Sample records for a7 nicotinic receptor

  1. The role of nicotinic receptor alpha 7 subunits in nicotine discrimination.

    PubMed

    Stolerman, I P; Chamberlain, S; Bizarro, L; Fernandes, C; Schalkwyk, L

    2004-03-01

    The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. The experiments described here use mice lacking the alpha7 subunit of nicotinic receptors to investigate the role of alpha7-containing receptors in nicotine discrimination. Wild-type and alpha7-knockout mice were trained in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement. Mutant mice exhibited baseline rates of lever-pressing as low as 52.2% of rates in wild-type controls (n=21-24). Mutant and wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) at a similar rate (n=10-12) and reached similar final levels of accuracy (71.9 +/- 4.4% and 90.8 +/- 3.1% after 60 training sessions for 0.4 and 0.8 mg/kg training doses, respectively, in mutant mice, as compared with 75.0 +/- 6.5% and 87.6 +/- 4.8% for wild types). The genotypes exhibited similar steep dose-response curves for nicotine discrimination. In both genotypes, dose-response curves for mice trained with 0.8 mg/kg of nicotine were displaced three- to four-fold to the right as compared with those for the mice trained with the smaller dose. The predominant effect of nicotine on the overall rate of responding was a reduction at the largest doses tested and there was no difference between the genotypes. The results suggest that nicotinic receptors containing the alpha7 subunit do not contribute to the discriminative stimulus or response-rate-depressant effects of nicotine, although they may regulate baseline rates of operant responding.

  2. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  3. In vivo Interactions between α7 Nicotinic Acetylcholine Receptor and Nuclear Peroxisome Proliferator-Activated Receptor-α: Implication for Nicotine Dependence

    PubMed Central

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P.; Lichtman, Aron H.; Carroll, F. Ivy; Greenwald, Mark; Miles, Michael F.; Damaj, M. Imad

    2017-01-01

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. PMID:28279662

  4. Different Hypothalamic Nicotinic α7 Receptor Expression and Response to Low Nicotine Dose in Alcohol-Preferring and Alcohol-Avoiding Rats.

    PubMed

    Nuutinen, Saara; Panula, Pertti; Salminen, Outi

    2016-02-01

    The aim of this study was to examine possible differences in nicotinic acetylcholine receptors and responses in rats with genetic preference or avoidance for alcohol. This was done by using 2 rat lines with high alcohol preference (Alko Alcohol [AA]) or alcohol avoidance (Alko Non-Alcohol [ANA]). Locomotor activity was measured following nicotine and histamine H3 receptor (H3R) antagonist treatment. In situ hybridization and receptor ligand binding experiments were used in drug-naïve animals to examine the expression of different α nicotinic receptor subunits. The AA rats were found to be more sensitive to the stimulatory effect of a low dose of nicotine than ANA rats, which were not significantly activated. Combination of histamine H3R antagonist, JNJ-39220675, and nicotine resulted to similar locomotor activation as nicotine alone. To further understand the mechanism underlying the difference in nicotine response in AA and ANA rats, we studied the expression of α5, α6, and α7 nicotinic receptor subunits in specific brain areas of AA and ANA rats. We found no differences in the expression of α5 nicotinic receptor subunits in the medial habenula and hippocampus or in α6 subunit in the ventral tegmental area and substantia nigra. However, the level of α7 nicotinic receptor subunit mRNA was significantly lower in the tuberomamillary nucleus of posterior hypothalamus of alcohol-preferring AA rats than in alcohol-avoiding ANA rats. Also the hypothalamic [125I-α-bungarotoxin binding was lower in AA rats indicating lower levels of α7 nicotinic receptors. The lower expression and receptor binding of α7 nicotinic receptors in the tuberomamillary nucleus of AA rats suggest a difference in the regulation of brain histamine neurons between the rat lines since the α7 nicotinic receptors are located in histaminergic neurons. Stronger nicotine-induced locomotor response, mediated partially via α7 receptors, and previously described high alcohol consumption in AA

  5. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    PubMed

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Alpha7 nicotinic acetylcholine receptors targeted by cholinergic developmental neurotoxicants: nicotine and chlorpyrifos.

    PubMed

    Slotkin, Theodore A; Southard, Matthew C; Adam, Stacey J; Cousins, Mandy M; Seidler, Frederic J

    2004-09-30

    Alpha7 nicotinic acetylcholine receptors (nAChRs) play a role in axonogenesis, synaptogenesis and synaptic plasticity, and are therefore potential targets for developmental neurotoxicants. We administered nicotine to neonatal rats during discrete periods spanning the onset and peak of axonogenesis/synaptogenesis, focusing on three brain regions with disparate distributions of cell bodies and neural projections: brainstem, forebrain and cerebellum. Nicotine treatment on postnatal days (PN) 1-4 had little or no effect on alpha7 nAChRs but treatment during the second (PN11-14) or third (PN21-24) weeks elicited significant decrements in receptor expression in brainstem and cerebellum, regions containing cell bodies that project to the forebrain. Exposure to chlorpyrifos, a neurotoxicant pesticide that acts partially through cholinergic mechanisms, also elicited deficits in alpha7 nAChRs during the second postnatal week but not the first week. For both nicotine and chlorpyrifos, the effects on alpha7 nAChRs were distinct from those on the alpha4beta2 subtype. Continuous prenatal nicotine exposure, which elicits subsequent, postnatal deficits in axonogenesis and synaptogenesis, also produced delayed-onset changes in alpha7 nAChRs, characterized by reductions in the forebrain and upregulation in the brainstem and cerebellum, a pattern consistent with impaired axonogenesis/synaptogenesis and reactive sprouting. Males were more sensitive to the persistent effects of prenatal nicotine exposure on alpha7 nAChRs, a pattern that mimics neurobehavioral deficits resulting from this treatment. The present findings reinforce the mechanistic involvement of alpha7 nAChRs in the actions of developmental neurotoxicants, and its biomarker potential for neuroteratogens that target neuritic outgrowth.

  8. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  9. Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian α7 nicotinic acetylcholine receptors.

    PubMed

    Cartereau, Alison; Martin, Carine; Thany, Steeve H

    2018-06-01

    Neonicotinoid insecticides are described as poor agonists of mammalian nicotinic ACh receptors. In this paper, we show that their effects on mammalian nicotinic receptors differ between compounds. Two-electrode voltage-clamp electrophysiology was used to characterize the pharmacology of three neonicotinoid insecticides on nicotinic α7 receptors expressed in Xenopus oocytes. Single and combined application of clothianidin, acetamiprid and thiamethoxam were tested. Two neonicotinoid insecticides, clothianidin and acetamiprid, were partial agonists of mammalian neuronal α7 nicotinic receptors, whereas another neonicotinoid insecticide, thiamethoxam, which is converted to clothianidin in insect and plant tissues, had no effect. Pretreatment with clothianidin and acetamiprid (10 μM) ACh significantly enhanced the subsequent currents evoked by ACh (100 μM ) whereas pretreatment with thiamethoxam (10 μM) reduced ACh-induced current amplitudes.A combination of the three neonicotinoids decreased the ACh-evoked currents. The present findings suggest that neonicotinoid insecticides differ markedly in their direct effects on mammalian α7 nicotinic ACh receptors and can also modulate ACh-induced currents. Furthermore, our data indicate a previously unknown modulation of mammalian α7 nicotinic receptors by a combination of clothianidin, acetamiprid and thiamethoxam. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  10. Drug discrimination and neurochemical studies in alpha7 null mutant mice: tests for the role of nicotinic alpha7 receptors in dopamine release.

    PubMed

    Quarta, Davide; Naylor, Christopher G; Barik, Jacques; Fernandes, Cathy; Wonnacott, Susan; Stolerman, Ian P

    2009-04-01

    The nicotine discriminative stimulus has been linked to beta2-containing (beta2*) nicotinic receptors, with little evidence of a role for alpha7 nicotinic receptors, because nicotine discrimination was very weak in beta2 null mutant mice but normal in alpha7 mutants. As both alpha7 and beta2* nicotinic receptors have been implicated in nicotine-stimulated dopamine overflow, this study focused on the dopamine-mediated element in the nicotine stimulus by examining cross-generalisation between amphetamine and nicotine. Male alpha7 nicotinic receptor null mutant mice and wild-type controls were bred in-house and trained to discriminate nicotine (0.8 mg/kg) or (+)-amphetamine (0.6 mg/kg) from saline in a two-lever procedure with a tandem VI-30 FR-10 schedule of food reinforcement. Dopamine release from striatal slices was determined in parallel experiments. An alpha7 nicotinic receptor-mediated component of dopamine release was demonstrated in tissue from wild-type mice using choline as a selective agonist. This response was absent in tissue from null mutant animals. The mutation did not influence acquisition of drug discriminations but subtly affected the results of cross-generalisation tests. In mice trained to discriminate nicotine or amphetamine, there was partial cross-generalisation in wild-type mice and, at certain doses, these effects were attenuated in mutants. Further support for an alpha7 nicotinic receptor-mediated component was provided by the ability of the alpha7 nicotinic receptor antagonist methyllycaconitine to attenuate responses to nicotine and amphetamine in wild-type mice. These findings support the concept of an alpha7 nicotinic receptor-mediated dopaminergic element in nicotine discrimination, warranting further tests with selective dopamine agonists.

  11. Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives.

    PubMed

    De Jaco, Antonella; Bernardini, Laura; Rosati, Jessica; Tata, Ada Maria

    2017-01-01

    The α7 nicotinic receptor consists of identical subunits and is one of the most abundant acetylcholine receptors in the mammalian central nervous system. However its expression is also found in the peripheral nervous system as well as in the immune system and various peripheral tissues. Nicotinic Receptors: They are involved in the regulation of several activities ranging from excitatory neurotransmission, the modulation of the release of several neurotransmitters, regulation of neurite outgrowth, and even neuronal survival/death. Its expression is found in brain areas that underlie learning and memory, suggesting their involvement in regulating cognitive functions. The α7-nicotinic receptor has a strategic role during development in regulating molecular pathways activated during neurogenesis. Because of its pleiotropic effects, receptor dysfunction or dysregulated expression is found in pathophysiological conditions of the nervous system including neurodegenerative diseases and neurodevelopmental disorders. Here we review the physiological and pathological roles of alpha-7 nicotinic receptor in different nervous system disorders and the current therapeutic strategies developed to target selectively this receptor for potentiating or reducing its functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an α7 nicotinic receptor in a murine hindlimb ischemia model.

    PubMed

    Kakinuma, Yoshihiko; Noguchi, Tatsuya; Okazaki, Kayo; Oikawa, Shino; Iketani, Mitsue; Kurabayashi, Atsushi; Kurabayashi, Mutsumi; Furihata, Mutsuo; Sato, Takayuki

    2014-07-01

    We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy. Copyright © 2014 Mosby, Inc. All rights reserved.

  13. Nicotine Deteriorates the Osteogenic Differentiation of Periodontal Ligament Stem Cells through α7 Nicotinic Acetylcholine Receptor Regulating wnt Pathway

    PubMed Central

    Dong, Zhiwei; Liu, Fen; Zhang, Yu; Yu, Yang; Shang, Fengqing; Wu, Lizheng; Wang, Xiaojing; Jin, Yan

    2013-01-01

    Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis. PMID:24376645

  14. Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic α7 receptors

    PubMed Central

    Suemaru, Katsuya; Yasuda, Kayo; Umeda, Kenta; Araki, Hiroaki; Shibata, Kazuhiko; Choshi, Tominari; Hibino, Satoshi; Gomita, Yutaka

    2004-01-01

    Nicotine has been reported to normalize deficits in auditory sensory gating in the cases of schizophrenia, suggesting an involvement of nicotinic acetylcholine receptors in attentional abnormalities. However, the mechanism remains unclear. The present study investigated the effects of nicotine on the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by apomorphine or phencyclidine in rats. Over the dose range tested, nicotine (0.05–1 mg kg−1, s.c.) did not disrupt PPI. Neither methyllycaconitine (0.5–5 mg kg−1, s.c.), an α7 nicotinic receptor antagonist, nor dihydro-β-erythroidine (0.5–2 mg kg−1, s.c.), an α4β2 nicotinic receptor antagonist, had any effect on PPI. Nicotine (0.01–0.2 mg kg−1, s.c.) dose-dependently reversed the disruption of PPI induced by apomorphine (1 mg kg−1, s.c.), but had no effect on the disruption of PPI induced by phencyclidine (2 mg kg−1, s.c.). The reversal of apomorphine-induced PPI disruption by nicotine (0.2 mg kg−1) was eliminated by mecamylamine (1 mg kg−1, i.p.), but not by hexamethonium (10 mg kg−1, i.p.), indicating the involvement of central nicotinic receptors. The antagonistic action of nicotine on apomorphine-induced PPI disruption was dose-dependently blocked by methyllycaconitine (1 and 2 mg kg−1, s.c.). However, dihydro-β-erythroidine (1 and 2 mg kg−1, s.c.) had no effect. These results suggest that nicotine reverses the disruption of apomorphine-induced PPI through central α7 nicotinic receptors. PMID:15197106

  15. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors

    PubMed Central

    Moaddel, Ruin; Abdrakhmanova, Galia; Kozak, Joanna; Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Rosenberg, Avraham; Tran, Thao; Xiao, Yingxian; Zarate, Carlos A.; Wainer, Irving W.

    2012-01-01

    The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)- hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents in α7-nicotinic acetylcholine receptor, IC50 = 55 ± 6 nM, and that (2S,6S)-hydroxynorketamine, (2R,6R)-hydroxynorketamine and (R,S)-norketamine also inhibited α7-nicotinic acetylcholine receptor function at concentrations ≤1μM, while (R,S)-ketamine was inactive at these concentrations. The inhibitory effect of (R,S)-dehydronorketamine was voltage-independent and the compound did not competitively displace selective α7-nicotinic acetylcholine receptor ligands [125I]-α-bungarotoxin and [3H]-epibatidine indicating that (R,S)-dehydronorketamine is a negative allosteric modulator of the α7-nicotinic acetylcholine receptor. (R,S)-Ketamine and (R,S)-norketamine inhibited (S)-nicotine-induced whole-cell currents in cells expressing α3β4-nicotinic acetylcholine receptor, IC50 3.1 and 9.1μM, respectively, while (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine were weak inhibitors, IC50 >100μM. The binding affinities of (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine at the NMDA receptor were also determined using rat brain membranes and the selective NMDA receptor antagonist [3H]-MK-801. The calculated Ki values were 38.95 μM for (S)-dehydronorketamine, 21.19 μM for (2S,6S)-hydroxynorketamine and > 100 μM for (2R,6R)-hydroxynorketamine. The results suggest that the inhibitory activity of ketamine metabolites at the α7-nicotinic acetylcholine receptor may contribute to the clinical effect of the drug. PMID:23183107

  16. Strychnine activates neuronal α7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains

    PubMed Central

    Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio

    1999-01-01

    Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336

  17. Nicotine increases eclampsia-like seizure threshold and attenuates microglial activity in rat hippocampus through the α7 nicotinic acetylcholine receptor.

