p53, increased cleaved-Capsese3 and decreased IC 50 value induced by knockdown of TRIM25 individually, suggesting that TRIM25 mediated cisplatin resistance primarily through downregulation of 14-3-3σ. Our results indicate that TRIM25 is associated with cisplatin resistance and 14-3-3σ-MDM2-p53 signaling pathway is involved in this process, suggesting targeting TRIM25 may be a potential strategy for the reversal of cisplatin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Predictive role of computer simulation in assessing signaling pathways of crizotinib-treated A549 lung cancer cells.

    PubMed

    Xia, Pu; Mou, Fei-Fei; Wang, Li-Wei

    2012-01-01

    Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.

  18. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W

    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less

  19. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells.

    PubMed

    Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu

    2014-12-01

    Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.

  20. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells.

    PubMed

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Grzanka, Alina; Grzanka, Dariusz

    2018-02-27

    The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.

  1. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    PubMed

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  2. Lung tumor motion prediction during lung brachytherapy using finite element model

    NASA Astrophysics Data System (ADS)

    Shirzadi, Zahra; Sadeghi Naini, Ali; Samani, Abbas

    2012-02-01

    A biomechanical model is proposed to predict deflated lung tumor motion caused by diaphragm respiratory motion. This model can be very useful for targeting the tumor in tumor ablative procedures such as lung brachytherapy. To minimize motion within the target lung, these procedures are performed while the lung is deflated. However, significant amount of tissue deformation still occurs during respiration due to the diaphragm contact forces. In the absence of effective realtime image guidance, biomechanical models can be used to estimate tumor motion as a function of diaphragm's position. To develop this model, Finite Element Method (FEM) was employed. To demonstrate the concept, we conducted an animal study of an ex-vivo porcine deflated lung with a tumor phantom. The lung was deformed by compressing a diaphragm mimicking cylinder against it. Before compression, 3D-CT image of this lung was acquired, which was segmented and turned into FE mesh. The lung tissue was modeled as hyperelastic material with a contact loading to calculate the lung deformation and tumor motion during respiration. To validate the results from FE model, the motion of a small area on the surface close to the tumor was tracked while the lung was being loaded by the cylinder. Good agreement was demonstrated between the experiment results and simulation results. Furthermore, the impact of tissue hyperelastic parameters uncertainties in the FE model was investigated. For this purpose, we performed in-silico simulations with different hyperelastic parameters. This study demonstrated that the FEM was accurate and robust for tumor motion prediction.

  3. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential.

    PubMed

    Ni, Chien-Hang; Yu, Chun-Shu; Lu, Hsu-Feng; Yang, Jai-Sing; Huang, Hui-Ying; Chen, Po-Yuan; Wu, Shin-Hwar; Ip, Siu-Wan; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-05-01

    Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  4. Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD₂ metabolite, 15d-PGJ₂.

    PubMed

    Wang, Jun-Jie; Mak, Oi-Tong

    2011-11-01

    PGD2 (prostaglandin D2) is a mediator in various pathophysiological processes, including inflammation and tumorigenesis. PGD2 can be converted into active metabolites and is known to activate two distinct receptors, DP (PGD2 receptor) and CRTH2/DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). In the past, PGD2 was thought to be involved principally in the process of inflammation. However, in recent years, several studies have shown that PGD2 has anti-proliferative ability against tumorigenesis and can induce cellular apoptosis via activation of the caspase-dependent pathway in human colorectal cancer cells, leukaemia cells and eosinophils. In the lung, where PGD2 is highly released when sensitized mast cells are challenged with allergen, the mechanism of PGD2-induced apoptosis is unclear. In the present study, A549 cells, a type of NSCLC (non-small cell lung carcinoma), were treated with PGD2 under various conditions, including while blocking DP and CRTH2/DP2 with the selective antagonists BWA868C and ramatroban respectively. We report here that PGD2 induces A549 cell death through the intrinsic apoptotic pathway, although the process does not appear to involve either DP or CRTH2/DP2. Similar results were also found with H2199 cells, another type of NSCLC. We found that PGD2 metabolites induce apoptosis effectively and that 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2) is a likely candidate for the principal apoptotic inducer in PGD2-induced apoptosis in NSCLC A549 cells.

  5. Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line.

    PubMed

    Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei

    2015-10-01

    Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods.

  6. Induction of cell death by pyropheophorbide-α methyl ester-mediated photodynamic therapy in lung cancer A549 cells.

    PubMed

    Tu, Ping-Hua; Huang, Wen-Jun; Wu, Zhan-Ling; Peng, Qing-Zhen; Xie, Zhi-Bin; Bao, Ji; Zhong, Ming-Hua

    2017-03-01

    Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow-cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug- and light- dose dependent characteristics in A549 cells. Additionally, MPPa-PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase-9/caspase-3 signaling activation as well as cell cycle arrest at G 0 /G 1 phase. These results suggested that MPPa-PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. HMGA2 upregulation mediates Cd-induced migration and invasion in A549 cells and in lung tissues of mice.

    PubMed

    Luo, Huiyuan; Li, Zhiguo; Ge, Hong; Mei, Dan; Zhao, Lian; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Cao, Jun

    2017-11-01

    Cadmium (Cd) is a toxic metal widely found in a number of environmental matrices, and it induces serious adverse effects in various organs and tissues. In this study, the role of high mobility group A2 (HMGA2) in promoting migration and invasion in Cd-treated A549 cells and lung tissues of mice was investigated. Our findings showed that exposure to Cd (2 μM) for 48 h or subcutaneous injection of Cd daily for 6 weeks significantly enhanced the expression of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), phosphorylated focal adhesion kinase (p-FAK), and HMGA2 in A549 cells or lung tissues of mice. In A549 cells, HMGA2 knockdown significantly decreased expression of MMP-9, MMP-2 and p-FAK and inhibited the migration and invasion compared to that of only Cd-treated cultures. Overexpression of HMGA2 in HEK-293T cells increased expression of MMP-9, MMP-2 and p-FAK and enhanced the migration and invasion compared with the empty vector transfection group. In conclusion, upregulation of HMGA2 plays an important role in Cd-enhanced migration and invasion. Suppressing HMGA2 expression might have potential values in prevention of Cd-resulted toxicities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  9. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  10. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT.

    PubMed

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-16

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  11. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  12. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models.

    PubMed

    Baker, Amanda F; Hanke, Neale T; Sands, Barbara J; Carbajal, Liliana; Anderl, Janet L; Garland, Linda L

    2014-12-31

    Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.

  13. [Epidemiology of lung tumors].

    PubMed

    Ott, S; Geiser, T

    2012-07-01

    Approximately one out of 500 chest radiographs shows the incidental finding of a solitary pulmonary nodule and almost one half of these pulmonary lesions are caused by a tumor. Unfortunately, only 2% to 5% of all lung tumors are of benign origin, e. g. lipoma, fibroma, hamartoma, and chondroma, and the majority are malignant neoplasms, most commonly primary lung cancer followed by metastases of extrapulmonary primary carcinomas. Thus, a careful diagnostic work up of solitary pulmonary nodules, including histological diagnosis, is mandatory for an adequate management and treatment of patients with pulmonary lesions. Despite all recent improvements of treatment modalities, lung cancer continues to be a major cause of morbidity and mortality among malignant diseases worldwide. The prognosis of affected patients is still very poor and a 5-years survival rate of only 14% makes lung cancer the number one cause of death due to cancer in Switzerland. Active and passive tobacco smoking are by far the best known risk factor for the development of lung cancer, but there are severe other probably less known factors that may increase the individual risk for malignant neoplasms of the lung. These risk factors include e. g. exposure to natural ionic radiation, consisting of terrestrial radiation and indoor radiation caused by radon gas, exposure to respirable dust and Diesel engine emissions, asbestos, and polycyclic aromatic hydrocarbons. In the majority of cases, the latency between exposure and development of cancer is years to decades and the person concerned was occupationally exposed. Therefore, a detailed evaluation of a patient's medical and occupational history is needed. Due to its poor prognosis, prevention and early diagnosis of lung cancer is crucial to improve our patients' outcome. Good knowledge of epidemiology and aetiology of pulmonary tumors is the key to preventive measures and identification of individuals at increased risk for lung cancer. An overview will

  14. Lung tumor induction in strain A mice with benzotrichloride.

    PubMed

    Stoner, G D; You, M; Morgan, M A; Superczynski, M J

    1986-11-01

    Benzotrichloride (BTC) is used in the synthesis of benzoyl chloride and benzoyl peroxide. Epidemiological data suggest that BTC is a human lung carcinogen. In the present study, BTC was evaluated for its ability to induce lung adenomas in strain A/J mice. Four groups of 15 male and 15 female A/J mice were injected i.p. with either tricaprylin or BTC in tricaprylin three times a week for 8 weeks. BTC groups received doses totaling 1440 mg/kg, 719 mg/kg or 287 mg/kg. The mean number of lung tumors per mouse was 127 87 +/- 5.81, 43 +/- 2.44, and 17.73 +/- 1.09 in the groups treated with either 1440 mg/kg, 719 mg/kg, or 287 mg/kg, respectively. Tricaprylin-vehicle controls had a mean number of 0.46 +/- 0.15 lung tumors per mouse. Therefore, BTC produced a significant (P less than 0.001) and dose-related increase in the lung tumor response when compared to tricaprylin controls and is a potent carcinogen in the strain A mouse lung tumor bioassay.

  15. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel.

    PubMed

    Li, Bin; Zhang, Xiao-Xue; Huang, Hao-Yan; Chen, Li-Qing; Cui, Jing-Hao; Liu, Yanli; Jin, Hehua; Lee, Beom-Jin; Cao, Qing-Ri

    2018-05-30

    This study aims to construct and evaluate RGD-decorated chitosan (CS)-functionalized pH-responsive single-walled carbon nanotube (SWCNT) carriers using docetaxel (DTX) as a model anticancer drug. DTX was loaded onto SWCNT via π-π stacking interaction (SWCNT-DTX), followed by the non-covalent conjugation of RGD-decorated CS to SWCNT-DTX to prepare RGD-CS-SWCNT-DTX. The RGD-CS-SWCNT-DTX showed significantly higher drug release than the pure drug, giving higher release rate at pH 5.0 (68%) than pH 7.4 (49%). The RGD-CS-SWCNT-DTX could significantly inhibit the growth of A549 tumor cells in vitro, and the uptake amount of A549 cells was obviously higher than that of MCF-7 cells. Meanwhile, the cellular uptake of RGD-CS-SWCNT-DTX was higher than that of CS-SWCNT-DTX in A549 cells, mainly through clathrin and caveolae-mediated endocytosis. The RGD-CS-SWCNT-DTX significantly inhibited tumor growth of A549 cell-bearing nude mice through active tumor-targeting ability. Furthermore, no pathological changes were found in tissues and organs. The result demonstrated that RGD-CS-SWCNT-DTX displayed high drug loading, pH-responsive drug release, remarkable antitumor effect in vitro and in vivo, and also good safety to animal body. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  17. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level.

    PubMed

    Han, Yong Hwan; Park, Woo Hyun

    2010-07-01

    Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC(50) of approximately 20 microM at 24 hours. DNA flow cytometric analysis indicated that 0.5 approximately 30 microM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 microM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Delta psi m). The intracellular ROS levels including O(2) (*-) were strongly increased in 10 or 30 microM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 microM MG132-treated cells. Furthermore, 10 or 30 microM MG132 increased mitochondrial O(2) (*- ) level but 0.1, 0.5 or 1 microM MG132 decreased that. In addition, 10 or 30 microM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.

  18. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.

    PubMed

    Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M; Vondráček, Jan; Machala, Miroslav

    2018-08-01

    Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h

  20. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    PubMed

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  1. Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells.

    PubMed

    Miyayama, Takamitsu; Matsuoka, Masato

    2016-01-01

    While silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary cytotoxicity is not clear. AgNP agglomerates are found in endo-lysosomal structures within the cytoplasm of treated cells. In this study, the functional role of lysosomes in AgNP-induced cellular damage was examined in A549 human lung alveolar epithelial cells. We evaluated the intracellular distribution of AgNPs, lysosomal pH, cellular viability, Ag dissolution, and metallothionein (MT) mRNA levels in AgNP-exposed A549 cells that were treated with bafilomycin A1, the lysosomal acidification inhibitor. Exposure of A549 cells to citrate-coated AgNPs (20 nm diameter) for 24 h induced cellular damage and cell death at 100 and 200 μg Ag/ml, respectively. Confocal laser microscopic examination of LysoTracker-stained cells showed that AgNPs colocalized with lysosomes and their agglomeration increased in a dose-dependent manner (50-200 μg Ag/ml). In addition, the fluorescence signals of LysoTracker were reduced following exposure to AgNPs, suggesting the elevation of lysosomal pH. Treatment of A549 cells with 200 nM bafilomycin A1 and AgNPs (50 μg Ag/ml) further reduced the fluorescence signals of LysoTracker. AgNP-induced cell death was also increased by bafilomycin A1 treatment. Finally, treatment with bafilomycin A1 suppressed the dissolution of Ag and decreased the mRNA expression levels of MT-I and MT-II following exposure to AgNPs. The perturbation of lysosomal pH by AgNP exposure may play a role in AgNP agglomeration and subsequent cellular damage in A549 cells.

  2. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis.

    PubMed

    Holla, Sahana; Ghorpade, Devram Sampat; Singh, Vikas; Bansal, Kushagra; Balaji, Kithiganahalli Narayanaswamy

    2014-09-11

    Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guérin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-α in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain- and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-α treatment. Here, we show that BCG inhibits TNF-α-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-α-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.

  3. IDENTIFICATION OF A NOVEL CLASS OF ANTI-INFLAMMATORY COMPOUNDS WITH ANTI-TUMOR ACTIVITY IN COLORECTAL AND LUNG CANCERS

    PubMed Central

    Chang, Hui-Hua; Song, Zuohe; Wisner, Lee; Tripp, Tina; Gokhale, Vijay

    2011-01-01

    Summary Chronic inflammation is associated with 25% of all cancers. In the inflammation-cancer axis, prostaglandin E2 (PGE2) is one of the major players. PGE2 synthases (PGES) are the enzymes downstream of the cyclooxygenases (COXs) in the PGE2 biosynthesis pathway. Microsomal prostaglandin E2 synthase 1 (mPGES-1) is inducible by pro-inflammatory stimuli and constitutively expressed in a variety of cancers. The potential role for this enzyme in tumorigenesis has been reported and mPGES-1 represents a novel therapeutic target for cancers. In order to identify novel small molecule inhibitors of mPGES-1, we screened the ChemBridge library and identified 13 compounds as potential hits. These compounds were tested for their ability to bind directly to the enzyme using surface plasmon resonance spectroscopy and to decrease cytokine-stimulated PGE2 production in various cancer cell lines. We demonstrate that the compound PGE0001 (ChemBridge ID number 5654455) binds to human mPGES-1 recombinant protein with good affinity (KD = 21.3 ± 7.8 μM). PGE0001 reduces IL-1β-induced PGE2 release in human HCA-7 colon and A549 lung cancer cell lines with EC50 in the submicromolar range. Although PGE0001 may have alternative targets based on the results from in vitro assays, it shows promising effects in vivo. PGE0001 exhibits significant anti-tumor activity in SW837 rectum and A549 lung cancer xenografts in SCID mice. Single injection i.p. of PGE0001 at 100 mg/kg decreases serum PGE2 levels in mice within 5 h. In summary, our data suggest that the identified compound PGE0001 exerts anti-tumor activity via the inhibition of the PGE2 synthesis pathway. PMID:21931968

  4. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa

    2018-02-15

    Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.

  5. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    PubMed

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  6. Chemically-induced mouse lung tumors: applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism

  7. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  8. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling

    PubMed Central

    Zheng, Hongming; Zheng, Liang; Liu, Wenqin; Wu, Jinjun; Ou, Rilan; Zhang, Guiyu; Li, Fangyuan; Hu, Ming; Liu, Zhongqiu; Lu, Linlin

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial–mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment. PMID:27119499

  9. Increased levels of the long noncoding RNA, HOXA-AS3, promote proliferation of A549 cells.

    PubMed

    Zhang, Hongyue; Liu, Ying; Yan, Lixin; Zhang, Min; Yu, Xiufeng; Du, Wei; Wang, Siqi; Li, Qiaozhi; Chen, He; Zhang, Yafeng; Sun, Hanliang; Tang, Zhidong; Zhu, Daling

    2018-06-13

    Many long noncoding RNAs (lncRNAs) have been identified as powerful regulators of lung adenocarcinoma (LAD). However, the role of HOXA-AS3, a novel lncRNA, in LAD is largely unknown. In this study, we showed that HOXA-AS3 was significantly upregulated in LAD tissues and A549 cells. After knockdown of HOXA-AS3, cell proliferation, migration, and invasion were inhibited. Xenografts derived from A549 cells transfected with shRNA/HOXA-AS3 had significantly lower tumor weights and smaller tumor volumes. We also demonstrated that HOXA-AS3 increased HOXA6 mRNA stability by forming an RNA duplex. In addition, HOXA6 promoted cell proliferation, migration, and invasion in vitro. Using a RNA pull-down assay, we found that HOXA-AS3 bonded with NF110, which regulated the cell localization of HOXA-AS3. Moreover, histone acetylation was involved in upregulation of HOXA-AS3. These results demonstrate that HOXA-AS3 was activated in LAD and supported cancer cell progression. Therefore, inhibition of HOXA-AS3 could be an effective targeted therapy for patients with LAD.

  10. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients.

    PubMed

    Yagi, Satomi; Koh, Yasuhiro; Akamatsu, Hiroaki; Kanai, Kuninobu; Hayata, Atsushi; Tokudome, Nahomi; Akamatsu, Keiichiro; Endo, Katsuya; Nakamura, Seita; Higuchi, Masayuki; Kanbara, Hisashige; Nakanishi, Masanori; Ueda, Hiroki; Yamamoto, Nobuyuki

    2017-01-01

    Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal blood cells. Herein, we evaluated the system using blood samples from non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. To evaluate the recovery of CTCs, preclinical experiments were performed by spiking NSCLC cell lines (NCI-H820, A549, NCI-H23 and NCI-H441) into peripheral whole blood samples from healthy volunteers. The recovery rates were 70% or more in all cell lines. For clinical evaluation, 6 mL of peripheral blood was collected from 50 patients with advanced lung cancer and from 10 healthy donors. Cells recovered on the filter were stained. We defined CTCs as DAPI-positive, cytokeratin-positive, and CD45-negative cells under the fluorescence microscope. The 50 lung cancer patients had a median age of 72 years (range, 48-85 years); 76% had NSCLC and 20% had SCLC, and 14% were at stage III disease whereas 86% were at stage IV. One or more CTCs were detected in 80% of the lung cancer patients (median 2.5). A comparison of the CellSearch system with our MCA system, using the samples from NSCLC patients, confirmed the superiority of our system (median CTC count, 0 versus 11 for CellSearch versus MCA; p = 0.0001, n = 17). The study results suggest that our MCA system has good clinical potential for diagnosing CTCs in lung cancer.

  11. Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 Peptide for Tumor Targeting.

    PubMed

    Kazemi, Ziba; Zahmatkesh, Mona Haddad; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2017-08-24

    D4 small peptide (Leu-Ala-Arg-Leu-Leu-Thr) was selected as an appropriate agent for specific targeting of epidermal growth factor receptor (EGFR). The aim of study was to investigate the 99mTc-labeled D4 peptide for non-small cell lung tumor targeting. HYNIC-(Ser)3-D4 peptide was labeled with 99mTc using mixture of tricine and ethylenediamine diacetic acid (EDDA) as co-ligands. The in vitro cellular uptake of radiolabeled peptide was evaluated by blocking test on human non-small cell lung cancer (A-549) cell line and its biodistribution was evaluated in A-549 xenografted nude mice. This conjugated peptide was labeled with 99mTc in high radiochemical purity and it was highly stable in buffer and serum. The un-blocked to blocked cellular radioactivity ratio was 4- fold that showed a specific binding of this radiolabeled peptide on A-549 cell. Animal biodistribution in A-549 xenografted nude mice showed rapid clearance from blood and other non-target organs. Tumor uptake values as %ID/g (percentage of injection dose per gram of tissue) were 2.47% and 1.30% at 1 and 4 h after injection. This study showed the 99mTc-EDDA/tricine-HYNIC-(Ser)3-D4 peptide had tumor targeting on the non-small cell lung tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells

    PubMed Central

    2013-01-01

    Background Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells. Results In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment. Conclusions The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells PMID:23506616

  13. MicroRNA-9 functions as a tumor suppressor and enhances radio-sensitivity in radio-resistant A549 cells by targeting neuropilin 1.

    PubMed

    Xiong, Kai; Shao, Li Hong; Zhang, Hai Qin; Jin, Linlin; Wei, Wei; Dong, Zhuo; Zhu, Yue Quan; Wu, Ning; Jin, Shun Zi; Xue, Li Xiang

    2018-03-01

    Radiotherapy is commonly used to treat lung cancer but may not kill all cancer cells, which may be attributed to the radiotherapy resistance that often occurs in non-small cell lung cancer (NSCLC). At present, the molecular mechanism of radio-resistance remains unclear. Neuropilin 1 (NRP1), a co-receptor for vascular endothelial growth factor (VEGF), was demonstrated to be associated with radio-resistance of NSCLC cells via the VEGF-phosphoinositide 3-kinase-nuclear factor-κB pathway in our previous study. It was hypothesized that certain microRNAs (miRs) may serve crucial functions in radio-sensitivity by regulating NRP1. Bioinformatics predicted that NRP1 was a potential target of miR-9, and this was validated by luciferase reporter assays. Functionally, miR-9-transfected A549 cells exhibited a decreased proliferation rate, increased apoptosis rate and attenuated migratory and invasive abilities. Additionally, a high expression of miR-9 also significantly enhanced the radio-sensitivity of A549 cells in vitro and in vivo . These data improve understanding of the mechanisms of cell radio-resistance, and suggest that miR-9 may be a molecular target for the prediction of radio-sensitivity in NSCLC.

  14. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    PubMed

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  15. Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    PubMed Central

    Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan

    2011-01-01

    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536

  16. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  17. Efficacy of a cancer vaccine against ALK-rearranged lung tumors

    PubMed Central

    Voena, Claudia; Di Giacomo, Filomena; Longo, Dario Livio; Castella, Barbara; Merlo, Maria Elena Boggio; Ambrogio, Chiara; Wang, Qi; Minero, Valerio Giacomo; Poggio, Teresa; Martinengo, Cinzia; D'Amico, Lucia; Panizza, Elena; Mologni, Luca; Cavallo, Federica; Altruda, Fiorella; Butaney, Mohit; Capelletti, Marzia; Inghirami, Giorgio; Jänne, Pasi A.; Chiarle, Roberto

    2015-01-01

    Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKIs), but is successful for only a limited amount of time; most cases relapse due to the development of drug resistance. Here we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC. PMID:26419961

  18. Taspine derivative 12k suppressed A549 cell migration through the Wnt/β-catenin and EphrinB2 signaling pathway.

    PubMed

    Dai, Bingling; Ma, Yujiao; Yang, Tianfeng; Wang, Wenjie; Zhang, Yanmin

    2017-03-01

    12k, a taspine derivative, has been demonstrated to have the potent anti-tumor activity in lung cancer and colorectal cancer. The study aims to further explore the underlying mechanisms of 12k on A549 cell migration in vitro. Our data demonstrated that 12k negatively regulated Wnt signaling pathway by suppressing the phosphorylation of LRP5/6, and inhibiting the expression and nuclear translocation of β-catenin. 12k was shown to downregulate MMP3 and MMP7 expression which regulated by β-catenin interacts with TCF/LEF in the nucleus, and effectively impaired the related migration protein expression of MMP2 and MMP9 in A549 cells. In addition, 12k repressed the EphrinB2 and its PDZ protein, impairing the VEGFR2 and VEGFR3 expression in A549 cells, as well as inhibited the downstream of VEGFR2 included PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Taken together, our findings revealed that 12k suppressed migration of A549 cells through the Wnt/β-catenin signaling pathway and EphrinB2 related signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Targeted Magnetic Hyperthermia for Lung Cancer

    DTIC Science & Technology

    2012-09-01

    Despite significant advances in diagnostic techniques an d the disco very of new molecularl y targeted therapies , lung cancer (specifically, non-small...vibrating sample magneto metry) and heating rates. The effect of MH on overall tumor cell kill was determined in A549 cells (NSCLCs) based on the amou nt of

  20. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    PubMed

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  1. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, W; Bai, W; Zhang, W

    2014-08-01

    Curcumin, a natural phytochemical, exhibits potent anticancer activities. Here, we sought to determine the molecular mechanisms underlying the cytotoxic effects of curcumin against human non-small cell lung cancer (NSCLC) cells. MTT assay and annexin-V/PI staining were used to analyze the effects of curcumin on the proliferation and apoptosis of A549 cells. The expression of microRNA-21 in curcumin-treated A549 cells was measured by quantitative real-time polymerase chain reaction assay. The protein level of phosphatase and tensin homolog (PTEN), a putative target of microRNA-21, was determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA was performed to modulate the expression of microRNA-21 and PTEN under the treatment of curcumin. Curcumin at 20-40 μM inhibited cell proliferation and induced apoptosis in A549 cells. Curcumin treatment produced a dose-dependent and significant (P < 0.05) suppression of microRNA-21 expression, compared to untreated A549 cells. Moreover, the protein level of PTEN, a putative target of microRNA-21, was significantly elevated in curcumin-treated A549 cells, as determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA significantly (P < 0.05) reversed the growth suppression and apoptosis induction by curcumin, compared to corresponding controls. Our data suggest a novel molecular mechanism in which inhibition of microRNA-21 and upregulation of PTEN mediate the anticancer activities of curcumin in NSCLC cells. Suppression of microRNA-21 may thus have therapeutic benefits against this malignancy.

  2. Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy.

    PubMed

    Wang, Jidong; Lu, Wenjing; Tang, Chuanhao; Liu, Yi; Sun, Jiashu; Mu, Xuan; Zhang, Lin; Dai, Bo; Li, Xiaoyan; Zhuo, Hailong; Jiang, Xingyu

    2015-12-01

    We develop an inertial-based microfluidic cell sorter combined with an integrated membrane filter, allowing for size-based, label-free, and high-efficiency separation and enrichment of circulating tumor cells (CTCs) in whole blood. The cell sorter is composed of a double spiral microchannel that hydrodynamically focuses and separates large CTCs from small blood cells. The focused CTCs with the equilibrium position around the midline of microchannel are further captured and enriched by a membrane filter (pore size of 8 μm) attached at the middle outlet. This integrated microfluidic device can process 1 mL of whole blood containing spiked tumor cells (A549, human lung adenocarcinoma epithelial cell line) within 15 min, with the capture efficiency of 74.4% at the concentration as low as tens of A549 cells per mL of whole blood. This microfluidic cell sorter is further adopted for isolation of CTCs from peripheral blood samples of patients with metastatic lung cancer. The immunostaining and CK-19 mRNA detection are applied for identification of captured CTCs, showing that our method can detect 90% of metastatic lung cancer patients before therapy, whereas the commercially used system can only detect 40% of the same patients. We also use the expression of CK-19 mRNA from captured CTCs as an indicator for monitoring the therapeutic efficiency, which correlates well with X-ray computed tomography (CT) assessment of the disease.

  3. [Study on thaspine in inducing apoptosis of A549 cell].

    PubMed

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  4. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer

    PubMed Central

    Jin, Xin; Yang, Qing; Zhang, Youwen

    2017-01-01

    To develop an alternative treatment for lung cancer, a combination of two potent chemotherapeutic agents – liposomal apigenin and tyroservatide – was developed. The therapeutic potential of this combination was investigated using A549 cells. Apigenin and tocopherol derivative-containing D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) liposomes might improve the delivery of apigenin to tumor cells, both in vitro and in vivo. Importantly, compared to either agent alone, the combination of apigenin TPGS liposomes and tyroservatide exhibited superior cytotoxicity, induced stronger G2 arrest, and suppressed A549 cancer cell invasion at a lower dose. The proapoptotic synergistic effects were also observed in A549 cells using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, flow cytometry, and Western blot analysis. More importantly, in vivo results showed that the combination of apigenin TPGS liposomes and tyroservatide exhibited tumor-growth inhibitory effects in A549 cell-bearing mice. In conclusion, our study showed that this combination therapy could serve as a promising synergistic therapeutic approach to improve outcomes in patients with lung cancer. PMID:28761344

  6. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer.

    PubMed

    Jin, Xin; Yang, Qing; Zhang, Youwen

    2017-01-01

    To develop an alternative treatment for lung cancer, a combination of two potent chemotherapeutic agents - liposomal apigenin and tyroservatide - was developed. The therapeutic potential of this combination was investigated using A549 cells. Apigenin and tocopherol derivative-containing D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) liposomes might improve the delivery of apigenin to tumor cells, both in vitro and in vivo. Importantly, compared to either agent alone, the combination of apigenin TPGS liposomes and tyroservatide exhibited superior cytotoxicity, induced stronger G2 arrest, and suppressed A549 cancer cell invasion at a lower dose. The proapoptotic synergistic effects were also observed in A549 cells using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, flow cytometry, and Western blot analysis. More importantly, in vivo results showed that the combination of apigenin TPGS liposomes and tyroservatide exhibited tumor-growth inhibitory effects in A549 cell-bearing mice. In conclusion, our study showed that this combination therapy could serve as a promising synergistic therapeutic approach to improve outcomes in patients with lung cancer.

  7. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro.

    PubMed

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.

  8. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models bothmore » in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.« less

  9. MiroRNA-188 Acts as Tumor Suppressor in Non-Small-Cell Lung Cancer by Targeting MAP3K3.

    PubMed

    Zhao, Lili; Ni, Xin; Zhao, Linlin; Zhang, Yao; Jin, Dan; Yin, Wei; Wang, Dandan; Zhang, Wei

    2018-04-02

    Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer. MicroRNAs have been increasingly implicated in NSCLC and may serve as novel therapeutic targets to combat cancer. Here we investigated the functional implication of miR-188 in NSCLC. We first analyzed miR-188 expression in both NSCLC clinical samples and cancer cell lines. Next we investigated its role in A549 and H2126 cells with cell proliferation, migration, and apoptosis assays. To extend the in vitro study, we employed both xenograft model and LSL- K-ras G12D lung cancer model to examine the role of miR-188 in tumorigenesis. Last we tested MAP3K3 as miR-188 target in NSCLC model. MiR-188 expression was significantly downregulated at the NSCLC tumor sites and lung cancer cells. In vitro transfection of miR-188 reduced cell proliferation and migration potential and promoted cell apoptosis. In xenograft model, miR-188 inhibited tumor growth derived from cancer cells. Intranasal miR-188 administration reduced tumor formation in NSCLC animal model. MAP3K3 was validated as direct target of miR-188. Knocking down MAP3K3 in mice also inhibited tumorigenesis in LSL- K-ras G12D model. Our results demonstrate that miR-188 and its downstream target MAP3K3 could be a potential therapeutic target for NSCLC.

  10. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  11. Efficacy of a Cancer Vaccine against ALK-Rearranged Lung Tumors.

    PubMed

    Voena, Claudia; Menotti, Matteo; Mastini, Cristina; Di Giacomo, Filomena; Longo, Dario Livio; Castella, Barbara; Merlo, Maria Elena Boggio; Ambrogio, Chiara; Wang, Qi; Minero, Valerio Giacomo; Poggio, Teresa; Martinengo, Cinzia; D'Amico, Lucia; Panizza, Elena; Mologni, Luca; Cavallo, Federica; Altruda, Fiorella; Butaney, Mohit; Capelletti, Marzia; Inghirami, Giorgio; Jänne, Pasi A; Chiarle, Roberto

    2015-12-01

    Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKI), but the treatment is successful for only a limited amount of time; most patients experience a relapse due to the development of drug resistance. Here, we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC. ©2015 American Association for Cancer Research.

  12. Activation of interferon regulatory factor-3 via toll-like receptor 3 and immunomodulatory functions detected in A549 lung epithelial cells exposed to misplaced U1-snRNA.

    PubMed

    Sadik, Christian D; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko

    2009-08-01

    U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-beta (IFN-beta), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-beta promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A(1), an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-alpha, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.

  13. Apatinib resensitizes cisplatin-resistant non-small cell lung carcinoma A549 cell through reversing multidrug resistance and suppressing ERK signaling pathway.

    PubMed

    Liu, Z-L; Jin, B-J; Cheng, C-G; Zhang, F-X; Wang, S-W; Wang, Y; Wu, B

    2017-12-01

    To observe the reversal effect of apatinib on the resistance to cisplatin (DDP) of A549/cisplatin (A549/DDP) cells and its relevant mechanism. A549/DDP cells were treated with the control method, apatinib alone, DDP alone and DDP combined with apatinib. The cell proliferation was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the cell clone formation assay. The cell apoptosis was detected by Hoechst 33258 staining and annexin V and propidium iodide (PI) double labeling. The changes in apoptotic proteins, multidrug resistance protein 1 (MDR1) and extracellular signal-regulated kinase (ERK) signaling pathway proteins in each group after treatment were detected by Western blotting. MTT assay results showed that compared with A549 cells, A549/DDP cells had obvious resistance to DDP. MTT assay and cell clone formation assay revealed that the tumor inhibition rate of the sub-lethal dose of apatinib (10 μM) combined with DDP was higher than that of DDP alone. The apoptosis detection results indicated that the proportion of apoptotic cells in the apatinib (10 μM) combined with DDP group was significantly increased. Western blotting results revealed that compared with that in parental A549 cells, the expression level of MDR1 in A549/DDP cells was significantly increased, and the ERK signaling pathway was activated. In the apatinib combined with DDP group, the levels of cleaved caspase-3, cleaved caspase-9 and B-cell lymphoma-2 (Bcl-2)-associated X (BAX) proteins were significantly upregulated, while the level of Bcl-2 proteins was downregulated. Apatinib could inhibit the expression of MDR1 and the activity of the ERK signaling pathway in a dose-dependent manner. Apatinib can restore the sensitivity of A549/DDP cells to DDP by down-regulating the expression level of MDR1 and inhibiting the activity of the ERK signaling pathway.

  14. Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells.

    PubMed

    Yoshino, Hironori; Murakami, Kanna; Nawamaki, Mikoto; Kashiwakura, Ikuo

    2018-05-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in cellular defense against oxidative stress. Recent studies have demonstrated that Nrf2 is a useful target for cancer treatment, including radiation therapy. Ionizing radiation affects, not only the irradiated cells, but also the non-irradiated neighboring cells, and this effect is known as radiation-induced bystander effect. Upon exposure to radiation, the irradiated cells transmit signals to the non-irradiated cells via gap junctions or soluble factors. These signals in turn cause biological effects, such as a decrease in the clonogenic potential and cell death, in the non-irradiated neighboring cells. Nrf2 inhibition enhances cellular radiosensitivity. However, whether this modification of radiosensitivity by Nrf2 inhibition affects the radiation-induced bystander effects is unknown. In this study, we prepared an Nrf2 knockdown human lung cancer cell A549 and investigated whether the effects of irradiated cell conditioned medium (ICCM) on cell growth and cell death induction of non-irradiated cells vary depending on the Nrf2 knockdown. We found that Nrf2 knockdown resulted in a decrease in the cell growth and an increase in the radiosensitivity of A549 cells. When non-irradiated A549 cells were transfected with control siRNA and treated with ICCM, no significant difference was observed in the cell growth and proportion of Annexin V + dead cells between ICCM from non-irradiated cells and that from 2 or 8 Gy-irradiated cells. Similarly, no significant difference was observed in the cell growth and cell death induction upon treatment with ICCM in the Nrf2 knockdown A549 cells. Taken together, these results suggest that Nrf2 knockdown decreases cell growth and enhances the radiosensitivity of A549 cells; however, it does not alter the effect of ICCM on cell growth.