    PubMed

    Li, Xiaolan; Han, Xinjia; Bao, Junjie; Liu, Yuanyuan; Ye, Aihua; Thakur, Mukesh; Liu, Huishu

    2016-07-01

    A considerable number of studies have demonstrated that nicotine, a α7-nicotinic acetylcholine receptor7-nAChR) agonist, can dampen immune response through the cholinergic anti-inflammatory pathway. Evidence suggests that inflammation plays a critical role in eclampsia, which contributes to maternal and fetal morbidity and mortality. In the present study, possible anti-inflammation and neuro-protective effects of nicotine via α7-nAChRs have been investigated after inducing eclampsia-like seizures in rats. Rat eclampsia-like models were established by administering lipopolysaccharide (LPS) plus pentylenetetrazol (PTZ) in pregnant rats. Rats were given nicotine from gestation day (GD) 14-19. Then, clinical symptoms were detected. Seizure severity was recorded by behavioral tests, serum levels of inflammatory cytokines were measured by Luminex assays, microglia and astrocyte expressions were detected by immunofluorescence, and changes in neuronal number in the hippocampal CA1 region among different groups were detected by Nissl staining. Our results revealed that nicotine effectively improved fetal outcomes. Furthermore, it significantly decreased systolic blood pressure, and maternal serum levels of Th1 cytokines (TNF-α, IL-1β, IL-6 and IL-12P70) and an IL-17 cytokine (IL-17A), and dramatically increased eclampsia-like seizure threshold. Moreover, this attenuated neuronal loss and decreased the expression of microglial activation markers of the hippocampal CA1 region in the eclampsia-like group. Additionally, pretreatment with α-bungarotoxin, a selective α7-nAChR antagonist could prevent the protective effects of nicotine in eclampsia-like model rats. Our findings indicate that the administration of nicotine may attenuate microglial activity and increase eclampsia-like seizure threshold in rat hippocampus through the α7 nicotinic receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS

    PubMed Central

    Dang, Xitong; Eliceiri, Brian P.; Baird, Andrew; Costantini, Todd W.

    2015-01-01

    The human genome contains a unique, distinct, and human-specific α7-nicotinic acetylcholine receptor7nAChR) gene [CHRNA7 (gene-encoding α7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-α7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5′ upstream from the “wild-type” CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type α7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific α7nAChR response that might regulate gut epithelial function in a human-specific fashion.—Dang, X., Eliceiri, B. P., Baird, A., Costantini, T. W. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential

  20. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  1. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model

    PubMed Central

    Freitas, K; Negus, SS; Carroll, FI; Damaj, MI

    2013-01-01

    Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024

  2. Ionotropic and Metabotropic Mechanisms of Allosteric Modulation of α7 Nicotinic Receptor Intracellular Calcium.

    PubMed

    King, Justin R; Ullah, Aman; Bak, Ellen; Jafri, M Saleet; Kabbani, Nadine

    2018-06-01

    The pharmacological targeting of the α 7 nicotinic acetylcholine receptor ( α 7) is a promising strategy in the development of new drugs for neurologic diseases. Because α 7 receptors regulate cellular calcium, we investigated how the prototypical type II-positive allosteric modulator PNU120596 affects α 7-mediated calcium signaling. Live imaging experiments show that PNU120596 augments ryanodine receptor-driven calcium-induced calcium release (CICR), inositol-induced calcium release (IICR), and phospholipase C activation by the α 7 receptor. Both influx of calcium through the α 7 nicotinic acetylcholine receptor (nAChR) channel as well as the binding of intracellular G proteins were involved in the effect of PNU120596 on intracellular calcium. This is evidenced by the findings that chelation of extracellular calcium, expression of α 7 D44A or α 7 345-348A mutant subunits, or blockade of calcium store release compromised the ability of PNU120596 to increase intracellular calcium transients generated by α 7 ligand activation. Spatiotemporal stochastic modeling of calcium transient responses corroborates these results and indicates that α 7 receptor activation enables calcium microdomains locally and to lesser extent in the distant cytosol. From the model, allosteric modulation of the receptor activates CICR locally via ryanodine receptors and augments IICR through enhanced calcium influx due to prolonged α 7 nAChR opening. These findings provide a new mechanistic framework for understanding the effect of α 7 receptor allosteric modulation on both local and global calcium dynamics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors.

    PubMed

    Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong

    2010-10-01

    To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor.

  4. Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors

    PubMed Central

    Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong

    2010-01-01

    Aim: To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Methods: Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Results: Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. Conclusion: These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor. PMID:20871620

  5. The role of alpha-7 nicotinic receptors in food intake behaviors

    PubMed Central

    McFadden, Kristina L.; Cornier, Marc-Andre; Tregellas, Jason R.

    2014-01-01

    Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor7nAChR) has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin and neuropeptide Y. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity. PMID:24936193

  6. Stoichiometry for activation of neuronal α7 nicotinic receptors

    PubMed Central

    Andersen, Natalia; Corradi, Jeremías; Sine, Steven M.; Bouzat, Cecilia

    2013-01-01

    Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells. PMID:24297903

  7. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.

    PubMed

    White, Sean H; Carter, Christopher J; Magoski, Neil S

    2014-07-15

    Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction. Copyright © 2014 the American Physiological Society.

  8. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  9. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    PubMed Central

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  10. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  11. SAR of α7 nicotinic receptor agonists derived from tilorone: exploration of a novel nicotinic pharmacophore.

    PubMed

    Schrimpf, Michael R; Sippy, Kevin B; Briggs, Clark A; Anderson, David J; Li, Tao; Ji, Jianguo; Frost, Jennifer M; Surowy, Carol S; Bunnelle, William H; Gopalakrishnan, Murali; Meyer, Michael D

    2012-02-15

    The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    PubMed

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-06-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC 50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl - channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder.

    PubMed

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R; Freedman, Robert

    2016-12-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational receptor-specific partial agonist drug would increase the inhibitory functions of the gene and thereby increase patients' attention. An electrophysiological biomarker, P50 inhibition, verified the intended neurobiological effect of the agonist, and neuropsychological testing verified a primary cognitive effect. Both patients perceived increased attention in their self-ratings. Alpha7-nicotinic receptor agonists, currently the target of drug development in schizophrenia and Alzheimer Disease, may also have positive clinical effects in autism spectrum disorder.

  14. Chronic nicotine treatment differentially modifies acute nicotine and alcohol actions on GABA(A) and glutamate receptors in hippocampal brain slices.

    PubMed

    Proctor, William R; Dobelis, Peter; Moritz, Anna T; Wu, Peter H

    2011-03-01

    Tobacco and alcohol are often co-abused producing interactive effects in the brain. Although nicotine enhances memory while ethanol impairs it, variable cognitive changes have been reported from concomitant use. This study was designed to determine how nicotine and alcohol interact at synaptic sites to modulate neuronal processes. Acute effects of nicotine, ethanol, and both drugs on synaptic excitatory glutamatergic and inhibitory GABAergic transmission were measured using whole-cell recording in hippocampal CA1 pyramidal neurons from brain slices of mice on control or nicotine-containing diets. Acute nicotine (50 nM) enhanced both GABAergic and glutamatergic synaptic transmission; potentiated GABA(A) receptor currents via activation of α7* and α4β2* nAChRs, and increased N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor currents through α7* receptors. While ethanol (80 mM) also increased GABA(A) currents, it inhibited NMDA currents. Although ethanol had no effect on AMPA currents, it blocked nicotine-induced increases in NMDA and AMPA currents. Following chronic nicotine treatment, acute nicotine or ethanol did not affect NMDA currents, while the effects of GABAergic responses were not altered. Acute ethanol ingestion selectively attenuated nicotine enhancement of excitatory glutamatergic NMDA and AMPA receptor function, suggesting an overall reduction in excitatory output from the hippocampus. It also indicated that ethanol could decrease the beneficial effects of nicotine on memory performance. In addition, chronic nicotine treatment produced tolerance to the effects of nicotine and cross-tolerance to the effects of ethanol on glutamatergic activity, leading to a potential increase in the use of these drugs. British Journal of Pharmacology © 2011 The British Pharmacological Society. No claim to original US government works.

  15. Wheel running during chronic nicotine exposure is protective against mecamylamine-precipitated withdrawal and up-regulates hippocampal α7 nACh receptors in mice.

    PubMed

    Keyworth, Helen; Georgiou, Polymnia; Zanos, Panos; Rueda, André Veloso; Chen, Ying; Kitchen, Ian; Camarini, Rosana; Cropley, Mark; Bailey, Alexis

    2018-06-01

    Evidence suggests that exercise decreases nicotine withdrawal symptoms in humans; however, the mechanisms mediating this effect are unclear. We investigated, in a mouse model, the effect of exercise intensity during chronic nicotine exposure on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-opioid (μ receptors) and D 2 dopamine receptors and on brain-derived neurotrophic factor (BDNF) and plasma corticosterone levels. Male C57Bl/6J mice treated with nicotine (minipump, 24 mg·kg -1 ·day -1 ) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 h·day -1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D 2 receptor binding was performed in brain sections of these mice. Plasma corticosterone and brain BDNF levels were also measured. Nicotine-treated mice undertaking 2 or 24 h·day -1 wheel running displayed a significant reduction in withdrawal symptom severity compared with the sedentary group. Wheel running induced a significant up-regulation of α7 nAChR binding in the CA2/3 area of the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ or D 2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone levels and α4β2* nAChR binding, irrespective of exercise regimen. We demonstrated for the first time a profound effect of exercise on α7 nAChRs in nicotine-dependent animals, irrespective of exercise intensity. These findings shed light onto the mechanism underlining the protective effect of exercise on the development of nicotine dependence. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  16. Nicotinic receptor abnormalities in the cerebellar cortex in autism.

    PubMed

    Lee, M; Martin-Ruiz, C; Graham, A; Court, J; Jaros, E; Perry, R; Iversen, P; Bauman, M; Perry, E

    2002-07-01

    Autism is a common developmental disorder associated with structural and inferred neurochemical abnormalities of the brain. Cerebellar abnormalities frequently have been identified, based on neuroimaging or neuropathology. Recently, the cholinergic neurotransmitter system has been implicated on the basis of nicotinic receptor loss in the cerebral cortex. Cerebellar cholinergic activities were therefore investigated in autopsy tissue from a series of autistic individuals. The presynaptic cholinergic enzyme, choline acetyltransferase, together with nicotinic and muscarinic receptor subtypes were compared in the cerebellum from age-matched mentally retarded autistic (eight), normal control (10) and non-autistic mentally retarded individuals (11). The nicotinic receptor binding the agonist epibatidine (the high affinity receptor subtype, consisting primarily of alpha3 and alpha4, together with beta2 receptor subunits) was significantly reduced by 40-50% in the granule cell, Purkinje and molecular layers in the autistic compared with the normal group (P < 0.05). There was an opposite increase (3-fold) in the nicotinic receptor binding alpha-bungarotoxin (to the alpha7 subunit) which reached significance in the granule cell layer (P < 0.05). These receptor changes were paralleled by a significant reduction (P < 0.05) and non-significant increase, respectively, of alpha4 and alpha7 receptor subunit immunoreactivity measured using western blotting. Immunohistochemically loss of alpha(4 )reactivity was apparent from Purkinje and the other cell layers, with increased alpha7 reactivity in the granule cell layer. There were no significant changes in choline acetyltransferase activity, or in muscarinic M1 and M2 receptor subtypes in autism. In the non-autistic mentally retarded group, the only significant abnormality was a reduction in epibatidine binding in the granule cell and Purkinje layers. In two autistic cases examined histologically, Purkinje cell loss was observed in

  17. The alpha-7 nicotinic acetylcholine receptor is involved in a direct inhibitory effect of nicotine on GnRH release: In vitro studies.

    PubMed

    Messi, Elio; Pimpinelli, Federica; Andrè, Valentina; Rigobello, Chiara; Gotti, Cecilia; Maggi, Roberto

    2018-01-15

    The activation of nicotinic cholinergic receptors (nAChR) inhibits the reproductive axis; however, it is not clear whether nicotine may directly modulate the release of hypothalamic gonadotropin-releasing hormone (GnRH). Experiments carried out in GT1-1 immortalized GnRH neurons reveal the presence of a single class of high affinity α4β2 and α7 nAchR subtypes. The exposure of GT1-1 cells to nicotine does not modify the basal accumulation of GnRH. However, nicotine was found to modify GnRH pulsatility in perifusion experiments and inhibits, the release of GnRH induced by prostaglandin E 1 or by K + -induced cell depolarization; these effects were reversed by D-tubocurarine and α-bungarotoxin. In conclusion, the results reported here indicate that: functional nAChRs are present on GT1-1 cells, the activation of the α-bungarotoxin-sensitive subclass (α7) produces an inhibitory effect on the release of GnRH and that the direct action of nicotine on GnRH neurons may be involved in reducing fertility of smokers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less

  19. Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor.

    PubMed

    Verbitsky, M; Rothlin, C V; Katz, E; Elgoyhen, A B

    2000-10-01

    The rat alpha9 nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus laevis oocytes and tested for its sensitivity to a wide variety of cholinergic compounds. Acetylcholine (ACh), carbachol, choline and methylcarbachol elicited agonist-evoked currents, giving maximal or near maximal responses. Both the nicotinic agonist suberyldicholine as well as the muscarinic agonists McN-A-343 and methylfurtrethonium behaved as weak partial agonists of the receptor. Most classical cholinergic compounds tested, being either nicotinic (nicotine, epibatidine, cytisine, methyllycaconitine, mecamylamine, dihydro-beta-erythroidine), or muscarinic (muscarine, atropine, gallamine, pilocarpine, bethanechol) agonists and antagonists, blocked the recombinant alpha9 receptor. Block by nicotine, epibatidine, cytisine, methyllycaconitine and atropine was overcome at high ACh concentrations, suggesting a competitive type of block. The present results indicate that alpha9 displays mixed nicotinic-muscarinic features that resemble the ones described for the cholinergic receptor of cochlear outer hair cells (OHCs). We suggest that alpha9 contains the structural determinants responsible for the pharmacological properties of the native receptor.

  20. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  2. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  3. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    PubMed

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic

  4. Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    PubMed Central

    Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.

    2009-01-01

    Background The alpha-7 nicotinic acetylcholine receptor7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501

  5. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    EPA Science Inventory

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  6. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert

    2016-01-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…

  7. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus.

    PubMed

    Ondrejcak, Tomas; Wang, Qinwen; Kew, James N C; Virley, David J; Upton, Neil; Anwyl, Roger; Rowan, Michael J

    2012-02-29

    Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A human-specific, truncated α7 nicotinic receptor subunit assembles with full-length α7 and forms functional receptors with different stoichiometries.

    PubMed

    Lasala, Matías; Corradi, Jeremías; Bruzzone, Ariana; Esandi, María Del Carmen; Bouzat, Cecilia

    2018-05-21

    The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5-10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A. Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation.We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine if dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings elicited by ACh in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, that at least two α7 subunits are required for channel opening, and that dupα7's presence in the pentameric arrangement does not affect the duration of the potentiated events compare with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α77 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT1a receptor antagonist

    PubMed Central

    Pandya, Anshul A.; Yakel, Jerrel L.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT1a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors. PMID:23321689

  10. Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning.

    PubMed

    Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas

    2018-09-01

    Irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine and overstimulation of muscarinic and nicotinic receptors accounts for the acute toxicity of organophosphorus compounds (OP). Accordingly, the mainstay pharmacotherapy against poisoning by OP comprises the competitive muscarinic acetylcholine receptor antagonist atropine to treat muscarinic effects and, in addition, oximes to reactivate inhibited AChE. A therapeutic gap still remains in the treatment of desensitized nicotinic acetylcholine receptors following OP exposure. Hereby, nicotinic effects result in paralysis of the central and peripheral respiratory system if untreated. Thus, these receptors pose an essential target for therapeutic indication to address these life-threatening nicotinic symptoms of the cholinergic crisis. Identification of ligands regulating dynamic transitions between functional states by binding to modulatory sites appears to be a promising strategy for therapeutic intervention. In this patch clamp study, the ability of differently substituted bispyridinium non-oximes to "resensitize" i.e. to recover the activity of desensitized human homomeric α7-type nAChRs stably transfected in CHO cells was investigated and compared to the already described α7-specific positive allosteric modulator PNU-120596. The structures of these bispyridinium analogues were based on the lead structure of the tert-butyl-substituted bispyridinium propane MB327, which has been shown to have a positive therapeutic effect due to a non-competitive antagonistic action at muscle-type nAChRs in vivo and has been found to have a positive allosteric activity at neuronal receptors in vitro. Prior to test compounds, desensitization of hα7-nAChRs was verified by applying an excess of nicotine revealing activation at low, and desensitization at high concentrations. Thereby, desensitization could be reduced by modulation with PNU-120596. Desensitization was further verified by

  11. Time dependent decreases in central α7 nicotinic acetylcholine receptors associated with haloperidol and risperidone treatment in rats

    PubMed Central

    Terry, Alvin V.; Gearhart, Debra A.

    2007-01-01

    α7 nicotinic acetylcholine receptor deficits may contribute to cognitive dysfunction in schizophrenia; however, the contribution of antipsychotic drug exposure to these deficits is unknown. In this study, rats were treated orally with haloperidol (2.0 mg/kg/day) or risperidone (2.5 mg/kg/day) for 15 or 90 days. Subsequent immunoassays indicated that both antipsychotics were associated with α7 nicotinic receptor decreases in the basal forebrain and prefrontal cortex when administered for 90 (but not 15) days, a result that was confirmed in autoradiographic experiments. These data suggest that haloperidol and risperidone may be associated with time dependent decreases in an important neurobiological substrate of memory. PMID:17601556

  12. The expression, localization and function of α7 nicotinic acetylcholine receptor in rat corpus cavernosum.

    PubMed

    Faghir-Ghanesefat, Hedyeh; Rahimi, Nastaran; Yarmohammadi, Fatemeh; Mokhtari, Tahmineh; Abdollahi, Ali Reza; Ejtemaei Mehr, Shahram; Dehpour, Ahmad R

    2017-12-01

    Alpha7 nicotinic acetylcholine receptor7-nAChR), an emerging pharmacological target for a variety of medical conditions, is expressed in the most mammalian tissues with different effects. So, this study was designed to investigate the expression, localization and effect of α7-nAChR in rat corpus cavernosum (CC). Reverse transcription polymerase chain reaction (RT-PCR) revealed that α7-nAChR was expressed in rat CC and double immunofluorescence studies demonstrated the presence of α7-nAChR in corporal neurons. The rat CC segments were mounted in organ bath chambers and contracted with phenylephrine (0.1 μm -300 μm) to investigate the relaxation effect of electrical field stimulation (EFS,10 Hz) assessed in the presence of guanethidine (adrenergic blocker, 5 μm) and atropine (muscarinic cholinergic blocker, 1 μm) to obtain non-adrenergic non-cholinergic (NANC) response. Cumulative administration of nicotine significantly potentiated the EFS-induced NANC relaxation (-log EC50 = 7.5 ± 0.057). Whereas, the potentiated NANC relaxation of nicotine was significantly inhibited with different concentrations of methyllycaconitine citrate (α7-nAChR antagonist, P < 0.05) in preincubated strips. L-NAME (non-specific nitric oxide synthase inhibitor, 1 μm) completely blocked the neurogenic relaxation induced by EFS plus nicotine. To conclude α7-nAChR is expressed in rat CC and modulates the neurogenic relaxation response to nicotine. © 2017 Royal Pharmaceutical Society.

  13. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT 3A R), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC 50 values of 70 nM and K d values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  14. Recruitment of α7 nicotinic acetylcholine receptor to caveolin-1-enriched lipid rafts is required for nicotine-enhanced Escherichia coli K1 entry into brain endothelial cells.

    PubMed

    Chi, Feng; Wang, Lin; Zheng, Xueye; Jong, Ambrose; Huang, Sheng-He

    2011-08-01

    We investigate how the α7 nicotinic acetylcholine receptor7 nAChR), an essential regulator of inflammation, contributes to the α7 agonist nicotine-enhanced Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMECs) through lipid rafts/caveolae-mediated signaling. α7 nAChR-mediated signaling and bacterial invasion were defined by lipid raft fractionation, immunofluorescence microscopy and siRNA knockdown. Nicotine-enhanced bacterial invasion was dose-dependently inhibited by two raft-disrupting agents, nystatin and filipin. Significant accumulation of the lipid raft marker GM3 was observed in HBMEC induced by E. coli K1 and nicotine. The recruitment of α7 nAChR and related signaling molecules, including vimentin, and Erk1/2, to caveolin-1 enriched lipid rafts was increased upon treatment with E44 or E44 plus nicotine. Erk1/2 activation (phosphorylation), which is required for α7 nAChR-mediated signaling and E44 invasion, was associated with lipid rafts and nicotine-enhanced bacterial infection. Furthermore, E44 invasion, E44/nicotine-induced activation of Erk1/2 and clustering of α7 nAChR and caveolin-1 was specifically blocked by both siRNAs. α7 nAChR-mediated signaling through lipid rafts/caveolae is required for nicotine-enhanced E. coli K1 invasion of HBMEC.

  15. Rat nicotinic ACh receptor α7 and β2 subunits co-assemble to form functional heteromeric nicotinic receptor channels

    PubMed Central

    Khiroug, Serguei S; Harkness, Patricia C; Lamb, Patricia W; Sudweeks, Sterling N; Khiroug, Leonard; Millar, Neil S; Yakel, Jerrel L

    2002-01-01

    Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including α7-containing receptors that have properties unlike those expected for homomeric α7 nAChRs. We previously reported a strong correlation between expression of the α7 and of the β2 subunits in individual neurons. To explore whether co-assembly of the α7 and β2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the β2 subunit, both wild-type and mutant forms, with the α7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric α7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both α7 and β2 subunits. In addition the EC50 values for all three agonists significantly increased when the β2 subunit was co-expressed with the α7 subunit. Co-expression with the β2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the α7 and β2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR α7 and β2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric α7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system. PMID:11956333

  16. Identification and Characterization of a G Protein-binding Cluster in α7 Nicotinic Acetylcholine Receptors.

    PubMed

    King, Justin R; Nordman, Jacob C; Bridges, Samuel P; Lin, Ming-Kuan; Kabbani, Nadine

    2015-08-14

    α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345-348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345-348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. A behavioral economic analysis of the value-enhancing effects of nicotine and varenicline and the role of nicotinic acetylcholine receptors in male and female rats.

    PubMed

    Barrett, Scott T; Geary, Trevor N; Steiner, Amy N; Bevins, Rick A

    2018-04-09

    Reinforcement value enhancement by nicotine of non-nicotine rewards is believed to partially motivate smoking behavior. Recently, we showed that the value-enhancing effects of nicotine are well characterized by reinforcer demand models and that the value-enhancing effects of the smoking-cessation aid bupropion (Zyban) are distinct from those of nicotine and differ between the sexes. The present study evaluated potential sex differences in the enhancement effects of nicotine and varenicline (Chantix) using a reinforcer demand methodology. The role of α4β2* and α7 nicotinic acetylcholine receptors (nAChRs) in the enhancing effects of nicotine and varenicline is also evaluated. Male and female rats (n=12/sex) were trained to lever press maintained by sensory reinforcement by visual stimulus (VS) presentations. Changes in the VS value following nicotine and varenicline administration were assessed using an established reinforcer demand approach. Subsequently, the effects of antagonism of α4β2* and α7 nAChRs on varenicline and nicotine-induced enhancement active lever-pressing were assessed using a progressive ratio schedule. Nicotine and varenicline enhanced VS demand equivalently between the sexes as evaluated by reinforcer demand. However, α4β2* receptor antagonism attenuated value enhancement by nicotine and varenicline in females, but only of nicotine in males.

  19. Kynurenic acid as an Antagonist of α7 Nicotinic Acetylcholine Receptors in the Brain: Facts and Challenges

    PubMed Central

    Albuquerque, Edson X.; Schwarcz, Robert

    2013-01-01

    Kynurenic acid (KYNA), a major tryptophan metabolite, is a glutamate receptor antagonist, which is also reported to inhibit α7 nicotinic acetylcholine receptors7nAChRs). Due to variations in experimental approaches, controversy has arisen regarding the ability of KYNA to directly influence α7nAChR function. Here we summarize current concepts of KYNA neurobiology and review evidence pertaining to the proposed role of KYNA as an endogenous modulator of α7nAChRs and synaptic transmission. As dysfunction of α7nAChRs plays a major role in the pathophysiology of central nervous system disorders, elucidation of KYNA's action on this receptor subtype has significant therapeutic implications. PMID:23270993

  20. Long-term improvements in sensory inhibition with gestational choline supplementation linked to α7 nicotinic receptors through studies in Chrna7 null mutation mice.

    PubMed

    Stevens, Karen E; Choo, Kevin S; Stitzel, Jerry A; Marks, Michael J; Adams, Catherine E

    2014-03-13

    Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. Published by Elsevier B.V.

  1. Long-term improvements in sensory inhibition with gestational choline supplementation linked to α7 nicotinic receptors through studies in Chrna7 null mutation mice

    PubMed Central

    Stevens, Karen E.; Choo, Kevin S.; Stitzel, Jerry A.; Marks, Michael J.; Adams, Catherine E.

    2014-01-01

    Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. PMID:24462939

  2. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less

  3. Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

    PubMed Central

    Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun

    2015-01-01

    Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265

  4. Bidirectional Regulation of Aggression in Mice by Hippocampal Alpha-7 Nicotinic Acetylcholine Receptors.

    PubMed

    Lewis, Alan S; Pittenger, Steven T; Mineur, Yann S; Stout, Dawson; Smith, Philip H; Picciotto, Marina R

    2018-05-01

    Humans with 15q13.3 microdeletion syndrome (15q13.3DS) are typically hemizygous for CHRNA7, the gene coding for the α7 nicotinic acetylcholine receptor (nAChR), and manifest a variable neuropsychiatric phenotype that frequently includes persistent aggression. In mice, nAChR activation by nicotine is anti-aggressive, or 'serenic,' an effect which requires α7 nAChRs and is recapitulated by GTS-21, an α7 nAChR partial agonist. Pharmacotherapies potentiating α7 nAChR signaling have also been shown to reduce aggression in human 15q13.3DS. These findings identify the α7 nAChR as an important regulator of aggressive behavior, but the underlying neurobiological substrates remain to be determined. We therefore investigated the brain regions and potential neural circuits in which α7 nAChRs regulate aggressive behavior in male mice. As in 15q13.3DS, mice heterozygous for Chrna7 were significantly more aggressive compared to wild-type controls in the resident-intruder test. We subsequently examined the hippocampus, where α7 nAChRs are highly expressed, particularly in GABAergic interneurons. Resident-intruder interactions strongly activated granule cells in the dentate gyrus (DG). In contrast, GTS-21, which reduces aggression in mice, reduced DG granule cell activity during resident-intruder interactions. Short hairpin RNA knockdown of Chrna7 in the DG enhanced baseline aggression and eliminated the serenic effects of both nicotine and GTS-21 on attack latency. These data further implicate α7 nAChRs in regulation of aggression, and demonstrate that hippocampal α7 nAChR signaling is necessary and sufficient to limit aggression. These findings suggest that nAChR-mediated regulation of hippocampal excitatory-inhibitory balance could be a promising therapeutic intervention for aggression arising in certain forms of neuropsychiatric disease.

  5. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes.

    PubMed

    Peterson, Daniel J; Gill, W Drew; Dose, John M; Hoover, Donald B; Pauly, James R; Cummins, Elizabeth D; Burgess, Katherine C; Brown, Russell W

    2017-05-15

    Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. Copyright © 2017. Published by Elsevier B.V.