  15. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells.

    PubMed

    Crespo, Rosana; Villaverde, M Luciana; Girotti, Juan R; Güerci, Alba; Juárez, M Patricia; de Bravo, Margarita G

    2011-06-14

    Ulomoides dermestoides (Fairmaire, 1893) is a cosmopolitan tenebrionid beetle reared by Argentine people who consume them alive as an alternative medicine in the treatment of different illnesses such as asthma, Parkinson's, diabetes, arthritis, HIV and specially cancer. To evaluate the cytotoxicity and DNA damage of the major volatile components released by Ulomoides dermestoides on human lung carcinoma epithelial cell line A549. The defence compounds of Ulomoides dermestoides were extracted with dichloromethane and analyzed and quantified by capillary gas chromatography. The toxicity effects of the beetle's extract against A549 cell line were evaluated. Cytotoxicity was evaluated by MTT test and Trypan blue assay and genotoxicity was evaluated by the comet assay. The synthetic compounds, individually or combined, were also tested in A549 cells and normal mononuclear human cells. The defence compounds of Ulomoides dermestoides extracted with dichloromethane (methyl-1,4-benzoquinones, ethyl-1,4-benzoquinones and 1-pentadecene as major components) showed cytotoxic activity on A549 cells demonstrated by MTT test and Trypan blue assay, with IC(50) values of 0.26equivalent/ml and 0.34equivalent/ml, respectively (1equivalent=amount of components extracted per beetle). The inhibition of A549 cell proliferation with the synthetic blend (1,4-benzoquinone and 1-pentadecene) or 1,4-benzoquinone alone was similar to that obtained with the insect extract. 1-Pentadecene showed no inhibitory effect. Low doses of insect extract or synthetic blend (0.15equivalent/ml) inhibited mononuclear cell proliferation by 72.2±2.7% and induced significant DNA damage both in tumor and mononuclear cells. Results of this study demonstrated that defence compounds of Ulomoides dermestoides reduced cell viability and induced DNA damage. We also concluded that the insect benzoquinones are primarily responsible for inducing cytotoxicity and genotoxicity in culture cells. Copyright © 2011 Elsevier

  16. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  17. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Mesh structure of two-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell lung cancer].

    PubMed

    Xiong, Zeng; Zhou, Hui; Liu, Jin-Kang; Hu, Cheng-Ping; Zhou, Mo-Ling; Xia, Yu; Zhou, Jian-Hua

    2009-11-01

    To investigate the structural characteristics and clinical significance of two-dimensional tumor microvascular architecture phenotype (2D-TMAP) in non-small cell lung cancer (NSCLC). Thirty surgical specimens of NSCLC were collected. The sections of the tumor tissues corresponding to the slice of CT perfusion imaging were selected to construct the 2D-TMAP expression. Spearman correlation analysis was used to examine the relation between the 2D-TMAP expression and the clinicopathological features of NSCLC. A heterogeneity was noted in the 2D-TMAP expression of NSCLC. The microvascular density (MVD) in the area surrounding the tumor was higher than that in the central area, but the difference was not statistically significant. The density of the microvessels without intact lumen was significantly greater in the surrounding area than in the central area (P=0.030). The total MVD was not correlated to tumor differentiation (r=0.042, P=0.831). The density of the microvessels without intact lumen in the surrounding area was positively correlated to degree of tumor differentiation and lymph node metastasis (r=0.528 and 0.533, P=0.041 and 0.028, respectively), and also to the expressions of vascular endothelial growth factor (VEGF), ephrinB2, EphB4, and proliferating cell nuclear antigen (PCNA) (r=0.504, 0.549, 0.549, and 0.370; P=0.005, 0.002, 0.002, and 0.048, respectively). The degree of tumor differentiation was positively correlated to PCNA and VEGF expression (r=0.604 and 0.370, P=0.001 and 0.048, respectively), but inversely to the integrity of microvascular basement membrane (r=-0.531, P=0.033). The 2D-TMAP suggests the overall state of the micro-environment for tumor growth. The 2D-TMAP of NSCLC regulates angiogenesis and tumor cell proliferation through a mesh-like structure, and better understanding of the characteristics and possible mechanism of 2D-TMAP expression can be of great clinical importance.

  19. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  20. CCDC106 promotes non-small cell lung cancer cell proliferation.

    PubMed

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  1. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study.

    PubMed

    Kathiravan, Govindarajan; Sureban, Sripathi M

    2009-12-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer.

  2. [A case of lung abscess during chemotherapy for testicular tumor].

    PubMed

    Hayashi, Yujiro; Miyago, Naoki; Takeda, Ken; Yamaguchi, Yuichiro; Nakayama, Masashi; Arai, Yasuyuki; Kakimoto, Ken-ichi; Nishimura, Kazuo

    2014-05-01

    32-year-old man was seen in a clinic because of prolonged cough and slight-fever. Chest X-ray showed multiple pulmonary nodules, and multiple lung and mediastinal lymph node metastases from right testicular tumor was suspected by positron emission tomography/CT (PET/CT) scan. He was diagnosed with right testicular germ cell tumor (embryonal carcinoma + seminoma, pT2N1M1b), and classified into the intermediate risk group according to International Germ Cell Cancer Collaborative Group. He underwent 4 cycles of chemotherapy with bleomycin, etoposide and cisplatin (BEP therapy). During BEP therapy, sputum with foul odor appeared and chest CT scan revealed lung abscess with a necrotic lesion of metastatic tumor. The lung abscess was treated successfully with antibiotics.

  3. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging.

    PubMed

    Price, Dominique N; McBride, Amber A; Anton, Martina; Kusewitt, Donna F; Norenberg, Jeffrey P; MacKenzie, Debra A; Thompson, Todd A; Muttil, Pavan

    2016-01-01

    Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.

  4. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging

    PubMed Central

    Anton, Martina; Kusewitt, Donna F.; Norenberg, Jeffrey P.; MacKenzie, Debra A.; Thompson, Todd A.; Muttil, Pavan

    2016-01-01

    Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models. PMID:28036366

  5. Effects of exogenous IL-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T cells.

    PubMed

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan

    2018-02-14

    This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.

  6. CXCL16 and CXCR6 Are Coexpressed in Human Lung Cancer In Vivo and Mediate the Invasion of Lung Cancer Cell Lines In Vitro

    PubMed Central

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301

  7. Aromatase inhibitors in human lung cancer therapy.

    PubMed

    Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J

    2005-12-15

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.

  8. Ang-2 promotes lung cancer metastasis by increasing epithelial-mesenchymal transition

    PubMed Central

    Zheng, Wenjie; Wang, Li; Fang, Miao; Wu, Mengna; Yao, Min; Yao, Dengfu

    2018-01-01

    Lung cancer is the most common malignant tumor with increasing angiopoietin-2 (Ang-2) and a high rate of metastasis. However, the mechanism of Ang-2 enhancing tumor proliferation and facilitating metastasis remains to be clarified. In this study, Ang-2 expression and its gene transcription on effects of biological behaviors and epithelial-mesenchymal transition (EMT) were investigated in lung cancers. Total incidence of Ang-2 expression in the cancerous tissues was up to 91.8 % (112 of 122) with significantly higher (χ2=103.753, P2=7.883, P=0.005), differentiation degree (χ2=4.554, P=0.033), tumor node metastasis (TNM) staging (χ2=5.039, P=0.025), and 5-year survival rate (χ2 =11.220, P2=18.881, P2=0.81, P=0.776) or III & IV (χ2=1.845, P=0.174). Over-expression of Ang-2 or Ang-2 mRNA in lung A549 and NCI-H1975 cells were identified among different cell lines. When silencing Ang-2 in A549 cells with specific shRNA-1 transfection, the cell proliferation was significantly inhibited in a time-dependent manner, with up-regulating E-cadherin, down-regulating Vimentin, Twist, and Snail expression, and decreasing invasion and metastasis of cancer cell abilities, suggesting that Ang-2 promote tumor metastasis through increasing EMT, and it could be a potential target for lung cancer therapy. PMID:29560103

  9. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.

    PubMed

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  10. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  11. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  12. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  13. SU-E-J-269: Tracking of Tumor Regression for Stage III Lung Cancer Using CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, K; Biswas, T; Podder, T

    2015-06-15

    Purpose: This study is to evaluate the tumor regression over the course of EBRT treatment and to determine the difference of tumor reduction for stage III lung squamous cell cancer (SCC) and adenocarcinoma using CBCT. Methods: Twenty three stage III lung cancer patients treated in our clinic who had daily cone beam CT (CBCT) were selected for this study (16 adenocarcinoma and 7 SCC cases). Patients received prescription dose in the range of 50Gy–71.4Gy (mean =60.3Gy, median =50Gy) at 1.8Gy or 2Gy per fraction. Treatments spanned over a minimum of five weeks. Initial mean volume of the gross tumor volumemore » (GTV) was 123cc (range = 14.7cc–353.3cc). For this study, we choose six sets of CBCTs at an interval of one week, starting from the first fraction of treatment. Daily CBCTs from treatment linac computer were transferred to MIM Software version 6.0. An experienced physician contoured the primary GTV on each slices of the CBCT for these patients. Results: A consistent regression of the GTVs was observed in all patients, except in one patient (adeno case) where GTV did not change. Weekly volumetric reduction was in the range of 11.2%–16.6%. Maximum reductions were noticed in the first two weeks of the treatment cycle; mean overall (for adeno+SCC) reductions were 16.6%, 14.2% in week-1 and week-2, respectively. Mean reduction over five weeks of treatment was 49.8% (range = 0.1%–75.5%). Higher reduction was observed in SCC patients as compare to adenocarcinoma cases (54.9% vs. 47.6%); however, the difference was not statistically significant (p-value > 0.05). Conclusion: Large regression of tumors over the course of EBRT for stage III lung cancer patients was observed. Both SCC and adenocarcinoma responded well; overall reduction for SCC cases was higher. A future study is warranted for determining the co-relation between tumor volume reduction and treatment outcome.« less

  14. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  15. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  16. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells

    PubMed Central

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  17. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice.

    PubMed

    Kang, Chi Gu; Im, Eunji; Lee, Hyo-Jeong; Lee, Eun-Ok

    2017-05-01

    Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths in both men and women in the United States. It has been recently demonstrated that osteopontin (OPN) effectively inhibits cofilin activity through the focal adhesion kinase (FAK)/AKT/Rho-associated kinase (ROCK) pathway to induce the invasion of human non-small cell lung cancer (NSCLC) cells. Plumbagin was isolated from the roots of the medicinal plant Plumbago zeylanica L. and has been reported to possess anticancer activities. However, the molecular mechanisms by which plumbagin inhibits the invasion of cancer cells is still unclear. In this study, the anti-invasive and anti-metastatic mechanisms of plumbagin were investigated in OPN-treated NSCLC A549 cells. OPN effectively induced the motility and invasion of NSCLC A549 cells and H1299 cells, which was strongly suppressed by plumbagin with no evidence of cytotoxicity. In addition, lamellipodia formation at the leading edge of cells by OPN was dramatically decreased in plumbagin-treated cells. Plumbagin caused an effective inhibition in OPN-induced the expression of ROCK1 as well as the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. OPN-induced the phosphorylation of FAK and AKT was impaired without affecting their total forms by plumbagin treatment. OPN facilitated metastatic lung colonization, which was effectively suppressed in plumbagin-treated mice. Taken together, these results suggest that plumbagin reduces OPN-induced the invasion of NSCLC A549 cells, which resulted from inhibiting the ROCK pathway mediated by the FAK/AKT pathway and suppresses lung metastasis in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Giant-cell tumor of the patella with lung metastases: a case report].

    PubMed

    Bahri, I; Ben Yahia, N; Boudawara, T; Makni, S; Fakhfakh, B; Kechaou, S; Keskes, H; Jlidi, R

    2003-06-01

    Giant-cell tumors are an infrequent clinical, radiological, and pathological entity observed in 5% of primary bone tumors. They generally occur at the epiphysis of long bones, particularly in the knee area but patellar localization seems very rare. Despite their perfectly benign histological aspect, giant-cell tumors may be aggressive, leading to local recurrence or even distant metastasis to the lung. We report a case of benign giant-cell tumor of the patella with lung metastasis observed in a 23-year-old woman. The aggressive radiological image was suggestive of chondrosarcoma. Histologically the differential diagnosis with chondroblastoma was difficult. The tumor and lung metastasis were treated by surgical resection. Four years later there has been no recurrence. We present the anatomic and clinical aspects of giant-cell tumor of the bone together with the diagnostic approach and the clinical course.

  19. [Malignant nonepithelial tumors of the lung].

    PubMed

    Trakhtenberg, A Kh; Biriukov, Iu V; Frank, G A; Kunitsyn, A G; Grigor'eva, S P; Aĭtakov, Z N; Korenev, S V; Efimova, O Iu; Vial'tsev, N V

    1990-01-01

    The main peculiarities of the clinical course of lung sarcoma were determined from representative material of 134 patients. The main features differentiating malignant nonepithelial tumors from carcinoma of the lung are: younger age (average age 45.5 years), predominantly peripheral clinico-anatomical form (82.8%), and prevalent hematogenic metastasis. Five-year survival in the whole group of patients after surgical treatment was 54%. The size and histological form of the tumor are the main factors of prognosis. The degree of differentiation acquires prognostic significance in tumors measuring more than 3 cm in diameter.

  20. Coiled-coil domain-containing protein 8 inhibits the invasiveness and migration of non-small cell lung cancer cells.

    PubMed

    Jiang, Gui-Yang; Zhang, Xiu-Peng; Zhang, Yong; Xu, Hong-Tao; Wang, Liang; Li, Qing-Chang; Wang, En-Hua

    2016-10-01

    Lung cancer has always been the leading cause of death among patients with malignant tumors, and the majority of these patients die because of cancer cell invasion and metastasis. Previous studies have implicated coiled-coil domain-containing protein 8 (CCDC8) as a tumor suppressor in several types of cancer, such as breast and prostate cancers. However, the expression levels or functions of CCDC8 in lung cancer have not been elucidated. Here, we used immunohistochemical staining to measure CCDC8 expression in 147 samples from tumors and 30 samples from the adjacent normal lung tissues of patients with non-small cell lung cancer. CCDC8 was shown to be located predominantly in the cytoplasm and partially on the cell membrane, and its expression level was significantly lower in lung cancer samples than that in the adjacent normal lung tissues (P=.001). CCDC8 expression was closely related to tumor differentiation (P=.039), tumor-node-metastasis stage (P=.009), lymph node metastasis (P=.038), and prognosis (P=.043) of lung cancer. Transfection of A549 cells with CCDC8 significantly reduced cell invasion and migration (P<.05), whereas the invasiveness and migration capacity in CCDC8-knockdown A549 cells were significantly increased in comparison with the control cells (P<.05). Furthermore, we demonstrated that CCDC8 can downregulate the expression of Snail and upregulate the expression of E-cadherin by inhibiting p-P38 and p-IκBα. Collectively, CCDC8 may suppress the invasion and metastasis of lung cancer cells, and it may represent a promising therapeutic target for non-small cell lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. K-ras mutations in benzotrichloride-induced lung tumors of A/J mice.

    PubMed

    You, M; Wang, Y; Nash, B; Stoner, G D

    1993-06-01

    Benzotrichloride (BTC) is used extensively as a chemical intermediate in the synthesis of benzoyl chloride and benzoyl peroxide. Epidemiological data suggest that BTC is a human lung carcinogen. BTC is also a carcinogen in the A/J mouse lung tumor bioassay. Activated K-ras protooncogenes were detected in BTC-induced lung tumors from A/J mice. The polymerase chain reaction was used to amplify specific DNA segments likely to contain activating mutations, and the amplified DNAs were sequenced to identify the mutation. The activating mutation present in the K-ras gene from all BTC-induced lung tumors (24/24) was a GC-->AT transition in codon 12. Thus, BTC may exert its carcinogenic action by activation of the K-ras protooncogene through a genotoxic mechanism.

  2. Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    PubMed Central

    Lee, Sau Har; Jaganath, Indu Bala; Wang, Seok Mui; Sekaran, Shamala Devi

    2011-01-01

    Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence

  3. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study

    PubMed Central

    Kathiravan, Govindarajan; Sureban, Sripathi M.

    2009-01-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer. PMID:25206246

  4. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    PubMed

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  5. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models.

    PubMed

    Higgins, Brian; Kolinsky, Kenneth; Smith, Melissa; Beck, Gordon; Rashed, Mohammad; Adames, Violeta; Linn, Michael; Wheeldon, Eric; Gand, Laurent; Birnboeck, Herbert; Hoffmann, Gerhard

    2004-06-01

    Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar

  6. SU-F-T-677: Synergistic Effect(s) of Clotrimazole On Radiation Cell Survival of A549 Lung Cancer Cells in Glucose Vs. Galactose Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, G; Tambasco, M; Garakani, M

    Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not relymore » on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.« less

  7. Regulatory mechanisms of betacellulin in CXCL8 production from lung cancer cells

    PubMed Central

    2014-01-01

    Background Betacellulin (BTC), a member of the epidermal growth factor (EGF) family, binds and activates ErbB1 and ErbB4 homodimers. BTC was expressed in tumors and involved in tumor growth progression. CXCL8 (interleukin-8) was involved in tumor cell proliferation via the transactivation of the epidermal growth factor receptor (EGFR). Materials and methods The present study was designed to investigate the possible interrelation between BTC and CXCL8 in human lung cancer cells (A549) and demonstrated the mechanisms of intracellular signals in the regulation of both functions. Bio-behaviors of A549 were assessed using Cell-IQ Alive Image Monitoring System. Results We found that BTC significantly increased the production of CXCL8 through the activation of the EGFR-PI3K/Akt-Erk signal pathway. BTC induced the resistance of human lung cancer cells to TNF-α/CHX-induced apoptosis. Treatments with PI3K inhibitors, Erk1/2 inhibitor, or Erlotinib significantly inhibited BTC-induced CXCL8 production and cell proliferation and movement. Conclusion Our data indicated that CXCL8 production from lung cancer cells could be initiated by an autocrine mechanism or external sources of BTC through the EGFR–PI3K–Akt–Erk pathway to the formation of inflammatory microenvironment. BTC may act as a potential target to monitor and improve the development of lung cancer inflammation. PMID:24629040

  8. Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy.

    PubMed

    Guckenberger, Matthias; Klement, Rainer J; Allgäuer, Michael; Andratschke, Nicolaus; Blanck, Oliver; Boda-Heggemann, Judit; Dieckmann, Karin; Duma, Marciana; Ernst, Iris; Ganswindt, Ute; Hass, Peter; Henkenberens, Christoph; Holy, Richard; Imhoff, Detlef; Kahl, Henning K; Krempien, Robert; Lohaus, Fabian; Nestle, Ursula; Nevinny-Stickel, Meinhard; Petersen, Cordula; Semrau, Sabine; Streblow, Jan; Wendt, Thomas G; Wittig, Andrea; Flentje, Michael; Sterzing, Florian

    2016-03-01

    To evaluate whether local tumor control probability (TCP) in stereotactic body radiotherapy (SBRT) varies between lung metastases of different primary cancer sites and between primary non-small cell lung cancer (NSCLC) and secondary lung tumors. A retrospective multi-institutional (n=22) database of 399 patients with stage I NSCLC and 397 patients with 525 lung metastases was analyzed. Irradiation doses were converted to biologically effective doses (BED). Logistic regression was used for local tumor control probability (TCP) modeling and the second-order bias corrected Akaike Information Criterion was used for model comparison. After median follow-up of 19 months and 16 months (n.s.), local tumor control was observed in 87.7% and 86.7% of the primary and secondary lung tumors (n.s.), respectively. A strong dose-response relationship was observed in the primary NSCLC and metastatic cohort but dose-response relationships were not significantly different: the TCD90 (dose to achieve 90% TCP; BED of maximum planning target volume dose) estimates were 176 Gy (151-223) and 160 Gy (123-237) (n.s.), respectively. The dose-response relationship was not influenced by the primary cancer site within the metastatic cohort. Dose-response relationships for local tumor control in SBRT were not different between lung metastases of various primary cancer sites and between primary NSCLC and lung metastases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Discovery of a Novel Anti-Cancer Agent Targeting Both Topoisomerase I & II as Well as Telomerase Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo: Cinnamomum verum Component Cuminaldehyde.

    PubMed

    Chen, Ta-Wei; Tsai, Kuen-Daw; Yang, Shu-Mei; Wong, Ho-Yiu; Liu, Yi-Heng; Cherng, Jonathan; Chou, Kuo-Shen; Wang, Yang-Tz; Cuizon, Janise; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum is used to make the spice cinnamon and has been used for more than 5000 years by both of the two most ancient forms of medicine in the words: Ayurveda and traditional Chinese herbal medicines for various applications such as adenopathy, rheumatism, dermatosis, dyspepsia, stroke, tumors, elephantiasis, trichomonas, yeast, and virus infections. We evaluated the anticancer effect of cuminaldehyde (CuA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that cuminaldehyde suppressed proliferation and induced apoptosis as indicated by mitochondrial membrane potential loss, activation of caspase 3 and 9, increase in annexin V+PI+ cells, and morphological characteristics of apoptosis, including blebbing of plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and comet with elevated tail intensity and moment. In addition, cuminaldehyde also induced lysosomal vacuolation with increased volume of acidic compartments (VAC), suppressions of both topoisomerase I & II as well as telomerase activities in a dose-dependent manner. Further study reveals the growth-inhibitory effect of cuminaldehyde was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of cuminaldehyde against A549 cells is accompanied by downregulations of proliferative control involving apoptosis, both topoisomerase I & II as well as telomerase activities, together with an upregulation of lysosomal vacuolation and VAC. Similar effects (including all of the above-mentioned effects) were found in other cell lines, including human lung squamous cell carcinoma NCI-H520 and colorectal adenocarcinoma COLO 205 (results not shown). Our data suggest that cuminaldehyde could be a potential agent for anticancer therapy.

  10. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  11. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way.

    PubMed

    Xie, Jun; Liu, Jia-Hui; Liu, Heng; Liao, Xiao-Zhong; Chen, Yuling; Lin, Mei-Gui; Gu, Yue-Yu; Liu, Tao-Li; Wang, Dong-Mei; Ge, Hui; Mo, Sui-Lin

    2016-11-18

    The study was designed to develop a platform to verify whether the extract of herbs combined with chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical reference for finding new effective sensitizers. Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed by CCK8 assays. The combination index (CI) was calculated with the Chou-Talalay method, based on the median-effect principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay. Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3. Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module in DS 2.5 was used to detect the binding modes of the drugs and the proteins. Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker sensitivity to tanshinone IIA. When tanshinone IIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single drug treatment groups, the drug

  12. Pulmonary emphysema and tumor microenvironment in primary lung cancer.

    PubMed

    Murakami, Junichi; Ueda, Kazuhiro; Sano, Fumiho; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-02-01

    To clarify the relationship between the presence of pulmonary emphysema and tumor microenvironment and their significance for the clinicopathologic aggressiveness of non-small cell lung cancer. The subjects included 48 patients with completely resected and pathologically confirmed stage I non-small cell lung cancer. Quantitative computed tomography was used to diagnose pulmonary emphysema, and immunohistochemical staining was performed to evaluate the matrix metalloproteinase (MMP) expression status in the intratumoral stromal cells as well as the microvessel density (MVD). Positive MMP-9 staining in the intratumoral stromal cells was confirmed in 17 (35%) of the 48 tumors. These 17 tumors were associated with a high MVD, frequent lymphovascular invasion, a high proliferative activity, and high postoperative recurrence rate (all, P < 0.05). The majority of the tumors (13 of 17) arose in patients with pulmonary emphysema (P = 0.02). Lung cancers arising from pulmonary emphysema were also associated with a high MVD, proliferative activity, and postoperative recurrence rate (all, P < 0.05). The MMP-9 expression in intratumoral stromal cells is associated with the clinicopathologic aggressiveness of lung cancer and is predominantly identified in tumors arising in emphysematous lungs. Further studies regarding the biological links between the intratumoral and extratumoral microenvironment will help to explain why lung cancers originating in emphysematous lung tissues are associated with a poor prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis

    PubMed Central

    Lau, Allison N; Curtis, Stephen J; Fillmore, Christine M; Rowbotham, Samuel P; Mohseni, Morvarid; Wagner, Darcy E; Beede, Alexander M; Montoro, Daniel T; Sinkevicius, Kerstin W; Walton, Zandra E; Barrios, Juliana; Weiss, Daniel J; Camargo, Fernando D; Wong, Kwok-Kin; Kim, Carla F

    2014-01-01

    Metastasis is the leading cause of morbidity for lung cancer patients. Here we demonstrate that murine tumor propagating cells (TPCs) with the markers Sca1 and CD24 are enriched for metastatic potential in orthotopic transplantation assays. CD24 knockdown decreased the metastatic potential of lung cancer cell lines resembling TPCs. In lung cancer patient data sets, metastatic spread and patient survival could be stratified with a murine lung TPC gene signature. The TPC signature was enriched for genes in the Hippo signaling pathway. Knockdown of the Hippo mediators Yap1 or Taz decreased in vitro cellular migration and transplantation of metastatic disease. Furthermore, constitutively active Yap was sufficient to drive lung tumor progression in vivo. These results demonstrate functional roles for two different pathways, CD24-dependent and Yap/Taz-dependent pathways, in lung tumor propagation and metastasis. This study demonstrates the utility of TPCs for identifying molecules contributing to metastatic lung cancer, potentially enabling the therapeutic targeting of this devastating disease. PMID:24497554

  14. Design, Synthesis, and Biological Evaluation of 68Ga-DOTA-PA1 for Lung Cancer: A Novel PET Tracer for Multiple Somatostatin Receptor Imaging.

    PubMed

    Liu, Fei; Liu, Teli; Xu, Xiaoxia; Guo, Xiaoyi; Li, Nan; Xiong, Chiyi; Li, Chun; Zhu, Hua; Yang, Zhi

    2018-02-05

    Most of the radiolabeled somatostatin analogues (SSAs) are specific for subtype somatostatin receptor 2 (SSTR 2 ). Lack of ligands targeting other subtypes of SSTRs, especially SSTR 1, SSTR 3 , and SSTR 5 , limited their applications in tumors of low SSTR 2 expression, including lung tumor. In this study, we aimed to design and synthesize a positron emission tomography (PET) radiotracer targeting multi-subtypes of SSTRs for PET imaging. PA1 peptide and its conjugate with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator or fluorescein isothiocyanate (FITC) at the N-terminal of the lysine position were synthesized. 68 Ga was chelated to DOTA-PA1 to obtain 68 Ga-DOTA-PA1 radiotracer. The stability, lipophilicity, binding affinity, and binding specificity of 68 Ga-DOTA-PA1 and FITC-PA1 were evaluated by various in vitro experiments. Micro-PET imaging of 68 Ga-DOTA-PA1 was performed in nude mice bearing A549 lung adenocarcinoma, as compared with 68 Ga-DOTA-(Tyr3)-octreotate ( 68 Ga-DOTA-TATE). Histological analysis of SSTR expression in A549 tumor tissues and human tumor tissues was conducted using immunofluorescence staining and immunohistochemical assay. 68 Ga-DOTA-PA1 had high radiochemical yield and radiochemical purity of over 95% and 99%, respectively. The radiotracer was stable in vitro in different buffers over a 2 h incubation period. Cell uptake of 68 Ga-DOTA-PA1 was 1.31-, 1.33-, and 1.90-fold that of 68 Ga-DOTA-TATE, which has high binding affinity only for SSTR 2 , after 2 h incubation in H520, PG, and A549 lung cancer cell lines, respectively. Micro-PET images of 68 Ga-DOTA-PA1 showed that the PET imaging signal correlated with the total expression of SSTRs, instead of SSTR 2 only, which was measured by Western blotting and immunofluorescence analysis in mice bearing A549 tumors. In summary, a novel PET radiotracer, 68 Ga-DOTA-PA1, targeting multi-subtypes of SSTRs, was successfully synthesized and was confirmed to be useful for PET

  15. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  16. Octa-Arginine-Modified Pegylated Liposomal Doxorubicin: An Effective Treatment Strategy for Non-Small Cell Lung Cancer

    PubMed Central

    Biswas, Swati; Deshpande, Pranali P.; Perche, Federico; Dodwadkar, Namita S.; Sane, Shailendra D.; Torchilin, Vladimir P.

    2013-01-01

    The present study aims to evaluate the efficacy of octa-arginine (R8)-modified PEGylated liposomal doxorubicin (R8-PLD) for the treatment of non-small cell lung cancer, for which the primary treatment modality currently consists of surgery and radiotherapy. Cell-penetrating peptide R8 modification of Doxorubicin-(Dox)-loaded liposomes was performed by post-insertion of an R8-conjugated amphiphilic PEG-PE copolymer (R8-PEG-DOPE) into the liposomal lipid bilayer. In vitro analysis with the non-small cell lung cancer cell line, A549 confirmed the efficient cellular accumulation of Dox, delivered by R8-PLD compared to PLD. It led to the early initiation of apoptosis and a 9-fold higher level of the apoptotic regulator, caspase 3/7 (9.24±0.34) compared to PLD (1.07±0.19) at Dox concentration of 100 µg/mL. The treatment of A549 monolayers with R8-PLD increased the level of cell death marker lactate dehydrogenase (LDH) secretion (1.2 ± 0.1 for PLD and 2.3 ± 0.1 for R8-PLD at Dox concentration of 100 µg/mL) confirming higher cytotoxicity of R8-PLD than PLD, which was ineffective under the same treatment regimen (cell viability 90 ± 6 % in PLD vs. 45 ± 2 % in R8-PLD after 24 h). R8-PLD had significantly higher penetration into the hypoxic A549 tumor spheroids compared to PLD. R8-PLD induced greater level of apoptosis to A549 tumor xenograft and dramatic inhibition of tumor volume and tumor weight reduction. The R8-PLD treated tumor lysate had a elevated caspase3/7 expression than with R8-PLD treatment. This suggested system improved the delivery efficiency of Dox in selected model of cancer which supports the potential usefulness of R8-PLD in cancer treatment, lung cancer in particular. PMID:23419527

  17. An integrated nanotechnology-enabled transbronchial image-guided intervention strategy for peripheral lung cancer

    PubMed Central

    Jin, Cheng S.; Wada, Hironobu; Anayama, Takashi; McVeigh, Patrick Z; Hu, Hsin Pei; Hirohashi, Kentaro; Nakajima, Takahiro; Kato, Tatsuya; Keshavjee, Shaf; Hwang, David; Wilson, Brian C.; Zheng, Gang; Yasufuku, Kazuhiro

    2016-01-01

    Early detection and efficient treatment modality of early-stage peripheral lung cancer is essential. Current non-surgical treatments for peripheral lung cancer show critical limitations associated with various complications, requiring alternative minimally invasive therapeutics. Porphysome nanoparticle-enabled fluorescence-guided transbronchial photothermal therapy (PTT) of peripheral lung cancer was developed and demonstrated in preclinical animal models. Systemically-administered porphysomes accumulated in lung tumors with significantly enhanced disease-to-normal tissue contrast, as confirmed in three subtypes of orthotopic human lung cancer xenografts (A549, H460 and H520) in mice and in an orthotopic VX2 tumor in rabbits. An in-house prototype fluorescence bronchoscope demonstrated the capability of porphysomes for in vivo imaging of lung tumors in the mucosal/submucosal layers, providing real-time fluorescence guidance for transbronchial PTT. Porphysomes also enhanced the efficacy of transbronchial PTT significantly and resulted in selective and efficient tumor tissue ablation in the rabbit model. A clinically used cylindrical diffuser fiber successfully achieved tumor-specific thermal ablation, showing promising evidence for the clinical translation of this novel platform to impact upon non-surgical treatment of early-stage peripheral lung cancer. PMID:27543602

  18. Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD.

    PubMed

    Wang, Wei; Rayburn, Elizabeth R; Hang, Jie; Zhao, Yuqing; Wang, Hui; Zhang, Ruiwen

    2009-09-01

    20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol (25-OCH(3)-PPD), a newly identified natural product from Panax notoginseng, exhibits activity against a variety of cancer cells. Herein, we report the effects of this compound on human A549, H358, and H838 lung cancer cells, and compare these effects with a control lung epithelial cell line, BEAS-2B. 25-OCH(3)-PPD decreased survival, inhibited proliferation, and induced apoptosis and G1 cell cycle arrest in the lung cancer cell lines. The P. notoginseng compound also decreased the levels of proteins associated with cell proliferation and cell survival. Moreover, 25-OCH(3)-PPD inhibited the growth of A549 lung cancer xenograft tumors. 25-OCH(3)-PPD demonstrated low toxicity to non-cancer cells, and no observable toxicity was seen when the compound was administered to animals. In conclusion, our preclinical data indicate that 25-OCH(3)-PPD is a potential therapeutic agent in vitro and in vivo, and further preclinical and clinical development of this agent for lung cancer is warranted.

  19. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    PubMed

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Anti-invasive effect of Cyclamen pseudibericum extract on A549 non-small cell lung carcinoma cells via inhibition of ZEB1 mediated by miR-200c.

    PubMed

    Karagur, Ege Riza; Ozay, Cennet; Mammadov, Ramazan; Akca, Hakan

    2018-06-01

    Scientists are increasingly focusing attention on natural products of plant origin for use as agents in cancer protection and treatment. Cyclamen L. tuber extracts contain saponin glycosides that have been shown to have anti-cancer and other biological activities. The epithelial-to-mesenchymal transition (EMT) is thought to enhance malignant tumour progress. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is an important inducer of EMT in different human tumours and has recently been shown to boost invasion by tumour cells. In this study, we investigated the effects of endemic Cyclamen pseudibericum (CP) saponin-rich tuber extract on the capacity of non-small cell lung cancer line A549 cells to proliferate, invade and migrate and also examined the expression levels of several invasion-migration-related microRNAs (miRNAs) to identify those which directly targeted ZEB1. The cytotoxicity effect of the CP extract on the A549 cancer cells was determined by the luminometric method. The half-minimal (50%) inhibitory concentration dose in the A549 cells was determined to be 41.64 ± 2.35 µg/mL. Using the Matrigel invasion chamber system and the wound healing assay we observed that the CP extract suppressed the invasion and migration capacity of A549 cells, respectively. The expression of miRNAs in A549 cells was evaluated by real-time PCR. Our data showed that overexpression of miRNA miR-200c hindered the EMT by increasing the expression of E-cadherin and decreasing the expression of both N-cadherin and vimentin through the direct targeting of ZEB1. These findings suggest that the saponin-rich tuber extract of CP may have considerable anti-cancer properties in lung cancer. Further studies are required to examine in detail the molecular-based mechanism involved in the EMT process of the extract along with isolation and identification of active saponin components.