  6. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes

    PubMed Central

    Peterson, Daniel J.; Gill, W. Drew; Dose, John M.; Hoover, Donald B.; Pauly, James R.; Cummins, Elizabeth D.; Burgess, Katherine C.; Brown, Russell W.

    2017-01-01

    Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal’s lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1 mg/kg) or saline from postnatal days (P)1–21. Animals were given ip injections of either saline or nicotine (0.5 mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4 mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3 mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not 7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. PMID:28235586

  7. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    PubMed

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p < 0.05). The effect of ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  8. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Sun; Li, Shu-Xing; Bren, Nina

    2013-09-01

    To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å 2 (1 Å=0.1 nm) of surface area, within which Arg 36 and Phe 32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr 184 from loop-C of α7, while Asp 30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr 184. These inter-residue interactions diverge from thosemore » in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr 184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.« less

  9. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩

    PubMed Central

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2013-01-01

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654

  10. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans.

    PubMed

    Saccone, N L; Schwantes-An, T-H; Wang, J C; Grucza, R A; Breslau, N; Hatsukami, D; Johnson, E O; Rice, J P; Goate, A M; Bierut, L J

    2010-10-01

    Several independent studies show that the chromosome 15q25.1 region, which contains the CHRNA5-CHRNA3-CHRNB4 gene cluster, harbors variants strongly associated with nicotine dependence, other smoking behaviors, lung cancer and chronic obstructive pulmonary disease. We investigated whether variants in other cholinergic nicotinic receptor subunit (CHRN) genes affect the risk of nicotine dependence in a new sample of African Americans (AAs) (N = 710). We also analyzed this AA sample together with a European American (EA) sample (N = 2062, 1608 of which have been previously studied), allowing for differing effects in the two populations. Cases are current nicotine-dependent smokers and controls are non-dependent smokers. Variants in or near CHRND-CHRNG, CHRNA7 and CHRNA10 show modest association with nicotine dependence risk in the AA sample. In addition, CHRNA4, CHRNB3-CHRNA6 and CHRNB1 show association in at least one population. CHRNG and CHRNA4 harbor single nucleotide polymorphisms (SNPs) that have opposite directions of effect in the two populations. In each of the population samples, these loci substantially increase the trait variation explained, although no loci meet Bonferroni-corrected significance in the AA sample alone. The trait variation explained by three key associated SNPs in CHRNA5-CHRNA3-CHRNB4 is 1.9% in EAs and also 1.9% in AAs; this increases to 4.5% in EAs and 7.3% in AAs when we add six variants representing associations at other CHRN genes. Multiple nicotinic receptor subunit genes outside chromosome 15q25 are likely to be important in the biological processes and development of nicotine dependence, and some of these risks may be shared across diverse populations. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  12. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases

    PubMed Central

    Bencherif, Merouane; Lippiello, Patrick M.; Lucas, Rudolf; Marrero, Mario B.

    2013-01-01

    In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components. PMID:20953658

  13. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  14. Alpha7 Nicotinic Acetylcholine Receptors Modulate Motivation to Self-Administer Nicotine: Implications for Smoking and Schizophrenia

    PubMed Central

    Brunzell, Darlene H; McIntosh, J Michael

    2012-01-01

    Individuals diagnosed with schizophrenia have an exceptionally high risk for tobacco dependence. Postmortem studies show that these individuals have significant reductions in α7 nicotinic acetylcholine receptors (nAChRs) in several brain areas. Decreased α7-mediated function might not only be linked to schizophrenia but also to increased tobacco consumption. The purpose of this study was to determine whether pharmacological blockade of α7 nAChRs would increase motivation of rats to intravenously self-administer nicotine (NIC) during a progressive ratio schedule of reinforcement (PR). Before PR, rats received local infusions of 0, 10, or 20 pmol of a selective α7 nAChR antagonist, α-conotoxin ArIB [V11L,V16D] (ArIB) into the nucleus accumbens (NAc) shell or the anterior cingulate cortex, brain areas that contribute to motivation for drug reward. We additionally sought to determine whether local infusion of 0, 10, or 40 nmol of a selective α7 nAChR agonist, PNU 282987, into these brain areas would decrease motivation for NIC use. Infusion of ArIB into the NAc shell and anterior cingulate cortex resulted in a significant increase in active lever pressing, breakpoints, and NIC intake, suggesting that a decrease in α7 nAChR function increases motivation to work for NIC. In contrast, PNU 282987 infusion resulted in reductions in these measures when administered into the NAc shell, but had no effect after administration into the anterior cingulate cortex. These data identify reduction of α7 nAChR function as a potential mechanism for elevated tobacco use in schizophrenia and also identify activation of α7 nAChRs as a potential strategy for tobacco cessation therapy. PMID:22169946

  15. The role of the a7 subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice.

    USDA-ARS?s Scientific Manuscript database

    The adverse physiological effects of methyllycaconitine (MLA) have been attributed to its competitive antagonism of nicotinic acetylcholine receptors (nAChRs). Recent research demonstrated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice...

  16. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    PubMed Central

    Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981

  17. The effect of coniine on presynaptic nicotinic receptors.

    PubMed

    Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa

    2016-01-01

    Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.

  18. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor.

    PubMed

    Post-Munson, Debra J; Pieschl, Rick L; Molski, Thaddeus F; Graef, John D; Hendricson, Adam W; Knox, Ronald J; McDonald, Ivar M; Olson, Richard E; Macor, John E; Weed, Michael R; Bristow, Linda J; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James

    2017-03-15

    The alpha77) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC 50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC 50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [ 3 H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nicotine and Nicotine Abstinence Do Not Interfere with GABAA Receptor Neuroadaptations During Alcohol Abstinence.

    PubMed

    Hillmer, Ansel T; Kloczynski, Tracy; Sandiego, Christine M; Pittman, Brian; Anderson, Jon M; Labaree, David; Gao, Hong; Huang, Yiyun; Deluliis, Giuseppe; O'Malley, Stephanie S; Carson, Richard E; Cosgrove, Kelly P

    2016-04-01

    Alcohol dependence and tobacco smoking are highly comorbid, and treating both conditions simultaneously is controversial. Previously, we showed that tobacco smoking interferes with GABAA receptor neuroadaptations during alcohol withdrawal in humans, while this effect did not occur with continued nicotine use during alcohol abstinence in nonhuman primates. Here, we extend our previous work by measuring GABAA receptor availability with positron emission tomography (PET) during drug abstinence in nonhuman primates exposed to alcohol alone, nicotine and alcohol together, and alcohol abstinence with continued nicotine exposure. Twenty-four adolescent male rhesus macaques orally self-administered alcohol and nicotine, available separately in water and saccharin, over 20 weeks. The groups included alcohol alone (n = 8); nicotine and alcohol with simultaneous abstinence (n = 8); nicotine and alcohol with alcohol abstinence while nicotine was still available (n = 8); and a pilot group of animals consuming nicotine alone (n = 6). Animals were imaged with [(11)C]flumazenil PET to measure binding potential (BPND), an index of GABAA receptor availability. Imaging occurred at baseline (drug-naíve), and following alcohol and/or nicotine cessation at 1 day, 8 days, and 12 weeks of abstinence. Generalized linear mixed models were used to examine the time course of [(11)C]flumazenil BPND during alcohol abstinence across groups. Animals consumed 3.95 ± 1.22 g/kg/d alcohol and 55.4 ± 35.1 mg/kg/d nicotine. No significant group effects were observed in [(11)C]flumazenil BPND during alcohol abstinence; however, a main effect of time was detected. Post hoc analyses indicated that all groups abstaining from alcohol exhibited significantly increased GABAA receptor availability at 1 day and 8 days (but not 12 weeks) of abstinence relative to baseline, while no changes in [(11)C]flumazenil BPND during nicotine abstinence alone were observed. These data indicate that neither nicotine nor

  20. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    PubMed

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  1. The role of nicotinic receptor beta-2 subunits in nicotine discrimination and conditioned taste aversion.

    PubMed

    Shoaib, M; Gommans, J; Morley, A; Stolerman, I P; Grailhe, R; Changeux, J-P

    2002-03-01

    The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. These experiments use mice lacking the beta2 subunit of nicotinic receptors to investigate its role in nicotine discrimination and conditioned taste aversion (CTA). Wild-type and mutant mice were trained either in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement, or in a counterbalanced two-flavour CTA procedure. Rates of lever-pressing of wild-type and mutant mice did not differ. Wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) rapidly and exhibited steep dose-response curves. Mutant mice failed to acquire these nicotine discriminations and exhibited flat dose-response curves. Both wild-type and mutant mice acquired discrimination of nicotine (1.6 mg/kg) although discrimination performance was weak in the mutants. Nicotine initially reduced response rates in wild-type and mutant mice, and tolerance developed to this effect in each genotype. Both genotypes acquired discrimination of morphine (3 mg/kg) with similar degrees of accuracy, and dose-response curves for morphine discrimination in the two genotypes were indistinguishable. Nicotine produced dose-related CTA in both genotypes, but the magnitude of the effect was less in the mutants than in the wild-type controls. It is concluded that nicotinic receptors containing the beta2 subunit play a major role in the discriminative stimulus and taste aversion effects of nicotine that may reflect psychological aspects of tobacco dependence. Such receptors appear to have a less crucial role in the response-rate, reducing effects of nicotine and in nicotine tolerance.

  2. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  3. Both substance P agonists and antagonists inhibit ion conductance through nicotinic acetylcholine receptors on PC12 cells.

    PubMed

    Eardley, D; McGee, R

    1985-08-07

    Substance P stimulates substance P receptors but also inhibits ion conductance through nicotinic acetylcholine receptors. Substance P analogs, classified as agonists or antagonists based on their actions on smooth muscle, were tested to determine if they also could act at nicotinic receptors on the pheochromocytoma, PC12. All of the analogs tested, [D-Pro2, D-Trp7,9]SP, [D-Arg1, D-Pro2, D-Trp7,9, Leu11]SP, [pGlu5, MePhe8, Sar9]SP-(5-11), and [D-Pro4, D-Trp7,9,10]SP-(4-11), inhibited agonist-induced uptake of 86Rb+ through the nicotinic receptors at concentrations quite similar to those required for action at substance P receptors on smooth muscle. Thus, the chemical modifications in the analogs do not substantially alter their ability to inhibit nicotinic receptors.

  4. Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Cole, Robert D; Connor, David A; Natwora, Brendan; Gould, Thomas J

    2018-03-01

    Anxiety and stress disorders have been linked to deficits in fear extinction. Our laboratory and others have demonstrated that acute nicotine impairs contextual fear extinction, suggesting that nicotine exposure may have negative effects on anxiety and stress disorder symptomatology. However, the neurobiological mechanisms underlying the acute nicotine-induced impairment of contextual fear extinction are unknown. Therefore, based on the previous studies showing that brain-derived neurotrophic factor is central for fear extinction learning and acute nicotine dysregulates brain-derived neurotrophic factor signaling, we hypothesized that the nicotine-induced impairment of contextual fear extinction may involve changes in tyrosine receptor kinase B signaling. To test this hypothesis, we systemically, intraperitoneally, injected C57BL/6J mice sub-threshold doses (2.5 and 4.0 mg/kg) of 7,8-dihydroxyflavone, a small-molecule tyrosine receptor kinase B agonist that fully mimics the effects of brain-derived neurotrophic factor, or vehicle an hour before each contextual fear extinction session. Mice also received injections, intraperitoneally, of acute nicotine (0.18 mg/kg) or saline 2-4 min before extinction sessions. While the animals that received only 7,8-dihydroxyflavone did not show any changes in contextual fear extinction, 4.0 mg/kg of 7,8-dihydroxyflavone ameliorated the extinction deficits in mice administered acute nicotine. Overall, these results suggest that acute nicotine-induced impairment of context extinction may be related to a disrupted brain-derived neurotrophic factor signaling.

  5. Cardiopulmonary Arrest and Resuscitation Disrupts Cholinergic Anti-Inflammatory Processes: A Role for Cholinergic α7 Nicotinic Receptors

    PubMed Central

    Morris, John S.; Karelina, Kate; Weil, Zachary M.; Zhang, Ning; Al-Abed, Yousef; Brothers, Holly M.; Wenk, Gary L.; Pavlov, Valentin A.; Tracey, Kevin J.; DeVries, A. Courtney

    2011-01-01

    Cardiac arrest is a leading cause of death worldwide. While survival rates following sudden cardiac arrest remain relatively low, recent advancements in patient care have begun to increase the proportion of individuals who survive cardiac arrest. However, many of these individuals subsequently develop physiological and psychiatric conditions that likely result from ongoing neuroinflammation and neuronal death. The present study was conducted to better understand the pathophysiological effects of cardiac arrest on neuronal cell death and inflammation, and their modulation by the cholinergic system. Using a well validated model of cardiac arrest, here we show that global cerebral ischemia increases microglial activation, proinflammatory cytokine mRNA expression (interleukin-1β, interleukin-6, tumor necrosis factor-α), and neuronal damage. Cardiac arrest also induces alterations in numerous cellular components of central cholinergic signaling, including a reduction in choline acetyltransferase enzymatic activity and the number of choline acetyltransferase-positive neurons, as well as, reduced acetylcholinesterase and vesicular acetylcholine transporter mRNA. However, treatment with a selective agonist of the α7 nicotinic acetylcholine receptor, the primary receptor mediating the cholinergic anti-inflammatory pathway, significantly decreases the neuroinflammation and neuronal damage resulting from cardiac arrest. These data suggest that global cerebral ischemia results in significant declines in central cholinergic signaling, which may in turn diminish the capacity of the cholinergic anti-inflammatory pathway to control inflammation. Furthermore, we provide evidence that pharmacological activation of α7 nicotinic acetylcholine receptors provide significant protection against ischemia-related cell death and inflammation within a clinically relevant time frame. PMID:21368056

  6. The role of the a7 subunit of the nicotinic acetylcholine receptor on motor coordination in mice treated with methyllcaconitine and anabasine

    USDA-ARS?s Scientific Manuscript database

    The adverse effects of methyllycaconitine (MLA) have been attributed to competitive antagonism of nicotinic acetylcholine receptors (nAChR). Research has indicated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice with more a7 nAChR requi...

  7. Proteomic Analysis of an α7 Nicotinic Acetylcholine Receptor Interactome

    PubMed Central

    Paulo, Joao A.; Brucker, William J.; Hawrot, Edward

    2009-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity α-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive α-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from α7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the α7 nAChR, and many are associated with multiple signaling pathways that may be implicated in α7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for α-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal α7 nAChRs. PMID:19714875

  8. α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

    PubMed Central

    Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J

    2014-01-01

    The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809

  9. Olfactory discrimination varies in mice with different levels of α7-nicotinic acetylcholine receptor expression.

    PubMed

    Hellier, Jennifer L; Arevalo, Nicole L; Blatner, Megan J; Dang, An K; Clevenger, Amy C; Adams, Catherine E; Restrepo, Diego

    2010-10-28

    Previous studies have shown that schizophrenics have decreased expression of α7-nicotinic acetylcholine (α7) receptors in the hippocampus and other brain regions, paranoid delusions, disorganized speech, deficits in auditory gating (i.e., inability to inhibit neuronal responses to repetitive auditory stimuli), and difficulties in odor discrimination and detection. Here we use mice with decreased α7 expression that also show a deficit in auditory gating to determine if these mice have similar deficits in olfaction. In the adult mouse olfactory bulb (OB), α7 expression localizes in the glomerular layer; however, the functional role of α7 is unknown. We show that inbred mouse strains (i.e., C3H and C57) with varying α7 expressions (e.g., α7 wild-type [α7+/+], α7 heterozygous knock-out [α7+/-] and α7 homozygous knock-out mice [α7-/-]) significantly differ in odor discrimination and detection of chemically-related odorant pairs. Using [(125)I] α-bungarotoxin (α-BGT) autoradiography, α7 expression was measured in the OB. As previously demonstrated, α-BGT binding was localized to the glomerular layer. Significantly more expression of α7 was observed in C57 α7+/+ mice compared to C3H α7+/+ mice. Furthermore, C57 α7+/+ mice were able to detect a significantly lower concentration of an odor in a mixture compared to C3H α7+/+ mice. Both C57 and C3H α7+/+ mice discriminated between chemically-related odorants sooner than α7+/- or α7-/- mice. These data suggest that α7-nicotinic-receptors contribute strongly to olfactory discrimination and detection in mice and may be one of the mechanisms producing olfactory dysfunction in schizophrenics. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization

    NASA Astrophysics Data System (ADS)

    Tapper, Andrew R.; McKinney, Sheri L.; Nashmi, Raad; Schwarz, Johannes; Deshpande, Purnima; Labarca, Cesar; Whiteaker, Paul; Marks, Michael J.; Collins, Allan C.; Lester, Henry A.

    2004-11-01

    The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with α4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering α4* receptors hypersensitive to nicotine. Selective activation of α4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of α4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.

  11. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  12. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    PubMed Central

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  13. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  14. Activation of α4β2*/α6β2* nicotinic receptors alleviates anxiety during nicotine withdrawal without upregulating nicotinic receptors.

    PubMed

    Yohn, Nicole L; Turner, Jill R; Blendy, Julie A

    2014-05-01

    Although nicotine mediates its effects through several nicotinic acetylcholine receptor (nAChR) subtypes, it remains to be determined which nAChR subtypes directly mediate heightened anxiety during withdrawal. Relative success in abstinence has been found with the nAChR partial agonist varenicline (Chantix; Pfizer, Groton, CT); however, treatment with this drug fails to alleviate anxiety in individuals during nicotine withdrawal. Therefore, it is hypothesized that success can be found by the repurposing of other nAChR partial agonists for cessation therapies that target anxiety. It is noteworthy that the selective partial agonists for α4β2, ABT-089 [2-methyl-3-[2(S)-pyrrolidinylmethoxy]pyridine], and α7, ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole] (AbbVie, North Chicago, IL), have not been evaluated as possible therapeutics for nicotine cessation. Therefore, we examined the effect of ABT-089 and ABT-107 on anxiety during withdrawal from nicotine in the novelty-induced hypophagia (NIH) paradigm. We found that short-term administration of ABT-089 and ABT-107 alleviate anxiety-like behavior during withdrawal from nicotine while long-term administration of ABT-089 but not ABT-107 reduces anxiety-like behavior during withdrawal. After behavioral testing, brains were harvested and β2-containing nAChRs were measured using [(3)H]epibaditine. ABT-089 and ABT-107 do not upregulate nAChRs, which is in contrast to the upregulation of nAChRs observed after nicotine. Furthermore, ABT-089 is anxiogenic in nicotine naive animals, suggesting that the effects on anxiety are specifically related to the nicotine-dependent state. Together, these studies identify additional nAChR partial agonists that may aid in the rational development of smoking cessation aids.

  15. α7 Nicotinic acetylcholine receptors and temporal memory: Synergistic effects of combining prenatal choline and nicotine on reinforcement-induced resetting of an interval clock

    PubMed Central

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function of prenatal drug treatments designed to affect the α7 nicotinic acetylcholine receptor7 nAChR). Male Sprague-Dawley rats were exposed to prenatal choline (CHO), nicotine (NIC), methyllycaconitine (MLA), choline + nicotine (CHO + NIC), choline + nicotine + methyllycaconitine (CHO + NIC + MLA), or a control treatment (CON). Beginning at 4-mo-of-age, rats were trained on a peak-interval timing procedure in which food was available at 10-, 30-, and 90-sec criterion durations. At steady-state performance there were no differences in timing accuracy, precision, or resetting among the CON, MLA, and CHO + NIC + MLA treatments. It was observed that the CHO and NIC treatments produced a small, but significant increase in timing precision, but no change in accuracy or resetting. In contrast, the CHO + NIC prenatal treatment produced a dramatic increase in timing precision and selective control of the resetting mechanism with no change in overall timing accuracy. The synergistic effect of combining prenatal CHO and NIC treatments suggests an organizational change in α7 nAChR function that is dependent upon a combination of selective and nonselective nAChR stimulation during early development. PMID:16547161

  16. Effects of sazetidine-A, a selective α4β2* nicotinic receptor desensitizing agent, on body temperature regulation in mice and rats

    PubMed Central

    Rezvani, Amir H.; Timofeeva, Olga; Sexton, Hannah G.; DeCuir, Damien; Xiao, Yingxian; Gordon, Christopher J.; Kellar, Kenneth J.; Levin, Edward D.

    2014-01-01

    Nicotine-induced hypothermia is well established, but the nicotinic receptor actions underlying this effect are not clear. Nicotine causes activation and desensitization at a variety of nicotinic receptor subtypes. Sazetidine-A [6-(5(((S)-azetidine-2-yl)methoxy)pyridine-3-yl)hex-5-yn-1-ol] is a novel compound that potently and selectively desensitizes α4β2* nicotinic receptors. The main goal of this study was to investigate the effects of sazetidine-A, on core body temperature (Tc) in mice and rats. Sazetidine-A effects on Tc and the interactions of sazetidine-A with nicotine and selective nicotinic antagonists were investigated to determine the receptor actions underlying nicotine-induced hypothermia. Adult male mice were injected with different dose of nicotine (0.2, 0.4 and 0.8 mg/kg), sazetidine-A (0.3, 1, and 3 mg/kg), a mixture of nicotine (0.4 or 0.8 mg/kg) and sazetidine-A (0.3 or 0.6 mg/kg) or saline and Tc was monitored telemetrically. In another set of experiments, the interaction between sazetidine-A and dihydro-β-erythroidine (DHβE), an α4β2* nicotinic receptors antagonist, and methyllycaconitine (MLA), an α 7 antagonist, was investigated. Tc of mice was monitored following DHβE (1, 3 and 6 mg/kg), a combination of DHβE (3 mg/kg) and sazetidine-A (0.6 mg/kg), MLA (1.5, 3 or 6 mg/kg) or combination of MLA (6 mg/kg) and sazetidine (0.6 mg/kg) or saline. The acute effect of sazetidine-A (1, 3, and 6 mg/kg) on rats Tc was also studied. Acute sazetidine-A caused a pronounced and long-lasting hypothermia in mice; Tc decreased to about 28 °C at 100 min and recovered within 230 min. The hypothermic effect of sazetidine in rats was much less in magnitude (about 3°C) and shorter in duration compared with that in mice. Nicotine co-administration with low doses of sazetidine potentiated the magnitude and duration of hypothermia in mice. The α4β2* nicotinic receptors antagonist DHβE significantly prolonged sazetidine-A-induced hypothermia but did not

  17. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia

    PubMed Central

    Bristow, Linda J.; Easton, Amy E.; Li, Yu-Wen; Sivarao, Digavalli V.; Lidge, Regina; Jones, Kelli M.; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J.; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1–10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1–10 mg/kg, sc) and set shift performance in rats (1–10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1–3 mg/kg, po). BMS-933043 also improved auditory gating (0.56–3 mg/kg, sc) and mismatch negativity (0.03–3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID

  18. Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    PubMed Central

    Rogers, Scott W.; Gahring, Lorise C.

    2012-01-01

    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322

  19. Nicotine promotes cell proliferation and induces resistance to cisplatin by α7 nicotinic acetylcholine receptor‑mediated activation in Raw264.7 and El4 cells.

    PubMed

    Wang, Yan Yan; Liu, Yao; Ni, Xiao Yan; Bai, Zhen Huan; Chen, Qiong Yun; Zhang, Ye; Gao, Feng Guang

    2014-03-01

    Although nicotine is a risk factor for carcinogenesis and atherosclerosis, epidemiological data indicate that nicotine has therapeutic benefits in treating Alzheimer's disease. Our previous studies also showed that nicotine-treated dendritic cells have potential antitumor effects. Hence, the precise effects of nicotine on the biological characterizations of cells are controversial. The aim of the present study was to assess the roles of α7 nicotinic acetylcholine receptors (nAChRs), Erk1/2-p38-JNK and PI3K-Akt pathway in nicotine-mediated proliferation and anti-apoptosis effects. The results firstly showed that nicotine treatment clearly augmented cell viability and upregulated PCNA expression in both Raw264.7 and El4 cells. Meanwhile, nicotine afforded protection against cisplatin-induced toxicity through inhibiting caspase-3 activation and upregulating anti-apoptotic protein expression. Further exploration demonstrated that nicotine efficiently abolished cisplatin-promoted mitochondria translocation of Bax and the release of cytochrome c. The pretreatment of α-bungarotoxin and tubocurarine chloride significantly attenuated nicotine-augmented cell viability, abolished caspase-3 activation and α7 nAChR upregulation. Both Erk-JNK-p38 and PI3K-Akt signaling pathways could be activated by nicotine treatment in Raw264.7 and El4 cells. Notably, when Erk-JNK and PI3K-Akt activities were inhibited, nicotine-augmented cell proliferation and anti-apoptotic effects were abolished accordingly. The results presented here indicate that nicotine could achieve α7 nAChR-mediated proliferation and anti-apoptotic effects by activating Erk-JNK and PI3K-Akt pathways respectively, providing potential therapeutic molecules to deal with smoking-associated human diseases.

  20. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  1. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  2. Sustained increase of alpha7 nicotinic receptors and choline-induced improvement of learning deficit in STOP knock-out mice.

    PubMed

    Bouvrais-Veret, Caroline; Weiss, Stéphanie; Andrieux, Annie; Schweitzer, Annie; McIntosh, J Michael; Job, Didier; Giros, Bruno; Martres, Marie-Pascale

    2007-06-01

    Mice deficient in the microtubule stabilizing protein STOP (stable tubule only polypeptide) show synaptic plasticity anomalies in hippocampus, dopamine hyper-reactivity in the limbic system and severe behavioral deficits. Some of these disturbances are alleviated by long-term antipsychotic treatment. Therefore, this mouse line represents a pertinent model for some aspects of schizophrenia symptomatology. Numerous data support dysfunction of nicotinic neurotransmission in schizophrenia and epidemiological studies show increased tobacco use in schizophrenic patients, in whom nicotine has been reported to improve cognitive deficits and impairment in sensory gating. In this study, we examined potential alterations in cholinergic (ACh) and nicotinic components and functions in STOP mutant mice. STOP KO mice displayed no variation of the density of ACh esterase and beta2* nicotinic receptors (nAChRs), large reductions in the density of vesicular ACh transporter and alpha6* nAChRs and marked increases in the density of alpha7 nAChRs, in some brain areas. STOP KO mice were hypersensitive to the stimulating locomotor effect of nicotine and, interestingly, their impaired performance in learning the cued version of the water maze were improved by administration of the preferential alpha7 nAChR agonist choline. Altogether, our data show that the deletion of the ubiquitous STOP protein elicited restricted alterations in ACh components. They also suggest that nicotinic neurotransmission can be deficient in STOP KO mice and that mutant mice can represent a meaningful model to study some nicotinic dysfunctions and therapeutic treatments.

  3. Attenuated nicotine-like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily.

    PubMed

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy; McMahon, Lance R

    2016-12-01

    Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg -1 base weight) from saline. One group received additional nicotine treatment post-session (1.78 mg·kg -1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Daily repeated nicotine treatment produced a time-related increase in saliva cotinine. There was no significant difference in the ED 50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro-β-erythroidine did not. Midazolam produced 0% nicotine-lever responding. The nAChR agonists epibatidine, RTI-36, cytisine and varenicline produced >96% nicotine-lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine-like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. © 2016 The British Pharmacological Society.

  4. Alpha3beta4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo

    PubMed Central

    McCallum, Sarah E.; Cowe, Matthew A.; Lewis, Samuel W.; Glick, Stanley D.