  1. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  2. [Effects of Buzhong Yiqi decoction on expression of Bad, NF-κB, caspase-9, Survivin, and mTOR in nude mice with A549/DDP transplantation tumors].

    PubMed

    Liu, Ya-Li; Yi, Jia-Li; Liu, Chun-Ying

    2017-02-01

    This study was aimed to explore the effects of Buzhong Yiqi decoction on the expression levels of Bad, NF-κB, caspase-9, Survivin, and mTOR in nude mice with A549/DDP transplantation tumors.Sixty BALB/C mice were randomly divided into blank control group, tumor-bearing control group, cisplatin group and Buzhong Yiqi decoction of high, medium and low doses+cisplatin groups (hereinafter referred to as the high,medium and low combined groups). A549/DDP cells (concentration of 5×106 cells/mL)were cultured and inoculated in various groups, then the tumor-forming situations were observed. Corresponding treatment was given in all groups. Fourteen days later, immunohistochemistry and Real-time PCR methods were used to detect the expression levels of Bad, NF-κB, caspase-9, Survivin, mTOR protein and mRNA in tumors.Results showed that Buzhong Yiqi decoction combined with cisplatin could reduce the volume of transplanted tumors, and there was significant difference between medium combined group and high combined group(P<0.05). As compared with the tumor-bearing control group, the expression levels of Bad, NF-κB, Survivin and mTOR were significantly reduced in medium and high combined groups(P<0.05); the protein and mRNA expression levels of caspase-9 were gradually increased in medium combined and high combined groups(P<0.05), with statistical difference with tumor-bearing control group(P<0.05). There were statistical difference in mRNA expression of Bad, NF-κB and caspase-9 between medium combined group, high combined group and cisplatin group, low-combined group, tumor-bearing control group(P<0.05), but there was no statistical difference between cisplatin group, low-combined group, and tumor-bearing control group. In addition, there was no statistical difference between medium combined group and high combined group in protein and mRNA expression levels of various factors. Experimental results showed that Buzhong Yiqi decoction combined with cisplatin can inhibit the

  3. Effects of quercetin on CDK4 mRNA and protein expression in A549 cells infected by H1N1

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; LIN, YUAN; GU, LIGANG; HAN, MEI; YANG, ZHIWEI; ZHANG, YANLI; MA, RUI; WANG, LI; WANG, ZHISHENG

    2013-01-01

    This study was conducted to investigate the effects of quercetin on the expression of cyclin-dependent kinase (CDK4) mRNA and protein in A549 lung epithelial tumor cells infected by H1N1. First, the Thiazolyl Blue Tetrazolium Bromide (MTT) method was used to determine H1N1 virulence, quercetin cytotoxicity and inhibition of the cytopathic effect of H1N1 on A549 cells by quercetin. Subsequently, 100 TCID50 H1N1 was used to infect A549 cells for 2 h prior to culture in maintenance media containing 10 mg/l quercetin. After 4, 12, 24 and 48 h of culture, the cells were collected and total RNA and protein were extracted. Fluorescent quantitative polymerase chain reaction and western blot analysis were then performed to assess the expression of CDK4 mRNA and protein. The experiment demonstrated that the TCID50 of H1N1 in A549 cells was 10−4.75, the maximum non-toxic concentration of quercetin in A549 cells was 30–60 mg/l and the minimum effective concentration of quercetin for the inhibition of the H1N1 cytopathic effect on A549 cells was 10 mg/l. The results indicated that quercetin may significantly inhibit CDK4 mRNA and protein overexpression caused by H1N1 within 4–48 h. In conclusion, quercetin may protect against H1N1 infection by effectively reducing the mRNA and protein expression of CDK4 caused by H1N1 infection. PMID:24649026

  4. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A glutamine-rich carrier efficiently delivers anti-CD47 siRNA driven by "glutamine trap" to inhibit lung cancer cell growth.

    PubMed

    Wu, JiaMin; Li, Zhi; Yang, Zeping; Guo, Ling; Zhang, Ye; Deng, Huihui; Wang, Cuifeng; Feng, Min

    2018-06-25

    It is not efficient enough using the current approaches for tumor-selective drug delivery based on the EPR effect and ligand-receptor interactions, and they have largely failed to translate into the clinic. So it is urgent to explore an enhanced strategy for effective delivery of anticancer agents. Clinically, many cancers require large amounts of glutamine for their continued growth and survival, resulting in circulating glutamine extraction by the tumor being much greater than that for any organs, behaving as a "glutamine trap". In the present study, we sought to elucidate whether the glutamine trap effect could be exploited to deliver therapeutic agents to selectively kill cancer cells. Here, a macromolecular glutamine analog, glutamine-functionalized branched polyethylenimine (GPI), was constructed as the carrier to deliver anti-CD47 siRNA for the blockage of CD47 "don't eat me" signals on cancer cells. The GPI/siRNA glutamine-rich polyplexes exhibited remarkably high levels of cellular uptake by glutamine-dependent lung cancer cells, wild-type A549 cells (A549WT) and its cisplatin-resistant cells (A549DDP), specifically under glutamine-depleted conditions. It was noted that the glutamine transporter ASCT2 was highly expressed both on A549WT and A549DDP, but almost no expression in normal human lung fibroblasts cells. Inhibition of ASCT2 significantly prevented the internalization of GPI polyplexes. These findings raised the intriguing possibility that the glutamine-rich GPI polyplexes utilize the ASCT2 pathway to selectively facilitate their cellular uptake by cancer cells. GPI further delivered anti-CD47 siRNA efficiently both in vitro and in vivo to down-regulate the intratumoral mRNA and protein expression levels of CD47. CD47 functions as a "don't eat me" signal and binds to the immunoreceptor SIRPα inducing evasion of phagocytic clearance. GPI/anti-CD47 siRNA polyplexes achieved significant antitumor activities both on A549WT and A549DDP tumor

  6. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2016-03-01

    Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.

  7. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.

    PubMed

    Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun

    2017-01-01

    We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a

  8. Silencing Receptor EphA2 Enhanced Sensitivity to Lipoplatin™ in Lung Tumor and MPM Cells.

    PubMed

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Najmunnisa, Nasreen

    2016-08-08

    Receptor EphA2 is overexpressed in lung cancer and malignant pleural mesothelioma (MPM) which promote tumorogenesis. Lipoplatin™, a new liposomal cisplatin formulation, is used against resistant tumors. Use of cisplatin-based drugs leads to unacceptable toxicities. To improve the effectiveness of Lipoplatin, enhancing the cellular sensitivity of lung tumor and MPM cells is critical. Therefore, we targeted receptor EphA2 by silencing interference RNA (siRNA) and treated tumor cells with Lipoplatin. The combined effects of siRNA-EphA2 and Lipoplatin were determined. We report that silencing EphA2 significantly enhanced the cellular sensitivity of lung tumor and MPM cells to Lipoplatin and maybe a potential therapy for lung cancer.

  9. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth.

    PubMed

    Martin, Michelle D; Fingleton, Barbara; Lynch, Conor C; Wells, Sam; McIntyre, J Oliver; Piston, David W; Matrisian, Lynn M

    2008-01-01

    The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.

  10. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    NASA Astrophysics Data System (ADS)

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-02-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.

  11. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    PubMed

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  12. Lung tumor segmentation in PET images using graph cuts.

    PubMed

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  14. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  15. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  17. Design, synthesis, anti-lung cancer activity, and chemosensitization of tumor-selective MCACs based on ROS-mediated JNK pathway activation and NF-κB pathway inhibition.

    PubMed

    Chen, Liping; Li, Qian; Weng, Bixia; Wang, Jiabing; Zhou, Yangyang; Cheng, Dezhi; Sirirak, Thanchanok; Qiu, Peihong; Wu, Jianzhang

    2018-05-10

    EF24 and F35 both were effective monocarbonyl curcumin analogues (MCACs) with excellent anti-tumor activity, however, drug defect such as toxicity may limit their further development. To get anti-lung cancer drugs with high efficiency, low toxicity and chemosensitization, a series of analogues based on EF24 and F35 were designed and synthesized. A number of compounds were found to exhibit cytotoxic activities selectively towards lung cancer cells compared to normal cells. Among these compounds, 5B was considered as an optimal anti-tumor agent for lung cancer cells with IC 50 values ranging from 1.0 to 1.7 μM, selectivity index (SI, as a logarithm of a ratio of IC 50 value for normal and cancer cells) were all above 1.1, while the SI of EF24 and F35 were less than 0.8. Consistent with selectivity in vitro, 5B was observed to show lower toxicity in acute toxicity experiment than EF24 and F35 respectively. Further, 5B was found to exert anti-tumor effects through ROS-mediated activation of JNK pathway and inhibition of NF-κB pathway. 5B could significantly enhance the sensitivity of A549 cells to cisplatin or 5-Fu. These findings suggested that 5B was an effective and less toxic MCAC and provided a promising candidate for anti-tumor drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    PubMed

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (P<0.05). The apoptosis rate of A549/Lv-shCyPA (5.01% +/- 0.5%) was higher than control groups (0.35% +/- 0.17%) (P<0.05). Visible tumors were only detectable at 6th day after inoculated by A549/Lv-shCyPA. The xenograft tumors of A549/Lv-shCyPA remarkably delayed tumor growth and remained at a similarly small average size at 38th days after inoculation compared with the control group (P < 0.05). Lentiviral-vector-mediated siRNA technique effectively inhibits the expression of CyPA, induces the NSCLC cell apoptosis, inhibits the tumor growth. Elucidation of the precise role of CypA in these pathways may lead to new targeted

  19. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 ofmore » 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.« less

  20. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach

    PubMed Central

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  1. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    PubMed

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  2. Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation.

    PubMed

    Li, Wenjing; Liu, Ting; Xiong, Yingluo; Lv, Jiaoyan; Cui, Xinyi; He, Rui

    2018-06-05

    BLT1, the primary functional receptor of Leukotriene B4 (LTB4), is involved in tissue inflammation by mediating leukocyte recruitment, and recently LTB4-dependent inflammation was reported to promote lung tumor growth. Exposure to diesel exhaust particle (DEP), the major component of particulate matter 2.5 (PM 2.5 ), can elicit lung inflammation, which may increase the risk of lung cancer. However, it remains unknown about the critical factors mediating DEP-induced lung inflammation and the subsequent effect on tumor metastasis. In this study, we found that DEP exposure led to acute lung inflammation, characterized by abundant infiltration of neutrophils and elevated lung levels in LTB4, as well as several pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, CXCL1/2. Furthermore, DEP exposure promoted lung metastasis of 3LL and 4T1 cells. BLT1 blockade by its specific antagonist U75302 significantly inhibited neutrophilic lung inflammation following DEP exposure. Importantly, BLT1 blockade before the onset of inflammation significantly reduced DEP-enhanced lung metastasis, which was associated with greatly decreased infiltrating neutrophils in lungs. Interestingly, BLT1 blockade after the occurrence of lung metastases had no effect on the magnitude of lung metastasis, suggesting that inhibition of BLT1-mediated lung inflammation was insufficient to suppress established metastatic tumor. Administration of BLT2 inhibitor LY255283 fails to inhibit DEP-induced lung inflammation and tumor metastasis. Collectively, our results demonstrate that DEP exposure causes BLT1-mediated lung neutrophilic inflammation, which is critical for tumor lung metastasis, and suggest that interruption of the LTB4-BLT1 axis could be useful for preventing PM 2.5 -induced inflammation and subsequent susceptible to lung metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. [HDAC1 expression and effect of TSA on proliferation and apoptosis of A549 cells].

    PubMed

    Huang, Hong; Zhang, Zhen-Xiang; Xu, Yong-Jian; Shao, Jing-Fang

    2003-09-01

    Histone deacetylase (HDAC) shows a high expression in many cancer cells and the inhibitor of HDAC1, trichostatin A (TSA), can inhibit the growth of cancer cells. Hypoxia is a common feature of malignant tumors. This paper was designed to investigate the expression of HDAC1 of A549 cell strains in hypoxia condition and the effect of TSA on their proliferation and apoptosis. The authors designed 1 normoxia group (control group) and 5 hypoxia groups (test groups): hypoxia 6h group (A), TSA + hypoxia 6h (B), hypoxia 12h group (C), hypoxia 24h group (D), TSA + hypoxia 24h (E), hypoxia 48h group (F). The expression of HDAC1 in A549 cells was examined using Western blot analysis. Proliferation, the apoptotic rates of A549 cells and the effect of TSA on them were determined using MTT method, immunohistochemistry, TUNEL method, and flow cytometry. The expression of mRNA of HDAC1 and the effect of TSA on it were determined using reverse transcription-polymerase chain reaction (RT-PCR). The A values expressed by HDAC1 in A549 cell strains were 138+/-11 in the control group, 78+/-4, 86+/-5, 124+/-3, and 120+/-9 in test groups A, C, D, and F, respectively. The A values of HDAC1mRNA versus the A values of beta-Atin mRNA were 0.68+/-0.03 in the control group, 0.46+/-0.03, 0.45+/-0.02, 0.70+/-0.03, and 0.33+/-0.02 in test groups A, C, D, and F, respectively. The A values of the expression of PCNA in A549 cell strains were 0.13+/-0.03 in the control group, 0.10+/-0.02, 0.11+/-0.02, 0.16+/-0.02, and 0.11+/-0.03 in test groups A, B, D, and E, respectively. The A values of MTT in A549 cell strains were 0.50+/-0.06 in the control group, 0.41+/-0.04, 0.45+/-0.03, 0.59+/-0.02, and 0.45+/-0.03 in test groups A, B, D, and E, respectively. The A values of positive cells of apoptosis in A549 cell strains were 0.16+/-0.04 in the control group, 0.18+/-0.02, 0.18+/-0.05, 0.20+/-0.05, and 0.23+/-0.05 in test groups A, B, D, and E, respectively. The apoptotic rates in A549 cells were 1.11% in the

  4. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis

    PubMed Central

    LU, WEN; DAI, BINGLING; MA, WEINA; ZHANG, YANMIN

    2012-01-01

    In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF®KinEASE™-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity. PMID:23162661

  5. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis.

    PubMed

    Lu, Wen; Dai, Bingling; Ma, Weina; Zhang, Yanmin

    2012-11-01

    In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF(®)KinEASE(™)-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity.

  6. Local control of metastatic lung tumors treated with SBRT of 48 Gy in four fractions: in comparison with primary lung cancer.

    PubMed

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro; Shinkai, Tetsu; Kubo, Yoshiro; Sugawara, Yoshifumi; Inoue, Takeshi; Sakai, Shinya; Aono, Shoji; Takahashi, Tadaaki; Semba, Takatoshi; Uwatsu, Kotaro

    2010-02-01

    The optimal dose of stereotactic body radiotherapy (SBRT) for metastatic lung tumors has not been clarified. Local control rates of metastatic lung tumors treated with SBRT of 48 Gy in four fractions, which is one of the common dose schedules for Stage I primary lung cancer in Japan, were examined. Between 2006 and 2008, 12 metastatic lung tumors (colorectal cancer, 7; others, 5) in 10 patients and 56 lesions of Stage I primary lung cancer (T1, 43; T2, 13) in 52 patients were treated with SBRT of 48 Gy in four fractions at the isocenter. Two-year overall survival rates were 86% for patients with metastatic lung tumors and 96% for patients with Stage I primary lung cancer (P = 0.4773). One- and 2-year local control rates were 48% and 25% for metastatic lung tumors, and 91% and 88% for Stage I primary lung cancer, respectively (P < 0.0001). The local control rates after SBRT of 48 Gy in four fractions were significantly worse in metastatic lung tumors compared with Stage I primary lung cancer. In SBRT, metastatic lung tumors should be clearly differentiated from primary lung cancer and should be given higher doses.

  7. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E.

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changesmore » in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.« less

  8. Induction of ER Stress-Mediated Apoptosis by α-Lipoic Acid in A549 Cell Lines

    PubMed Central

    Kim, Jong In; Lee, Chang Min; Park, Eok-Sung; Kim, Ki Nyun; Kim, Hyung Chul; Lee, Hae Young

    2012-01-01

    Background α-Lipoic acid (α-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of α-LA in a lung cancer cell line, A549. Materials and Methods α-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription-polymerase chain reaction analyses. Results α-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. α-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by α-LA, and the antioxidant N-acetyl-L-cysteine decreased the α-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion α-LA induced ER stress-mediated apoptosis in A549 cells via ROS. α-LA may therefore be clinically useful for treating lung cancer. PMID:22363901

  9. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  10. BJ-TSA-9, a novel human tumor-specific gene, has potential as a biomarker of lung cancer.

    PubMed

    Li, Yunyan; Dong, Xueyuan; Yin, Yanhui; Su, Yanrong; Xu, Qingwen; Zhang, Yuxia; Pang, Xuewen; Zhang, Yu; Chen, Weifeng

    2005-12-01

    Using bioinformatics, we have identified a novel tumor-specific gene BJ-TSA-9, which has been validated by Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). BJ-TSA-9 mRNA was expressed in 52.5% (21 of 40) of human lung cancer tissues and was especially higher in lung adenocarcinoma (68.8%). To explore the potential application of BJ-TSA-9 for the detection of circulating cancer cells in lung cancer patients, nested RT-PCR was performed. The overall positive detection rate was 34.3% (24 of 70) in peripheral blood mononuclear cells (PBMCs) of patients with various types of lung cancers and was 53.6% (15 of 28) in PBMCs of lung adenocarcinoma patients. In combination with the detection of two known marker genes SCC and LUNX, the detection rate was increased to 81.4%. A follow-up study was performed in 37 patients after surgical removal of tumor mass. Among nine patients with persistent detection of two to three tumor marker transcripts in PBMCs, six patients had recurrence/metastasis. In contrast, 28 patients with transient detection of one tumor marker or without detection of any tumor marker were all in remission. Thus, BJ-TSA-9 may serve as a marker for lung cancer diagnosis and as a marker, in combination with two other tumor markers, for the prediction of the recurrence and prognosis of lung cancer patients.

  11. Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT(®) nanoparticle formulation against non-small-cell lung cancer brain metastases.

    PubMed

    Sambade, Maria; Deal, Allison; Schorzman, Allison; Luft, J Christopher; Bowerman, Charles; Chu, Kevin; Karginova, Olga; Swearingen, Amanda Van; Zamboni, William; DeSimone, Joseph; Anders, Carey K

    2016-08-01

    Particle Replication in Nonwetting Templates (PRINT(®)) PLGA nanoparticles of docetaxel and acid-labile C2-dimethyl-Si-Docetaxel were evaluated with small molecule docetaxel as treatments for non-small-cell lung cancer brain metastases. Pharmacokinetics, survival, tumor growth and mice weight change were efficacy measures against intracranial A549 tumors in nude mice. Treatments were administered by intravenous injection. Intracranial tumor concentrations of PRINT-docetaxel and PRINT-C2-docetaxel were 13- and sevenfold greater, respectively, than SM-docetaxel. C2-docetaxel conversion to docetaxel was threefold higher in intracranial tumor as compared with nontumor tissues. PRINT-C2-docetaxel increased median survival by 35% with less toxicity as compared with other treatments. The decreased toxicity of the PRINT-C2-docetaxel improved treatment efficacy against non-small-cell lung cancer brain metastasis.

  12. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro.

    PubMed

    Nasr Bouzaiene, Nouha; Kilani Jaziri, Soumaya; Kovacic, Hervé; Chekir-Ghedira, Leila; Ghedira, Kamel; Luis, José

    2015-11-05

    Reactive oxygen species are well-known mediators of various biological responses. In this study, we examined the effect of three phenolic acids, caffeic, coumaric and ferulic acids, on superoxide anion production, adhesion and migration of human lung (A549) and colon adenocarcinoma (HT29-D4) cancer cell lines. Proliferation of both tumor cells was inhibited by phenolic acids. Caffeic, coumaric and ferulic acids also significantly inhibited superoxide production in A549 and HT29-D4 cells. Superoxide anion production decreased by 92% and 77% at the highest tested concentration (200 µM) of caffeic acid in A549 and HT29-D4 cell lines respectively. Furthermore, A549 and HT29-D4 cell adhesion was reduced by 77.9% and 79.8% respectively at the higher tested concentration of ferulic acid (200 µM). Migration assay performed towards A549 cell line, revealed that tested compounds reduced significantly cell migration. At the highest concentration tested (200 µM), the covered surface was 7.7%, 9.5% and 35% for caffeic, coumaric or ferulic acids, respectively. These results demonstrate that caffeic, coumaric and ferulic acids may participate as active ingredients in anticancer agents against lung and colon cancer development, at adhesion and migration steps of tumor progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  14. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  15. [New TNM classification of lung tumors].

    PubMed

    Wittekind, C

    2014-11-01

    The TNM classification of lung tumors has undergone many changes in the seventh edition published in 2010. These changes reflect current data and are based on the findings of the International Association for the Study of Lung Cancer (IASLC) from 81,495 patients and concern definitions of the T and M categories as well as stage grouping. They include a better description of regional lymph nodes of the lungs based on uniformly accepted definitions by the IASLC. The changes can lead to problems in the use of the definitions and will be discussed.

  16. Selective Cytotoxicity and Combined Effects of Camptothecin or Paclitaxel with Sodium-R-Alpha Lipoate on A549 Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Ibrahim, Sherif; Gao, Dayuan; Sinko, Patrick J.

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the US and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B ‘normal’ lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0–16 mM), camptothecin (0–25 nM) and paclitaxel (0–0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn®3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn’t cytotoxic towards BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI=1); synergistic (CI<1); antagonistic (CI>1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI=~0.17–1.5; DRI=~2.2–22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI=~0.8–9.9; DRI=~0.10–5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects. PMID:24063429

  17. Albumin Binding Domain Fusing R/K-X-X-R/K Sequence for Enhancing Tumor Delivery of Doxorubicin.

    PubMed

    Liu, Liping; Zhang, Chun; Li, Zenglan; Wang, Chunyue; Bi, Jingxiu; Yin, Shuang; Wang, Qi; Yu, Rong; Liu, Yongdong; Su, Zhiguo

    2017-11-06

    For the purpose of improving the tumor delivery of doxorubicin (DOX), a kind of peptide-DOXO conjugate was designed and prepared, in which the peptide composed of an albumin-binding domain (ABD) and a tumor-specific internalizing sequence (RGDK or RPARPAR) was conjugated to a (6-maleimidocaproyl) hydrazone derivative of doxorubicin (DOXO-EMCH). The doxorubicin uptake by lung cancer cell line of A549 evidenced that the conjugates are capable of being internalized through a tumor-specific sequence mediated manner, and the intracellular imaging of distribution in A549 cell demonstrated that the conjugated doxorubicin can be delivered to the cell nucleus. The A549 cell cytotoxicity of peptide-DOXO conjugates was presented with IC 50 values and shown in the range of about 9-11 μM. Pharmacokinetics study revealed that both conjugates exhibited nearly 5.5 times longer half-time than DOX, and about 4 times than DOXO-EMCH. The in vivo growth inhibitions of the two peptide-DOXO conjugates on BALB/c nude mice bearing A549 tumor (47.78% for ABD-RGDK-DOXO and 47.09% for ABD-RPARPAR-DOXO) were much stronger than that of doxorubicin and DOXO-EMCH (24.28% and 25.67% respectively) at a doxorubicin equivalent dose. Besides, the in vivo fluorescence imaging study confirmed that the peptide markedly increased the payload accumulation in tumor tissues and indicated that albumin binding domain fusing tumor-specific sequence effectively enhanced the tumor delivery of doxorubicin and thus improved its therapeutic potency.

  18. Study on Inhibitory Effect of MaiMenDong Decoction and WeiJing Decoction Combination with Cisplatin on NCI-A549 Xenograft in Nude Mice and Its Mechanism.

    PubMed

    Xiong, Fei; Jiang, Miao; Chen, Meijuan; Wang, Xiaoxia; Zhang, Shiping; Zhou, Jing; Li, Ke; Sheng, Yan; Yin, Lian; Tang, Yuping; Ye, Lihong; Wu, Mianhua; Fu, Haian; Zhang, Xu

    2017-01-01

    MaiMenDong Decoction and WeiJing Decoction (Jin formula) is a traditional Chinese medication that consists of 8 medicinal plants, which recorded in the classical TCM literature Jin Kui Yao Lue and has been utilized in the treatment of lung diseases for hundreds of years in China. The present study aimed to determine the anti-tumor activity and the underlying mechanisms of Jin formula combined with cisplatin in the treatment of non-small cell lung cancer (NSCLC). Xenograft model of NCI-A549 was established in Balb/c nude mice. Five groups, including normal, MOCK, Jin, cisplatin (DDP), and Jin+DDP were included in the study. We found that Jin formula ameliorated the body weight loss caused by DDP 15 days after drug administration. Moreover, the combination of Jin with DDP enhanced the anti-tumor function of DDP. Microarray analysis showed that Jin suppressed gene expression of certain pathways which regulating cell cycle and apoptosis. Furthermore, DDP mainly decreased the gene expression level of angiogenesis associated factors, such as VEGFA, TGF-β and MMP-1. Moreover, co-treatment with Jin and DDP not only down-regulated Bcl-2 and E2F1, but also decreased the expression of MYC, MET, and MCAM. In addition, co-formula decreased the levels of p-AKT (thr308) and p-PTEN, increased Bax/Bcl-2 value, and resulted in apoptosis of tumor cells. Taken together , Jin+DDP significantly inhibited the growth of A549 cell transplanted solid tumor with slight side effect compared to the treatment by DDP only, and had a better effect than the Jin group. The mechanisms may be mainly associated with inactivation of PI3K/AKT pathway and apoptosis induction.

  19. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  20. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Mitsuhiro; Narita, Yuichiro; Matsuo, Yukinori

    2009-10-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using onemore » display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.« less

  1. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    PubMed

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tumor Acquisition for Biomarker Research in Lung Cancer

    PubMed Central

    Stevenson, Marvaretta; Christensen, Jared; Shoemaker, Debra; Foster, Traci; Barry, William T.; Tong, Betty C.; Wahidi, Momen; Shofer, Scott; Datto, Michael; Ginsburg, Geoffrey; Crawford, Jeffrey; D’Amico, Thomas; Ready, Neal

    2015-01-01

    The biopsy collection data from two lung cancer trials that required fresh tumor samples be obtained for microarray analysis were reviewed. In the trial for advanced disease, microarray data were obtained on 50 patient samples, giving an overall success rate of 60.2%. The majority of the specimens were obtained through CT-guided lung biopsies (N=30). In the trial for early-stage patients, 28 tissue specimens were collected from excess tumor after surgical resection with a success rate of 85.7%. This tissue procurement program documents the feasibility in obtaining fresh tumor specimens prospectively that could be used for molecular testing. PMID:24810245

  3. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuexia; Li, Xiaohui; Liu, Gang

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo.more » We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.« less

  4. A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

  5. 99m Tc-HYNIC-(Ser)3 -J18 peptide: A radiotracer for non-small-cell lung cancer targeting.

    PubMed

    Shaghaghi, Zahra; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-02-14

    Radiolabeled peptide could be a useful tool for the diagnosis of non-small-cell lung cancer (NSCLC). In this study, HYNIC-(Ser) 3 -J18 peptide was labeled with 99m Tc using EDDA/tricine as coligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular-specific binding and tumor targeting in A-549 cells and tumor-bearing mice, respectively. The high radiochemical purity was obtained and this radiolabeled peptide exhibited high stability in buffer and serum. The radiolabeled peptide showed high affinity for the A-549 cells with a dissociation constant value (K D ) of 4.4 ± 0.8 nm. The tumor-muscles ratios were 2.7 and 4.4 at 1 and 2 hr after injection of 99m Tc-(EDDA/tricine)-HYNIC-(Ser) 3 -J18 in tumor-bearing mice. The tumor uptake was decreased after preinjection with non-labeled peptide for this radiolabeled peptide in blocking experiment. The results of this study showed the 99m Tc-(EDDA/tricine)-(Ser) 3 -HYNIC-J18 peptide might be a promising radiolabeled peptide for NSCLC targeting. © 2018 John Wiley & Sons A/S.

  6. Gamma Irradiation Upregulates B-cell Translocation Gene 2 to Attenuate Cell Proliferation of Lung Cancer Cells Through the JNK and NF-κB Pathways.

    PubMed

    Wang, Peihe; Cai, Yuanyuan; Lin, Dongju; Jiang, Yingxiao

    2017-08-07

    Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we investigated the signaling pathway by which gamma ray might regulate BTG2. We found that gamma ray inhibited A549 cell viability and promoted apoptosis and cell cycle arrest, while BTG2 knockdown could relieve the effect caused by gamma ray on A549 cells. Moreover, we confirmed that the effect of BTG2 partly depends on p53 expression and gamma ray-promoting BTG2 expression through the JNK/NF-κB signaling pathway. Our study assessed the possible mechanism of gamma ray in tumor treatment and also investigated the role of BTG2 in gamma ray therapy. All these findings might give a deep understanding of the effect of gamma ray on the progression of lung cancer involving BTG2.

  7. Tumor specific cytotoxicity of arctigenin isolated from herbal plant Arctium lappa L.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Itokazu, Yukiyoshi; Nago, Mariko; Taira, Naoyuki; Saitoh, Seikoh; Oku, Hirosuke

    2012-10-01

    The effectiveness of cancer chemotherapy is often limited by the toxicity to other tissues in the body. Therefore, the identification of non-toxic chemotherapeutics from herbal medicines remains to be an attractive goal to advance cancer treatments. This study evaluated the cytotoxicity profiles of 364 herbal plant extracts, using various cancer and normal cell lines. The screening found occurrence of A549 (human lung adenocarcinoma) specific cytotoxicity in nine species of herbal plants, especially in the extract of Arctium lappa L. Moreover, purification of the selective cytotoxicity in the extract of Arctium lappa L. resulted in the identification of arctigenin as tumor specific agent that showed cytotoxicity to lung cancer (A549), liver cancer (HepG2) and stomach cancer (KATO III) cells, while no cytotoxicity to several normal cell lines. Arctigenin specifically inhibited the proliferation of cancer cells, which might consequently lead to the induction of apoptosis. In conclusion, this study found that arctigenin was one of cancer specific phytochemicals, and in part responsible for the tumor selective cytotoxicity of the herbal medicine.

  8. 68Ga-DOTA-NGR as a novel molecular probe for APN-positive tumor imaging using MicroPET.

    PubMed

    Zhang, Jun; Lu, Xiaoli; Wan, Nan; Hua, Zichun; Wang, Zizheng; Huang, Hongbo; Yang, Min; Wang, Feng

    2014-03-01

    Aminopeptidase N (APN) is selectively expressed on many tumors and the endothelium of tumor neovasculature, and may serve as a promising target for cancer diagnosis and therapy. Asparagine-glycine-arginine (NGR) peptides have been shown to bind specifically to the APN receptor and have served as vehicles for the delivery of various therapeutic drugs in previous studies. The purpose of this study was to synthesize and evaluate the efficacy of a (68)Ga-labeled NGR peptide as a new molecular probe that binds to APN. NGR peptide was conjugated with 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) and labeled with (68)Ga at 95°C for 10 min. In vitro uptake and binding analysis was performed with A549 and MDA-MB231 cells. Biodistribution of (68)Ga-DOTA-NGR was determined in normal mice by dissection method. (68)Ga-DOTA-NGR PET was performed in A549 and MDA-MB231 xenografts, and included dynamic and static imaging. APN expression in tumors and new vasculatures was analyzed by immunohistochemistry. The radiochemical purity of (68)Ga-DOTA-NGR was 98.0% ± 1.4% with a specific activity of about 17.49 MBq/nmol. The uptake of (68)Ga-DOTA-NGR in A549 cells increased with longer incubation times, and could be blocked by cold DOTA-NGR, while no specific uptake was found in MDA-MB231 cells. In vivo biodistribution studies showed that (68)Ga-DOTA-NGR was mainly excreted from the kidney, and rapidly cleared from blood and nonspecific organs. MicroPET imaging showed that high focal accumulation had occurred in the tumor site at 1 h post-injection (pi) in A549 tumor xenografts. A significant reduction of tumor uptake was observed following coinjection with a blocking dose of DOTA-NGR, whereas only mild uptake was found in MDA-MB231 tumor xenografts. Tumor uptake, measured as the tumor/lung ratio, increased with time peaking at 12.58 ± 1.26 at 1.5 h pi. Immunohistochemical staining confirmed that APN was overexpressed on A549 cells and neovasculature. (68)Ga

  9. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in thismore » study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.« less

  10. [Lung metastases: tumor reduction as an oncologic concept].

    PubMed

    Dienemann, H; Hoffmann, H; Trainer, C; Muley, T

    1998-01-01

    The principle of surgery for lung metastases is the removal of all lesions in the lung that are either visible or detectable by palpation. This may be combined with complete dissection of all ipsilateral lymph nodes. Therefore, "tumor reduction" rather than "complete" or "radical resection" may be an adequate description of this surgical approach. Since the dissemination of--macroscopically not detectable--tumor cells represents the major mannerism of every metastatic disease, any local therapy appears to be a discrepancy. However, in most cases the rationale of surgery for lung metastases is the lack of effective systemic therapy and the low morbidity of surgery, along with up to 60% 5-year survival rates.

  11. IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules.

    PubMed

    Duan, Shanzhou; Tsai, Ying; Keng, Peter; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2015-09-29

    Cisplatin-based chemotherapy is currently the most effective treatment regimen for non-small cell lung cancer (NSCLC), but eventually tumor resistance develops which limits its success. The potential implication of IL-6 signaling in the cisplatin resistance of NSCLC was explored by testing whether NSCLC cells with different levels of intracellular IL-6 show different responses to the cytotoxic treatment of cisplatin. When the cisplatin cytotoxicity of the IL-6 knocked down human NSCLC cells (A549IL-6si and H157IL-6si) were compared with their corresponding scramble control cells (A549sc and H157sc), higher cisplatin cytotoxicity was found in IL-6 si cells than sc cells. Subcutaneous xenograft mouse models were developed using a pair of A549sc and A549IL-6si cells. When the tumor grew to about 400 mm2, mice were treated with cisplatin and tumor regression was monitored. Higher tumor regression was detected in the A549IL-6si xenografts compared to A549sc xenografts following cisplatin treatment. Immunostaining study results from tumor tissues also supported this finding. Expression of anti-apoptotic proteins Bcl-2 and Mcl-1 and DNA repair associated molecules ATM, CHK1, TP73, p53, and ERCC1 were significantly up regulated in cisplatin-treated A549sc and H157sc cells, but no increase was detected in A549IL-6si and H157IL-6si cells. Further inhibitor studies revealed that up regulation of these molecules by IL-6 may be through activation of IL-6 downstream signaling pathways like Akt, MAPK, Stat3, and Erk. These results provide potential for combining cisplatin and inhibitors of IL-6 signaling or its downstream signaling pathway as a future therapeutic approach in preventing development of cisplatin resistant NSCLC tumors.

  12. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccigrosso, D; Maughan, N; Parikh, P

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External interventionmore » from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management

  13. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    PubMed

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  14. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer.

    PubMed

    Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang

    2017-01-05

    The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer.

    PubMed

    Sheng, Xiumei; Bowen, Nathan; Wang, Zhengxin

    2016-03-18

    GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1's role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer.

  16. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 ismore » down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.« less

  17. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Tao; Lu Heng; Shang Xuan

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role ofmore » anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-{kappa}B was up-regulated. Interference analysis of NF-{kappa}B in A549 cells showed that knock down of NF-{kappa}B resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-{kappa}B inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.« less

  18. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog

    PubMed Central

    Warmka, Janel K.; Solberg, Eric L.; Zeliadt, Nicholette A.; Srinivasan, Balasubramanian; Charlson, Aaron T.; Xing, Chengguo; Wattenberg, Elizabeth V.

    2012-01-01

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. PMID:22771807

  19. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    PubMed

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6)more » in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.« less

  1. Metastatic Lung Lesions as a Preferred Resection Site for Immunotherapy With Tumor Infiltrating Lymphocytes.

    PubMed

    Ben-Avi, Ronny; Itzhaki, Orit; Simansky, David; Zippel, Dov; Markel, Gal; Ben Nun, Alon; Schachter, Jacob; Besser, Michal J

    2016-06-01

    Adoptive cell therapy with tumor infiltrating lymphocytes (TIL) yields 50% response rates in metastatic melanoma and shows promising clinical results in other solid tumors. Autologous TIL cultures are isolated from resected tumor tissue, expanded ex vivo to large numbers and reinfused to the preconditioned patient. In this prospective study, we validate the origin of the tumor biopsy and its effect on T-cell function and clinical response. One hundred forty-four patients underwent surgery and 79 patients were treated with TIL adoptive cell therapy. Cultures from lung tissue were compared with other origins. The success rate of establishing TIL culture from lung tissue was significantly higher compared with nonlung tissue (94% vs. 72%, respectively, P≤0.003). Lung-derived TIL cultures gave rise to higher cell numbers (P≤0.011) and exhibited increased in vitro antitumor reactivity. The average fold expansion for lung-derived TIL during a rapid expansion procedure was 1349±557 compared with 1061±473 for nonlung TIL (P≤0.038). Patients treated with TIL cultures of lung origin (compared with nonlung) had prolonged median overall survival (29 vs. 9.5 mo; P≤0.065). Given the remarkable advancement in minimally invasive thoracic surgery and the results of this study, we suggest efforts should be taken to resect lung metastasis rather than other sites to generate TIL cultures for clinical use.

  2. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume.

    PubMed

    Zeidler-Erdely, Patti C; Kashon, Michael L; Battelli, Lori A; Young, Shih-Houng; Erdely, Aaron; Roberts, Jenny R; Reynolds, Steven H; Antonini, James M

    2008-09-08

    Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 mug of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 mug soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain.

  3. Electromagnetic Tracking Navigation to Guide Radiofrequency Ablation (RFA) of a Lung Tumor

    PubMed Central

    Amalou, Hayet; Wood, Bradford J.

    2013-01-01

    Radiofrequency ablation (RFA) may be an option for patients with lung tumors who have unresectable disease and are not suitable for available palliative modalities. RFA electrode positioning may take several attempts, necessitating multiple imaging acquisitions or continuous use of CT (Computed Tomography). Electromagnetic tracking utilizes miniature sensors integrated with RFA equipment to guide tools in real-time, while referencing to pre-procedure imaging. This technology was demonstrated successfully during a lung tumor ablation, and was more accurate at targeting the tumor, compared to traditional freehand needle insertion. It is possible, although speculative and anecdotal, that more accuracy could prevent unnecessary repositioning punctures and decrease radiation exposure. Electromagnetic tracking has theoretical potential to benefit minimally invasive interventions. PMID:23207535

  4. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.

    PubMed

    Sakthivel, Ravi; Malar, Dicson Sheeja; Devi, Kasi Pandima

    2018-06-13

    In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC 50 value of 70.81 ± 0.32 μM and 60.7 ± 0.47 μM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 μM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Circulating Cell Free Tumor DNA Detection as a Routine Tool for Lung Cancer Patient Management

    PubMed Central

    Vendrell, Julie A.; Mau-Them, Frédéric Tran; Béganton, Benoît; Godreuil, Sylvain; Coopman, Peter; Solassol, Jérôme

    2017-01-01

    Circulating tumoral DNA (ctDNA), commonly named “liquid biopsy”, has emerged as a new promising noninvasive tool to detect biomarker in several cancers including lung cancer. Applications involving molecular analysis of ctDNA in lung cancer have increased and encompass diagnosis, response to treatment, acquired resistance and prognosis prediction, while bypassing the problem of tumor heterogeneity. ctDNA may then help perform dynamic genetic surveillance in the era of precision medicine through indirect tumoral genomic information determination. The aims of this review were to examine the recent technical developments that allowed the detection of genetic alterations of ctDNA in lung cancer. Furthermore, we explored clinical applications in patients with lung cancer including treatment efficiency monitoring, acquired therapy resistance mechanisms and prognosis value. PMID:28146051

  6. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    NASA Astrophysics Data System (ADS)

    Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell

    2014-07-01

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.

  7. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  8. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC).

    PubMed

    Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C

    2003-12-01

    The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.

  9. Ferrous glycinate regulates cell energy metabolism by restrictinghypoxia-induced factor-1α expression in human A549 cells.

    PubMed

    Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo

    2018-06-04

    Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.

  10. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

    PubMed

    Ramer, Robert; Heinemann, Katharina; Merkord, Jutta; Rohde, Helga; Salamon, Achim; Linnebacher, Michael; Hinz, Burkhard

    2013-01-01

    The antitumorigenic mechanism of cannabidiol is still controversial. This study investigates the role of COX-2 and PPAR-γ in cannabidiol's proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis. Apoptotic cell death by cannabidiol was suppressed by NS-398 (COX-2 inhibitor), GW9662 (PPAR-γ antagonist), and siRNA targeting COX-2 and PPAR-γ. Cannabidiol-induced apoptosis was paralleled by upregulation of COX-2 and PPAR-γ mRNA and protein expression with a maximum induction of COX-2 mRNA after 8 hours and continuous increases of PPAR-γ mRNA when compared with vehicle. In response to cannabidiol, tumor cell lines exhibited increased levels of COX-2-dependent prostaglandins (PG) among which PGD(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) caused a translocation of PPAR-γ to the nucleus and induced a PPAR-γ-dependent apoptotic cell death. Moreover, in A549-xenografted nude mice, cannabidiol caused upregulation of COX-2 and PPAR-γ in tumor tissue and tumor regression that was reversible by GW9662. Together, our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ and a subsequent nuclear translocation of PPAR-γ by COX-2-dependent PGs.

  11. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chia-Ling; Chiang, Tzu-Hui; Tseng, Po-Chun

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cellsmore » also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.« less

  12. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume

    PubMed Central

    Zeidler-Erdely, Patti C; Kashon, Michael L; Battelli, Lori A; Young, Shih-Houng; Erdely, Aaron; Roberts, Jenny R; Reynolds, Steven H; Antonini, James M

    2008-01-01

    Background Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 μg of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 μg soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. Results BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. Conclusion The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain. PMID:18778475

  13. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  14. Effect of Disrupting Seven-in-Absentia Homolog 2 Function on Lung Cancer Cell Growth

    PubMed Central

    Ahmed, Atique U.; Schmidt, Rebecca L.; Park, Cheol Hong; Reed, Nanette R.; Hesse, Shayla E.; Thomas, Charles F.; Molina, Julian R.; Deschamps, Claude; Yang, Ping; Aubry, Marie C.

    2008-01-01

    Background Hyperactivated epidermal growth factor receptor (EGFR) and/or RAS signaling drives cellular transformation and tumorigenesis in human lung cancers, but agents that block activated EGFR and RAS signaling have not yet been demonstrated to substantially extend patients’ lives. The human homolog of Drosophila seven-in-absentia—SIAH-1 and SIAH-2—are ubiquitin E3 ligases and conserved downstream components of the RAS pathway that are required for mammalian RAS signal transduction. We examined whether inhibiting SIAH-2 function blocks lung cancer growth. Methods The antiproliferative and antitumorigenic effects of lentiviral expression of anti-SIAH-2 molecules (ie, a dominant-negative protease-deficient mutant of SIAH-2 [SIAH-2PD] and short hairpin RNA [shRNA]–mediated gene knockdown against SIAH-2) were assayed in normal human lung epithelial BEAS-2B cells and in human lung cancer BZR, A549, H727, and UMC11 cells by measuring cell proliferation rates, by assessing MAPK and other activated downstream components of the RAS pathway by immunoblotting, assessing apoptosis by terminal deoxynucleotidyltransferase–mediated UTP end-labeling (TUNEL) assay, quantifying anchorage-independent cell growth in soft agar, and assessing A549 cell–derived tumor growth in athymic nude mice (groups of 10 mice, with two injections of 1 × 106 cells each at the dorsal left and right scapular areas). All statistical tests were two-sided. Results SIAH-2 deficiency in human lung cancer cell lines reduced MAPK signaling and statistically significantly inhibited cell proliferation compared with those in SIAH-proficient cells (P < .001) and increased apoptosis (TUNEL-positive A549 cells 3 days after lentivirus infection: SIAH-2PD vs control, 30.1% vs 0.0%, difference = 30.1%, 95% confidence interval [CI] = 23.1% to 37.0%, P < .001; SIAH-2-shRNA#6 vs control shRNA, 27.9% vs 0.0%, difference = 27.9%, 95% CI = 23.1% to 32.6%, P < .001). SIAH-2 deficiency also reduced anchorage

  15. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  16. Aqueous extract of Taxus chinensis (Pilger) Rehd inhibits lung carcinoma A549 cells through the epidermal growth factor receptor/mitogen-activated protein kinase pathway in vitro and in vivo.

    PubMed

    Shu, Qijin; Shen, Minhe; Wang, Binbin; Cui, Qingli; Zhou, Xiaoying; Zhu, Luming

    2014-06-01

    To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). The serum pharmacological method was used to avoid interference from administration of the crude medicinal herbs. Eight purebred New Zealand rabbits were used for preparation of serum containing various concentrations of AETC. Forty-eight Balb/c-nu mice were used for in vivo experiments. The effects of serum containing AETC on the proliferation of A549 cells and expression levels of the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway-related proteins in vitro were investigated. Additionally, the effects on the growth of A549 xenografts in nude mice, and expression levels of the EGFR/MAPK pathway-related proteins in the xenografts, were investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the serum containing AETC significantly decreased the viability of A549 cells in a dose-dependent manner. Western blot showed that the serum containing various concentrations of AETC strongly reduced the levels of phospho-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinasel/2 (ERK1/2) while it increased the level of p-p38. However, no significant effects on the expression levels of JNK, ERK1/2, and p38 MAPK were found. In addition, an anticancer effect from AETC was observed in vivo in the Balb/c-nu mice bearing A549 xenografts. AETC has significant effects on the growth of A549 xenografts and on the activity of the EGFR/MAPK pathway. Therefore, AETC may be beneficial in lung carcinoma treatment.

  17. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less

  18. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    PubMed

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  19. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth.

    PubMed

    Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho

    2012-11-01

    Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Pigment Epithelial-derived Factor (PEDF)-triggered Lung Cancer Cell Apoptosis Relies on p53 Protein-driven Fas Ligand (Fas-L) Up-regulation and Fas Protein Cell Surface Translocation*

    PubMed Central

    Li, Lei; Yao, Ya-Chao; Fang, Shu-Huan; Ma, Cai-Qi; Cen, Yi; Xu, Zu-Min; Dai, Zhi-Yu; Li, Cen; Li, Shuai; Zhang, Ting; Hong, Hong-Hai; Qi, Wei-Wei; Zhou, Ti; Li, Chao-Yang; Yang, Xia; Gao, Guo-Quan

    2014-01-01

    Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas. PMID:25225287

  1. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    PubMed Central

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the Neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  2. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells

    PubMed Central

    Liu, Yan-rong; Liu, Hui-juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-shuang; Wang, Jing; Sun, Bo; Dai, Ting-ting; Yang, Cheng; Sun, Tao; Zhou, Hong-gang

    2015-01-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients. PMID:26512779

  3. Molecular Detection of EMT Markers in Circulating Tumor Cells from Metastatic Non-Small Cell Lung Cancer Patients: Potential Role in Clinical Practice

    PubMed Central

    Milano, Annalisa; Mazzetta, Francesca; Valente, Sabatino; Ranieri, Danilo; Leone, Laura; Botticelli, Andrea; Lauro, Salvatore; Torrisi, Maria Rosaria; Marchetti, Paolo

    2018-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related mortality; nevertheless, there are few data regarding detection of circulating tumor cells (CTCs) in NSCLC, compared to other kinds of cancers in which their prognostic roles have already been defined. This difference is likely due to detection methods based on the epithelial marker expression which ignore CTCs undergoing epithelial-mesenchymal transition (CTCsEMT). Methods After optimization of the test with spiking experiments of A549 cells undergoing TGF-β1-induced EMT (A549EMT), the CTCsEMT were enriched by immunomagnetic depletion of leukocytes and then characterized by a RT-PCR assay based on the retrieval of epithelial and EMT-related genes. Blood samples from ten metastatic NSCLC patients before starting treatment and during chemotherapy were used to test this approach by longitudinal monitoring. Ten age- and sex-matched healthy subjects were also enrolled as controls. Results Recovery experiments of spiked A549EMT cells showed that the RT-PCR assay is a reliable method for detection of CTCsEMT. CTCsEMT were detected in three patients at baseline and in six patients after four cycles of cysplatin-based chemotherapy. Longitudinal monitoring of three patients showed that the CTCsEMT detection is related to poor therapeutic response. Conclusions The RT-PCR-based approach for the evaluation of CTCsEMT phenotype could be a promising and inexpensive tool to predict the prognosis and the therapeutic response in NSCLC patients. PMID:29682444

  4. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    PubMed

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  5. Malignant tumors of the liver and lungs in an area with a PVC industry.

    PubMed

    Saric, M; Kulcar, Z; Zorica, M; Gelić, I

    1976-10-01

    The incidence of malignant tumors of the lung and bronchus and of cytologically confirmed primary malignant tumor of the liver was analyzed for a 4-yr period in a city with several factories, including a PVC industry. Prior to the study two cases of angio-sarcoma of the liver were diagnosed in workers employed in PVC production. The total incidence of analyzed tumors was only slightly higher than predicted. The tumors of the liver recorded did not show any dependence on place of work or residence. During the period of observation, malignant tumors of the bronchus (lung) were not recorded in the PVC industry. Their rate in the area in which the PVC industry is situated was approximately the same as that for the entire city area. The study does not indicate that the occurrence of malignant tumors other than angiosarcoma is associated with exposure to vinyl chloride.

  6. Malignant tumors of the liver and lungs in an area with a PVC industry.

    PubMed Central

    Saric, M; Kulcar, Z; Zorica, M; Gelić, I

    1976-01-01

    The incidence of malignant tumors of the lung and bronchus and of cytologically confirmed primary malignant tumor of the liver was analyzed for a 4-yr period in a city with several factories, including a PVC industry. Prior to the study two cases of angio-sarcoma of the liver were diagnosed in workers employed in PVC production. The total incidence of analyzed tumors was only slightly higher than predicted. The tumors of the liver recorded did not show any dependence on place of work or residence. During the period of observation, malignant tumors of the bronchus (lung) were not recorded in the PVC industry. Their rate in the area in which the PVC industry is situated was approximately the same as that for the entire city area. The study does not indicate that the occurrence of malignant tumors other than angiosarcoma is associated with exposure to vinyl chloride. PMID:1026404

  7. In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana

    2013-02-15

    To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less

  8. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  9. [Inhibitory effect of nimesulide and oxaliplatin on tumor growth and lymphatic metastasis of transplanted human lung cancer in nude mice].

    PubMed

    Lang, Zhe; Chen, Gang; Wang, Dong-chang

    2012-10-01

    This study was designed to evaluate the inhibitory effect of nimesulide in combination with oxaliplatin on tumor growth, expression of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin, and lymphatic metastasis in lung cancer xenograft in nude mice, and to discuss the possible synergistic effect of nimesulide in combination with oxaliplatin. Human lung cancer A549 cells were injected into BALB/c nude mice subcutaneously. Thirty-three healthy male nude mice were randomly divided into 4 groups: the control group, nimesulide group, oxaliplatin group and nimesulide combined with oxaliplatin group. Transplanted tumor tissues were collected and the expressions of COX-2, VEGF-C, VEGFR-3, survivin, β-catenin protein were detected by immunohistochemistry, and RT-PCR assay was used to assess the expression of tumor COX-2, VEGF-C, VEGFR-3, survivin and β-catenin mRNA. SPSS 16.0 was used for statistical analysis. Data were present as (x(-) ± s), and the means were compared by analysis of variance test. Tumor inhibition rates of the nimesulide group, oxaliplatin group and nimesulide + oxaliplatin group were 39.73%, 48.04% and 65.94%, respectively. Immunohistochemical and RT-PCR analysis showed that compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide group were significantly reduced (all P < 0.05). Compared with the control group, statistical analysis of variance showed that the expression levels of COX-2, VEGF-C and VEGFR-3 of the oxaliplatin group were significantly increased (P < 0.05), the expression levels of survivin and β-catenin protein and mRNA of the oxaliplatin group were significantly reduced (P < 0.05). Compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide + oxaliplatin group were significantly reduced (all P < 0.05). Both nimesulide alone or in combination with oxaliplatin can significantly inhibit the growth of lung cancer

  10. Time-dependent cell disintegration kinetics in lung tumors after irradiation

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi

    2008-05-01

    We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.

  11. Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells.

    PubMed

    Rajavel, Tamilselvam; Mohankumar, Ramar; Archunan, Govindaraju; Ruckmani, Kandasamy; Devi, Kasi Pandima

    2017-06-13

    Lung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT). Cell viability experiments showed that benzene extract of GT (BGT) leaf effectively inhibited the growth of A549 cells, while being non-toxic to normal human lung L132 and PBMC cells. Ames and comet assays demonstrated that BGT is of non-mutagenic and non-genotoxic nature in untransformed cells. The hematological and histopathological profiles of the in vivo acute and sub-acute toxicity studies demonstrated that BGT is safe and tolerable. Importantly, western blot analysis and Annexin V-FITC staining confirmed that BGT promotes mitochondrial dependent apoptotic cell death in A549 cells by arresting cell cycle at G2/M phase. Bio-assay guided fractionation revealed the presence of phytosteols (β-sitosterol and daucosterol) which significantly inhibited the growth of A549 cells both alone and in combination. This study warrants that these phytosterols in alone or in combination can be considered as safe and potential drug candidates for lung cancer treatment.

  12. Primary Lung Signet Ring Cell Carcinoma Presenting as a Cavitary Pancoast Tumor in a 32-Year-Old Man.

    PubMed

    Corvini, Michael; Koorji, Alysha; Sgroe, Erica; Nguyen, Uyen

    2018-06-01

    Signet ring cell carcinoma, a subtype of adenocarcinoma, is a rare cause of primary lung cancer. The authors report a case of primary lung signet ring cell carcinoma presenting as a cavitary Pancoast tumor in a 32-year-old male smoker. Beyond the rarity of primary lung signet ring cell carcinoma itself, the youth of the patient, his smoking status, the presence of cavitation, and the location of the tumor in the superior sulcus make it especially atypical.

  13. Evaluation of diagnostic value of four tumor markers in bronchoalveolar lavage fluid of peripheral lung cancer.

    PubMed

    Li, Jian; Chen, Ping; Mao, Chao-Ming; Tang, Xing-Ping; Zhu, Li-Rong

    2014-06-01

    The diagnostic role of carcinoembryonic antigen (CEA), squamous cell carcinoma (SCC) antigen, Cyfra 21-1 and neuron-specific enolase (NSE) in the bronchoalveolar lavage fluid (BALF) for lung cancer is still controversial. The aim of this study was to evaluate the diagnostic value of these four tumor markers in BALF for peripheral lung cancer. We measured and compared the levels of CEA, SCC, Cyfra21-1 and NSE in BALF in 42 patients with peripheral lung cancer and 22 patients with benign lung disease. In the patients with peripheral lung cancer, the BAL was separately performed in the bronchus of the tumor-bearing lung and in the corresponding bronchus of the opposite healthy lung. The levels of CEA, SCC, Cyfra21-1 and NSE were significantly elevated in BALF from the tumor-bearing lung compared with the opposite healthy lung in the lung cancer patients (P < 0.001) or the benign lung disease patients (P < 0.005). The diagnostic sensitivities of Cyfra21-1 (86 and 76%), with a specificity of 91%, were the highest among the four tumor markers for the tumor-bearing lung versus the opposite healthy lung and benign lung disease. The combination of Cyfra21-1 and CEA increased the sensitivity to 93 and 86 percent, respectively. The assay of these tumor markers in BALF may be used as a diagnostic tool to complement a cytological examination in the diagnosis of peripheral lung cancer. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Capnocytophaga lung abscess in a patient with metastatic neuroendocrine tumor.

    PubMed

    Thirumala, Raghu; Rappo, Urania; Babady, N Esther; Kamboj, Mini; Chawla, Mohit

    2012-01-01

    Capnocytophaga species are known commensals of the oral cavity of humans and animals (mainly dogs and cats) and are a rare cause of respiratory tract infections. We report a case of cavitary lung abscess caused by a Capnocytophaga species in a patient with a metastatic neuroendocrine tumor.

  15. Vaccinia Virus-mediated Expression of Human Erythropoietin in Tumors Enhances Virotherapy and Alleviates Cancer-related Anemia in Mice

    PubMed Central

    Nguyen, Duong H; Chen, Nanhai G; Zhang, Qian; Le, Ha T; Aguilar, Richard J; Yu, Yong A; Cappello, Joseph; Szalay, Aladar A

    2013-01-01

    Recombinant human erythropoietin (rhEPO), a glycoprotein hormone regulating red blood cell (RBC) formation, is used for the treatment of cancer-related anemia. The effect of rhEPO on tumor growth, however, remains controversial. Here, we report the construction and characterization of the recombinant vaccinia virus (VACV) GLV-1h210, expressing hEPO. GLV-1h210 was shown to replicate in and kill A549 lung cancer cells in culture efficiently. In mice bearing A549 lung cancer xenografts, treatment with a single intravenous dose of GLV-1h210 resulted in tumor-specific production and secretion of functional hEPO, which exerted an effect on RBC progenitors and precursors in the mouse bone marrow, leading to a significant increase in the number of RBCs and in the level of hemoglobin. Furthermore, virally expressed hEPO, but not exogenously added rhEPO, enhanced virus-mediated green fluorescent protein (GFP) expression in tumors and subsequently accelerated tumor regression when compared with the treatment with the parental virus GLV-1h68 or GLV-1h209 that expressed a nonfunctional hEPO protein. Moreover, intratumorally expressed hEPO caused enlarged tumoral microvessels, likely facilitating virus spreading. Taken together, VACV-mediated intratumorally expressed hEPO not only enhanced oncolytic virotherapy but also simultaneously alleviated cancer-related anemia. PMID:23765443

  16. Lung tumorigenesis promoted by anti-apoptotic effects of cotinine, a nicotine metabolite through activation of PI3K/Akt pathway.

    PubMed

    Nakada, Tomohisa; Kiyotani, Kazuma; Iwano, Shunsuke; Uno, Takahiko; Yokohira, Masanao; Yamakawa, Keiko; Fujieda, Masaki; Saito, Tetsuya; Yamazaki, Hiroshi; Imaida, Katsumi; Kamataki, Tetsuya

    2012-01-01

    We previously found that genetic polymorphism in cytochrome P450 2A6 (CYP2A6) is one of the potential determinants of tobacco-related lung cancer risk. It has been reported that the plasma concentration of cotinine, a major metabolite of nicotine, in carriers of wild-type alleles of CYP2A6 is considerably higher than that in carriers of null or reduced-function alleles of CYP2A6, raising the possibility that cotinine plays an important role in the development of lung cancer. As a novel mechanism of lung tumorigenesis mediated by CYP2A6, we investigated the effects of cotinine on the suppression of apoptosis and promotion of lung tumor growth. In human lung adenocarcinoma A549 cells, cotinine inhibited doxorubicin-induced cell death by suppressing caspase-mediated apoptosis. Enhanced phosphorylation of Akt, a key factor responsible for cell survival and inhibition of apoptosis, was detected after cotinine treatment. These data suggest that cotinine suppresses caspase-mediated apoptosis induced by doxorubicin through activation of the PI3K/Akt pathway. Furthermore, we clarified that cotinine significantly facilitated tumor growth in the Lewis lung cancer model and accelerated development of lung adenomas induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mice. We herein propose that cotinine induces tumor promotion by inhibiting apoptosis and enhancing cellular proliferation, thus underlining the importance of CYP2A6 in tobacco-related lung tumorigenesis.

  17. A novel EGFR-TKI inhibitor (cAMP-H3BO3complex) combined with thermal therapy is a promising strategy to improve lung cancer treatment outcomes

    PubMed Central

    Tong, Yongpeng; Huang, Chunliu; Zhang, Junfang

    2017-01-01

    Purpose Although EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors) induce favorable responses as first-line non-small cell lung cancer treatments, drug resistance remains a serious problem. Meanwhile, thermal therapy also shows promise as a cancer therapy strategy. Here we combine a novel EGFR-TKI treatment with thermal therapy to improve lung cancer treatment outcomes. Results The results suggest that the cAMP-H3BO3 complex effectively inhibits EGFR auto-phosphorylation, while inducing apoptosis and cell cycle arrest in vitro. Compared to the negative control, tumor growth was significantly suppressed in mice treated with oxidative phosphorylation uncoupler thyroxine sodium and either cAMP-H3BO3 complex or cAMP-H3BO3 complex (P < 0.05). Moreover, the body temperature increase induced by treatment with thyroxine sodium inhibited tumor growth. Immunohistochemical analyses showed that A549 cell apoptosis was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in the other groups. Moreover,Ca2+ content analysis showed that the Ca2+ content of tumor tissue was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in other groups. Materials and Methods Inhibition of EGFR auto-phosphorylation by cAMP and cAMP-H3BO3 complex was studied using autoradiography and western blot. The antitumor activity of the novel EGFR inhibitor (cAMP-H3BO3 complex) with or without an oxidative phosphorylation uncoupler (thyroxine sodium) was investigated in vitro and in a nude mouse xenograft lung cancer model incorporating human A549 cells. Conclusions cAMP-H3BO3 complex is a novel EGFR-TKI. Combination therapy using cAMP-H3BO3 with thyroxine sodium-induced thermal therapy may improve lung cancer treatment outcomes. PMID:28915593

  18. Orthotopic lung cancer murine model by nonoperative transbronchial approach.

    PubMed

    Nakajima, Takahiro; Anayama, Takashi; Matsuda, Yasushi; Hwang, David M; McVeigh, Patrick Z; Wilson, Brian C; Zheng, Gang; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2014-05-01

    The aim of this work was to establish a novel orthotopic human non-small cell lung cancer (NSCLC) murine xenograft model by a nonsurgical, transbronchial approach. Male athymic nude mice and human NSCLC cell lines, including A549, H460, and H520 were used. Under direct visualization of the vocal cords, a 23-gauge blunt-tip slightly curved metal catheter was introduced into the trachea to the bronchus, and 2.5×10(5) tumor cells mixed with Matrigel (BD Biosciences, Mississauga, Ontario, Canada) were administered into the lung. Mice were monitored using weekly microcomputed tomography scans for tumor formation. When the tumor size reached more than 4 mm in diameter, the animals were euthanized, and the tumor tissue was evaluated histopathologically. Of 37 mice studied, 34 were confirmed to have tumor formation: 29 developed solitary tumors and 5 had multifocal lesions. There was no evidence of extrapleural dissemination or effusion. Transbronchial delivery of tumor cells enabled the establishment of a novel orthotopic human NSCLC murine xenograft model. This clinically relevant preclinical model bearing a solitary nodule is of value for a variety of in vivo research studies. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Primary mesenchymal or mixed-cell-origin lung tumors in four dogs.

    PubMed

    Watson, A D; Young, K M; Dubielzig, R R; Biller, D S

    1993-03-15

    Primary lung tumors of mesenchymal or mixed cell origin were diagnosed in 4 dogs with clinical and radiographic abnormalities indicating an intrathoracic mass. Each dog had 1 large intrapulmonary lesion, and 1 dog also had nodules scattered throughout all lung lobes. Two dogs were euthanatized; 1 had a biphasic pulmonary blastoma; and the other had a pulmonary chondroblastic osteosarcoma with intrapulmonary metastases. The masses in the other 2 dogs were hamartomas (lipomatous in 1, microcystic in the other), which were resected. Both dogs survived more than 1 year after surgery. Primary lung tumors are uncommon in dogs and are generally malignant (adenocarcinomas or carcinomas). Tumors of connective tissue or mixed cell origin are rare, but the outcome is potentially good after surgical removal.

  20. Dosimetric impact of gold markers implanted closely to lung tumors: a Monte Carlo simulation.

    PubMed

    Shiinoki, Takehiro; Sawada, Akira; Ishihara, Yoshitomo; Miyabe, Yuki; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2014-05-08

    We are developing an innovative dynamic tumor tracking irradiation technique using gold markers implanted around a tumor as a surrogate signal, a real-time marker detection system, and a gimbaled X-ray head in the Vero4DRT. The gold markers implanted in a normal organ will produce uncertainty in the dose calculation during treatment planning because the photon mass attenuation coefficient of a gold marker is much larger than that of normal tissue. The purpose of this study was to simulate the dose variation near the gold markers in a lung irradiated by a photon beam using the Monte Carlo method. First, the single-beam and the opposing-beam geometries were simulated using both water and lung phantoms. Subsequently, the relative dose profiles were calculated using a stereotactic body radiotherapy (SBRT) treatment plan for a lung cancer patient having gold markers along the anterior-posterior (AP) and right-left (RL) directions. For the single beam, the dose at the gold marker-phantom interface laterally along the perpendicular to the beam axis increased by a factor of 1.35 in the water phantom and 1.58 in the lung phantom, respectively. Furthermore, the entrance dose at the interface along the beam axis increased by a factor of 1.63 in the water phantom and 1.91 in the lung phantom, while the exit dose increased by a factor of 1.00 in the water phantom and 1.12 in the lung phantom, respectively. On the other hand, both dose escalations and dose de-escalations were canceled by each beam for opposing portal beams with the same beam weight. For SBRT patient data, the dose at the gold marker edge located in the tumor increased by a factor of 1.30 in both AP and RL directions. In clinical cases, dose escalations were observed at the small area where the distance between a gold marker and the lung tumor was ≤ 5 mm, and it would be clinically negligible in multibeam treatments, although further investigation may be required.

  1. Topology polymorphism graph for lung tumor segmentation in PET-CT images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Eberl, Stefan; Yin, Yong; Feng, Dagan; Fulham, Michael

    2015-06-21

    Accurate lung tumor segmentation is problematic when the tumor boundary or edge, which reflects the advancing edge of the tumor, is difficult to discern on chest CT or PET. We propose a 'topo-poly' graph model to improve identification of the tumor extent. Our model incorporates an intensity graph and a topology graph. The intensity graph provides the joint PET-CT foreground similarity to differentiate the tumor from surrounding tissues. The topology graph is defined on the basis of contour tree to reflect the inclusion and exclusion relationship of regions. By taking into account different topology relations, the edges in our model exhibit topological polymorphism. These polymorphic edges in turn affect the energy cost when crossing different topology regions under a random walk framework, and hence contribute to appropriate tumor delineation. We validated our method on 40 patients with non-small cell lung cancer where the tumors were manually delineated by a clinical expert. The studies were separated into an 'isolated' group (n = 20) where the lung tumor was located in the lung parenchyma and away from associated structures / tissues in the thorax and a 'complex' group (n = 20) where the tumor abutted / involved a variety of adjacent structures and had heterogeneous FDG uptake. The methods were validated using Dice's similarity coefficient (DSC) to measure the spatial volume overlap and Hausdorff distance (HD) to compare shape similarity calculated as the maximum surface distance between the segmentation results and the manual delineations. Our method achieved an average DSC of 0.881 ± 0.046 and HD of 5.311 ± 3.022 mm for the isolated cases and DSC of 0.870 ± 0.038 and HD of 9.370 ± 3.169 mm for the complex cases. Student's t-test showed that our model outperformed the other methods (p-values <0.05).

  2. Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers.

    PubMed

    Stueve, Theresa Ryan; Li, Wen-Qing; Shi, Jianxin; Marconett, Crystal N; Zhang, Tongwu; Yang, Chenchen; Mullen, Daniel; Yan, Chunli; Wheeler, William; Hua, Xing; Zhou, Beiyun; Borok, Zea; Caporaso, Neil E; Pesatori, Angela C; Duan, Jubao; Laird-Offringa, Ite A; Landi, Maria Teresa

    2017-08-01

    Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  3. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer.

    PubMed

    Zhao, Danhua; Chen, Ping; Yang, Huiqiang; Wu, Yonglin; Zeng, Xianwu; Zhao, Yu; Wen, Yanjun; Zhao, Xia; Liu, Xiaolin; Wei, Yuquan; Li, Yuhua

    2013-01-01

    Although the treatment of lung carcinoma has improved, at least 65% of patients with this tumor succumb to progressive disease. Measles virus oncolytic therapy has been reported to be effective in reducing tumor burden in immunocompetent or nude mice; however, its potential to reduce tumor burden in lung carcinoma remains to be determined. Herein, we report the potent antitumor effects of a live attenuated measles vaccine virus Hu-191 strain (MV) against lung carcinoma. Immunocompetent C57BL/6 mice bearing Lewis lung carcinoma (LLC) cells were treated with MV (1x104 to 1x106 CCID50/ml) once every other day for 10 days. Our results showed that treatment with MV effectively suppressed tumor growth and significantly prolonged the survival time of tumor-bearing animals. Histological examination revealed that the antitumor effects of MV therapy may result from increased induction of apoptosis, tumor necrosis and elevated lymphocyte infiltration. Our data suggest that MV, one of the widely used vaccines in China, has the ability to inhibit the growth of mouse lung carcinoma and may prove useful in the further exploration of the application of this approach in the treatment of human advanced lung cancer.

  4. EphA2 Targeting Pegylated Nanocarrier Drug Delivery System for Treatment of Lung Cancer

    PubMed Central

    Patel, Apurva R.; Chougule, Mahavir

    2017-01-01

    Purpose Evaluation of tumor targeting pegylated EphA2 peptide coated nanoparticles (ENDDs) of a novel anticancer agent DIM-C-pPhC6H5 (DIM-P) and Docetaxel (DOC) and investigate its antitumor activity and potential for treatment of lung cancer. Methods Nanoparticles were prepared with DIM-P and DOC (NDDs) using Nano-DeBEE. ENDDs were prepared by conjugating NDDs with 6His-PEG2K–EphA2 peptide and characterized for physicochemical properties, binding assay, cytotoxicity, cellular uptake studies, drug release and pharmacokinetic parameters. Anti-tumor activity of ENDDs was evaluated using a metastatic H1650 and orthotopic A549 tumor models in nude mice and tumor tissue were analyzed by RT-PCR and immunohistochemistry. Results Particle size and entrapment efficiency of ENDDs were 197±21 nm and 95±2%. ENDDs showed 32.5±3.5% more cellular uptake than NDDs in tumor cells. ENDDs showed 23 ± 3% and 26±4% more tumor reduction compared to NDDs in metastatic and orthotopic tumor models, respectively. In-vivo imaging studies using the Care stream MX FX Pro system showed (p<0.001) 40–60 fold higher flux for ENDDs compared to NDDs at tumor site. Conclusions The results emanating from these studies demonstrate anti-cancer potential of DIM-P and the role of ENDDs as effective tumor targeting drug delivery systems for lung cancer treatment. PMID:24867421

  5. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhancedmore » TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in

  6. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment.