    2012-01-01

    Habenulo-interpeduncular nicotinic receptors, particularly those containing α3, β4 and α5 subunits, have recently been implicated in the reinforcing effects of nicotine. Our laboratory has shown that injection of α3β4 nicotinic receptor antagonists into the medial habenula (MHb) decreases self-administration of multiple abused drugs, including nicotine (Glick et al., 2006; 2008; 2011). However, it is unclear whether blockade of MHb nicotinic receptors has a direct effect on mesolimbic dopamine. Here, we performed in vivo microdialysis in female rats. Microdialysis probes were implanted into the nucleus accumbens (NAcc) and α3β4 nicotinic receptor antagonists (18-methoxycoronaridine; 18-MC or α-conotoxin AuIB; AuIB), were injected into the ipsilateral MHb, just prior to systemic nicotine (0.4 mg/kg, s.c.). Dialysate samples were collected before and after drug administration and levels of extracellular dopamine and its metabolites were measured using HPLC. Acute nicotine administration increased levels of extracellular dopamine and its metabolites in the NAcc. Pre-treatment with intra-habenular AuIB or 18-MC prevented nicotine-induced increases in accumbal dopamine. Neither drug had an effect on nicotine-induced increases in dopamine metabolites, suggesting that α3β4 receptors do not play a role in dopamine metabolism. The effect of intra-habenular blockade of α3β4 receptors on NAcc dopamine was selective for acute nicotine: neither AuIB nor 18-MC prevented increases in NAcc dopamine stimulated by acute d-amphetamine or morphine. These results suggest the mesolimbic response to acute nicotine, but not to acute administration of other drugs of abuse, is directly modulated by α3β4 nicotinic receptors in the MHb, and emphasize a critical role for habenular nicotinic receptors in nicotine’s reinforcing effects. PMID:22561751

  5. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors.

    PubMed

    Jensen, Anders A; Gharagozloo, Parviz; Birdsall, Nigel J M; Zlotos, Darius P

    2006-06-06

    Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.

  6. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  7. Prenatal Ablation of Nicotinic Receptor alpha7 Cell Lineages Produces Lumbosacral Spina Bifida the Severity of Which is Modified by Choline and Nicotine Exposure

    PubMed Central

    Rogers, Scott W; Tvrdik, Petr; Capecchi, Mario R; Gahring, Lorise C

    2012-01-01

    Lumbosacral spina bifida is a common debilitating birth defect whose multiple causes are poorly understood. Here, we provide the first genetic delineation of cholinergic nicotinic receptor alpha7 (Chrna7) expression and link the ablation of the Chrna7 cell lineage to this condition in the mouse. Using homologous recombination, an IRES-Cre bi-cistronic cassette was introduced into the 3′ noncoding region of Chrna7 (Chrna7:Cre) for identifying cell lineages expressing this gene. This lineage first appears at embryonic day E9.0 in rhombomeres 3 and 5 of the neural tube and extends to cell subsets in most tissues by E14.5. Ablation of the Chrna7:Cre cell lineage in embryos from crosses with conditionally expressed attenuated diphtheria toxin results in precise developmental defects including omphalocele (89%) and open spina bifida (SB; 80%). We hypothesized that like humans, this defect would be modified by environmental compounds not only folic acid or choline but also nicotine. Prenatal chronic oral nicotine administration substantially worsened the defect to often include the rostral neural tube. In contrast, supplementation of the maternal diet with 2% choline decreased SB prevalence to 38% and dramatically reduced the defect severity. Folic acid supplementation only trended towards a reduced SB frequency. The omphalocele was unaffected by these interventions. These studies identify the Chrna7 cell lineage as participating in posterior neuropore closure and present a novel model of lower SB that can be substantially modified by the prenatal environment. © 2012 Wiley Periodicals, Inc. PMID:22473653

  8. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    PubMed

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  9. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex

    PubMed Central

    Yang, Yang; Paspalas, Constantinos D.; Jin, Lu E.; Picciotto, Marina R.; Arnsten, Amy F. T.; Wang, Min

    2013-01-01

    The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510–1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477–485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110–1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia. PMID:23818597

  10. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans.

    PubMed

    Ellis, Julia R; Ellis, Kathryn A; Bartholomeusz, Cali F; Harrison, Ben J; Wesnes, Keith A; Erskine, Fiona F; Vitetta, Luis; Nathan, Pradeep J

    2006-04-01

    Functional abnormalities in muscarinic and nicotinic receptors are associated with a number of disorders including Alzheimer's disease and schizophrenia. While the contribution of muscarinic receptors in modulating cognition is well established in humans, the effects of nicotinic receptors and the interactions and possible synergistic effects between muscarinic and nicotinic receptors have not been well characterized in humans. The current study examined the effects of selective and simultaneous muscarinic and nicotinic receptor antagonism on a range of cognitive processes. The study was a double-blind, placebo-controlled, repeated measures design in which 12 healthy, young volunteers completed cognitive testing under four acute treatment conditions: placebo (P); mecamylamine (15 mg) (M); scopolamine (0.4 mg i.m.) (S); mecamylamine (15 mg)/scopolamine (0.4 mg i.m.) (MS). Muscarinic receptor antagonism with scopolamine resulted in deficits in working memory, declarative memory, sustained visual attention and psychomotor speed. Nicotinic antagonism with mecamylamine had no effect on any of the cognitive processes examined. Simultaneous antagonism of both muscarinic and nicotinic receptors with mecamylamine and scopolamine impaired all cognitive processes impaired by scopolamine and produced greater deficits than either muscarinic or nicotinic blockade alone, particularly on working memory, visual attention and psychomotor speed. These findings suggest that muscarinic and nicotinic receptors may interact functionally to have synergistic effects particularly on working memory and attention and suggests that therapeutic strategies targeting both receptor systems may be useful in improving selective cognitive processes in a number of disorders.

  11. Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    PubMed Central

    Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration. C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis. Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups. The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest. PMID:22384146

  12. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  13. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists.

    PubMed

    Grabus, Sheri D; Martin, Billy R; Brown, Sharon E; Damaj, M Imad

    2006-03-01

    Although conditioned place preferences (CPPs) are seen with most abused drugs, nicotine does not always produce a preference in this design. The goals of the present experiment were to (1) examine various factors that could contribute to these inconsistent results and (2) begin to evaluate the specific nicotinic receptors involved in the nicotine CPP. The influences of prior handling, environmental habituation, and injection habituation on a nicotine CPP were first evaluated in ICR mice. Subsequently, various nicotine doses were assessed for their abilities to produce a CPP, and the effectiveness of nicotinic receptor antagonists in attenuating this preference was examined. Finally, nicotine CPPs were assessed in C57BL/6J and DBA/2J mice to examine the influence of strain in this design. Nicotine CPPs were seen in handled/environmentally habituated, but not in unhandled, ICR mice. Habituation to the injection techniques failed to strengthen the preference. In ICR mice, a CPP was seen with one intermediate dose of nicotine. This CPP was attenuated by mecamylamine and dihydro-beta-erythroidine (DHbetaE). A nicotine CPP was also seen in C57BL/6J, but not in DBA/2J, mice. Earlier handling experience and strain are important factors when evaluating a nicotine CPP in the mouse. In addition, certain nicotinic receptors underlie the nicotine CPP, indicating that this model can elucidate underlying mediators of nicotine reward.

  15. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: Implications for schizophrenia

    PubMed Central

    Lin, Hong; Hsu, Fu-Chun; Baumann, Bailey H.; Coulter, Douglas A.; Anderson, Stewart A.; Lynch, David R.

    2014-01-01

    Dysfunction of cortical parvalbumin (PV)-containing GABAergic interneurons has been implicated in cognitive deficits of schizophrenia. In humans microdeletion of the CHRNA77 nicotinic acetylcholine receptor, nAChR) gene is associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia while in mice similar deletion causes analogous abnormalities including impaired attention, working-memory and learning. However, the pathophysiological roles of α7 nAChRs in cortical PV GABAergic development remain largely uncharacterized. In both in vivo and in vitro models, we identify here that deletion of the α7 nAChR gene in mice impairs cortical PV GABAergic development and recapitulates many of the characteristic neurochemical deficits in PV-positive GABAergic interneurons found in schizophrenia. α7 nAChR null mice had decreased cortical levels of GABAergic markers including PV, Glutamic Acid Decarboxylase 65/67 (GAD65/67) and the α1 subunit of GABAA receptors, particularly reductions of PV and GAD67 levels in cortical PV-positive interneurons during late postnatal life and adulthood. Cortical GABAergic synaptic deficits were identified in the prefrontal cortex of α7 nAChR null mice and α7 nAChR null cortical cultures. Similar disruptions in development of PV-positive GABAergic interneurons and perisomatic synapses were found in cortical cultures lacking α7 nAChRs. Moreover, NMDA receptor expression was reduced in GABAergic interneurons, implicating NMDA receptor hypofunction in GABAergic deficits in α7 nAChR null mice. Our findings thus demonstrate impaired cortical PV GABAergic development and multiple characteristic neurochemical deficits reminiscent of schizophrenia in cortical PV-positive interneurons in α7 nAChR gene deletion models. This implicates crucial roles of α7 nAChRs in cortical PV GABAergic development and dysfunction in schizophrenia and other neuropsychiatric disorders. PMID

  16. Nicotinic alpha 7 receptor expression and modulation of the lung epithelial response to lipopolysaccharide

    PubMed Central

    Myers, Elizabeth J.; Dunn, Diane M.; Weiss, Robert B.; Rogers, Scott W.

    2017-01-01

    Nicotine modulates multiple inflammatory responses in the lung through the nicotinic acetylcholine receptor subtype alpha77). Previously we reported that α7 modulates both the hematopoietic and epithelium responses in the lung to the bacterial inflammogen, lipopolysaccharide (LPS). Here we apply immunohistochemistry, flow cytometry and RNA-Seq analysis of isolated distal lung epithelium to further define α7-expression and function in this tissue. Mouse lines were used that co-express a bicistronic tau-green fluorescent protein (tGFP) as a reporter of α77G) expression and that harbor an α7 with a specific point mutation (α7E260A:G) that selectively uncouples it from cell calcium-signaling mechanisms. The tGFP reporter reveals strong cell-specific α7-expression by alveolar macrophages (AM), Club cells and ATII cells. Ciliated cells do not express detectible tGFP, but their numbers decrease by one-third in the α7E260A:G lung compared to controls. Transcriptional comparisons (RNA-Seq) between α7G and α7E260A:G enriched lung epithelium 24 hours after challenge with either intra-nasal (i.n.) saline or LPS reveals a robust α7-genotype impact on both the stasis and inflammatory response of this tissue. Overall the α7E260A:G lung epithelium exhibits reduced inflammatory cytokine/chemokine expression to i.n. LPS. Transcripts specific to Club cells (e.g., CC10, secretoglobins and Muc5b) or to ATII cells (e.g., surfactant proteins) were constitutively decreased in in the α7E260A:G lung, but they were strongly induced in response to i.n. LPS. Protein analysis applying immunohistochemistry and ELISA also revealed α7-associated differences suggested by RNA-Seq including altered mucin protein 5b (Muc5b) accumulation in the α7E260A:G bronchia, that in some cases appeared to form airway plugs, and a substantial increase in extracellular matrix deposits around α7E260A:G airway bronchia linings that was not seen in controls. Our results show that α7 is an

  17. Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice

    PubMed Central

    Higa, K. K.; Grim, A.; Kamenski, M. E.; van Enkhuizen, J.; Zhou, X.; Li, K.; Naviaux, J. C.; Wang, L.; Naviaux, R. K.; Geyer, M. A.; Markou, A.; Young, J. W.

    2017-01-01

    Rationale Smoking is the leading cause of preventable death in the U.S., but quit attempts result in withdrawal-induced cognitive dysfunction and predicts relapse. Greater understanding of the neural mechanism(s) underlying these cognitive deficits is required to develop targeted treatments to aid quit attempts. Objectives We examined nicotine withdrawal-induced inattention in mice lacking the α7 nicotinic acetylcholine receptor (nAChR) using the 5-choice continuous performance test (5C-CPT). Methods Mice were trained in the 5C-CPT prior to osmotic minipump implantation containing saline or nicotine. Experiment 1 used 40 mg/kg/day nicotine treatment and tested C57BL/6 mice 4, 28, and 52 h after pump removal. Experiment 2 used 14 and 40 mg/kg/day nicotine treatment in α7 nAChR knockout (KO) and wildtype (WT) littermates tested 4 h after pump removal. Subsets of WT mice were sacrificed before and after pump removal to assess changes in receptor expression associated with nicotine administration and withdrawal. Results Nicotine withdrawal impaired attention in the 5C-CPT, driven by response inhibition and target detection deficits. The overall attentional deficit was absent in α7 nAChR KO mice despite response disinhibition in these mice. Synaptosomal glutamate mGluR5 and dopamine D4 receptor expression were reduced during chronic nicotine but increased during withdrawal, potentially contributing to cognitive deficits. Conclusions The α7 nAChR may underlie nicotine withdrawal-induced deficits in target detection but is not required for response disinhibition deficits. Alterations to the glutamatergic and dopaminergic pathways may also contribute to withdrawal-induced attentional deficits, providing novel targets to alleviate the cognitive symptoms of withdrawal during quit attempts. PMID:28243714

  18. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)nicotine (2.6).The gating equilibrium constants (opening/closing) were: ACh (45)>carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  19. Blocking α4β2 and α7 nicotinic acetylcholine receptors inhibits the reinstatement of morphine-induced CPP by drug priming in mice.

    PubMed

    Feng, Bin; Xing, Jiang-hao; Jia, Dong; Liu, Shui-bing; Guo, Hong-ju; Li, Xiao-qiang; He, Xiao-sheng; Zhao, Ming-gao

    2011-06-20

    Investigating the interaction between nicotinic and opioid receptors is of great interest for both basic mechanistic and clinical reasons. Morphine and nicotine, two common drugs of abuse, share several behavioral and rewarding properties. However, little is known about the subtypes of nicotinic acetylcholine receptors (nAChR) in the reinstatement of morphine-induced conditioned place preference (CPP). In this study, we found that a non-specific nAChR agonist, nicotine (0.5mg/kg), had no effects on the reinstatement of morphine-induced CPP. However, we found that pretreatment with specific α(4)β(2) and α(7) nAChR subtype antagonists, dihydroxy-β-erithroidine (DHβE, 5mg/kg) and methyllycaconitine (MLA, 4 mg/kg), 20 min prior to administration of morphine, inhibited the reinstatement of morphine-induced CPP by drug priming in mice. Furthermore, depression of the reinstatement of morphine-induced CPP by a single DHβE or MLA treatment lasted at least three days later when the reinstatement was induced by morphine priming. The data suggest that specific nAChR subtypes, i.e., α(4)β(2) and α(7), may contribute to the reinstatement of morphine-induced CPP by drug priming in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Pharmacological Beta-Adrenergic Receptor Activation Attenuates Neutrophil Recruitment by a Mechanism Dependent on Nicotinic Receptor and the Spleen.