    PubMed

    Wang, Jia; Xia, Shi'an; Zhu, Zhizhen

    2015-03-01

    Biguanides, used for anti-diabetic drugs, bring more attention in cancer research for their beneficial effects. Phenformin is more potent than metformin. However its potential application as a anti-cancer regent is far behind metformin. In order to investigate any beneficial effect of combination of Phenformin and radiotherapy, non-small cell lung cancer cell lines A549 and H1299 were exposure under different dose of ionizing radiation with or without Phenformin. Results indicated Phenformin showed synergistic effect and could induce more cancer cell apoptosis and inhibition of tumor growth compared with ionizing radiation alone. Furthermore, this synergistic effect may be through different pathway according to cancer cell genotype background. Our results showed Phenformin induced AMPK activation in A549 but not H1299. However, Phenformin activated eIF2α in both cell lines. Our findings implicated Phenformin may be used as radiosensitizer for non-small cell lung cancer therapy.

  8. Identification of an Unfavorable Immune Signature in Advanced Lung Tumors from Nrf2-Deficient Mice.

    PubMed

    Zhang, Di; Rennhack, Jonathan; Andrechek, Eran R; Rockwell, Cheryl E; Liby, Karen T

    2018-04-16

    Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway in normal cells inhibits carcinogenesis, whereas constitutive activation of Nrf2 in cancer cells promotes tumor growth and chemoresistance. However, the effects of Nrf2 activation in immune cells during lung carcinogenesis are poorly defined and could either promote or inhibit cancer growth. Our studies were designed to evaluate tumor burden and identify immune cell populations in the lungs of Nrf2 knockout (KO) versus wild-type (WT) mice challenged with vinyl carbamate. Nrf2 KO mice developed lung tumors earlier than the WT mice and exhibited more and larger tumors over time, even at late stages. T cell populations were lower in the lungs of Nrf2 KO mice, whereas tumor-promoting macrophages and myeloid-derived suppressor cells were elevated in the lungs and spleen, respectively, of Nrf2 KO mice relative to WT mice. Moreover, 34 immune response genes were significantly upregulated in tumors from Nrf2 KO mice, especially a series of cytokines (Cxcl1, Csf1, Ccl9, Cxcl12, etc.) and major histocompatibility complex antigens that promote tumor growth. Our studies discovered a novel immune signature, characterized by the infiltration of tumor-promoting immune cells, elevated cytokines, and increased expression of immune response genes in the lungs and tumors of Nrf2 KO mice. A complementary profile was also found in lung cancer patients, supporting the clinical significance of our findings. Overall, our results confirmed a protective role for Nrf2 in late-stage carcinogenesis and, unexpectedly, suggest that activation of Nrf2 in immune cells may be advantageous for preventing or treating lung cancer. Antioxid. Redox Signal. 00, 000-000.

  9. Short-term inhalation of stainless steel welding fume causes sustained lung toxicity but no tumorigenesis in lung tumor susceptible A/J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Stone, Sam; Chen, Bean T; Frazer, David G; Young, Shih-Houng; Erdely, Aaron; Kashon, Michael L; Andrews, Ronnee; Antonini, James M

    2011-02-01

    Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at-risk population for development of lung cancer. Our objective was to expose, by inhalation, lung tumor susceptible (A/J) and resistant C57BL/6J (B6) mice to stainless steel (SS) welding fume containing carcinogenic metals and characterize the lung-inflammatory and tumorigenic response. Male mice were exposed to air or gas metal arc (GMA)-SS welding fume at 40 mg/m(3)×3 h/day for 6 and 10 days. At 1, 4, 7, 10, 14, and 28 days after 10 days of exposure, bronchoalveolar lavage (BAL) was done. Lung cytotoxicity, permeability, inflammatory cytokines, and cell differentials were analyzed. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 78 weeks after 6 and 10 days of exposure. Inhalation of GMA-SS fume caused an early, sustained macrophage and lymphocyte response followed by a gradual neutrophil influx and the magnitudes of these differed between the mouse strains. Monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-α (TNF-α) were increased in both strains while the B6 also had increased interleukin-6 (IL-6) protein. BAL measures of cytotoxicity and damage were similar between the strains and significantly increased at all time points. Histopathology and tumorigenesis were unremarkable at 78 weeks. In conclusion, GMA-SS welding fume induced a significant and sustained inflammatory response in both mouse strains with no recovery by 28 days. Under our exposure conditions, GMA-SS exposure resulted in no significant tumor development in A/J mice.

  10. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model.

    PubMed

    Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul

    2004-08-01

    Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis

  11. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment.

    PubMed

    Song, Yu; Cai, Han; Yin, Tingjie; Huo, Meirong; Ma, Ping; Zhou, Jianping; Lai, Wenfang

    2018-01-01

    Lung cancer is the primary cause of cancer-related death worldwide. A redox-sensitive nanocarrier system was developed for tumor-targeted drug delivery and sufficient drug release of the chemotherapeutic agent paclitaxel (PTX) for improved lung cancer treatment. The redox-sensitive nanocarrier system constructed from a hyaluronic acid-disulfide-vitamin E succinate (HA-SS-VES, HSV) conjugate was synthesized and PTX was loaded in the delivery system. The physicochemical properties of the HSV nanoparticles were characterized. The redox-sensitivity, tumor-targeting and intracellular drug release capability of the HSV nanoparticles were evaluated. Furthermore, in vitro and in vivo antitumor activity of the PTX-loaded HSV nanoparticles was investigated in a CD44 over-expressed A549 tumor model. This HSV conjugate was successfully synthesized and self-assembled to form nanoparticles in aqueous condition with a low critical micelle concentration of 36.3 μg mL -1 . Free PTX was successfully entrapped into the HSV nanoparticles with a high drug loading of 33.5% (w/w) and an entrapment efficiency of 90.6%. Moreover, the redox-sensitivity of the HSV nanoparticles was confirmed by particle size change of the nanoparticles along with in vitro release profiles in different reducing environment. In addition, the HA-receptor mediated endocytosis and the potency of redox-sensitivity for intracellular drug delivery were further verified by flow cytometry and confocal laser scanning microscopic analysis. The antitumor activity results showed that compared to redox-insensitive nanoparticles and Taxol ® , PTX-loaded redox-sensitive nanoparticles exhibited much greater in vitro cytotoxicity and apoptosis-inducing ability against CD44 over-expressed A549 tumor cells. In vivo, the PTX-loaded HSV nanoparticles possessed much higher antitumor efficacy in an A549 mouse xenograft model and demonstrated improved safety profile. In summary, our PTX-loaded redox-sensitive HSV nanoparticles

  12. The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Classification of Lung Cancer with Separate Tumor Nodules in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer.

    PubMed

    Detterbeck, Frank C; Bolejack, Vanessa; Arenberg, Douglas A; Crowley, John; Donington, Jessica S; Franklin, Wilbur A; Girard, Nicolas; Marom, Edith M; Mazzone, Peter J; Nicholson, Andrew G; Rusch, Valerie W; Tanoue, Lynn T; Travis, William D; Asamura, Hisao; Rami-Porta, Ramón

    2016-05-01

    Separate tumor nodules with the same histologic appearance occur in the lungs in a small proportion of patients with primary lung cancer. This article addresses how such tumors can be classified to inform the eighth edition of the anatomic classification of lung cancer. Separate tumor nodules should be distinguished from second primary lung cancer, multifocal ground glass/lepidic tumors, and pneumonic-type lung cancer, which are addressed in separate analyses. Survival of patients with separate tumor nodules in the International Association for the Study of Lung Cancer database were analyzed. This was compared with a systematic literature review. Survival of clinically staged patients decreased according to the location of the separate tumor nodule relative to the index tumor (same lobe > same side > other side) in N0 and N-any cohorts (all M0 except possible other-side nodules). However, there was also a decrease in the proportion of patients resected; among only surgically resected or among nonresected patients no survival differences were noted. There were no survival differences between patients with same-lobe nodules and those with other T3 tumors, between patients with same-side nodules and those with T4 tumors, and patients with other-side nodules and those with other M1a tumors. The data correlated with those identified in a literature review. Tumors with same-lobe separate tumor nodules (with the same histologic appearance) are recommended to be classified as T3, same-side nodules as T4, and other-side nodules as M1a. Thus, there is no recommended change between the seventh and eighth edition of the TNM classification of lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  13. Surgical treatment of lung metastases in patients with embryonal pediatric solid tumors: an update.

    PubMed

    Fuchs, Joerg; Seitz, Guido; Handgretinger, Rupert; Schäfer, Juergen; Warmann, Steven W

    2012-02-01

    Distant metastases regularly occur in children with solid tumors. The most affected organ is the lung. Nearly in all extracranial pediatric solid tumors, the presence of lung metastases is associated with an adverse prognosis for the children. Therefore, the correct treatment of lung metastases is essential and influences the outcome. Despite different national and international trials for pediatric tumor entities, specific surgical aspects or guidelines for lung metastases are usually not addressed thoroughly in these protocols. The aim of this article is to present the diagnostic challenges and principles of surgical treatment by focusing on the influence of surgery on the outcome of children. Special points of interest are discussed that emphasize sarcomas, nephroblastomas, hepatoblastomas, and other tumors. Surgery of lung metastases is safe, has a positive impact on the patients' prognosis, and should be aggressive depending on the tumor entity. An interdisciplinary approach, including pediatric oncology and radiology, is mandatory in any case. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    PubMed

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  15. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device.

    PubMed

    Wang, Shanshan; Li, Encheng; Gao, Yanghui; Wang, Yan; Guo, Zhe; He, Jiarui; Zhang, Jianing; Gao, Zhancheng; Wang, Qi

    2013-01-01

    Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.

  16. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice.

    PubMed

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu

    2016-12-01

    Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

  17. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo.

    PubMed

    Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu

    2018-01-01

    Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.

  18. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo

    PubMed Central

    Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu

    2018-01-01

    Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO’s anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO’s anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment. PMID:29765324

  19. CT-guided automated detection of lung tumors on PET images

    NASA Astrophysics Data System (ADS)

    Cui, Yunfeng; Zhao, Binsheng; Akhurst, Timothy J.; Yan, Jiayong; Schwartz, Lawrence H.

    2008-03-01

    The calculation of standardized uptake values (SUVs) in tumors on serial [ 18F]2-fluoro-2-deoxy-D-glucose ( 18F-FDG) positron emission tomography (PET) images is often used for the assessment of therapy response. We present a computerized method that automatically detects lung tumors on 18F-FDG PET/Computed Tomography (CT) images using both anatomic and metabolic information. First, on CT images, relevant organs, including lung, bone, liver and spleen, are automatically identified and segmented based on their locations and intensity distributions. Hot spots (SUV >= 1.5) on 18F-FDG PET images are then labeled using the connected component analysis. The resultant "hot objects" (geometrically connected hot spots in three dimensions) that fall into, reside at the edges or are in the vicinity of the lungs are considered as tumor candidates. To determine true lesions, further analyses are conducted, including reduction of tumor candidates by the masking out of hot objects within CT-determined normal organs, and analysis of candidate tumors' locations, intensity distributions and shapes on both CT and PET. The method was applied to 18F-FDG-PET/CT scans from 9 patients, on which 31 target lesions had been identified by a nuclear medicine radiologist during a Phase II lung cancer clinical trial. Out of 31 target lesions, 30 (97%) were detected by the computer method. However, sensitivity and specificity were not estimated because not all lesions had been marked up in the clinical trial. The method effectively excluded the hot spots caused by mediastinum, liver, spleen, skeletal muscle and bone metastasis.

  20. [Granular Cell Tumor of the Lung - a Visual Diagnosis on Bronchoscopy?

    PubMed

    Keymel, S; Büter, S; Krüger, S

    2018-05-22

    A 38 years old patient presented with a progressive reduction of his general condition and weight loss. Chest imaging revealed consolidations and cavities suggesting a mycobacterial infection. For further diagnosis, a bronchoscopy was performed. In fact, a nontuberculous mycobacterial infection was found. As an incidental finding, we saw a white polypoid tumor in the middle lobe bronchus. The histology of this tumor revealed a granular cell tumor (GCT). The GCT is a rare tumor entity which occurs at different anatomical locations. In the lungs, the GCT may become symptomatic as it can cause bronchial obstruction. In chest imaging, it can manifest as infiltration, atelectasis or nodule. Likewise, GCT can be found as an incidental finding in bronchoscopy. First choice treatment is surgical resection of the tumor. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The role of multimodal treatment in patients with advanced lung neuroendocrine tumors

    PubMed Central

    Ungaro, Antonio; Spada, Francesca; Cella, Chiara Alessandra; Pisa, Eleonora; Barberis, Massimo; Grana, Chiara; Zerini, Dario; Bertani, Emilio; Ribero, Dario; Funicelli, Luigi; Bonomo, Guido; Ravizza, Davide; Guarize, Juliana; De Marinis, Filippo; Petrella, Francesco; Del Signore, Ester; Pelosi, Giuseppe; Spaggiari, Lorenzo

    2017-01-01

    Lung neuroendocrine tumors (NETs) comprise typical (TC) and atypical carcinoids (AC). They represent the well differentiated (WD) or low/intermediate grade forms of lung neuroendocrine neoplasms (NENs). Unlike the lung poorly differentiated NENs, that are usually treated with chemotherapy, lung NETs can be managed with several different therapies, making a multidisciplinary interaction a key point. We critically discussed the multimodal clinical management of patients with advanced lung NETs. Provided that no therapeutic algorithm has been validate so far, each clinical case should be discussed within a NEN-dedicated multidisciplinary team. Among the systemic therapies available for metastatic lung NETs everolimus is the only approved drug, on the basis of the results of the phase III RADIANT-4 trial. Another phase III trial, the SPINET, is ongoing comparing lanreotide with placebo. Peptide receptor radionuclide therapy and chemotherapy were not studied within phase III trials for lung NETs, and they have been reported to be active within retrospective or phase II prospective studies. Temozolomide and oxaliplatin are two interesting chemotherapeutic agents in lung NETs. While some European Institutions were certificated as Centers of Excellence for gastroenteropancreatic NENs by the European Neuroendocrine Tumor Society (ENETS), an equivalent ENETS certification for lung NENs does not exist yet. Ideally a lung NEN-dedicated multidisciplinary tumor board should include NEN-dedicated medical oncologists, thoracic medical oncologist, thoracic surgeons, pathologists, interventional radiologists, endocrinologists, radiotherapists, interventional pneumologists, nuclear physician. PMID:29201453

  2. Clinical significance of tumor cavitation in surgically resected early-stage primary lung cancer.

    PubMed

    Tomizawa, Kenji; Shimizu, Shigeki; Ohara, Shuta; Fujino, Toshio; Nishino, Masaya; Sesumi, Yuichi; Kobayashi, Yoshihisa; Sato, Katsuaki; Chiba, Masato; Shimoji, Masaki; Suda, Kenichi; Takemoto, Toshiki; Mitsudomi, Tetsuya

    2017-10-01

    The prognostic impact of tumor cavitation is unclear in patients with early-stage primary lung cancer. The aim of the present study was to examine the clinicopathological features and prognoses of patients with pathological stage I-IIA (p-stage I-IIA) primary lung cancers harboring tumor cavitation. This study was conducted according to the eighth edition of the TNM classification for lung cancer. We examined 602 patients with p-stage I-IIA primary lung cancer out of 890 patients who underwent pulmonary resection from January 2007 through March 2014 and searched for the presence of tumor cavitation, which is defined as the presence of air space within the primary tumor. A total of 59 out of the 602 patients had tumor cavitation (10%). Compared with patients without tumor cavitation, those with tumor cavitation had a significantly higher frequency of the following characteristics: high serum carcinoembryonic antigen (CEA) level (≥5ng/ml, p=0.027), interstitial pneumonia (p=0.0001), high SUVmax value on FDG-PET scan (≥4.2, p=0.023), tumors located in the lower lobe (p=0.024), large tumor size (>3cm, p=0.002), vascular invasion (66% vs 17%, p<0.0001) and non-adenocarcinoma histology (p=0.025). The overall survival period of patients with tumor cavitation was significantly shorter than that of patients without tumor cavitation (log-rank test: p<0.0001, 5-year OS rate: 56% vs 81%). Tumor cavitation was found to be an independent and significant factor associated with poor prognosis in the multivariate analysis (hazard ratio: 1.76, 95% confidence interval: 1.02-3.10, p=0.042). Tumor cavitation is an independent factor for poor prognosis in patients with resected p-stage I-IIA primary lung cancer. Based on our analyses, patients with tumor cavitation should be regarded as a separate cohort that requires more intensive follow-up. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    PubMed

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nitrilase 1 modulates lung tumor progression in vitro and in vivo

    PubMed Central

    Wang, Yong Antican; Sun, Yunguang; Le Blanc, Justin M.; Solomides, Charalambos; Zhan, Tingting; Lu, Bo

    2016-01-01

    Uncovering novel growth modulators for non-small cell lung cancer (NSCLC) may lead to new therapies for these patients. Previous studies suggest Nit1 suppresses chemically induced carcinogenesis of the foregut in a mouse model. In this study we aimed to determine the role of Nit1 in a transgenic mouse lung cancer model driven by a G12D Kras mutation. Nit1 knockout mice (Nit1−/−) were crossed with KrasG12D/+ mice to investigate whether a G12D Kras mutation and Nit1 inactivation interact to promote or inhibit the development of NSCLC. We found that lung tumorigenesis was suppressed in the Nit1-null background (Nit1−/−:KrasG12D/+). Micro-CT scans and gross tumor measurements demonstrated a 5-fold reduction in total tumor volumes compared to Nit1+/+KrasG12D/+ (p<0.01). Furthermore, we found that Nit1 is highly expressed in human lung cancer tissues and cell lines and use of siRNA against Nit1 decreased overall cell survival of lung cancer cells in culture. In addition, cisplatin response was enhanced in human lung cancer cells when Nit1 was knocked down and Nit1−/−:KrasG12D/+ tumors showed increased sensitivity to cisplatin in vivo. Together, our data indicate that Nit1 may play a supportive role in the modulation of lung tumorigenesis and represent a novel target for NSCLCs treatment. PMID:26967383

  5. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.

    PubMed

    Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R

    2009-12-01

    Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.

  6. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways.

    PubMed

    Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng

    2017-04-01

    Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.

  7. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data.

    PubMed

    Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina

    2014-06-01

    In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained

  8. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth

    PubMed Central

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P.; Lu, Bo

    2018-01-01

    ABSTRACT Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth. PMID:29632720

  9. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth.

    PubMed

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P; Lu, Bo

    2018-01-01

    Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth.

  10. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells.

    PubMed

    Singer, Bernhard B; Scheffrahn, Inka; Kammerer, Robert; Suttorp, Norbert; Ergun, Suleyman; Slevogt, Hortense

    2010-01-18

    CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.

  11. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo.

    PubMed

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-05-24

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.

  12. Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab.

    PubMed

    Pool, Martin; Kol, Arjan; Lub-de Hooge, Marjolijn N; Gerdes, Christian A; de Jong, Steven; de Vries, Elisabeth G E; Terwisscha van Scheltinga, Anton G T

    2016-10-18

    Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.

  13. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B; He, W; Cvetkovic, D

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less

  14. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model.

    PubMed

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R; Pinhu, Liao

    2016-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats. Copyright © 2016 the American Physiological Society.

  15. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    PubMed

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL -1 . Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL -1 . The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL -1 . This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synergistic Tumor-Killing Effect of Radiation and Berberine Combined Treatment in Lung Cancer: The Contribution of Autophagic Cell Death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Peiling; Division of Gastroenterology, Armed Forces Taichung Hospital, Taichung, Taiwan; Kuo, W.-H.

    2008-02-01

    Purpose: Radiotherapy is the most efficacious strategies for lung cancer. The radiation-enhancing effects and the underlying mechanisms of berberine were investigated both in vitro and in vivo. Methods and Materials: Clonogenic survival assays were used to evaluate the radio-sensitivity of berberine on non-small-cell lung cancer. Electron microscopic observation of the features of cell death, flow cytometry of acidic vascular organelles formation, mitochondria membrane potential and cell-cycle progression, and Western blotting of caspase 3, PARP, and LC3 were performed to identify the mechanisms underlying the enhancing effects. Lewis lung carcinoma model in mice was conducted to evaluate the possible application ofmore » berberine in synergistic treatment with irradiation. Results: Compared with radiation alone (SF2 = 0.423; D{sub 0} = 5.29 Gy), berberine at 5 and 10 {mu}M concentrations in combination with radiation showed significant enhancement on radiation-induced clonogenic inhibition (SF2 = 0.215: D{sub 0} = 2.70 Gy and SF2 = 0.099: D{sub 0} = 1.24 Gy) on A549 cells. The cellular ultrastructure showed the presence of autophagosome and an increased proportion of acridine orange stain-positive cells, demonstrating that berberine enhanced radiosensitivity via autophagy. The process involved LC3 modification and mitochondrial disruption. The animal model verified the synergistic cytotoxic effect of berberine and irradiation resulting in a substantial shrinkage of tumor volume. Conclusion: Supplement of berberine enhanced the cytotoxicity of radiation in both in vivo and in vitro models of lung cancer. The mechanisms underlying this synergistic effect involved the induction of autophagy. It suggests that berberine could be used as adjuvant therapy to treat lung cancer.« less

  17. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weina, E-mail: liweina228@163.com; He, Fei, E-mail: hesili1027@163.com

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lungmore » cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.« less

  18. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. microRNA-Based Immunotherapy for Control of Early Stage Lung Cancer

    DTIC Science & Technology

    2016-09-01

    in NSG hosts via subcutaneously injection. A549-Luc developed tumors successfully in NSG hosts and mice bearing A549-Luc tumors were the subject...activation of NK cells from whole blood. Next we evaluated NK cells and host interaction by transferring NK cells into A549-tumor bearing NSG host via...that did not receive NK cells. 4 At day 28, we harvested tumors, blood and tissues from tumor- bearing mice to analyze for NK presence in the

  20. Cellular Biochemistry and Cytogenetics in a Rat Lung Tumor Model

    DTIC Science & Technology

    1984-10-01

    lung tumor system the specific aims are: 1. To conduct studies of the effect of 3-methylchlanthrene (MCA) on DNA synthesis and cell proliferation in...alkylation of nucleic acids of the rat by N-methyl-N- nitrosourea , dimethylnitrosamine, dimethylsulfate, and methylmethanesulfonate. Biochem. J. 110:39-47

  1. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, C; Huang, C; Keall, P

    2015-06-15

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used tomore » select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance

  2. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  3. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    PubMed

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  4. Feasibility of Pathology-Correlated Lung Imaging for Accurate Target Definition of Lung Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, Joep; Blaauwgeers, Hans; Baardwijk, Angela van

    2007-09-01

    Purpose: To accurately define the gross tumor volume (GTV) and clinical target volume (GTV plus microscopic disease spread) for radiotherapy, the pretreatment imaging findings should be correlated with the histopathologic findings. In this pilot study, we investigated the feasibility of pathology-correlated imaging for lung tumors, taking into account lung deformations after surgery. Methods and Materials: High-resolution multislice computed tomography (CT) and positron emission tomography (PET) scans were obtained for 5 patients who had non-small-cell lung cancer (NSCLC) before lobectomy. At the pathologic examination, the involved lung lobes were inflated with formalin, sectioned in parallel slices, and photographed, and microscopic sectionsmore » were obtained. The GTVs were delineated for CT and autocontoured at the 42% PET level, and both were compared with the histopathologic volumes. The CT data were subsequently reformatted in the direction of the macroscopic sections, and the corresponding fiducial points in both images were compared. Hence, the lung deformations were determined to correct the distances of microscopic spread. Results: In 4 of 5 patients, the GTV{sub CT} was, on average, 4 cm{sup 3} ({approx}53%) too large. In contrast, for 1 patient (with lymphangitis carcinomatosa), the GTV{sub CT} was 16 cm{sup 3} ({approx}40%) too small. The GTV{sub PET} was too small for the same patient. Regarding deformations, the volume of the well-inflated lung lobes on pathologic examination was still, on average, only 50% of the lobe volume on CT. Consequently, the observed average maximal distance of microscopic spread (5 mm) might, in vivo, be as large as 9 mm. Conclusions: Our results have shown that pathology-correlated lung imaging is feasible and can be used to improve target definition. Ignoring deformations of the lung might result in underestimation of the microscopic spread.« less

  5. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line.

    PubMed

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-Lin

    2015-11-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  6. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    PubMed Central

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-lin

    2015-01-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2. PMID:26713270

  7. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    PubMed

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  8. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Fengming; Radiation Oncology Department, Tianjin Hospital, Tianjin; Yue, Xiao

    2015-01-01

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealedmore » in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.« less

  9. Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway

    PubMed Central

    Yang, Jiali; Zhang, Kangjian; Wu, Jing; Shi, Juan; Xue, Jing; Li, Jing; Zhu, Yongzhao; Wei, Jun

    2016-01-01

    The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies. PMID:27895670

  10. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3–72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis

    PubMed Central

    Khan, Muhammad Noman; Wang, Bing; Wei, Jing; Zhang, Yingqiu; Li, Qiang; Luan, Xuelin; Cheng, Jya-Wei; Gordon, John R.; Li, Fang; Liu, Han

    2015-01-01

    CXCR1 and CXCR2 together with cognate chemokines are significantly upregulated in a number of cancers, where they act as key regulators of tumor cell proliferation, metastasis, and angiogenesis. We have previously reported a mutant protein of CXCL8/Interleukin-8, CXCL8(3–72)K11R/G31P (G31P), which can act as a selective antagonist towards CXCR1/2 with therapeutic efficacy in both inflammatory diseases and malignancies. In this study, we investigated the effect of this ELR-CXC chemokine antagonist G31P on human non-small cell lung cancer cells and lung tumor progression in an orthotopic xenograft model. We report increased mRNA levels of CXCR1 and CXCR2 in human lung cancer tissues compared to normal counterparts. Expression levels of CXCR1/2 cognate ligands was determined by ELISA. CXCR1/2 receptor antagonism via G31P leads to decreased H460 and A549 cell proliferation and migration in a dose-dependent manner. G31P also enhanced apoptosis in lung cancer cells as determined by elevated levels of cleaved PARP, Caspase-8, and Bax, together with a reduced expression of the anti-apoptotic protein Bcl-2. In an in vivo orthotopic xenograft mouse model of human lung cancer, G31P treatment suppressed tumor growth, metastasis, and angiogenesis. At the molecular level, G31P treatment was correlated with decreased expression of VEGF and NFкB-p65, in addition to reduced phosphorylation of ERK1/2 and AKT. Our results suggest that G31P blockage of CXCR1 and CXCR2 can inhibit human lung cancer cell growth and metastasis, which offers potential therapeutic opportunities. PMID:26087179

  11. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  12. Desmoplastic small round cell tumor of the lung.

    PubMed

    Muramatsu, Takashi; Shimamura, Mie; Furuichi, Motohiko; Nishii, Tatsuhiko; Takeshita, Shinji; Shiono, Motomi

    2010-12-01

    We report a rare case of desmoplastic small round cell tumor, which arose from the left lung. A 25-year-old man was found to have an abnormal shadow during a routine physical examination and was admitted to our hospital. A thoracoscopic tumor biopsy was performed under general anesthesia. According to the histopathologic findings of permanent sections, the tumor was composed of sharply outlined nests, clusters, and trabeculae of small round to oval cells separated by a spindle-shaped desmoplastic stroma. A gene analysis revealed chimera genes of Ewing's sarcoma and Wilms' tumor by reverse transcription polymerase chain reaction. Copyright © 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression

    PubMed Central

    DuPage, Michel; Cheung, Ann; Mazumdar, Claire; Winslow, Monte M.; Bronson, Roderick; Schmidt, Leah M.; Crowley, Denise; Chen, Jianzhu; Jacks, Tyler

    2010-01-01

    SUMMARY Neoantigens derived from somatic mutations in tumors may provide a critical link between the adaptive immune system and cancer. Here we describe a system to introduce exogenous antigens into genetically engineered mouse lung cancers to mimic tumor neoantigens. We show that endogenous T cells respond to and infiltrate tumors, significantly delaying malignant progression. Despite continued antigen expression, T cell infiltration does not persist and tumors ultimately escape immune attack. Transplantation of cell lines derived from these lung tumors or prophylactic vaccination against the autochthonous tumors, however, results in rapid tumor eradication or selection of tumors that lose antigen expression. These results provide insight into the dynamic nature of the immune response to naturally arising tumors. PMID:21251614

  14. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in

  15. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Automated framework for estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in stereotactic lung body radiotherapy

    NASA Astrophysics Data System (ADS)

    Yoshidome, Satoshi; Arimura, Hidetaka; Terashima, Koutarou; Hirakawa, Masakazu; Hirose, Taka-aki; Fukunaga, Junichi; Nakamura, Yasuhiko

    2017-03-01

    Recently, image-guided radiotherapy (IGRT) systems using kilovolt cone-beam computed tomography (kV-CBCT) images have become more common for highly accurate patient positioning in stereotactic lung body radiotherapy (SLBRT). However, current IGRT procedures are based on bone structures and subjective correction. Therefore, the aim of this study was to evaluate the proposed framework for automated estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT. Twenty clinical cases are considered, involving solid, pure ground-glass opacity (GGO), mixed GGO, solitary, and non-solitary tumor types. The proposed framework consists of four steps: (1) determination of a search region for tumor location detection in a kV-CBCT image; (2) extraction of a tumor template from a planning CT image; (3) preprocessing for tumor region enhancement (edge and tumor enhancement using a Sobel filter and a blob structure enhancement (BSE) filter, respectively); and (4) tumor location estimation based on a template-matching technique. The location errors in the original, edge-, and tumor-enhanced images were found to be 1.2 ± 0.7 mm, 4.2 ± 8.0 mm, and 2.7 ± 4.6 mm, respectively. The location errors in the original images of solid, pure GGO, mixed GGO, solitary, and non-solitary types of tumors were 1.2 ± 0.7 mm, 1.3 ± 0.9 mm, 0.4 ± 0.6 mm, 1.1 ± 0.8 mm and 1.0 ± 0.7 mm, respectively. These results suggest that the proposed framework is robust as regards automatic estimation of several types of tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT.

  17. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data

  18. PET imaging of apoptosis in tumor-bearing mice and rabbits after paclitaxel treatment with 18F-Labeled recombinant human His10-annexin V

    PubMed Central

    Qin, Haidong; Zhang, Ming-Rong; Xie, Lin; Hou, Yanjie; Hua, Zichun; Hu, Minjin; Wang, Zizheng; Wang, Feng

    2015-01-01

    Monitoring response to chemo- or radiotherapy is of great importance in clinical practice. Apoptosis imaging serves as a very useful tool for the early evaluation of tumor response. The goal of this study was PET imaging of apoptosis with 18F-labeled recombinant human annexin V linked with 10 histidine tag (18F-rh-His10-annexin V) in nude mice bearing an A549 tumor and rabbits bearing a VX2 lung cancer after paclitaxel therapy. 18F-rh-His10-annexin V was prepared by conjugation of rh-His10-annexin V with N-succinimidyl 4-[18F]fluorobenzoate. Biodistribution was determined in mice by the dissection method and small-animal PET. Single-dose paclitaxel (175 mg/m2) was used to induce apoptosis in A549 and VX2 tumor models. 18F-rh-His10-annexin V was injected into A549 mice and VX rabbits to acquire dynamic and static PET images 72 h after paclitaxel treatment. The uptake of 18F-rh-His10-annexin V in apoptotic cells 4 h after induction was 6.45±0.52 fold higher than that in non-induced cells. High focal uptake of 18F-rh-His10-annexin V was visualized in A549 (SUVmax: 0.35±0.13) and VX2 (0.41±0.23) tumor models after paclitaxel treatment, whereas lower uptake was found in the corresponding tumors before treatment (A549 SUVmax: 0.04±0.02; VX2: 0.009±0.002). The apoptotic index was 75.61±11.56% in the treated VX2 cancer, much higher than that in the untreated VX2 (8.03±2.81%). This study demonstrated the feasibility of 18F-rh-His10-annexin V for the detection of apoptosis after chemotherapy in A549 and VX2 tumor models. PMID:25625024

  19. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  20. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53{sup −/−} cancer cells, in which PLK1 protein wasmore » suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.« less

  1. Clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy for lung tumors.

    PubMed

    Asai, Kaori; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Sasaki, Tomonari; Matsuo, Yoshio; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Shinoto, Makoto; Matsumoto, Keiji; Hirata, Hidenari; Honda, Hiroshi

    2015-12-01

    We retrospectively investigated the clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy (SBRT) for lung tumors. Between April 2003 and July 2012, 473 patients with lung tumors were treated with SBRT. We identified 12 patients (2.5 %) with pneumothorax caused by SBRT, and evaluated the clinical features of pneumothorax. All of the tumors were primary lung cancers. The severity of radiation pneumonitis was grade 1 in 10 patients and grade 2 in two patients. Nine patients had emphysema. The planning target volume and pleura overlapped in 11 patients, and the tumors were attached to the pleura in 7 patients. Rib fractures were observed in three patients before or at the same time as the diagnosis of pneumothorax. The median time to onset of pneumothorax after SBRT was 18.5 months (4-84 months). The severity of pneumothorax was grade 1 in 11 patients and grade 3 in one patient. Although pneumothorax was a relatively rare late adverse effect after SBRT, some patients demonstrated pneumothorax after SBRT for peripheral lung tumors. Although most pneumothorax was generally tolerable and self-limiting, careful follow-up is needed.

  2. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer.

    PubMed

    Zhang, Fuquan; Shen, Mingjing; Yang, Li; Yang, Xiaodong; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2017-08-03

    Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the

  3. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M., E-mail: brad.oborn@gmail.com; Ge, Y.; Hardcastle, N.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, whilemore » the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of

  4. Novel taspine derivative 12k inhibits cell growth and induces apoptosis in lung cell carcinoma.

    PubMed

    Dai, Bingling; Wang, Wenjie; Liu, Rui; Wang, Hongying; Zhang, Yanmin

    2015-03-01

    Taspine is an active compound in anticancer agent development. 12k was synthesized with taspine as lead compound bearing biphenyl scaffold and showed potent anticancer activity. Here, we investigated the effect of taspine derivative 12k on A549 lung cells. We showed that 12k not only decreased significantly A549 cell viability, A549 cell colony formation but also impaired A549 cell migration. Moreover, 12k treatment blocked cell cycle progression by increasing cell number in S phase to 42.80% for 6 μmol/L vs. 28.86% for control while decreasing cell number in G1 phase. Accordingly, this was associated with an increase protein expression of cyclin E and a decrease protein expression of cyclin D1, cyclin B1 and its associated CDK1 (cdc2). Meanwhile, we found that 12k induced A549 cell apoptosis, which was closely associated with the effect of the Bcl-2 family. Increase of Bad, Bak and Bax expression levels, decrease of Bcl-2 and Mcl-1 expression levels were observed. SiRNA knockdown of c-myc in A549 cells significantly attenuated tumor inhibition effects of 12k. In conclusion, our results demonstrate that 12k has an inhibitory effect on growth of A549 cell by inducing cell cycle arrest and apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. [Combined effects of interferon γ and γ ray irradiation on A549 cells in vitro].