    PubMed

    Silva, Rangel L; Castanheira, Fernanda V; Figueiredo, Jozi G; Bassi, Gabriel S; Ferreira, Sérgio H; Cunha, Fernando Q; Cunha, Thiago M; Kanashiro, Alexandre

    2016-08-01

    The aim of this study was to identify the effect of beta-adrenergic receptor activation on neutrophil migration in experimental peritonitis elucidating the neuroimmune components involved such as nicotinic receptors and the spleen. Mice pre-treated with mecamylamine (nicotinic antagonist) and propranolol (beta-adrenergic antagonist) or splenectomized animals were treated with isoproterenol (beta-adrenergic agonist) prior to intraperitoneal injection of carrageenan. After 4 h, the infiltrating neutrophils and the local cytokine/chemokine levels were evaluated in the peritoneal lavage. The effect of isoproterenol on neutrophil chemotaxis was investigated in a Boyden chamber. Isoproterenol inhibited neutrophil trafficking, reducing the cytokine/chemokine release and neutrophil chemotaxis. Surprisingly, the isoproterenol effect on neutrophil migration was totally reverted by splenectomy and mecamylamine pre-treatment. In contrast, the inhibitory effect of nicotine on neutrophil migration was abrogated only by splenectomy but not by propranolol pre-treatment. Collectively, our data show that beta-adrenergic receptor activation regulates the acute neutrophil recruitment via splenic nicotinic receptor.

  1. α3β4 nicotinic receptors in the medial habenula and substance P transmission in the interpeduncular nucleus modulate nicotine sensitization.

    PubMed

    Eggan, Branden L; McCallum, Sarah E

    2017-01-01

    The medial habenula-interpeduncular nucleus (MHb-IPN) pathway has recently been shown to modulate multiple effects nicotine in vivo, however it remains unclear which receptor subtypes in this pathway are critical for mediating these responses. To identify MHb and IPN receptors that play a role in nicotine reward, we studied receptors prevalent in these nuclei, including nicotinic acetylcholine receptors (nAChRs) and the receptor for substance P (neuokinin-1; NK1 receptor) using a model of behavioral and neurochemical sensitization to nicotine. Our results show that blockade of the α3β4 nAChR in the MHb, but not the IPN prevented increases in locomotor responding as well as increases in accumbal dopamine overflow in sensitized animals. Additionally, when NK1 receptors were blocked in the IPN, but not the MHb, a similar effect on sensitized responding was seen. Together, these results suggest that the MHb and IPN differentially modulate nicotine sensitization. Because the neurotransmission within these brain regions is primarily cholinergic and substance P ergic and these receptors are expressed in high density in both nuclei, these results could suggest a different neurophysiological signaling role or different neuroanatomical location of these receptors in this pathway. Furthermore, while α3β4 nAChRs have been suggested as a possible pharmacological target for nicotine addiction, this is the first evidence that substance P also plays a role in mediating responding to nicotine. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cloning and characterization of the hamster and guinea pig nicotinic acid receptors.

    PubMed

    Torhan, April Smith; Cheewatrakoolpong, Boonlert; Kwee, Lia; Greenfeder, Scott

    2007-09-01

    In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.

  3. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    PubMed

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  4. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo

    PubMed Central

    Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.

    2012-01-01

    Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901

  5. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  6. Receptor protection studies comparing recombinant and native nicotinic receptors: Evidence for a subpopulation of mecamylamine-sensitive native alpha3beta4* nicotinic receptors.

    PubMed

    Free, R Benjamin; Kaser, Daniel J; Boyd, R Thomas; McKay, Dennis B

    2006-01-09

    Studies involving receptor protection have been used to define the functional involvement of specific receptor subtypes in tissues expressing multiple receptor subtypes. Previous functional studies from our laboratory demonstrate the feasibility of this approach when applied to neuronal tissues expressing multiple nicotinic acetylcholine receptors (nAChRs). In the current studies, the ability of a variety of nAChR agonists and antagonists to protect native and recombinant alpha3beta4 nAChRs from alkylation were investigated using nAChR binding techniques. Alkylation of native alpha3beta4* nAChRs from membrane preparations of bovine adrenal chromaffin cells resulted in a complete loss of specific [(3)H]epibatidine binding. This loss of binding to native nAChRs was preventable by pretreatment with the agonists, carbachol or nicotine. The partial agonist, cytisine, produced partial protection. Several nAChR antagonists were also tested for their ability to protect. Hexamethonium and decamethonium were without protective activity while mecamylamine and tubocurarine were partially effective. Addition protection studies were performed on recombinant alpha3beta4 nAChRs. As with native alpha3beta4* nAChRs, alkylation produced a complete loss of specific [(3)H]epibatidine binding to recombinant alpha3beta4 nAChRs which was preventable by pretreatment with nicotine. However, unlike native alpha3beta4* nAChRs, cytisine and mecamylamine, provide no protection for alkylation. These results highlight the differences between native alpha3beta4* nAChRs and recombinant alpha3beta4 nAChRs and support the use of protection assays to characterize native nAChR subpopulations.

  7. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  8. Amino acid and peptide prodrugs of diphenylpropanones positive allosteric modulators of α7 nicotinic receptors with analgesic activity.

    PubMed

    Balsera, Beatriz; Mulet, José; Sala, Salvador; Sala, Francisco; de la Torre-Martínez, Roberto; González-Rodríguez, Sara; Plata, Adrián; Naesens, Lieve; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; Criado, Manuel; Pérez de Vega, María Jesús; González-Muñiz, Rosario

    2018-01-01

    α7 Nicotinic acetylcholine receptors (nAChRs) are ion channels implicated in a number of CNS pathological processes, including pain and psychiatric, cognitive and inflammatory diseases. Comparing with orthosteric agonism, positive allosteric modulation of these channels constitutes an interesting approach to achieve selectivity versus other nicotinic receptors. We have recently described new chalcones and 1,3-diphenylpropanones as positive allosteric modulators (PAMs) of α7 nAChRs, which proved to have good analgesic activities but poor pharmacokinetic properties. Here we report the preparation of amino acid and peptide derivatives as prodrugs of these modulators with the aim of improving their in vivo biological activity. While the valine derivative showed very short half life in aqueous solutions to be considered a prodrug, Val-Val and Val-Pro-Val are suitable precursors of the parent 1,3-diphenylpropanones, via chemical and enzymatic transformation, respectively. Compounds 19 (Val-Val) and 21 (Val-Pro-Val), prodrugs of the 2',5',4-trihydroxy-1,3-diphenylpropan-1-one 3, showed significant antinociceptive activity in in vivo assays. The best compound, 21, displayed a better profile in the analgesia test than its parent compound 3, exhibiting about the same potency but long-lasting effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    PubMed

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  10. Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α7-nicotinic acetylcholine receptor activity-An in vitro structure-activity analysis.

    PubMed

    Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas

    2018-09-01

    Organophosphorus compounds, including nerve agents and pesticides, exert their toxicity through irreversible inhibition of acetylcholinesterase (AChE) resulting in an accumulation of acetylcholine and functional impairment of muscarinic and nicotinic acetylcholine receptors. Current therapy comprises oximes to reactivate AChE and atropine to antagonize effects induced by muscarinic acetylcholine receptors. Nicotinic malfunction leading to depression of the central and peripheral respiratory system is not directly treated calling for alternative therapeutic interventions. In the present study, we investigated the electrophysiological properties of the human nAChR subtype α7 (hα7-nAChR) and the functional effect of the 4-tert-butyl bispyridinium (BP) compound MB327 and of a series of novel substituted bispyridinium compounds on the receptors by an automated patch clamp technique. Activation of hα7-nAChRs was induced by nicotine and acetylcholine demonstrating rapid cationic influx up to 100μM. Agonist-induced currents decayed within a few milliseconds revealing fast desensitization of the receptors. Application of higher agonist concentrations led to a decline of current amplitudes which seemed to be due to increasing receptor desensitization. When 100μM of agonist was coapplied with low concentrations of the well characterized α7-specific positive allosteric modulator PNU-120596 (1μM-10μM), the maximum response and duration of nAChR activation were markedly augmented indicating an elongated mean open-time of receptors and prevention of receptor desensitization. However, co-application of increasing PNU-120596 concentrations (>10μM) with agonist induced a decline of potentiated current responses. Although less pronounced than PNU-120596, six of the twenty tested substituted BP compounds, in particular those with a substituent at 3-position and 4-position at the pyridinium moieties, were found to potentiate current responses of hα7-nAChRs, most pronounced MB

  11. Derivatives of dibenzothiophene for PET imaging of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Gao, Yongjun; Kellar, Kenneth J.; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Dannals, Robert F.; Horti, Andrew G.

    2013-01-01

    A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors7-nAChRs) (Ki = 0.4 – 20 nM) has been synthesized for PET imaging of α7-nAChRs. Two radiolabeled members of the series [18F]7a (Ki = 0.4 nM) and [18F]7c (Ki = 1.3 nM) were synthesized. [18F]7a and [18F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [18F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR CNS drugs demonstrated that [18F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [18F]7a (BPND = 5.3 – 8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [18F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates. PMID:24050653

  12. Central cholinergic regulation of respiration: nicotinic receptors

    PubMed Central

    Shao, Xuesi M; Feldman, Jack L

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of α4* nAChRs in the preBötzinger Complex (preBötC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBötC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic α4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS. PMID:19498418

  13. Nicotinic Receptors in the Dorsal and Ventral Hippocampus Differentially Modulate Contextual Fear Conditioning

    PubMed Central

    Kenney, Justin W.; Raybuck, Jonathan D.; Gould, Thomas J.

    2012-01-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning. PMID:22271264

  14. Comparison of nicotinic receptor binding and biotransformation of coniine in the rat and chick.

    PubMed

    Forsyth, C S; Speth, R C; Wecker, L; Galey, F D; Frank, A A

    1996-12-31

    Coniine, an alkaloid from Conium maculatum (poison hemlock), is a known teratogen in many domestic species with maternal ingestion resulting in arthrogryposis of the offspring. We have previously shown that rats are not susceptible and rabbits only weakly susceptible to coniine-induced arthrogryposis. However, the chick embryo does provide a reproducible laboratory animal model of coniine-induced teratogenesis. The reason for this cross-species variation is unknown. The purpose of this study was to evaluate coniine binding to nicotinic receptors and to measure coniine metabolism in vitro between susceptible and non-susceptible species. Using the chick model, neither the peripheral nicotinic receptor antagonist d-tubocurarine chloride nor the central nicotinic receptor antagonist trimethaphan camsylate blocked the teratogenesis or lethality of 1.5% coniine (50 microliters/egg). Trimethaphan camsylate enhanced coniine-induced lethality in a dose-dependent manner. Neither nicotinic receptor blocker prevented nicotine sulfate-induced malformations but d-tubocurarine chloride did block lethality in a dose-dependent manner. Competition by coniine for [125I]-alpha-bungarotoxin to nicotinic receptors isolated from adult rat diaphragm and chick thigh muscle and competition by coniine for [3H]-cytisine to receptors from rat and chick brain were used to assess coniine binding to nicotinic receptors. The IC50 for coniine in rat diaphragm was 314 microM while that for chick leg muscle was 70 microM. For neuronal nicotinic receptors, the IC50s of coniine for maternal rat brain, fetal rat brain, and chick brain were 1100 microM, 820 microM, and 270 microM, respectively. There were no differences in coniine biotransformation in vitro by microsomes from rat or chick livers. Differences in apparent affinity of coniine for nicotinic receptors or differences in the quantity of the nicotinic receptor between the rat and chick may explain, in part, the differences in susceptibility of

  15. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  17. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  18. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.

  19. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction

    PubMed Central

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J.

    2015-01-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine’s enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2–4 mins prior to each extinction session. Our results showed that the that mice lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. PMID:26688111

  20. Functional evidence for the inflammatory reflex in teleosts: A novel α7 nicotinic acetylcholine receptor modulates the macrophage response to dsRNA.

    PubMed

    Torrealba, Débora; Balasch, Joan Carles; Criado, Manuel; Tort, Lluís; Mackenzie, Simon; Roher, Nerea

    2018-07-01

    The inflammatory reflex modulates the innate immune system, keeping in check the detrimental consequences of overstimulation. A key player controlling the inflammatory reflex is the alpha 7 acetylcholine receptor7nAChR). This receptor is one of the signalling molecules regulating cytokine expression in macrophages. In this study, we characterize a novel teleost α7nAChR. Protein sequence analysis shows a high degree of conservation with mammalian orthologs and trout α7nAChR has all the features and essential amino acids to form a fully functional receptor. We demonstrate that trout macrophages can bind α-bungarotoxin (α-BTX), a competitive antagonist for α7nAChRs. Moreover, nicotine stimulation produces a decrease in pro-inflammatory cytokine expression after stimulation with poly(I:C). These results suggest the presence of a functional α7nAChR in the macrophage plasma membrane. Further, in vivo injection of poly(I:C) induced an increase in serum ACh levels in rainbow trout. Our results manifest for the first time the functional conservation of the inflammatory reflex in teleosts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the developmentmore » and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.« less

  2. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies

    PubMed Central

    Pandya, Anshul. A.; Yakel, Jerrel L.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs. PMID:23732296

  3. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  4. Targeting alpha-7 nicotinic neurotransmission in schizophrenia: A novel agonist strategy

    PubMed Central

    Deutsch, Stephen I.; Schwartz, Barbara L.; Schooler, Nina R.; Brown, Clayton H.; Rosse, Richard B.; Rosse, Stephanie M.