    PubMed

    Xia, Hui; Zhang, Yi-ming; Yu, Chang-hai; Zhang, Wen; Zhang, Bao-shi; Fang, Fang

    2012-02-07

    To define the role of interferon-γ on radiotherapy of lung cancer and explore a new way to clinical treatment. A549 cells were exposed to γ ray with or without IFN-γ co-treatment. MTT assay was performed to evaluate cell viability. Western blot was used to observe the expression of P53 protein. The results showed that co-treatment of IFN-γ decreased the cell viability significantly compared with the γ ray irradiation group (71.4% ± 2.1% vs 44.1% ± 3.1%, n = 7, P < 0.01). In addition, the expression of P53 protein also increased significantly after co-treatment (P < 0.01); Furthermore, the cell cycle was changed obviously in co-treatment group compared with γ ray irradiation group, S phase increased (12.9% vs 20.9%, n = 5, P < 0.05) and also blocked the G2/M phase (28.8% vs 38.9%, n = 5, P < 0.05). The results suggested that γ ray irradiation combined with IFN-γ can increase the efficiency of radiotherapy on A549 cells and there is much broad prospect in the clinical treatment of lung cancer.

  6. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.

    2014-03-15

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg,more » orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that

  7. Long-term outcome of gamma knife radiosurgery for metastatic brain tumors originating from lung cancer

    PubMed Central

    Bir, Shyamal C.; Ambekar, Sudheer; Bollam, Papireddy; Nanda, Anil

    2014-01-01

    Background: Gamma knife radiosurgery (GKRS) has emerged as an important treatment option for metastasis brain tumors (MBTs). However, the long-term outcome of GKRS on MBTs originating from lung carcinoma is not well understood. The treatment of MBTs derived from lung cancer with GKRS at our institution is reviewed. Methods: We performed a retrospective review (2000-2013) of 173 patients with MBTs from lung cancer who received GKRS. Out of 173 patients, 38 patients had recurrent tumors after microsurgical resection and whole brain radiotherapy (WBT). Results: GKRS in MBTs metastasized from lung carcinoma showed significant variations in tumor growth control (decreased in 79 [45.7%] patients, arrested growth in 54 [31.2%] patients, and increased tumor size in 40 [23.1%] patients). The median survival in the study population was 14 months. Overall survival after 3 years was 25%, whereas progression-free survival after 3 years was 45%. The predictive factors for improving survival in the patients with MBTs were recursive partitioning analysis (RPA) class I (P = 0.005), absence of hydrocephalus (P = 0.001), Karnofsky performance scale (KPS) >70 (P = 0.007), age ≤65 (P = 0.041), tumor size ≤3 cm (P = 0.023), controlled primary tumor (P = 0.049), and single number of MBTS (P = 0.044). Conclusion: Long-term follow-up revealed that GKRS offers a high rate of tumor control and good overall survival period in both new and recurrent patients with MBTs originating from lung carcinoma. Thus, GKRS is an effective treatment option for new patients with MBTs from lung cancer, as well as an adjuvant therapy in patients with recurrent MBTs derived from lung cancer. PMID:25289169

  8. Profile of epigenetic mechanisms in lung tumors of patients with underlying chronic respiratory conditions.

    PubMed

    Mateu-Jimenez, Mercè; Curull, Víctor; Rodríguez-Fuster, Alberto; Aguiló, Rafael; Sánchez-Font, Albert; Pijuan, Lara; Gea, Joaquim; Barreiro, Esther

    2018-01-01

    Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and epigenetic events underlie lung cancer (LC) development. The study objective was that lung tumor expression levels of specific microRNAs and their downstream biomarkers may be differentially regulated in patients with and without COPD. In lung specimens (tumor and non-tumor), microRNAs known to be involved in lung tumorigenesis (miR-21, miR-200b, miR-126, miR-451, miR-210, miR-let7c, miR-30a-30p, miR-155 and miR-let7a, qRT-PCR), DNA methylation, and downstream biomarkers were determined (qRT-PCR and immunoblotting) in 40 patients with LC (prospective study, subdivided into LC-COPD and LC, N  = 20/group). Expression of miR-21, miR-200b, miR-210, and miR-let7c and DNA methylation were greater in lung tumor specimens of LC-COPD than of LC patients. Expression of downstream markers PTEN , MARCKs , TPM-1 , PDCD4 , SPRY-2 , ETS-1 , ZEB-2 , FGFRL-1 , EFNA-3 , and k-RAS together with P53 were selectively downregulated in tumor samples of LC-COPD patients. In these patients, tumor expression of miR-126 and miR-451 and that of the biomarkers PTEN , MARCKs , FGFRL-1 , SNAIL-1 , P63 , and k-RAS were reduced. Biomarkers of mechanisms involved in tumor growth, angiogenesis, migration, and apoptosis were differentially expressed in tumors of patients with underlying respiratory disease. These findings shed light into the underlying biology of the reported greater risk to develop LC seen in patients with chronic respiratory conditions. The presence of an underlying respiratory disease should be identified in all patients with LC as the differential biological profile may help determine tumor progression and the therapeutic response. Additionally, epigenetic events offer a niche for pharmacological therapeutic targets.

  9. Four-dimensional multislice computed tomography for determination of respiratory lung tumor motion in conformal radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.

    2005-07-01

    Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical

  10. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    PubMed

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  11. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Six Degrees-of-Freedom Prostate and Lung Tumor Motion Measurements Using Kilovoltage Intrafraction Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chen-Yu; Tehrani, Joubin Nasehi; Ng, Jin Aun

    2015-02-01

    Purpose: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM). Methods and Materials: Continuous kilovoltage (kV) projections of tumors with gold fiducial markers were acquired during radiation therapy for 267 fractions from 10 prostate cancer patients and immediately before or after radiation therapy for 50 fractions from 3more » lung cancer patients. The 6 DoF motion measurements were determined from the individual 3-dimensional (3D) marker positions, after using methods to reject spurious and smooth noisy data, using an iterative closest point algorithm. Results: There were large variations in the magnitude of the tumor rotation among different fractions and patients. Various rotational patterns were observed. The average prostate rotation angles around the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes were 1.0 ± 5.0°, 0.6 ± 3.3°, and 0.3 ± 2.0°, respectively. For 35% of the time, the prostate rotated more than 5° about the LR axis, indicating the need for intrafractional adaptation during radiation delivery. For lung patients, the average LR, SI, and AP rotation angles were 0.8 ± 4.2°, −0.8 ± 4.5°, and 1.7 ± 3.1°, respectively. For about 30% of the time, the lung tumors rotated more than 5° around the SI axis. Respiration-induced rotation was detected in 2 of the 3 lung patients. Conclusions: The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and

  13. Quantitative Primary Tumor Indocyanine Green Measurements Predict Osteosarcoma Metastatic Lung Burden in a Mouse Model.

    PubMed

    Fourman, Mitchell S; Mahjoub, Adel; Mandell, Jon B; Yu, Shibing; Tebbets, Jessica C; Crasto, Jared A; Alexander, Peter E; Weiss, Kurt R

    2018-03-01

    Current preclinical osteosarcoma (OS) models largely focus on quantifying primary tumor burden. However, most fatalities from OS are caused by metastatic disease. The quantification of metastatic OS currently relies on CT, which is limited by motion artifact, requires intravenous contrast, and can be technically demanding in the preclinical setting. We describe the ability for indocyanine green (ICG) fluorescence angiography to quantify primary and metastatic OS in a previously validated orthotopic, immunocompetent mouse model. (1) Can near-infrared ICG fluorescence be used to attach a comparable, quantitative value to the primary OS tumor in our experimental mouse model? (2) Will primary tumor fluorescence differ in mice that go on to develop metastatic lung disease? (3) Does primary tumor fluorescence correlate with tumor volume measured with CT? Six groups of 4- to 6-week-old immunocompetent Balb/c mice (n = 6 per group) received paraphyseal injections into their left hindlimb proximal tibia consisting of variable numbers of K7M2 mouse OS cells. A hindlimb transfemoral amputation was performed 4 weeks after injection with euthanasia and lung extraction performed 10 weeks after injection. Histologic examination of lung and primary tumor specimens confirmed ICG localization only within the tumor bed. Mice with visible or palpable tumor growth had greater hindlimb fluorescence (3.5 ± 2.3 arbitrary perfusion units [APU], defined as the fluorescence pixel return normalized by the detector) compared with those with a negative examination (0.71 ± 0.38 APU, -2.7 ± 0.5 mean difference, 95% confidence interval -3.7 to -1.8, p < 0.001). A strong linear trend (r = 0.81, p < 0.01) was observed between primary tumor and lung fluorescence, suggesting that quantitative ICG tumor fluorescence is directly related to eventual metastatic burden. We did not find a correlation (r = 0.04, p = 0.45) between normalized primary tumor fluorescence and CT volumetric measurements. We

  14. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  15. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    PubMed

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-04-30

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

  16. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-08

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  17. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn; Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5; Li, Yan

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We foundmore » that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not

  18. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System.

    PubMed

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko; Onimaru, Rikiya; Katoh, Norio; Inoue, Tetsuya; Sutherland, Kenneth Lee; Suzuki, Ryusuke; Shirato, Hiroki; Shimizu, Shinichi

    2016-01-01

    To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), -1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    PubMed

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  1. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  2. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    PubMed

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  4. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.

    PubMed

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I; Creighton, Chad J; Kheradmand, Farrah; DeMayo, Francesco J

    2015-03-03

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    PubMed

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Mechanism of Chlorogenic Acid in Apoptotic Regulation through Notch1 
Pathway in Non-small Cell Lung Carcinoma in Animal Level].

    PubMed

    Li, Wei; Liu, Xu; Zhang, Guoqian; Zhang, Linlin

    2017-08-20

    It has been proven that chlorogenic acids can produce anticancer effects by regulating cell cycle, inducing apoptosis, inhibiting cell growth, Notch signaling pathways are closely related to many human tumors. The aim of this study is to study the mechanism of chlorogenic acid on apoptosis of non-small lung cancer through Notch1 pathway in animal level, and hope to provide theory basis on clinical treatment and research aimed at targeting Notch1 signaling in non-small cell carcinoma (NSCLC). MTT assay was used to evaluate the A549 cell proliferation under the treatment of chlorogenic acid. The effect of chlorogenic acid on apoptotic and cell cycle were detected by flow cytometry. The animal model of A549 cell transplanted in nude was established, tumer size and weight were detected. The mRNA level of Notch1 signal pathway related facter were detected by RT-PCR; the expression of Notch1 signal pathway related facter in tumor tissue was detected by western blot. Chlorogenic acid inhibited the A549 cell proliferation. incresed cell apoptotic and cell percentagein G2/M (P<0.05), and in a dose-dependent manner. In animal model, tumer size and weight were lower than control group, the difference was statistically significant (P<0.05). The relative expression of mRNA of Notch1, VEGF, Delta4, HES1 and HEY1 were decreaced (P<0.05) in tumor tissue which treated with chlorogenic. The expression of Notch1 were decreaced, PTEN, p-PTEN, p-AKT were increced significantly in tumor tissue which treated with chlorogenic (P<0.05). Chlorogenic acid can regulate theapoptosis of non-small lung cancer through Notch pathway in animal level, which may be associated with the down-regulating the expression of VEGF and Delta4. Notch pathway may cross talk with PI3K/AKT pathway through PTEN in NSCLC.

  7. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging

    PubMed Central

    Wang, Fu-Li; Tan, Ye-Ying; Gu, Xiang-Min; Li, Tian-Ran; Lu, Guang-Ming; Liu, Gang; Huo, Tian-Long

    2016-01-01

    Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor

  8. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice

    PubMed Central

    2012-01-01

    Background Many human cancer cells express filamin A (FLNA), an actin-binding structural protein that interacts with a diverse set of cell signaling proteins, but little is known about the biological importance of FLNA in tumor development. FLNA is also expressed in endothelial cells, which may be important for tumor angiogenesis. In this study, we defined the impact of targeting Flna in cancer and endothelial cells on the development of tumors in vivo and on the proliferation of fibroblasts in vitro. Methods First, we used a Cre-adenovirus to simultaneously activate the expression of oncogenic K-RAS and inactivate the expression of Flna in the lung and in fibroblasts. Second, we subcutaneously injected mouse fibrosarcoma cells into mice lacking Flna in endothelial cells. Results Knockout of Flna significantly reduced K-RAS–induced lung tumor formation and the proliferation of oncogenic K-RAS–expressing fibroblasts, and attenuated the activation of the downstream signaling molecules ERK and AKT. Genetic deletion of endothelial FLNA in mice did not impact cardiovascular development; however, knockout of Flna in endothelial cells reduced subcutaneous fibrosarcoma growth and vascularity within tumors. Conclusions We conclude that FLNA is important for lung tumor growth and that endothelial Flna impacts local tumor growth. The data shed new light on the biological importance of FLNA and suggest that targeting this protein might be useful in cancer therapeutics. PMID:22857000

  9. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism

    PubMed Central

    Zhang, Qi-cheng; Pan, Zhen-hua; Liu, Bo-ning; Meng, Zhao-wei; Wu, Xiang; Zhou, Qing-hua; Xu, Ke

    2017-01-01

    Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1–100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10–40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20–40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory

  10. Increased AAA-TOB3 correlates with lymph node metastasis and advanced stage of lung adenocarcinoma.

    PubMed

    Liu, Yanfeng; Bu, Lina; Li, Wei; Wu, Wei; Wang, Shengyu; Diao, Xin; Zhou, Jing; Chen, Guoan; Yang, Shuanying

    2017-07-24

    This study was to investigate the differential mitochondrial protein expressions in human lung adenocarcinoma and provide preliminary data for further exploration of the carcinogenic mechanism. Total proteins of A549 and 16HBE mitochondria were extracted through 2D polyacrylamide gel electrophoresis (2-DE). The differential mitochondria proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and were further confirmed by Western blot, immunoelectron microscopy and immunohistochemistry (IHC) in A549 cells as well as lung adenocarcinoma tissues. A total of 41 differentially expressed protein spots were found in A549 mitochondria. Of them, 15 proteins were highly expressed and 26 proteins were lowly expressed in the mitochondria of A549 (by more than 1.5 times). Among the 15 more highly expressed proteins, AAA-TOB3 (by more than 3 times) was highly expressed in the mitochondria of A549 compared with the 16HBE, by LC-MS/MS identification. High electron density and clear circular colloidal gold-marked AAA-TOB3 particles were observed in the A549 cells via immunoelectron microscopy. Besides, AAA-TOB3 was confirmed to be elevated in lung adenocarcinoma by Western blot and IHC. Moreover, increased AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma (p<0.05). AAA-TOB3 was highly expressed in lung adenocarcinoma, and the up-regulation of AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma, which suggested that it could serve as a potential molecular marker for lung adenocarcinoma.

  11. Albumin nanocapsules containing fenretinide: pre-clinical evaluation of cytotoxic activity in experimental models of human non-small cell lung cancer.

    PubMed

    Pignatta, Sara; Orienti, Isabella; Falconi, Mirella; Teti, Gabriella; Arienti, Chiara; Medri, Laura; Zanoni, Michele; Carloni, Silvia; Zoli, Wainer; Amadori, Dino; Tesei, Anna

    2015-02-01

    The present study deals with the preparation of albumin nanocapsules containing fenretinide and their evaluation in experimental models of human non-small cell lung cancer. These nanocapsules showed enhanced antitumor activity with respect to free fenretinide due to the solubilization effect of albumin on the hydrophobic drug, known to improve bioavailability. The high expression of caveolin-1 on the A549 cell surface further enhanced the antitumor activity of the nanoencapsulated fenretinide. Caveolin-1 favored albumin uptake and improved the efficacy of the fenretinide-loaded albumin nanocapsules, especially in 3-D cultures where the densely packed 3-D structures impaired drug diffusibility and severely reduced the activity of the free drug. The efficacy of the fenretinide albumin nanocapsules was further confirmed in tumor xenograft models of A549 by the significant delay in tumor progression observed with respect to control after intravenous administration of the novel formulation. This study describes the preparation of fenretinide containing albumin nanocapsules and their evaluation in experimental models of non-small cell lung cancer, showing enhanced antitumor activity compared to free fenretinide. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Bronchovascular versus bronchial sleeve resection for central lung tumors.

    PubMed

    Lausberg, Henning F; Graeter, Thomas P; Tscholl, Dietmar; Wendler, Olaf; Schäfers, Hans-Joachim

    2005-04-01

    Pneumonectomy has traditionally been the treatment of choice for central lung tumors. Bronchial sleeve resections are increasingly considered as a reasonable alternative. For tumor involvement of both central airways and pulmonary artery, bronchovascular sleeve resections are possible, but considered to be technically demanding and associated with a higher perioperative risk. In addition, their role as adequate oncologic treatment for lung cancer is unclear. We have compared the early and long-term results of bronchovascular sleeve resection with those of bronchial sleeve resection and pneumonectomy. We retrospectively analyzed all patients who underwent bronchial sleeve resection (group I, n = 104), bronchovascular sleeve resection (group II, n = 67), and pneumonectomy (group III, n = 63) for central lung cancer in our institution. The groups were comparable regarding demographics and tumor, node, and metastasis (TNM) stage. Early mortality was 1.9% in group I, 1.5% in group II, and 6.3% in group III (p = 0.19). The rate of bronchial complications was 0.96% in group I, 0% in group II, and 7.9% in group III (p = 0.006). Five-year survival was 46.1% in group I, 42.9% in group II, and 30.4% in group III (p = 0.16). Freedom from local recurrence of disease (5 years) was 83.8% in group I, 84.2% in group II, and 88.7% in group III (p = 0.56). Bronchovascular sleeve resections are as safe as bronchial sleeve resections for the treatment of central lung cancer. Both procedures have comparable early and long-term results, which are similar to those of pneumonectomy. It appears reasonable to apply bronchovascular sleeve resections more liberally.

  13. Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.

    PubMed

    Zhao, Hailin; Huang, Han; Ologunde, Rele; Lloyd, Dafydd G; Watts, Helena; Vizcaychipi, Marcela P; Lian, Qingquan; George, Andrew J T; Ma, Daqing

    2015-06-01

    Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model. For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed. Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced. Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.

  14. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells.

    PubMed

    Han, Hao-Wei; Hsu, Shan-Hui

    2016-09-15

    The controversial roles of mesenchymal stem cells (MSCs) in lung cancer development are not yet resolved because of the lack of an extracellular environment that mimics the tumor microenvironment. Three-dimensional (3D) culture system is an emerging research tool for biomedical applications such as drug screening. In this study, MSCs and human non-small cell lung carcinoma cells (A549) were co-cultured on a thin biomaterial-based substratum (hyaluronan-grafted chitosan, CS-HA; ∼2μm), and they were self-organized into the 3D tumor co-spheroids with core-shell structure. The gene expression levels of tumorigenicity markers in cancer cells associated with cancer stemness, epithelial-mesenchymal transition (EMT) property, and cell mobility were up-regulated for more than twofold in the MSC-tumor co-spheroids, through the promoted expression of certain tumor enhancers and the direct cell-cell interaction. To verify the different extents of tumorigenicity, A549 cells or those co-cultured with MSCs were transplanted into zebrafish embryos for evaluation in vivo. The tumorigenicity obtained from the zebrafish xenotransplantation model was consistent with that observed in vitro. These evidences suggest that the CS-HA substrate-based 3D co-culture platform for cancer cells and MSCs may be a convenient tool for studying the cell-cell interaction in a tumor-like microenvironment and potentially for cancer drug testing. Mesenchymal stem cells (MSCs) have been found in several types of tumor tissues. However, the controversial roles of MSCs in cancer development are still unsolved. Chitosan and hyaluronan are commonly used materials in the biomedical field. In the current study, we co-cultured lung cancer cells and MSCs on the planar hyaluronan-grafted chitosan (CS-HA) hybrid substrates, and discovered that lung cancer cells and MSCs were rapidly self-assembled into 3D tumor spheroids with core-shell structure on the substrates after only two days in culture. Therefore, CS

  15. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  16. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less

  17. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less

  18. TU-CD-304-06: Using FFF Beams Improves Tumor Control in Radiotherapy of Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassiliev, O; Wang, H

    Purpose: Electron disequilibrium at the lung-tumor interface results in an under-dosage of tumor regions close to its surface. This under-dosage is known to be significant and can compromise tumor control. Previous studies have shown that in FFF beams, disequilibrium effects are less pronounced, which is manifested in an increased skin dose. In this study we investigate the improvement in tumor dose coverage that can be achieved with FFF beams. The significance of this improvement is evaluated by comparing tumor control probabilities of FFF beams and conventional flattened beams. Methods: The dosimetric coverage was investigated in a virtual phantom representing themore » chest wall, lung tissue and the tumor. A range of tumor sizes was investigated, and two tumor locations – central and adjacent to the chest wall. Calculations were performed with BEAMnrc Monte Carlo code. Parallel-opposed and multiple coplanar 6-MV beams were simulated. The tumor control probabilities were calculated using the logistic model with parameters derived from clinical data for non-small lung cancer patients. Results: FFF beams were not entirely immune to disequilibrium effects. They nevertheless consistently delivered more uniform dose distribution throughout the volume of the tumor, and eliminated up to ∼15% of under-dosage in the most affected by disequilibrium 1-mm thick surface region of the tumor. A voxel-by-voxel comparison of tumor control probabilities between FFF and conventional flattened beams showed an advantage of FFF beams that, depending on the set up, was from a few to ∼9 percent. Conclusion: A modest improvement in tumor control probability on the order of a few percent can be achieved by replacing conventional flattened beams with FFF beams. However, given the large number of lung cancer patients undergoing radiotherapy, these few percent can potentially prevent local tumor recurrence for a significant number of patients.« less

  19. Molecular profiling of single circulating tumor cells from lung cancer patients.

    PubMed

    Park, Seung-Min; Wong, Dawson J; Ooi, Chin Chun; Kurtz, David M; Vermesh, Ophir; Aalipour, Amin; Suh, Susie; Pian, Kelsey L; Chabon, Jacob J; Lee, Sang Hun; Jamali, Mehran; Say, Carmen; Carter, Justin N; Lee, Luke P; Kuschner, Ware G; Schwartz, Erich J; Shrager, Joseph B; Neal, Joel W; Wakelee, Heather A; Diehn, Maximilian; Nair, Viswam S; Wang, Shan X; Gambhir, Sanjiv S

    2016-12-27

    Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.

  20. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    PubMed

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  1. Lung tumor tracking in fluoroscopic video based on optical flow

    PubMed Central

    Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094

  2. Lung tumor tracking in fluoroscopic video based on optical flow.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B

    2008-12-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.

  3. Evaluation of role of Notch3 signaling pathway in human lung cancer cells.

    PubMed

    Hassan, Wael Abdo; Yoshida, Ryoji; Kudoh, Shinji; Motooka, Yamato; Ito, Takaaki

    2016-05-01

    There is still a debate on the extent to which Notch3 signaling is involved in lung carcinogenesis and whether such function is dependent on cancer type or not. To evaluate Notch3 expression in different types of human lung cancer cells. Notch3 was detected in human lung cancer cell lines and in tissues. Then, small interfering RNA (siRNA) was used to down-regulate the expression of Notch3 in H69AR small cell lung carcinoma (SCLC) cells; two non-small cell lung carcinoma (NSCLC) cells; A549 adenocarcinoma (ADC); and H2170 squamous cell carcinoma (SCC). In addition, Notch3 intracellular domain (N3ICD) plasmid was transfected into H1688 human SCLC cells. We observed the effect of deregulating Notch3 signaling on the following cell properties: Notch-related proteins, cell morphology, adhesion, epithelial-mesenchymal transition (EMT), motility, proliferation and neuroendocrine (NE) features of SCLC. Notch3 is mainly expressed in NSCLC, and the expression of Notch1, Hes1 and Jagged1 is affected by Notch3. Notch3 has opposite functions in SCLC and NSCLC, being a tumor suppressor in the former and tumor promoting in the latter, in the context of cell adhesion, EMT and motility. Regarding cell proliferation, we found that inhibiting Notch3 in NSCLC decreases cell proliferation and induces apoptosis in NSCLC. Notch3 has no effect on cell proliferation or NE features of SCLC. Notch3 signaling in lung carcinoma is dependent on cell type. In SCLC, Notch3 behaves as a tumor suppressor pathway, while in NSCLC it acts as a tumor-promoting pathway.

  4. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    PubMed Central

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time. PMID:24007146

  5. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hong Shik; Hong, Eun-Hee; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotypemore » of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.« less

  6. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  7. Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.

    PubMed

    Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang

    2017-01-01

    Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard

  8. Lung adenocarcinoma with intraoperatively diagnosed pleural seeding: Is main tumor resection beneficial for prognosis?

    PubMed

    Li, Chi; Kuo, Shuenn-Wen; Hsu, Hsao-Hsun; Lin, Mong-Wei; Chen, Jin-Shing

    2018-03-01

    To evaluate whether main tumor resection improves survival compared with pleural biopsy alone in patients with lung adenocarcinoma with intraoperatively diagnosed pleural seeding. Forty-three patients with lung adenocarcinoma with pleural seeding diagnosed unexpectedly during surgery performed between January 2006 and December 2014 were included in this retrospective study using a prospectively collected lung cancer database. Each surgeon decided whether to perform main tumor resection or pleural biopsy alone. Main tumor and visible pleural nodule resection was performed in 30 patients (tumor resection group). The remaining 13 patients underwent pleural nodule biopsy alone (open-close group). The clinical T stage was higher in the open-close group than in the tumor resection group (P = .02). The tumor resection group had longer operative times compared with the open-close group (mean, 141.8 vs 80.3 minutes). There were no other statistically significant differences in perioperative parameters. The surgical method was the sole statistically significant prognostic factor. Patients in the tumor resection group had better progression-free survival (3-year survival: 44.5% vs 0%; P = .009) and overall survival (3-year survival: 82.9% vs 38.5%; P = .013) than did the open-close group. There was no significant survival difference between sublobar resection and lobectomy for the main tumor resection. Our study demonstrated improved progression-free and overall survival after main tumor and visible pleural nodule resection in patients with lung adenocarcinoma with intraoperatively diagnosed pleural seeding. Further randomized trials are needed to define the role of main tumor resection in these patients. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.

    PubMed

    Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu

    2017-01-01

    Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.

  10. MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Jia, Lin; Guo, Qiaojuan

    2015-11-27

    Although miR-564 was reported to be dysregulated in human malignancy, the function and mechanism of miR-564 in tumorigenesis remains unknown. In the present study, we found that miR-564 frequently downregulated in lung cancer cells and significantly inhibited cell proliferation, cell cycle progression, motility, and the tumorigenicity of lung cancer cells. Moreover, we identified zic family member 3 (ZIC3) as a direct target of miR-564. ZIC3 overexpression impaired the suppressive effects of miR-564 on the capacity of lung cancer cells for proliferation and motility. Finally, we detected the expression level of miR-564 and ZIC3 protein in tissue specimens, and found amore » significant negative correlation between them. Patients with low levels of miR-564 showed a poorer overall survival. Taken together, our present study revealed the tumor suppressor role of miR-564, indicating restoration of miR-564 as a potential therapeutic strategy for the treatment of lung cancer. - Highlights: • MiR-564 inhibits cancer cell proliferation, cell cycle progression, migration, and invasion. • miR-564 suppresses the tumorigenicity of lung cancer cell in vivo. • ZIC3 is a direct and functional target of miR-564. • The expression of miR-564 was negatively correlated with ZIC3 protein in tumors. • Both low miR-564 and high ZIC3 was associated with tumor stage and prognosis.« less

  11. Tumor heterogeneity in small cell lung cancer defined and investigated in pre-clinical mouse models

    PubMed Central

    Shue, Yan Ting; Lim, Jing Shan

    2018-01-01

    Small cell lung carcinoma (SCLC) is a fast-growing, highly metastatic form of lung cancer. A major difference between SCLC and other forms of lung cancer is that SCLC tumors often respond well to chemotherapy initially; unfortunately, resistant tumors rapidly recur. In addition, despite a large number of clinical trials with a variety of therapeutic agents, little progress has been achieved in the past three decades in improving the survival of SCLC patients. These clinical observations indicate that SCLC tumors have a high degree of plasticity and rapid adaptability to changes in growth conditions. Here we consider recent evidence pointing to several levels of heterogeneity in SCLC that may explain the ability of these tumors to adjust to different microenvironment and therapeutics. In particular, we review new data pointing to the existence of several subpopulations of tumor cells that interact with each other to promote tumor growth. We also discuss how SCLC tumors that look similar at the histopathological level may actually represent distinct subtypes of tumors and how these differences impact the response to specific therapeutic agents. A better understanding of genetic and cellular heterogeneity will guide the development of personalized approaches to help SCLC patients. PMID:29535910

  12. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  13. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  14. Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.

    PubMed

    Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin

    2017-09-01

    The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Proteomic analysis of ubiquitination-associated proteins in a cisplatin-resistant human lung adenocarcinoma cell line.

    PubMed

    Qin, Xia; Chen, Shizhi; Qiu, Zongyin; Zhang, Yuan; Qiu, Feng

    2012-05-01

    The objective of this study was to screen for ubiquitination-associated proteins involved in cisplatin resistance in a human lung adenocarcinoma cell strain using a comparative proteomic strategy. We employed 1D SDS-PAGE to separate ubiquitinated proteins isolated and enriched from A549 and A549/CDDP lysates via affinity chromatography. The differentially expressed bands between 45-85 kDa were subsequently hydrolyzed by trypsin and subjected to HPLC-CHIP-MS/MS analysis. Of the 11 proteins identified, 7 proteins were monoubiquitinated or polyubiquitinated substrates and 4 proteins were E3 ubiquitin ligase-associated proteins. The results of western blotting and confocal laser scanning microscopy indicated that the expression levels of the E3 ubiquitin ligases RNF6, LRSAM1 and TRIM25 in A549 cells were significantly lower than those in the A549/CDDP cell line. The expression levels of the above three ubiquitin ligases in both cell lines were significantly decreased upon treatment with cis-diamminedichloroplatinum (CDDP), and the expression in the A549/CDDP cell after the treatment with CDDP decreased to a lesser extent. The expression of the substrate PKM2 in the A549 cell was higher than that in the A549/CDDP cells. Moreover, the expression of PKM2 increased in the A549 cell line and decreased in the A549/CDDP cell line upon CDDP treatment. This study suggests that drug resistance is closely correlated with changes in the ubiquitination process at the protein level in a human lung adenocarcinoma cell line.

  16. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells.

    PubMed

    Kim, Hyo-Jin; Hwang, Ki-Eun; Park, Do-Sim; Oh, Seon-Hee; Jun, Hong Young; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul; Kim, Young-Suk

    2017-05-31

    Shikonin, a natural naphthoquinone pigment purified from Lithospermum erythrorhizon, induces necroptosis in various cancer types, but the mechanisms underlying the anticancer activity of shikonin in lung cancer are not fully understood. This study was designed to clarify whether shikonin causes necroptosis in non-small cell lung cancer (NSCLC) cells and to investigate the mechanism of action. Multiplex and caspase 8 assays were used to analyze effect of shikonin on A549 cells. Cytometry with annexin V/PI staining and MTT assays were used to analyze the mode of cell death. Western blotting was used to determine the effect of shikonin-induced necroptosis and autophagy. Xenograft and orthotopic models with A549 cells were used to evaluate the anti-tumor effect of shikonin in vivo. Most of the cell death induced by shikonin could be rescued by the specific necroptosis inhibitor necrostatin-1, but not by the general caspase inhibitor Z-VAD-FMK. Tumor growth was significantly lower in animals treated with shikonin than in the control group. Shikonin also increased RIP1 protein expression in tumor tissues. Autophagy inhibitors, including methyladenine (3-MA), ATG5 siRNA, and bafilomycin A, enhanced shikonin-induced necroptosis, whereas RIP1 siRNA had no effect on the apoptotic potential of shikonin. Our data indicated that shikonin treatment induced necroptosis and autophagy in NSCLC cells. In addition, the inhibition of shikonin-induced autophagy enhanced necroptosis, suggesting that shikonin could be a novel therapeutic strategy against NSCLC.

  17. Overexpression of microRNA‑125a‑3p effectively inhibits the cell growth and invasion of lung cancer cells by regulating the mouse double minute 2 homolog/p53 signaling pathway.

    PubMed

    Li, Shenglei; Li, Xin; Zhao, Huasi; Gao, Ming; Wang, Feng; Li, Wencai

    2015-10-01

    MicroRNAs (miRs) are a family of small non-coding RNAs that are 21‑24 nucleotides in length. Decreased expression of hsa‑miR‑125a‑3p is observed in a number of patients with non‑small cell lung cancer; however, it is not clear how this miRNA regulates the growth and invasion of lung tumor cells. The aim of the present study was to identify the function of hsa‑miR‑125a‑3p in the growth and invasion of lung cancer cells. The expression of hsa‑miR‑125a‑3p in the A549, NCI‑H460 and SPCA‑1 lung cancer cell lines was analyzed by reverse transcription‑quantitative polymerase chain reaction and the human bronchiolar epithelium cell line (HBE) was used as a control. The results demonstrated that the expression of hsa‑miR‑125a‑3p was significantly lower in NCI‑H460, A549 and SPCA‑1 cells, compared with that in HBE cells. Overexpression of sense miR‑125a‑3p in the A549 lung cancer cell line inhibited cell proliferation for 5‑7 days (P<0.01), and transfection of antisense miR‑125a‑3p did not suppress the cell growth of the lung cancer cells. In addition, overexpression of miR‑125a‑3p in the NCI‑H460 lung cancer cell line markedly induced cell apoptosis, which was detected by fluorescence‑activated cell sorting with annexin V‑fluorescein isothiocyanate/propidium iodide staining. The results of the Transwell migration assay also revealed that transfection of miR‑125a‑3p resulted in decreased migration of lung cancer tumor cells. The pro‑apoptotic gene p53 expression was detected by western blot analysis. The results revealed that the expression of mouse double minute (MDM)‑2 homolog, the principal cellular antagonist of p53, was decreased and p53 expression was upregulated in sense has‑miR‑125a‑3p transfected A549 cells. This was consistent with that observed in NCI‑H460 cells, suggesting that hsa‑miR‑125a‑3p may be involved in the regulation of the MDM2/p53 signaling pathway in lung cancer cells. In

  18. An NQO1-Initiated and p53-Independent Apoptotic Pathway Determines the Anti-Tumor Effect of Tanshinone IIA against Non-Small Cell Lung Cancer

    PubMed Central

    Wang, Guangji; Liu, Huiying; Wu, Xiaolan; Wang, Qiong; Liu, Miao; Liao, Ke; Wu, Mengqiu; Cheng, Xuefang; Hao, Haiping

    2012-01-01

    NQO1 is an emerging and promising therapeutic target in cancer therapy. This study was to determine whether the anti-tumor effect of tanshinone IIA (TSA) is NQO1 dependent and to elucidate the underlying apoptotic cell death pathways. NQO1+ A549 cells and isogenically matched NQO1 transfected and negative H596 cells were used to test the properties and mechanisms of TSA induced cell death. The in vivo anti-tumor efficacy and the tissue distribution properties of TSA were tested in tumor xenografted nude mice. We observed that TSA induced an excessive generation of ROS, DNA damage, and dramatic apoptotic cell death in NQO1+ A549 cells and H596-NQO1 cells, but not in NQO1− H596 cells. Inhibition or silence of NQO1 as well as the antioxidant NAC markedly reversed TSA induced apoptotic effects. TSA treatment significantly retarded the tumor growth of A549 tumor xenografts, which was significantly antagonized by dicoumarol co-treatment in spite of the increased and prolonged TSA accumulations in tumor tissues. TSA activated a ROS triggered, p53 independent and caspase dependent mitochondria apoptotic cell death pathway that is characterized with increased ratio of Bax to Bcl-xl, mitochondrial membrane potential disruption, cytochrome c release, and subsequent caspase activation and PARP-1 cleavage. The results of these findings suggest that TSA is a highly specific NQO1 target agent and is promising in developing as an effective drug in the therapy of NQO1 positive NSCLC. PMID:22848731

  19. Validation of the Lung Subtyping Panel in Multiple Fresh-Frozen and Formalin-Fixed, Paraffin-Embedded Lung Tumor Gene Expression Data Sets.

    PubMed

    Faruki, Hawazin; Mayhew, Gregory M; Fan, Cheng; Wilkerson, Matthew D; Parker, Scott; Kam-Morgan, Lauren; Eisenberg, Marcia; Horten, Bruce; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla

    2016-06-01

    Context .- A histologic classification of lung cancer subtypes is essential in guiding therapeutic management. Objective .- To complement morphology-based classification of lung tumors, a previously developed lung subtyping panel (LSP) of 57 genes was tested using multiple public fresh-frozen gene-expression data sets and a prospectively collected set of formalin-fixed, paraffin-embedded lung tumor samples. Design .- The LSP gene-expression signature was evaluated in multiple lung cancer gene-expression data sets totaling 2177 patients collected from 4 platforms: Illumina RNAseq (San Diego, California), Agilent (Santa Clara, California) and Affymetrix (Santa Clara) microarrays, and quantitative reverse transcription-polymerase chain reaction. Gene centroids were calculated for each of 3 genomic-defined subtypes: adenocarcinoma, squamous cell carcinoma, and neuroendocrine, the latter of which encompassed both small cell carcinoma and carcinoid. Classification by LSP into 3 subtypes was evaluated in both fresh-frozen and formalin-fixed, paraffin-embedded tumor samples, and agreement with the original morphology-based diagnosis was determined. Results .- The LSP-based classifications demonstrated overall agreement with the original clinical diagnosis ranging from 78% (251 of 322) to 91% (492 of 538 and 869 of 951) in the fresh-frozen public data sets and 84% (65 of 77) in the formalin-fixed, paraffin-embedded data set. The LSP performance was independent of tissue-preservation method and gene-expression platform. Secondary, blinded pathology review of formalin-fixed, paraffin-embedded samples demonstrated concordance of 82% (63 of 77) with the original morphology diagnosis. Conclusions .- The LSP gene-expression signature is a reproducible and objective method for classifying lung tumors and demonstrates good concordance with morphology-based classification across multiple data sets. The LSP panel can supplement morphologic assessment of lung cancers, particularly

  20. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles

    PubMed Central

    Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L

    2015-01-01

    Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840

  1. Lung Cancer: A Classic Example of Tumor Escape and Progression While Providing Opportunities for Immunological Intervention

    PubMed Central

    Jadus, Martin R.; Natividad, Josephine; Mai, Anthony; Ouyang, Yi; Lambrecht, Nils; Szabo, Sandor; Ge, Lisheng; Hoa, Neil; Dacosta-Iyer, Maria G.

    2012-01-01

    Lung cancers remain one of the most common and deadly cancers in the world today (12.5% of newly diagnosed cancers) despite current advances in chemo- and radiation therapies. Often, by the time these tumors are diagnosed, they have already metastasized. These tumors demonstrate the classic hallmarks of cancer in that they have advanced defensive strategies allowing them to escape various standard oncological treatments. Immunotherapy is making inroads towards effectively treating other fatal cancers, such as melanoma, glioblastoma multiforme, and castrate-resistant prostate cancers. This paper will cover the escape mechanisms of bronchogenic lung cancer that must be overcome before they can be successfully treated. We also review the history of immunotherapy directed towards lung cancers. PMID:22899945

  2. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko

    2016-01-01

    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch positionmore » correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), −1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.« less

  3. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways.

    PubMed

    Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun

    2018-07-01

    Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles.

    PubMed

    Wang, Xin; Yang, Chenchen; Zhang, Yajun; Zhen, Xu; Wu, Wei; Jiang, Xiqun

    2014-08-01

    Selectively activating tumor vessels to increase drug delivery and reduce interstitial fluid pressure of tumors is actively pursued. Here we developed a vasoactive peptide-decorated chitosan nanoparticles for enhancing drug accumulation and penetration in subcutaneous tumor and lung metastasis. The vasoactive peptide used here is bradykinin-potentiating peptide (BPP) containing 9 amino acid residues and the drug is bioreductively sensitive platinum(IV) compound which becomes cisplatin in intracellular reductive environments. Both peptide and drug are covalently linked with chitosan nanoparticles with a diameter of 120 nm. We demonstrate that BPP-decorated chitosan nanoparticles increase the tumorous vascular permeability and reduce the interstitial fluid pressure of tumor simultaneously, both of which improve the penetration of nanoparticles in tumor tissues. The in vivo biodistribution and tumor inhibition examinations demonstrate that the BPP-decorated nanoparticle formulation has more superior efficacy in enhancing drug accumulation in tumor, restraining tumor growth and prolonging the lifetime of tumor-bearing mice than free drug and non-decorated nanoparticle formulation. Meanwhile, the drug accumulation in the lung with metastasis reaches 17% and 20% injected dose per gram of lung for the chitosan nanoparticles without and with BPP decoration, respectively, which is 10-fold larger than that of free cisplatin. The examination of lung metastasis inhibition further indicates that BPP-decorated chitosan nanoparticle formulations can more effectively inhibit lung metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.

    PubMed

    Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K

    2015-05-20

    In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.

  6. Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

    PubMed

    Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J

    2012-01-01

    Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.

  7. Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives

    PubMed Central

    Cheng, Xinghua; Chen, Haiquan

    2014-01-01

    Lung cancer, mostly nonsmall cell lung cancer, continues to be the leading cause of cancer-related death worldwide. With the development of tyrosine kinase inhibitors that selectively target lung cancer-related epidermal growth factor receptor mutations, management of advanced nonsmall cell lung cancer has been greatly transformed. Improvements in progression-free survival and life quality of the patients were observed in numerous clinical studies. However, overall survival is not prolonged because of later-acquired drug resistance. Recent studies reveal a heterogeneous subclonal architecture of lung cancer, so it is speculated that the tumor may rapidly adapt to environmental changes via a Darwinian selection mechanism. In this review, we aim to provide an overview of both spatial and temporal tumor heterogeneity as potential mechanisms underlying epidermal growth factor receptor tyrosine kinase inhibitor resistance in nonsmall cell lung cancer and summarize the possible origins of tumor heterogeneity covering theories of cancer stem cells and clonal evolution, as well as genomic instability and epigenetic aberrations in lung cancer. Moreover, investigational measures that overcome heterogeneity-associated drug resistance and new assays to improve tumor assessment are also discussed. PMID:25285017

  8. Pneumothorax caused by cystic and nodular lung metastases from a malignant uterine perivascular epithelioid cell tumor (PEComa).

    PubMed

    Okamoto, Shouichi; Komura, Moegi; Terao, Yasuhisa; Kurisaki-Arakawa, Aiko; Hayashi, Takuo; Saito, Tsuyoshi; Togo, Shinsaku; Shiokawa, Akira; Mitani, Keiko; Kobayashi, Etsuko; Kumasaka, Toshio; Takahashi, Kazuhisa; Seyama, Kuniaki

    2017-01-01

    Perivascular epithelioid cell tumors (PEComas) are mesenchymal neoplasms with immunoreactivity for both melanocytic and smooth muscle markers. PEComas occur at multiple sites, and malignant PEComas can undergo metastasis, recurrence and aggressive clinical courses. Although the lung is a common metastatic site of PEComas, they usually appear as multiple nodules but rarely become cystic or cavitary. Here, we describe a female patient whose lungs manifested multiple cystic, cavity-like and nodular metastases 3 years after the resection of uterine tumors tentatively diagnosed as epithelioid smooth muscle tumors with uncertain malignant potential. This patient's subsequent pneumothorax necessitated video-assisted thoracoscopic surgery, and examination of her resected lung specimens eventually led to correcting the diagnosis, i.e., to a PEComa harboring tuberous sclerosis complex 1 ( TSC1 ) loss-of-heterozygosity that originated in the uterus and then metastasized to the lungs. The administration of a gonadotropin-releasing hormone analogue later stabilized her clinical course. To the best of our knowledge, the present case is the first in the literature that associates PEComas with a TSC1 abnormality. Additionally, the pulmonary manifestations, including imaging appearance and pneumothorax, somewhat resembled those of lymphangioleiomyomatosis, a representative disease belonging to the PEComa family. Although PEComas are rare, clinicians, radiologists and pathologists should become aware of this disease entity, especially in the combined clinical setting of multiple cystic, cavity-like, nodular lesions on computed tomography of the chest and a past history of the tumor in the female reproductive system.

  9. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1.

    PubMed

    Ramer, Robert; Bublitz, Katharina; Freimuth, Nadine; Merkord, Jutta; Rohde, Helga; Haustein, Maria; Borchert, Philipp; Schmuhl, Ellen; Linnebacher, Michael; Hinz, Burkhard

    2012-04-01

    Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.

  10. TH-AB-202-01: Daily Lung Tumor Motion Characterization On EPIDs Using a Markerless Tiling Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozario, T; University of Texas at Dallas, Richardson, TX; Chiu, T

    Purpose: Tracking lung tumor motion in real time allows for target dose escalation while simultaneously reducing dose to sensitive structures, thus increasing local control without increasing toxicity. We present a novel intra-fractional markerless lung tumor tracking algorithm using MV treatment beam images acquired during treatment delivery. Strong signals superimposed on the tumor significantly reduced the soft tissue resolution; while different imaging modalities involved introduce global imaging discrepancies. This reduced the comparison accuracies. A simple yet elegant Tiling algorithm is reported to overcome the aforementioned issues. Methods: MV treatment beam images were acquired continuously in beam’s eye view (BEV) by anmore » electronic portal imaging device (EPID) during treatment and analyzed to obtain tumor positions on every frame. Every frame of the MV image was simulated by a composite of two components with separate digitally reconstructed radiographs (DRRs): all non-moving structures and the tumor. This Titling algorithm divides the global composite DRR and the corresponding MV projection into sub-images called tiles. Rigid registration is performed independently on tile-pairs in order to improve local soft tissue resolution. This enables the composite DRR to be transformed accurately to match the MV projection and attain a high correlation value through a pixel-based linear transformation. The highest cumulative correlation for all tile-pairs achieved over a user-defined search range indicates the 2-D coordinates of the tumor location on the MV projection. Results: This algorithm was successfully applied to cine-mode BEV images acquired during two SBRT plans delivered five times with different motion patterns to each of two phantoms. Approximately 15000 beam’s eye view images were analyzed and tumor locations were successfully identified on every projection with a maximum/average error of 1.8 mm / 1.0 mm. Conclusion: Despite the presence

  11. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer.

    PubMed

    Rodriguez-Nieto, Salvador; Sanchez-Cespedes, Montse

    2009-04-01

    Losses of heterozygosity (LOH) of the short arm of chromosome 19 are frequent in lung cancer, suggesting that one or more tumor suppressor genes are present in this region. The LKB1 gene, also called STK11, is somatically inactivated through point mutations and large deletions in lung tumors, demonstrating that LKB1 is a target of the LOH of this chromosomal arm. Data from several independent groups have provided information about the profiles of lung tumors with LKB1 inactivation and it is generally agreed that this alteration strongly predominates in non-small cell lung cancer, in particular adenocarcinomas, in smokers. The LKB1 protein has serine-threonine kinase activity and is involved in the regulation of the cell energetic checkpoint through the phosphorylation and activation of adenosine monophosphate-dependent kinase (AMPK). LKB1 is also involved in other processes such as cell polarization, probably through substrates other than AMPK. Interestingly, another gene on chromosome 19p, BRG1, encoding a component of the SWI/SNF chromatin-remodeling complex, has emerged as a tumor suppressor gene that is altered in lung tumors. Similar to LKB1, BRG1 is somatically inactivated by point mutations or large deletions in lung tumors featuring LOH of chromosome 19p. These observations suggest an important role for BRG1 in lung cancer and highlight the need to further our understanding of the function of Brahma/SWI2-related gene 1 (BRG1) in cancer. Finally, simultaneous mutations at LKB1 and BRG1 are common in lung cancer cells, which exemplifies how a single event, LOH of chromosome 19p in this instance, targets two different tumor suppressors.

  12. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo.

    PubMed

    Meng, Jieru; Dai, Bingbing; Fang, Bingliang; Bekele, B Nebiyou; Bornmann, William G; Sun, Duoli; Peng, Zhenghong; Herbst, Roy S; Papadimitrakopoulou, Vassiliki; Minna, John D; Peyton, Michael; Roth, Jack A

    2010-11-29

    AZD6244 and MK2206 are targeted small-molecule drugs that inhibit MEK and AKT respectively. The efficacy of this combination in lung cancer is unknown. Our previous work showed the importance of activated AKT in mediating resistance of non-small cell lung cancer (NSCLC) to AZD6244. Thus we hypothesized that dual inhibition of both downstream MEK and AKT pathways would induce synergistic antitumor activity. In this study, we evaluated the efficacy of AZD6244 and MK2206 individually on a large panel of lung cancer cell lines. Then, we treated 28 human lung cancer cell lines with a combination of AZD6244 and MK2206 at clinically applicable drug molar ratios. The AZD6244-MK2206 combination therapy resulted in a synergistic effect on inhibition of lung cancer cell growth compared to the results of single drug treatment alone. MK2206 enhanced AZD6244-induced Bim overexpression and apoptosis in A549 and H157 cells. When we tested the combination of AZD6244 and MK2206 at ratios of 8∶1, 4∶1, 2∶1, and 1∶8, we found that the synergistic effect of the combination therapy was ratio-dependent. At ratios of 8∶1, 4∶1, and 2∶1, the drug combination consistently demonstrated synergy, whereas decreasing the ratio to 1∶8 resulted in a loss of synergy and produced an additive or antagonistic effect in most cell lines. Furthermore, the AZD6244-MK2206 combination therapy showed synergy in the suppression of A549 and H157 xenograft tumor growth and increased mean animal survival time. The AZD6244-MK2206 combination therapy resulted in effective inhibition of both p-ERK and p-AKT expression in tumor tissue. In addition, a significant increase of apoptosis was detected in tumor tissue from mice treated with AZD6244-MK2206 compared with that from the single agent treated mice. Our study suggests that the combination of AZD6244 and MK2206 has a significant synergistic effect on tumor growth in vitro and in vivo and leads to increased survival rates in mice bearing highly

  13. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    PubMed

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Noninvasive Tissue Characterization of Lung Tumors Using Integrated Backscatter Intravascular Ultrasound: An Ex Vivo Comparative Study With Pathological Diagnosis.

    PubMed

    Ito, Fumitaka; Kawasaki, Masanori; Ohno, Yasushi; Toyoshi, Sayaka; Morishita, Megumi; Kaito, Daizo; Yanase, Komei; Funaguchi, Norihiko; Asano, Masahiro; Endo, Junki; Mori, Hidenori; Kobayashi, Kazuhiro; Nishigaki, Kazuhiko; Miyazaki, Tatsuhiko; Takemura, Genzou; Minatoguchi, Shinya

    2016-05-01

    Endobronchial ultrasonography (EBUS) facilitates a lung cancer diagnosis. However, qualitative tissue characterization of lung tumors is difficult using EBUS. Integrated backscatter (IBS) is an ultrasound technique that calculates the power of the ultrasound signal to characterize tissue components in coronary arteries. We hypothesized that qualitative diagnosis of lung tumors is possible using the IBS technique. The aim of the present study was to elucidate whether the IBS technique can be used in lung tissue diagnoses. Thirty-five consecutive patients who underwent surgery for lung cancer were prospectively enrolled. Surgical specimens of the lung and the tumor tissue were obtained, and the IBS values were measured within 48 h after surgery. Histologic images of lung and tumor tissues were compared with IBS values, and the relative interstitial area according to results of Masson's trichrome staining were determined by using an imaging processor. The IBS values in tumor tissue were significantly lower than those in normal lung tissue (-50.9 ± 2.6 dB and -47.6 ± 2.6 dB, respectively; P < .001). The IBS values of adenocarcinomas associated with a good 5-year survival rate were higher than those of non-adenocarcinomas (-48.1 ± 1.6 dB and -52.6 ± 1.4 dB; P < .001). There were significant correlations between the IBS values and the relative interstitial area or micro air area in tumor (r = 0.53 and r = 0.67; P < .01). After combining normal lung tissue and adenocarcinomas with a good prognosis, the sensitivity and specificity for establishing the presence of lung tumors were 84% and 85%. Qualitative diagnosis of lung tumors was possible, with a sensitivity of 84% and a specificity of 85%, using the ultrasound IBS technique. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors

    PubMed Central

    Akbay, Esra A; Koyama, Shohei; Carretero, Julian; Altabef, Abigail; Tchaicha, Jeremy H; Christensen, Camilla L; Mikse, Oliver R; Cherniack, Andrew D; Beauchamp, Ellen M; Pugh, Trevor J; Wilkerson, Matthew D; Fecci, Peter E; Butaney, Mohit; Reibel, Jacob B; Soucheray, Margaret; Cohoon, Travis J; Janne, Pasi A; Meyerson, Matthew; Hayes, D. Neil; Shapiro, Geoffrey I; Shimamura, Takeshi; Sholl, Lynette M; Rodig, Scott J; Freeman, Gordon J; Hammerman, Peter S; Dranoff, Glenn; Wong, Kwok-Kin

    2013-01-01

    The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition. PMID:24078774

  16. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death.

    PubMed

    Jiang, Ke; Liu, Min; Lin, Guibin; Mao, Beibei; Cheng, Wei; Liu, Han; Gal, Jozsef; Zhu, Haining; Yuan, Zengqiang; Deng, Wuguo; Liu, Quentin; Gong, Peng; Bi, Xiaolin; Meng, Songshu

    2016-05-03

    The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner.

  17. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death

    PubMed Central

    Lin, Guibin; Mao, Beibei; Cheng, Wei; Liu, Han; Gal, Jozsef; Zhu, Haining; Yuan, Zengqiang; Deng, Wuguo; Liu, Quentin; Gong, Peng; Bi, Xiaolin; Meng, Songshu

    2016-01-01

    The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner. PMID:27028858

  18. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    PubMed Central

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  19. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    PubMed Central

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  20. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    PubMed

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  1. Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma

    PubMed Central

    Feng, Fei; Wang, Bin; Sun, Xiuxuan; Zhu, Yumeng; Tang, Hao; Nan, Gang; Wang, Lijuan; Wu, Bo; Huhe, Muren; Liu, Shuangshuang; Diao, Tengyue; Hou, Rong; Zhang, Yang; Zhang, Zheng

    2017-01-01

    ABSTRACT Targeted therapeutics is used as an alternative treatment of non-small cell lung cancer (NSCLC); however, treatment effect is far from being satisfactory, and therefore identification of new targets is needed. We have previously shown that metuzumab inhibit tumor growth in vivo. The present study was performed to investigate the anti-tumor efficacy of metuzumab combined with gemcitabine and cisplatin (GP), paclitaxel and cisplatin (TP) or navelbine and cisplatin (NP) regimens in multiple NSCLC cell lines. Our results demonstrate that, in comparison to single agent metuzumab or GP treated cells, metuzumab combined with GP display inhibitory effects on tumor growth. Furthermore, we found that metuzumab elevated the sensitivity of cell lines to gemcitabine, which was identified by MTT assay. Flow cytometric analysis showed that metuzumab combined with gemcitabine (GEM) treatment led to an obvious G1 arrest and an elevated apoptosis in A549, NCI-H460 and NCI-H520 cells. Western blot analysis also demonstrated a significantly reduced level of cyclin D1, Bcl-2, and an obviously increase level of Bax and full-length caspase-3 in A549, NCI-H460 and NCI-H520 cells treated with metuzumab/gemcitabine combination in comparison with single agent treated cells. In addition, metuzumab/gemcitabine treated A549, NCI-H460 and NCI-H520 cells also demonstrated a significantly increase in deoxycytidine kinase (dCK) protein level compared with single agent metuzumab or gemcitabine treated cells. Xenograft models also demonstrated that this metuzumab/gemcitabine combination led to upregulation of dCK. Taken together, the mechanisms of metuzumab combined with GP repress tumor growth were that the combined treatment significantly inhibited the tumor cell proliferation, apoptosis and cell cycle in vitro and in vivo and at least partially by induction of dCK expression. Our results suggested that metuzumab could significantly enhance chemosensitivity of human NSCLC cells to

  2. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line.

    PubMed

    Castro-Aceituno, Verónica; Abbai, Ragavendran; Moon, Seong Soo; Ahn, Sungeun; Mathiyalagan, Ramya; Kim, Yu-Jin; Kim, Yeon-Ju; Yang, Deok Chun

    2017-09-01

    Pleuropterus multiflorus (Hasuo) is a widely used medicinal plant in Korea and China for treating amnesia, isnomia, heart throbbing etc. With the constructive idea of promoting the wide-spread usage of P. multiflorus, we propose its indirect usage in the form of biologically active silver (Pm-AgNPs) and gold nanoparticles (Pm-AuNPs). The synthesized nanoparticles were predominantly spherical, crystalline with the Z-average hydrodynamic diameter of 274.8nm and 104.8nm respectively. Also, proteins and phenols were identified as the major players involved in their synthesis and stability. Further, Pm-AgNPs at 25μg/mL were significantly cytotoxic to lung cancer cells, whereas, Pm-AuNPs were not cytotoxic to both normal keratinocyte and lung cancer cells even at 100μg/mL. In addition, further evaluation of the anti-cancer activity of these new nanoparticles, such as migration and apoptosis, shown that Pm-AgNPs have a potential therapeutic effect on A549 lung cancer cell treatment. To the best of our knowledge, this is the first report dissecting out the ability of the endemic P. multiflorus for the synthesis of bioactive silver and gold nanoparticle which would open up doors for its extensive usage in medicinal field. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability.

    PubMed

    Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo

    2014-01-01

    We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; p<0.001). In groups A and B the median SD of the tumor position was 1.1 mm and 0.9 mm in the craniocaudal- (p = 0.24) and 0.7 mm and 0.6 mm in the mediolateral direction (p = 0.89), respectively. The median range of the tumor position was 4.0 mm and 3.0 mm in the craniocaudal- (p = 0.21) and 2.0 mm and 1.5 mm in the mediolateral direction (p = 0.20), respectively. Although patients treated with respiratory gating exhibited greater respiratory tumor motion during treatment simulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.

  5. STRAIN-SPECIFIC SENSITIVITY TO INDUCTION OF MURINE LUNG TUMORS FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    We previously demonstrated that different strains of fetal mice were more sensitive to lung tumor induction by 3-methylcholanthrene (MC) than were adults. Offspring from either a D2 x B6D2F1 backcross or from parental Balb/c mice exhibited a similar high incidence of lung tumors ...

  6. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    PubMed

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  7. Pathobiological implications of MUC4 in non-small-cell lung cancer.

    PubMed

    Majhi, Prabin Dhangada; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P; Jain, Maneesh; Das, Srustidhar; Kaur, Sukhwinder; Shimizu, Su Tomohiro; West, William W; Johansson, Sonny L; Smith, Lynette M; Yu, Fang; Rolle, Cleo E; Sharma, Poonam; Carey, George B; Batra, Surinder K; Ganti, Apar Kishor

    2013-04-01

    Altered expression of MUC4 plays an oncogenic role in various cancers, including pancreatic, ovarian, and breast. This study evaluates the expression and role of MUC4 in non-small-cell lung cancer (NSCLC). We used a paired system of MUC4-expressing (H292) and MUC4-nonexpressing (A549) NSCLC cell lines to analyze MUC4-dependent changes in growth rate, migration, and invasion using these sublines. We also evaluated the alterations of several tumor suppressor, proliferation, and metastasis markers with altered MUC4 expression. Furthermore, the association of MUC4 expression (by immunohistochemistry) in lung cancer samples with patient survival was evaluated. MUC4-expressing lung cancer cells demonstrated a less proliferative and metastatic phenotype. Up-regulation of p53 in MUC4-expressing lung cancer cells led to the accumulation of cells at the G2/M phase of cell cycle progression. MUC4 expression attenuated Akt activation and decreased the expression of Cyclins D1 and E, but increased the expression of p21 and p27. MUC4 expression abrogated cancer cell migration and invasion by altering N- & E-cadherin expression and FAK phosphorylation. A decrease in MUC4 expression was observed with increasing tumor stage (mean composite score: stage I, 2.4; stage II, 1.8; stage III, 1.4; and metastatic, 1.2; p = 0.0093). Maximal MUC4 expression was associated with a better overall survival (p = 0.042). MUC4 plays a tumor-suppressor role in NSCLC by altering p53 expression in NSCLC. Decrease in MUC4 expression in advanced tumor stages also seems to confirm the novel protective function of MUC4 in NSCLC.

  8. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    NASA Astrophysics Data System (ADS)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  9. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner.

    PubMed

    Qin, Xiaobing; Yu, Shaorong; Zhou, Leilei; Shi, Meiqi; Hu, Yong; Xu, Xiaoyue; Shen, Bo; Liu, Siwen; Yan, Dali; Feng, Jifeng

    2017-01-01

    Exosomes derived from lung cancer cells confer cisplatin (DDP) resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP) was established. Microarray was used to analyze microRNA (miRNA) expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100-5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100-5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR) expression was reverse regulated by miR-100-5p. Exosomes confer recipient cells' resistance to DDP in an exosomal miR-100-5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells' sensitivity to DDP in exosomal miR-100-5p-dependent manner. Our study provides new insights into the molecular mechanism of DDP resistance in lung cancer.

  10. Myocyte enhancer factor 2D provides a cross-talk between chronic inflammation and lung cancer.

    PubMed

    Zhu, Hai-Xing; Shi, Lin; Zhang, Yong; Zhu, Yi-Chun; Bai, Chun-Xue; Wang, Xiang-Dong; Zhou, Jie-Bai

    2017-03-24

    Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. Patients with chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), are exposed to a higher risk of developing lung cancer. Chronic inflammation may play an important role in the lung carcinogenesis among those patients. The present study aimed at identifying candidate biomarker predicting lung cancer risk among patients with chronic respiratory diseases. We applied clinical bioinformatics tools to analyze different gene profile datasets with a special focus on screening the potential biomarker during chronic inflammation-lung cancer transition. Then we adopted an in vitro model based on LPS-challenged A549 cells to validate the biomarker through RNA-sequencing, quantitative real time polymerase chain reaction, and western blot analysis. Bioinformatics analyses of the 16 enrolled GSE datasets from Gene Expression Omnibus online database showed myocyte enhancer factor 2D (MEF2D) level significantly increased in COPD patients coexisting non-small-cell lung carcinoma (NSCLC). Inflammation challenge increased MEF2D expression in NSCLC cell line A549, associated with the severity of inflammation. Extracellular signal-regulated protein kinase inhibition could reverse the up-regulation of MEF2D in inflammation-activated A549. MEF2D played a critical role in NSCLC cell bio-behaviors, including proliferation, differentiation, and movement. Inflammatory conditions led to increased MEF2D expression, which might further contribute to the development of lung cancer through influencing cancer microenvironment and cell bio-behaviors. MEF2D might be a potential biomarker during chronic inflammation-lung cancer transition, predicting the risk of lung cancer among patients with chronic respiratory diseases.

  11. 31 CFR 549.303 - Entity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Entity. 549.303 Section 549.303 Money... CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS General Definitions § 549.303 Entity. The term entity means a partnership, association, trust, joint venture, corporation, group, subgroup...

  12. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    PubMed

    Lubin, Martin; Lubin, Adam

    2009-05-29

    The gene for methylthioadenosine phosphorylase (MTAP) lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA), to adenine and 5-methylthioribose-1-phosphate (MTR-1-P), which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP), 6-methylpurine (MeP), or 2-fluoroadenine (F-Ade), are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT), to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF) are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU) and 6-thioguanine (6-TG) may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP). The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index. We describe a

  13. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    PubMed

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lung Tumors Treated With Percutaneous Radiofrequency Ablation: Computed Tomography Imaging Follow-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palussiere, Jean, E-mail: palussiere@bergonie.org; Marcet, Benjamin; Descat, Edouard

    2011-10-15

    Purpose: To describe the morphologic evolution of lung tumors treated with radiofrequency ablation (RFA) by way of computed tomography (CT) images and to investigate patterns of incomplete RFA at the site of ablation. Materials and Methods: One hundred eighty-nine patients with 350 lung tumors treated with RFA underwent CT imaging at 2, 4, 6, and 12 months. CT findings were interpreted separately by two reviewers with consensus. Five different radiologic patterns were predefined: fibrosis, cavitation, nodule, atelectasis, and disappearance. The appearance of the treated area was evaluated at each follow-up CT using the predefined patterns. Results: At 1 year aftermore » treatment, the most common evolutions were fibrosis (50.5%) or nodules (44.8%). Differences were noted depending on the initial size of the tumor, with fibrosis occurring more frequently for tumors <2 cm (58.6% vs. 22.9%, P = 1 Multiplication-Sign 10{sup -5}). Cavitation and atelectasis were less frequent patterns (2.4% and 1.4%, respectively, at 1 year). Tumor location (intraparenchymatous, with pleural contact <50% or >50%) was not significantly correlated with follow-up image pattern. Local tumor progressions were observed with each type of evolution. At 1 year, 12 local recurrences were noted: 2 cavitations, which represented 40% of the cavitations noted at 1 year; 2 fibroses (1.9%); 7 nodules (7.4%); and 1 atelectasis (33.3%). Conclusion: After RFA of lung tumors, follow-up CT scans show that the shape of the treatment zone can evolve in five different patterns. None of these patterns, however, can confirm the absence of further local tumor progression at subsequent follow-up.« less

  15. Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils.

    PubMed

    Liu, Min-Yu; Xiao, Lin; Chen, Geng-Hui; Wang, Yong-Xiang; Xiong, Wei-Xia; Li, Fei; Liu, Ying; Huang, Xiao-Ling; Deng, Yi-Fang; Zhang, Zhen; Sun, Hai-Yan; Liu, Quan-Hai; Yin, Ming

    2014-10-01

    JS-38 (mitothiolore), a synthetic version of a metabolite isolated from Xenorhabdus sp., was evaluated for its anti-tumor and white blood cell (WBC) elevating activities. These anti-proliferative activities were assessed in vitro using a panel of ten cell lines. The anti-tumor activities were tested in vivo using B16 allograft mouse models and xenograft models of A549 human lung carcinoma and QGY human hepatoma in nude mice. The anti-tumor interactions of JS-38 and cyclophosphamide (CTX) or 5-fluorouracil (5-Fu) were studied in a S180 sarcoma model in ICR mice. Specific stimulatory effects were determined on peripheral neutrophils in normal and CTX- and 5-Fu-induced neutropenic mice. The IC50 values ranged from 0.1 to 2.0 μmol·L(-1). JS-38 (1 μmol·L(-1)) caused an increase in A549 tumor cell apoptosis. Multi-daily gavage of JS-38 (15, 30, and 60 mg·kg(-1)·d(-1)) inhibited in vivo tumor progression without a significant effect on body weight. JS-38 additively enhanced the in vivo anti-tumor effects of CTX or 5-Fu. JS-38 increased peripheral neutrophil counts and neutrophil rates in normal BALB/c mice almost as effectively as granulocyte colony-stimulating factor (G-CSF). In mice with neutropenia induced by CTX or 5-Fu, JS-38 rapidly restored neutrophil counts. These results suggest that JS-38 has anti-tumor activity, and also has the ability to increase peripheral blood neutrophils. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Expression of metastasis-associated lung adenocarcinoma transcript 1 long non-coding RNA in vitro and in patients with non-small cell lung cancer.

    PubMed

    Lin, Ling; Li, Haiyan; Zhu, Yefei; He, Susu; Ge, Hongfei

    2018-06-01

    The present study aimed to investigate the association between the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNA (lncRNA) and the recurrence of non-small cell lung cancer (NSCLC) and to elucidate the potential mechanisms of MALAT1 in vitro . Between 1 June 1, 2010 and December 30, 2016, NSCLC tumor tissues and adjacent non-cancerous tissues were obtained from 120 patients with NSCLC, who had undergone surgical resection at Taizhou Hospital of Wenzhou Medical University (Linhai, China). The total RNA of tissues and cells were extracted and the expression of MALAT1 was determined using a wound healing assay and reverse transcription quantitative polymerase chain reaction. In addition, MALAT1 expression in A549 cells was silenced using small interfering RNA. The proliferation, migration and invasion of cells were then assessed using a CellTiter 96 kit and Transwell assays. MALAT1 expression was significantly increased in NSCLC samples compared with expression in adjacent non-cancerous tissues. Furthermore, the expression of MALAT1 in patients with NSCLC that exhibited recurrence was markedly higher than in those that did not. The results of the present study also demonstrated significant associations between high expression of MALAT1 and female sex, Tumor-Node-Metastasis advanced stage, vessel invasion, pathological differentiation and recurrence of patients with NSCLC. The proliferative, migratory and invasive abilities of MALAT1-silenced A549 cells were significantly decreased compared with those of control cells. MALAT1 expression was significantly increased in NSCLC tissues and was revealed to serve a role in the progression of NSCLC.

  17. SU-E-J-136: Evaluation of a Non-Invasive Method on Lung Tumor Tracking.

    PubMed

    Zhao, T; White, B; Low, D

    2012-06-01

    to develop a non-invasive method to track lung motion in free-breathing patients. A free-breathing breathing model has been developed to use tidal volume and air flow rate as surrogates for lung trajectories. In this study, 4D CT data sets were acquired during simulation and were reconstructed into 10 phases. Total lung capacities were calculated from the reconstructed images. Continuous signals from the abdominal pneumatic belt were correlated to the volumes and were therefore converted into a curve of tidal volumes. Air flow rate were calculated as the first order derivative of the tidal volume curve. Lung trajectories in the 10 reconstructed images were obtained using B-Spline registration. Parameters of the free-breathing lung motion model were fit from the tidal volumes, airflow rates and lung trajectories using the simulation data. Patients were rescanned every week during the treatment. Prediction of lung trajectories from the model were given and compared to the actual positions in BEV. Trajectories of lung were predicted with residual error of 1.49mm at 95th percentile of all tracked points. Tracking was stable and reproducible over two weeks. Non-invasive tumor tracking based on a free-breathing lung motion model is feasible and stable over weeks. © 2012 American Association of Physicists in Medicine.

  18. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment.

    PubMed

    Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio

    2015-04-01

    This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Calotropin from Asclepias curasavica induces cell cycle arrest and apoptosis in cisplatin-resistant lung cancer cells.

    PubMed

    Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-09-16

    Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients.

    PubMed

    de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso

    2016-01-28

    Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors. Copyright © 2015 Elsevier

  1. New insights in non-small-cell lung cancer: circulating tumor cells and cell-free DNA

    PubMed Central

    Duréndez-Sáez, Elena; Azkárate, Aitor; Meri, Marina; Calabuig-Fariñas, Silvia; Aguilar-Gallardo, Cristóbal; Blasco, Ana

    2017-01-01

    Lung cancer is the second most frequent tumor and the leading cause of death by cancer in both men and women. Increasing knowledge about the cancer genome and tumor environment has led to a new setting in which morphological and molecular characterization is needed to treat patients in the most personalized way in order to achieve better outcomes. Since tumor products can be detected in body fluids, the liquid biopsy, particularly, peripheral blood, has emerged as a new source for lung cancer biomarker’s analysis. A variety of tumor components can be used for this purpose. Among them, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) should be especially considered. Different detection methods for both CTCs and ctDNA have been and are being developed to improve the sensitivity and specificity of these tests. This would lead to better characterization and would solve some clinical doubts at different disease evolution times, e.g., intratumoral or temporal heterogeneity, difficulty in the obtaining a tumor sample, etc., and would also avoid the side effects of very expensive and complicated tumor obtaining interventions. CTCs and ctDNA are useful in different lung cancer settings. Their value has been shown for the early diagnosis, prognosis, prediction of treatment efficacy, monitoring responses and early detection of lung cancer relapse. CTCs have still not been validated for use in clinical settings in non-small-cell lung cancer (NSCLC), while ctDNA has been approved by the Food and Drug Administration (FDA) and European Medical Association (EMA), and the main clinical guidelines used for detect different epidermal growth factor receptor (EGFR) mutations and the monitoring and treatment choice of mutated patients with tyrosine kinase inhibitors (TKIs). This review, describes how ctDNA seem to be winning the race against CTCs from the laboratory bench to clinical practice due to easier obtaining methods, manipulation and its implementation into

  2. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    PubMed Central

    2012-01-01

    Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition. PMID:22694981

  3. Diagnostic Value of Combining Tumor and Inflammatory Markers in Lung Cancer.

    PubMed

    Yoon, Ho Il; Kwon, Oh-Ran; Kang, Kyung Nam; Shin, Yong Sung; Shin, Ho Sang; Yeon, Eun Hee; Kwon, Keon Young; Hwang, Ilseon; Jeon, Yoon Kyung; Kim, Yongdai; Kim, Chul Woo

    2016-09-01

    Despite major advances in lung cancer treatment, early detection remains the most promising way of improving outcomes. To detect lung cancer in earlier stages, many serum biomarkers have been tested. Unfortunately, no single biomarker can reliably detect lung cancer. We combined a set of 2 tumor markers and 4 inflammatory or metabolic markers and tried to validate the diagnostic performance in lung cancer. We collected serum samples from 355 lung cancer patients and 590 control subjects and divided them into training and validation datasets. After measuring serum levels of 6 biomarkers (human epididymis secretory protein 4 [HE4], carcinoembryonic antigen [CEA], regulated on activation, normal T cell expressed and secreted [RANTES], apolipoprotein A2 [ApoA2], transthyretin [TTR], and secretory vascular cell adhesion molecule-1 [sVCAM-1]), we tested various sets of biomarkers for their diagnostic performance in lung cancer. In a training dataset, the area under the curve (AUC) values were 0.821 for HE4, 0.753 for CEA, 0.858 for RANTES, 0.867 for ApoA2, 0.830 for TTR, and 0.552 for sVCAM-1. A model using all 6 biomarkers and age yielded an AUC value of 0.986 and sensitivity of 93.2% (cutoff at specificity 94%). Applying this model to the validation dataset showed similar results. The AUC value of the model was 0.988, with sensitivity of 93.33% and specificity of 92.00% at the same cutoff point used in the validation dataset. Analyses by stages and histologic subtypes all yielded similar results. Combining multiple tumor and systemic inflammatory markers proved to be a valid strategy in the diagnosis of lung cancer.

  4. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  6. Percutaneous Radiofrequency Ablation of Lung Tumors in Contact with the Aorta: Dangerous and Difficult but Efficient: A Report of Two Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, Loukas, E-mail: loutharad@yahoo.co; Mylona, Sofia; Giannoulakos, Nikolaos

    Percutaneous imaging-guided tumor ablation is a widely accepted method for the treatment of primary and secondary lung tumors. Although it is generally feasible and effective for local tumor control, some conditions may affect its feasibility and effectiveness. Herein the authors report their experience with two patients with lung malignancies contiguous to the aorta who were successfully treated with radiofrequency ablation, even though it initially appeared highly risky due to the possible fatal complications.

  7. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS

    EPA Science Inventory

    STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS
    M S Miller, J E Moore, M Xu, G B Nelson, S T Dance, N D Kock, J A Ross Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC

    Previously, our laboratory demonstrated...

  8. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkley, Michael S.; Shrager, Joseph B.; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABRmore » and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent

  9. Expression of CD147 in advanced non-small cell lung cancer correlated with cisplatin-based chemotherapy resistance.

    PubMed

    Zeng, H Z; Qu, Y Q; Liang, A B; Deng, A M; Zhang, W J; Xiu, B; Wang, H; Wang, H

    2011-01-01

    CD147, a widely expressed cell surface glycoprotein in cancer, is associated with tumor invasiveness and chemotherapy resistance. Recently, CD147 is also regarded as a potential therapeutic target for cancer therapy. The aim of the study was to investigate CD147 expression in non-small cell lung cancer (NSCLC), and evaluate its correlation with cisplatin-based chemotherapy resistance. In this study, we examined immunohistochemically the expression of CD147 in 118 advanced NSCLC cases treated with cisplatin-based chemotherapy, and then the association of CD147 expression with clinicopathological characteristics was analyzed. Furthermore, RNA interference approach was used to silence CD147 expression in a cisplatin-resistant human lung cancer cell line A549/DDP, and the inhibition effect of cisplatin on tumor cells was assayed by MTT. In the overall series, positive CD147 expression was observed in 101/118 (85.6%) cases. A membranous CD147 pattern was identified in 76/101 (75.2%) of CD147 positive tumors. CD147 membranous expression,but not the overall CD147 expression, was associated with poor response to cisplatin-based chemotherapies and a poor prognosis in advanced NSCLC patients. In vitro results showed that silencing CD147 increased the proliferation inhibitory effect of cisplatin to A549/DDP cells. In conclusion, our study indicated that membranous CD147 expression is a predictive factor of the response to cisplatin-based chemotherapies, and the use of CD147-targeted therapeutic adjuvants might be considered in the treatment of advanced NSCLC patients.

  10. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.

    2007-10-01

    Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference

  11. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549).

    PubMed

    Ullah, Sadeeq; Ahmad, Aftab; Wang, Aoke; Raza, Muslim; Jan, Amin Ullah; Tahir, Kamran; Rahman, Aziz Ur; Qipeng, Yuan

    2017-08-01

    Platinum based drugs are considered as effective agents against various types of carcinoma; however, the severe toxicity associated with the chemically prepared platinum complexes limit their practical applications. Similarly, water pollution caused by various organic moieties is another serious health problem worldwide. Hence, an intense need exists to develop new, effective and biocompatible materials with catalytic and biomedical applications. In the present contribution, we prepared platinum nanoparticles (PtNPs) by a green route using phytochemicals as a source of reducing and stabilizing agents. Well dispersed and crystalline PtNPs of spherical shapes were prepared and characterized. The bio-fabricated PtNPs were used as catalyst and anticancer agents. Catalytic performance of the PtNPs showed that 84% of the methylene blue can be reduced in 32min under visible light irradiation (K=0.078min -1 ). Similarly the catalytic conversion of 4-nitrophenol to 4-aminophenol was achieved in <20min (K=0.124min -1 ). The in vitro anticancer study revealed that biogenic PtNPs are the efficient nano-agents possessing strong anticancer activity against the lungs cancer cells line (A549). Interestingly, the as prepared PtNPs were well tolerated by normal human cells, and therefore, could be effective and biocompatible agents in the treatment of different cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft.

    PubMed

    Hao, Fangran; Wang, Siyuan; Zhu, Xiao; Xue, Junsheng; Li, Jingyun; Wang, Lijie; Li, Jian; Lu, Wei; Zhou, Tianyan

    2017-02-01

    To investigate the anti-tumor effect of sunitinib in combination with dopamine in the treatment of nu/nu nude mice bearing non-small cell lung cancer (NSCLC) A549 cells and to develop the combination PK/PD model. Further, simulations were conducted to optimize the administration regimens. A PK/PD model was developed based on our preclinical experiment to explore the relationship between plasma concentration and drug effect quantitatively. Further, the model was evaluated and validated. By fixing the parameters obtained from the PK/PD model, simulations were built to predict the tumor suppression under various regimens. The synergistic effect was observed between sunitinib and dopamine in the study, which was confirmed by the effect constant (GAMA, estimated as 2.49). The enhanced potency of dopamine on sunitinib was exerted by on/off effect in the PK/PD model. The optimal dose regimen was selected as sunitinib (120 mg/kg, q3d) in combination with dopamine (2 mg/kg, q3d) based on the simulation study. The synergistic effect of sunitinib and dopamine was demonstrated by the preclinical experiment and confirmed by the developed PK/PD model. In addition, the regimens were optimized by means of modeling as well as simulation, which may be conducive to clinical study.

  13. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  14. Mechanisms for cellular NO oxidation and nitrite formation in lung epithelial cells.

    PubMed

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Myerburg, Mike M; Wang, Jun; Frizzell, Sam; Gladwin, Mark T

    2013-08-01

    Airway lining fluid contains relatively high concentrations of nitrite, and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 h under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low-oxygen conditions. The addition of oxyhemoglobin to the A549 cell medium decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and nitrate, suggesting an enzymatic activity is required. This NO oxidation activity was highest in membrane-bound proteins with molecular size <100kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation. We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into the medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via p-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S

  15. Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells

    PubMed Central

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.

    2013-01-01

    Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in

  16. The omega-3 polyunsaturated fatty acid docosahexaenoic acid inhibits proliferation and progression of non-small cell lung cancer cells through the reactive oxygen species-mediated inactivation of the PI3K /Akt pathway.

    PubMed

    Yin, Yuanqin; Sui, Chengguang; Meng, Fandong; Ma, Ping; Jiang, Youhong

    2017-05-03

    Docosahexaenoic acid(DHA) inhibits tumor growth and progression in various cancers, including lung cancer. However, the mechanisms involved remain unclear. The aim of this study was to identify the mechanism of DHA in inhibiting progression of non-small cell lung cancer (NSCLC) in vitro. The proliferation of A549 was tested by MTT, and cell apoptosis was analysed using flow cytometer. The migration and invasion were examined respectively by wound healing assay and Transwell invasion assay. The level of ROS (reactive oxygen species, ROS) was checked by DCF (dichlorodihydrofluorescein, DCF) production in cells. The apoptosis associated protein (caspase-3, PARP,Bax,Bcl-2 and survivin) and metastases associated proteins including HEF1, MMP9 and VEGF were detected by Western blot, and the same method was used in the expression of PI3K and Akt. DHA inhibited proliferation and induced apoptosis of A549 cells. Moreover, it suppressed the invasion and metastasis of A549 cells, while downregulating the levels of metastasis-associated proteins, including HEF1, matrix metallopeptidase (MMP9), and vascular endothelial growth factor (VEGF), in a dose -dependent manner. In addition, DHA inactivated Akt phosphorylation. All of these responses were associated with the accumulation of intracellular ROS. DHA downregulated the level of antioxidant enzymes such as catalase, while the antioxidant N-acetyl-cysteine (NAC) reversed the effect of DHA, which further validated our findings. The present study demonstrates that DHA inhibits the development of non-small lung tumors through an ROS-mediated inactivation of the PI3K/Akt signaling pathway.

  17. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  18. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors

    PubMed Central

    Jahchan, Nadine S; Dudley, Joel T; Mazur, Pawel K; Flores, Natasha; Yang, Dian; Palmerton, Alec; Zmoos, Anne-Flore; Vaka, Dedeepya; Tran, Kim QT; Zhou, Margaret; Krasinska, Karolina; Riess, Jonathan W; Neal, Joel W; Khatri, Purvesh; Park, Kwon S; Butte, Atul J; Sage, Julien

    2013-01-01

    Small cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with high mortality. We used a systematic drug-repositioning bioinformatics approach querying a large compendium of gene expression profiles to identify candidate FDA-approved drugs to treat SCLC. We found that tricyclic antidepressants and related molecules potently induce apoptosis in both chemonaïve and chemoresistant SCLC cells in culture, in mouse and human SCLC tumors transplanted into immunocompromised mice, and in endogenous tumors from a mouse model for human SCLC. The candidate drugs activate stress pathways and induce cell death in SCLC cells, at least in part by disrupting autocrine survival signals involving neurotransmitters and their G protein-coupled receptors. The candidate drugs inhibit the growth of other neuroendocrine tumors, including pancreatic neuroendocrine tumors and Merkel cell carcinoma. These experiments identify novel targeted strategies that can be rapidly evaluated in patients with neuroendocrine tumors through the repurposing of approved drugs. PMID:24078773

  19. [Effect of Buzhong Yiqi decoction on PI3K and AKT in spleen, stomach and lung of nude mice with lung adenocarcinoma transplantation tumor].

    PubMed

    Liu, Ya-Li; Wang, Ying; Yi, Jia-Li; Jing, Huan; Liu, Chun-Ying

    2014-05-01

    To explore the effect of Buzhong Yiqi decoction on PI3K/AKT signaling pathway in spleen, stomach and lung of nude mice with lung adenocarcinoma transplantation tumor. Totally 60 nude mice were randomly divided into the blank control group, the tumor-bearing control group, the cisplatin group, the low-dose Buzhong Yiqi decoction group, the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group. After the corresponding interventions, efforts were made to measure the transplanted tumor volume and calculate the tumor inhibiting rate. The immunohistochemical method and real time PCR were used to detect the expression of PI3K and AKT level in nude mice spleen, stomach and lung. Buzhong Yiqi decoction of different concentrations combined with cisplatin could inhibit the growth of the transplanted tumor, with the strongest inhibitory effect in the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group. All of the expressions of PI3K and AKT protein and gene in the spleen, stomach and lung increased, with the most significant increase in the tumor-bearing group. Along with the increase of the concentration of cisplatin and Buzhong Yiqi decoction, the expressions of PI3K and AKT gradually reduced. Compared with the tumor-bearing control group, there were statistical differences in spleen and stomach tissues (P < 0.05). Compared with the cisplatin group, the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group showed statistical differences (P < 0.05), but without statistical difference compared with the blank control group. Among nude mice with lung adenocarcinoma transplantation tumor, the PI3K and AKT protein and gene expressions in spleen, stomach and lung tissues increased, which might indicated the effect of cisplatin and Buzhong Yiqi decoction in reducing PI3K and AKT expressions and the relations between the reduction degree and the concentrations of Buzhong Yiqi

  20. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    PubMed

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2018-04-01

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  1. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer

    PubMed Central

    Lim, Tony KH; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3–15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0–2 cells/1.88 mL of blood). The latter range was validated as the ‘false positive’ cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing. PMID:26993609

  2. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer.

    PubMed

    Tan, Chye Ling; Lim, Tse Hui; Lim, Tony Kh; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck

    2016-04-26

    Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3-15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0-2 cells/1.88 mL of blood). The latter range was validated as the 'false positive' cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing.

  3. Diagnostic value of bronchoalveolar lavage fluid and serum tumor markers for lung cancer.

    PubMed

    Wang, Hongmin; Zhang, Xiaohong; Liu, Xinkui; Liu, Kangdong; Li, Yuexia; Xu, Haijiang

    2016-01-01

    To analyze the changes of bronchoalveolar lavage fluid (BALF) and serum tumor markers in lung cancer. Fifty patients with lung cancer (study group) and 50 cases with benign lung lesions (control group) were selected from May, 2010 to May, 2013. The observation group included squamous cell carcinoma subgroup (n = 25), adenocarcinoma subgroup (n = 19), and small cell undifferentiated carcinoma subgroup (n = 6). The carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin 19 fragment (CYFRA21-1) concentration were compared; and the comparisons among subgroups were also performed. Three kinds of tumor markers in BALF and serum of the observation group were higher than that of the control group. NSE concentration of small.cell lung cancer was the highest, CYFRA21.1 concentration was highest in the squamous cell carcinoma, and CEA concentration was highest in the adenocarcinoma group; the former increased more significantly. BALF and serum NSE, CEA, and CYFRA21.1 elevated in lung cancer, which had prompt value for pathology, especially significant for BALF.

  4. Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells.

    PubMed

    Zhang, Yu; Zhu, Chenyang; Sun, Bangyao; Lv, Jiawei; Liu, Zhonghua; Liu, Shengwang; Li, Hai

    2017-01-01

    p53 dysfunction is frequently observed in lung cancer. Although restoring the tumour suppressor function of p53 is recently approved as a putative strategy for combating cancers, the lack of understanding of the molecular mechanism underlying p53-mediated lung cancer suppression has limited the application of p53-based therapies in lung cancer. Using RNA sequencing, we determined the transcriptional profile of human non-small cell lung carcinoma A549 cells after treatment with two p53-activating chemical compounds, nutlin and RITA, which could induce A549 cell cycle arrest and apoptosis, respectively. Bioinformatics analysis of genome-wide gene expression data showed that distinct transcription profiles were induced by nutlin and RITA and 66 pathways were differentially regulated by these two compounds. However, only two of these pathways, 'Adherens junction' and 'Axon guidance', were found to be synthetic lethal with p53 re-activation, as determined via integrated analysis of genome-wide gene expression profile and short hairpin RNA (shRNA) screening. Further functional protein association analysis of significantly regulated genes associated with these two synthetic lethal pathways indicated that GSK3 played a key role in p53-mediated A549 cell apoptosis, and then gene function study was performed, which revealed that GSK3 inhibition promoted p53-mediated A549 cell apoptosis in a p53 post-translational activity-dependent manner. Our findings provide us with new insights regarding the mechanism by which p53 mediates A549 apoptosis and may cast light on the development of more efficient p53-based strategies for treating lung cancer. © 201 The Author(s). Published by S. Karger AG, Basel.

  5. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells

    PubMed Central

    Li, Huaidong; Li, Chunsun; Yang, Zhen; Li, Yanqin; She, Danyang; Cao, Lu; Wang, Wenjie; Liu, Changlin; Chen, Liangan

    2017-01-01

    Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis. PMID:28323898

  6. [(99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors].

    PubMed

    Liu, Haiyan; Li, Sijin; Yang, Suyun; Wu, Zhifang

    2014-01-01

    To investigate the value of (99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors. CT scan, early (20 to 30 min) and delayed (2 h) imaging of NOET SPECT were performed on 61 patients suspected of lung lesions before operation. The results were compared with the pathological findings. All cases were not treated with radiotherapy, chemotherapy or surgery before checks. Moreover, all patients had pathological diagnosis. To determine the value in differential diagnosis of tumors by analyzing the tumor uptake and excretion of (99)Tc(m)N-NOET, and the results were compared with that of CT. The value of early T/N ratio (ER) in the malignant (G1) and benign (G2) groups was 1.25 ± 0.15 and 1.09 ± 0.11 (P < 0.001), respectively, and delayed T/N ratio (DR) was 1.40 ± 0.17 and 1.18 ± 0.21 (P < 0.001). The retention index (RI) of groups G1 was (12.22 ± 6.38)% and group G2 was (8.3 ± 10.91)%, with a non-significant difference between them (P > 0.05). The ER, DR and RI of NOET SPECT in the malignant patients were not significantly correlated with TNM staging, pathological types, tumor diameter, cavity in the lung tumor mass, history of smoking, tumor size and patient gender (P > 0.05). The sensitivity of NOET dual-phase SPECT and CT in the differential diagnosis of benign and malignant lung tumors was 94.1% vs. 90.2%, specificity was 70.0% vs. 80.0% , positive predictive value (PPV) was 94.1% vs. 95.8%, negative predictive value (NPV) was 70.0% vs. 61.5 %, and accuracy was 90.2%. vs. 88.5% (P > 0.05 for all). (99)Tc(m)N- NOET dual-phase SPECT could be used in differential diagnosis of benign and malignant lung tumors, with no significant differences compared with the efficacy of CT imaging. The semiquantitative indexes (ER, DR and RI) of NOET SPECT can also be used in differential diagnosis of benign and malignant lung tumors, and are not significantly correlated with TNM staging, pathological types, tumor diameter, cavity of the

  7. fDOT for in vivo follow-up of tumor development in mice lungs

    NASA Astrophysics Data System (ADS)

    Koenig, Anne; Hervé, Lionel; Da Silva, Anabela; Dinten, Jean-Marc; Boutet, Jérôme; Berger, Michel; Josserand, Véronique; Coll, Jean-Luc; Peltié, Philippe; Rizo, Philippe

    2007-07-01

    This paper presents in vivo experiments conducted on cancerous mice bearing mammary murine tumors. In order to reconstruct the fluorescence yield even in highly attenuating and heterogeneous regions like lungs, we developed a fDOT reconstruction method which at first corrects the light propagation model from optical heterogeneities by using the transmitted excitation light measurements. The same approach is also designed to enable working without immersing the mouse in adaptation liquid. The 3D fluorescence map is then reconstructed from the emitted signal of fluorescence and from the corrected propagation model by an ART (Algebraic Reconstruction Technique) algorithm. The system ability to reconstruct fluorescence distribution in presence of high attenuating objects has been validated on phantoms presenting a fluorescent absorbent inclusion. A study was conducted on mice to follow up lungs at different stages of tumor development. The mice were imaged after intravenous injection to the animal of a cancer specific fluorescent marker. A control experiment was conducted in parallel on healthy mice to ensure that the multiple injections of fluorophore did not induce parasite fluorescence distribution. These results validate our system performances for studying small animal lungs tumor evolution. Detection and localization of the fluorophore fixations expresses the tumor development.

  8. The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an MRI-linac.

    PubMed

    Al-Ward, Shahad M; Kim, Anthony; McCann, Claire; Ruschin, Mark; Cheung, Patrick; Sahgal, Arjun; Keller, Brian M

    2018-01-01

    Targeting and tracking of central lung tumors may be feasible on the Elekta MRI-linac (MRL) due to the soft-tissue visualization capabilities of MRI. The purpose of this work is to develop a novel treatment planning methodology to simulate tracking of central lung tumors with the MRL and to quantify the benefits in OAR sparing compared with the ITV approach. Full 4D-CT datasets for five central lung cancer patients were selected to simulate the condition of having 4D-pseudo-CTs derived from 4D-MRI data available on the MRL with real-time tracking capabilities. We used the MRL treatment planning system to generate two plans: (a) with a set of MLC-defined apertures around the target at each phase of the breathing ("4D-MRL" method); (b) with a fixed set of fields encompassing the maximum inhale and exhale of the breathing cycle ("ITV" method). For both plans, dose accumulation was performed onto a reference phase. To further study the potential benefits of a 4D-MRL method, the results were stratified by tumor motion amplitude, OAR-to-tumor proximity, and the relative OAR motion (ROM). With the 4D-MRL method, the reduction in mean doses was up to 3.0 Gy and 1.9 Gy for the heart and the lung. Moreover, the lung's V12.5 Gy was spared by a maximum of 300 cc. Maximum doses to serial organs were reduced by up to 6.1 Gy, 1.5 Gy, and 9.0 Gy for the esophagus, spinal cord, and the trachea, respectively. OAR dose reduction with our method depended on the tumor motion amplitude and the ROM. Some OARs with large ROMs and in close proximity to the tumor benefited from tracking despite small tumor amplitudes. We developed a novel 4D tracking methodology for the MRL for central lung tumors and quantified the potential dosimetric benefits compared with our current ITV approach. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. IL-12 Can Target Human Lung Adenocarcinoma Cells and Normal Bronchial Epithelial Cells Surrounding Tumor Lesions

    PubMed Central

    Airoldi, Irma; Di Carlo, Emma; Cocco, Claudia; Caci, Emanuela; Cilli, Michele; Sorrentino, Carlo; Sozzi, Gabriella; Ferrini, Silvano; Rosini, Sandra; Bertolini, Giulia; Truini, Mauro; Grossi, Francesco; Galietta, Luis Juan Vicente; Ribatti, Domenico; Pistoia, Vito

    2009-01-01

    Background Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rβ2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. Methodology/Principal Findings Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rβ2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R+ neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/β2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/β2+ cells inhibited angiogenesis in vitro. Tumors formed by Calu6/β2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. Conclusions This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well

  10. Elderly male smokers with right lung tumors are viable candidates for KRAS mutation screening.

    PubMed

    Yang, Yang; Shi, Chun; Sun, Hui; Yin, Wei; Zhou, Xiao; Zhang, Lei; Jiang, Gening

    2016-01-07

    Genetic aberrations in tumor driver genes provide specific molecular targets for therapeutic intervention, which can greatly improve therapeutic outcomes. Here, we analyzed the mutational frequency of EGFR and KRAS gene, as well as EML4-ALK rearrangement, and summarized the clinicopathological characters of Chinese lung cancer patients. We detected the mutation spectrum of 1033 primary lung cancer patients. The analyzed clinicopathological parameters included gender, age at diagnosis, smoking status, pathological TNM stage, tumor morphology and location, visceral pleural invasion, and histological type. A total of 618 patients had mutations in EGFR or KRAS gene as well as rearrangement of EML4-ALK. Exon 19 deletions and L858R in the EGFR gene were the most frequent mutations. Left-side lung cancer was more common in female patients carrying the KRAS mutation. Rearrangement of EML4-ALK was more common in non-tobacco-using male patients, who also exhibited a higher likelihood of visceral pleura invasion. Elderly females who never smoked and possessed 1-20 mm stage I adenocarcinomas in the right side exhibited a higher frequency of EGFR mutations. Elderly male smokers with right lung tumors were viable candidates for KRAS mutation screening.

  11. ALK ambiguous-positive non-small cell lung cancers are tumors challenged by diagnostic and therapeutic issues.

    PubMed

    Uguen, Arnaud; Andrieu-Key, Sophie; Vergne, Florence; Descourt, Renaud; Quéré, Gilles; Quintin-Roué, Isabelle; Key, Stéphane; Guéguen, Paul; Talagas, Matthieu; De Braekeleer, Marc; Marcorelles, Pascale

    2016-09-01

    Searching for ALK rearrangements using the approved fluorescent in situ hybridization (FISH) test and complementary immunohistochemistry (IHC) has become the rule to treat patients with advanced non‑small cell lung cancer (NSCLC) with anti‑ALK targeted therapy. The concordance between the two techniques is reported to be strong but imperfect. We report our experience with cases of ALK‑rearranged lung adenocarcinomas pointing out particularly ambiguous cases. FISH and IHC data on ALK but also c‑MET IHC as well as EGFR and KRAS mutation screening are considered, together with response to crizotinib treatment. We classified the 55 FISH ALK‑rearranged tumors into two groups according to the FISH and IHC results: a concordant FISH+IHC+ group (31 tumors) and an ambiguous group (24 tumors). These tumors were considered as 'ambiguous' ALK‑positive due to negative (21 tumors) or non‑contributive (3 tumors) IHC. In addition, the percentage of FISH-positive nuclei was between 15 and 20% in 17 tumors belonging to one or the other group (now called borderline tumors). We discuss the accuracy of the different tests with intent to determine whether ambiguous and borderline tumors are real positive ALK‑rearranged tumors. To conclude, ambiguous ALK‑positive lung cancers are challenging tumors with diagnosis and therapeutic issues that can justify parallel FISH, IHC and molecular screening strategy.

  12. Diagnostic Value of Combining Tumor and Inflammatory Markers in Lung Cancer

    PubMed Central

    Yoon, Ho Il; Kwon, Oh-Ran; Kang, Kyung Nam; Shin, Yong Sung; Shin, Ho Sang; Yeon, Eun Hee; Kwon, Keon Young; Hwang, Ilseon; Jeon, Yoon Kyung; Kim, Yongdai; Kim, Chul Woo

    2016-01-01

    Background Despite major advances in lung cancer treatment, early detection remains the most promising way of improving outcomes. To detect lung cancer in earlier stages, many serum biomarkers have been tested. Unfortunately, no single biomarker can reliably detect lung cancer. We combined a set of 2 tumor markers and 4 inflammatory or metabolic markers and tried to validate the diagnostic performance in lung cancer. Methods We collected serum samples from 355 lung cancer patients and 590 control subjects and divided them into training and validation datasets. After measuring serum levels of 6 biomarkers (human epididymis secretory protein 4 [HE4], carcinoembryonic antigen [CEA], regulated on activation, normal T cell expressed and secreted [RANTES], apolipoprotein A2 [ApoA2], transthyretin [TTR], and secretory vascular cell adhesion molecule-1 [sVCAM-1]), we tested various sets of biomarkers for their diagnostic performance in lung cancer. Results In a training dataset, the area under the curve (AUC) values were 0.821 for HE4, 0.753 for CEA, 0.858 for RANTES, 0.867 for ApoA2, 0.830 for TTR, and 0.552 for sVCAM-1. A model using all 6 biomarkers and age yielded an AUC value of 0.986 and sensitivity of 93.2% (cutoff at specificity 94%). Applying this model to the validation dataset showed similar results. The AUC value of the model was 0.988, with sensitivity of 93.33% and specificity of 92.00% at the same cutoff point used in the validation dataset. Analyses by stages and histologic subtypes all yielded similar results. Conclusions Combining multiple tumor and systemic inflammatory markers proved to be a valid strategy in the diagnosis of lung cancer. PMID:27722145

  13. [Inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung cancer xenografts in nude mice].

    PubMed

    Wang, D C; Wang, L C; Wang, L J; Chen, G; Zhao, Y X; Zhao, Z F; Li, Y H

    2016-05-23

    To evaluate the inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung adenocarcinoma xenografts in nude mice, and to explore its possible mechanisms. Human lung cancer A549 cells were injected into Bal B/c nude mice subcutaneously. Twenty-eight healthy male nude mice were randomly divided into 4 groups: the control group, imrecoxib group, lobaplatin group and imrecoxib combined with lobaplatin group. Each group was treated with appropriate drugs and the tumor size was measured every five days. The expression of ezrin and E-cadherin protein was detected by immunohistochemistry and flow cytometry. Ezrin and E-cadherin mRNA were detected by real-time PCR. The tumor inhibition rates of imrecoxib group, lobaplatin group and combination group were 36.7%, 54.6% and 69.2%, respectively. The tumor volumes of imrecoxib group [(905.33±113.31) mm(3)] and combination group [(507.74±77.50) mm(3)] were significantly lower than that of the control group (1355.33±189.04) mm(3) (P<0.05), and the tumor weights were significantly reduced [(1.13±0.14) g, (0.63±0.10) g respectively] vs. (1.69±0.24) g (P<0.05). The expressions of ezrin protein and mRNA in the imrecoxib group and combined treatment group were significantly lower than that of the control group (136.53±35.52, 74.72±19.48 vs. 175.62±21.16 for protein expression level; 0.54±0.03, 0.36±0.03 vs. 1.02±0.02 for mRNA expression level, respectively, P<0.05 for both), while the expression of E-cadherin protein and mRNA in the imrecoxib group and combined treatment group was significantly higher than that of the control group (253.78±38.87, 308.94±24.67 vs. 213.66±30.31 for protein expression level; 2.19±0.02, 3.02±0.02 vs. 1.05±0.03 for mRNA expression level, respectively, P<0.05 for both). There was a significant negative correlation between ezrin protein and E-cadherin protein (r=-0.737, P<0.01), as well as between ezrin mRNA and E-cadherin mRNA (r=-0

  14. Intraoperative Molecular Imaging of Lung Adenocarcinoma Can Identify Residual Tumor Cells at the Surgical Margins

    PubMed Central

    Keating, Jane J.; Okusanya, Olugbenga T.; De Jesus, Elizabeth; Judy, Ryan; Jiang, Jack; Deshpande, Charuhas; Nie, Shuming; Low, Philip; Singhal, Sunil

    2017-01-01

    Purpose During lung surgery, identification of surgical margins is challenging. We hypothesized that molecular imaging with a fluorescent probe to pulmonary adenocarcinomas could enhance residual tumor during resection. Procedures Mice with flank tumors received a contrast agent targeting folate receptor alpha. Optimal dose and time of injection was established. Margin detection was compared using traditional methods versus molecular imaging. A pilot study was then performed in 3 humans with lung adenocarcinoma. Results The peak tumor-to background ratio (TBR) of murine tumors was 3.9. Fluorescence peaked at 2 hours and was not improved beyond 0.1 mg/kg. Traditional inspection identified 30% of mice with positive margins. Molecular imaging identified an additional 50% of residual tumor deposits (P<0.05). The fluorescent probe visually enhanced all human tumors with a mean TBR of 3.5. Conclusions Molecular imaging is an important adjunct to traditional inspection to identify surgical margins after tumor resection. PMID:26228697

  15. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549

    PubMed Central

    Takizawa, Hajime

    2013-01-01

    Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774

  16. Circulating tumor cells in lung cancer.

    PubMed

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. Copyright © 2012 S. Karger AG, Basel.

  17. Wnt/β-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells.

    PubMed

    Zhu, Jianyun; Jiang, Ye; Yang, Xue; Wang, Shijia; Xie, Chunfeng; Li, Xiaoting; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Ma, Xiao; Geng, Shanshan; Wu, Jieshu; Zhong, Caiyun

    2017-01-01

    Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (-)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activity by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity

    PubMed Central

    Turrell, Frances K.; Kerr, Emma M.; Gao, Meiling; Thorpe, Hannah; Doherty, Gary J.; Cridge, Jake; Shorthouse, David; Speed, Alyson; Samarajiwa, Shamith; Hall, Benjamin A.; Griffiths, Meryl; Martins, Carla P.

    2017-01-01

    Lung adenocarcinoma accounts for ∼40% of lung cancers, the leading cause of cancer-related death worldwide, and current therapies provide only limited survival benefit. Approximately half of lung adenocarcinomas harbor mutations in TP53 (p53), making these mutants appealing targets for lung cancer therapy. As mutant p53 remains untargetable, mutant p53-dependent phenotypes represent alternative targeting opportunities, but the prevalence and therapeutic relevance of such effects (gain of function and dominant-negative activity) in lung adenocarcinoma are unclear. Through transcriptional and functional analysis of murine KrasG12D-p53null, -p53R172H (conformational), and -p53R270H (contact) mutant lung tumors, we identified genotype-independent and genotype-dependent therapeutic sensitivities. Unexpectedly, we found that wild-type p53 exerts a dominant tumor-suppressive effect on mutant tumors, as all genotypes were similarly sensitive to its restoration in vivo. These data show that the potential of p53 targeted therapies is comparable across all p53-deficient genotypes and may explain the high incidence of p53 loss of heterozygosity in mutant tumors. In contrast, mutant p53 gain of function and their associated vulnerabilities can vary according to mutation type. Notably, we identified a p53R270H-specific sensitivity to simvastatin in lung tumors, and the transcriptional signature that underlies this sensitivity was also present in human lung tumors, indicating that this therapeutic approach may be clinically relevant. PMID:28790158

  20. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    PubMed Central

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637