    2013-01-01

    Alpha7 nicotinic acetylcholine receptor7 nAChR) agonists may be valuable treatments for negative symptoms and cognitive impairment in schizophrenia. Unfortunately, chronic exposure to an agonist may reduce the receptor’s sensitivity. Therefore, we combined CDP-choline, a dietary source of the direct agonist choline, with galantamine, a positive allosteric modulator (PAM) of nicotinic acetylcholine receptors, to improve the efficiency of transducing the choline signal and, possibly, preserve the receptor in a sensitive state. We conducted a single-site, double-blind randomized clinical trial comparing galantamine/CDP-choline to placebos in schizophrenia patients with negative symptoms who were receiving second generation antipsychotics. Forty-three subjects received galantamine and CDP-choline or matching placebos for 16 weeks. The primary outcome measure was the 5-item Marder negative-symptoms factor of the Positive and Negative Syndrome Scale (PANSS). Cognition and functioning were also assessed. Trial completion was high; 79%. There was no significant treatment effect on negative symptoms, other PANSS symptom factors, or the MATRICS Cognitive Consensus Battery. There were significant treatment effects in overall functioning and a test of free verbal recall. Three subjects discontinued treatment in the active treatment group for gastro-intestinal adverse events (AE). The most common AE for galantamine/CDP-choline was abdominal pain; for placebo it was headache and sweating. Although there was no significant treatment effect on negative symptoms, the direction of effect mirrored the effects on a cognitive measure and overall functioning. Further study of α7 nAChR agonist/PAMs are warranted in larger studies that will have greater power. PMID:23768813

  5. Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats

    PubMed Central

    Galvez, Bryan; Gross, Noah; Sumikawa, Katumi

    2016-01-01

    Long-term potentiation (LTP) shows memory-like consolidation and thus becomes increasingly resistant to disruption by low-frequency stimulation (LFS). However, it is known that nicotine application during LFS uniquely depotentiates consolidated LTP. Here, we investigated how nicotine contributes to the disruption of stabilized LTP in the hippocampal CA1 region. We found that nicotine-induced depotentiation is not due to masking LTP by inducing long-term depression and requires the activation of GluN2A-containing NMDARs. We further examined whether nicotine-induced depotentiation involves the reversal of LTP mechanisms. LTP causes phosphorylation of Ser-831 on GluA1 subunits of AMPARs that increases the single-channel conductance of AMPARs. This phosphorylation remained unchanged after depotentiation. LTP involves the insertion of new AMPARs into the synapse and the internalization of AMPARs is associated with dephosphorylation of Ser-845 on GluA1 and caspase-3 activity. Nicotine-induced depotentiation occurred without dephosphorylation of the Ser-845 and in the presence of a caspase-3 inhibitor. LTP is also accompanied by increased filamentous actin (F-actin), which controls spine size. Nicotine-induced depotentiation was prevented by jasplakinolide, which stabilizes F-actin, suggesting that nicotine depotentiates consolidated LTP by destabilizing F-actin. α7 nicotinic acetylcholine receptor (nAChR) antagonists mimicked the effect of nicotine and selective removal of hippocampal cholinergic input caused depotentiation in the absence of nicotine, suggesting that nicotine depotentiates consolidated LTP by inducing α7 nAChR desensitization. Our results demonstrate a new role for nicotinic cholinergic systems in protecting potentiated synapses from depotentiation by preventing GluN2A-NMDAR-mediated signaling for actin destabilization. PMID:26867505

  6. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain.

    PubMed

    Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J

    2014-05-01

    Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking. © 2014 International Society for Neurochemistry.

  7. Decreased nicotinic receptor availability in smokers with slow rates of nicotine metabolism

    PubMed Central

    Dubroff, Jacob G.; Doot, Robert K.; Falcone, Mary; R, Robert A. Schnoll; Ray, Riju; Tyndale, Rachel F.; Brody, Arthur L.; Hou, Catherine; Schmitz, Alexander; Lerman, Caryn

    2015-01-01

    The nicotine metabolite ratio (NMR), a stable measure of hepatic nicotine metabolism via the CYP2A6 pathway and total nicotine clearance, is a predictive biomarker of response to nicotine replacement therapy, with increased quit rates in slower metabolizers. Nicotine binds directly to nicotinic acetylcholine receptors (nAChRs) to exert its psychoactive effects. This study examined the relationship between NMR and nAChR availability (α4β2* subtype) using positron emission tomography (PET) imaging of the radiotracer 2-18F-FA-85380 (2-18F-FA). Methods Twenty four smokers, 12 slow metabolizers (NMR <0.26) and 12 normal metabolizers (NMR ≥0.26), underwent 2-18F-FA-PET brain imaging following overnight nicotine abstinence (18 hours prior to scanning), using a validated bolus plus infusion protocol. Availability of nAChRs was compared between NMR groups in a priori volumes of interest (VOIs), with total distribution volume (VT/fP) being the measure of nAChR availability. Cravings to smoke were assessed prior to and following the scans. Results Thalamic nAChR α4β2* availability was significantly reduced in slow (versus normal) nicotine metabolizers (P=0.04). Slow metabolizers exhibited greater reductions in craving than normal metabolizers from pre- to post-scanning; however, craving was unrelated to availability. Conclusion The rate of nicotine metabolism is associated with thalamic nAChR availability. Additional studies could examine whether altered nAChR availability underlies differences in treatment response between slow and normal metabolizers of nicotine. PMID:26272810

  8. Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: Implications for neuropsychiatric diseases

    PubMed Central

    Lin, Hong; Hsu, Fu-Chun; Baumann, Bailey H.; Coulter, Douglas A.; Lynch, David R.

    2014-01-01

    Microdeletion of the human CHRNA7 gene (α7 nicotinic acetylcholine receptor, nAChR) as well as dysfunction in N-methyl-D-aspartate receptors (NMDARs) have been associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia. However, the pathophysiological roles of synaptic vs. extrasynaptic NMDARs and their interactions with α7 nAChRs in cortical dysfunction remain largely uncharacterized. Using a combination of in vivo and in vitro models, we demonstrate that α7 nAChR gene deletion leads to specific loss of synaptic NMDARs and their coagonist, D-serine, as well as glutamatergic synaptic deficits in mouse cortex. α7 nAChR null mice had decreased cortical NMDAR expression and glutamatergic synapse formation during postnatal development. Similar reductions in NMDAR expression and glutamatergic synapse formation were revealed in cortical cultures lacking α7 nAChRs. Interestingly, synaptic, but not extrasynaptic, NMDAR currents were specifically diminished in cultured cortical pyramidal neurons as well as in acute prefrontal cortical slices of α7 nAChR null mice. Moreover, D-serine responsive synaptic NMDAR-mediated currents and levels of the D-serine synthetic enzyme serine racemase were both reduced in α7 nAChR null cortical pyramidal neurons. Our findings thus identify specific loss of synaptic NMDARs and their coagonist, D-serine, as well as glutamatergic synaptic deficits in α7 nAChR gene deletion models of cortical dysfunction, thereby implicating α7 nAChR-mediated control of synaptic NMDARs and serine racemase/D-serine pathways in cortical dysfunction underlying many neuropsychiatric and neurodevelopmental disorders, particularly those associated with deletion of human CHRNA7. PMID:24326163

  9. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    PubMed

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  10. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer's disease therapy.

    PubMed

    Verma, Stuti; Kumar, Ashwini; Tripathi, Timir; Kumar, Awanish

    2018-04-16

    Alzheimer's disease (AD) has become the primary cause of dementia. It shows a progressive cognitive dysfunction with degenerating neurons. Acetylcholine receptors (AChRs) propagate the cognitive ability and it consists of two primary members namely muscarinic (mAChRs) and nicotinic receptors (nAChRs). Where mAChRs is G-protein coupled receptor, (nAChRs) are ligand-gated ion channels. The conventional therapeutic regimen for AD consists of three acetylcholinestearse inhibitors while a single NMDA receptor antagonist. Researchers around the globe are developing new and modifying the existing AChRs agonists to develop lead candidates with lower risk to benefit ratio where benefits clearly outweigh the adverse events. We have searched PubMed, MEDLINE, Google scholar, Science Direct and, Web of Science with keywords "Muscarinic/Nicotinic acetylcholine receptor, agonists and, AD". The literature search included articles written in English. Scientific relevance for clinical studies, basic science studies is eligibility criteria for articles referred in this paper. M1 is the primary muscarinic subtype while α7 is the primary nAChR subtype that is responsible for cognition and memory and these two have been the major recent experimental targets for mAChR agonist strategy. The last cholinergic receptor agonist to enter phase 3 trial was EVP-6124 (Enceniclin) but was withdrawn due to severe gastrointestinal adverse effects. We aim to present an overview of the efforts and achievements in targeting Muscarinic and Nicotinic acetylcholine receptor in the current review for development of better AD therapeutics. © 2018 Royal Pharmaceutical Society.

  11. The Duration of Nicotine Withdrawal-Associated Deficits in Contextual Fear Conditioning Parallels Changes in Hippocampal High Affinity Nicotinic Acetylcholine Receptor Upregulation

    PubMed Central

    Gould, Thomas J.; Portugal, George S.; André, Jessica M.; Tadman, Matthew P.; Marks, Michael J.; Kenney, Justin W.; Yildirim, Emre; Adoff, Michael

    2012-01-01

    A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdawal-induced cognitive deficits. If a relationship between altered learning and nAChR levels exists, changes in nAChR levels after cessation of nicotine treatment should match the duration of learning deficits. To test this hypothesis, mice were chronically administered 6.3 mg/kg/day (freebase) nicotine for 12 days and trained in contextual fear conditioning on day 11 or between 1 to 16 days after withdrawal of treatment. Changes in [125I]-epibatidine binding at cytisine-sensitive and cytisine-resistant nAChRs and chronic nicotine-related changes in α4, α7, and β2 nAChR subunit mRNA expression were assessed. Chronic nicotine had no behavioral effect but withdrawal produced deficits in contextual fear conditioning that lasted 4 days. Nicotine withdrawal did not disrupt cued fear conditioning. Chronic nicotine upregulated hippocampal cytisine-sensitive nAChR binding; upregulation continued after cessation of nicotine administration and the duration of upregulation during withdrawal paralleled the duration of behavioral changes. Changes in binding in cortex and cerebellum did not match behavioral changes. No changes in α4, α7, and β2 subunit mRNA expression were seen with chronic nicotine. Thus, nicotine withdrawal-related deficits in contextual learning are time-limited changes that are associated with temporal changes in upregulation of high-affinity nAChR binding. PMID:22285742

  12. Methyllycaconitine: a non-radiolabeled ligand for mapping α7 neuronal nicotinic acetylcholine receptors - in vivo target localization and biodistribution in rat brain.

    PubMed

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Bhyrapuneni, Gopinadh; Saralaya, Ramanatha; Muddana, Nageswararao; Komarneni, Prashanth

    2012-07-01

    Reduction of cerebral cortical and hippocampal α7 neuronal nicotinic acetylcholine receptor (nAChR) density was observed in the Alzheimer's disease (AD) and other neurodegenerative diseases. Mapping the subtypes of nAChRs with selective ligand by viable, quick and consistent method in preclinical drug discovery may lead to rapid development of more effective therapeutic agents. The objective of this study was to evaluate the use of methyllycaconitine (MLA) in non-radiolabeled form for mapping α7 nAChRs in rat brain. MLA pharmacokinetic and brain penetration properties were assessed in male Wistar rats. The tracer properties of MLA were evaluated in rat brain by dose and time dependent differential regional distribution studies. Target specificity was validated after blocking with potent α7 nAChR agonists ABBF, PNU282987 and nicotine. High performance liquid chromatography combined with triple quad mass spectral detector (LC-MS/MS) was used to measure the plasma and brain tissue concentrations of MLA. MLA has shown rapid brain uptake followed by a 3-5 fold higher specific binding in regions containing the α7 nAChRs (hypothalamus - 1.60 ng/g), when compared to non-specific regions (striatum - 0.53 ng/g, hippocampus - 0.46 ng/g, midbrain - 0.37 ng/g, frontal cortex - 0.35 ng/g and cerebellum - 0.30 ng/g). Pretreatment with potent α7 nAChR agonists significantly blocked the MLA uptake in hypothalamus. The non-radiolabeled MLA binding to brain region was comparable with the α7 mRNA localization and receptor distribution reported for [(3)H] MLA in rat brain. The rat pharmacokinetic, brain penetration and differential brain regional distribution features favor that MLA is suitable to use in preclinical stage for mapping α7 nAChRs. Hence, this approach can be employed as an essential tool for quicker development of novel selective ligand to map variation in the α7 receptor densities, as well as to evaluate potential new chemical entities targeting neurodegenerative

  13. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor.

    PubMed

    Chi, Feng; Wang, Lin; Zheng, Xueye; Wu, Chun-Hua; Jong, Ambrose; Sheard, Michael A; Shi, Wei; Huang, Sheng-He

    2011-01-01

    Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/-)) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7(-/-) BMEC and α7(-/-) mice. Stimulation by nicotine was abolished in the α7(-/-) cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/-) cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/-) mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7(-/-) mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.

  14. Meningitic Escherichia coli K1 Penetration and Neutrophil Transmigration Across the Blood–Brain Barrier are Modulated by Alpha7 Nicotinic Receptor

    PubMed Central

    Zheng, Xueye; Wu, Chun-Hua; Jong, Ambrose; Sheard, Michael A.; Shi, Wei; Huang, Sheng-He

    2011-01-01

    Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7-/-) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7-/- BMEC and α7-/- mice. Stimulation by nicotine was abolished in the α7-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation. PMID:21966399

  15. The Metabotropic Glutamate 2/3 Receptor Agonist LY379268 Blocked Nicotine-Induced Increases in Nucleus Accumbens Shell Dopamine only in the Presence of a Nicotine-Associated Context in Rats

    PubMed Central

    D'Souza, Manoranjan S; Liechti, Matthias E; Ramirez-Niño, Ana M; Kuczenski, Ronald; Markou, Athina

    2011-01-01

    The metabotropic glutamate 2/3 (mGlu2/3) receptor agonist LY379268 ([−]-2-oxa-4-aminobicyclo [3.1.0] hexane-4,6-dicarboxylate) attenuates both nicotine self-administration and cue-induced nicotine seeking in rats. In this study, the effects of LY379268 (1 mg/kg) or saline pretreatment on nicotine-induced increases in nucleus accumbens (NAcc) shell dopamine were evaluated using in vivo microdialysis under different experimental conditions: (i) nicotine (0.4 mg/kg, base) was experimenter-administered subcutaneously to nicotine-naïve rats; (ii) nicotine was experimenter-administered either subcutaneously (0.4 mg/kg) or by a single experimenter-administered infusion (0.06 mg/kg, base) in rats with a history of nicotine self-administration (nicotine experienced) in the absence of a nicotine-associated context (ie, context and cues associated with nicotine self-administration); (iii) nicotine (0.06 mg/kg) was self-administered or experimenter-administered in nicotine-experienced rats in the presence of a nicotine-associated context. In saline-pretreated nicotine-naïve and nicotine-experienced rats, nicotine increased NAcc shell dopamine regardless of the context used for testing. Interestingly, LY379268 pretreatment blocked nicotine-induced increases in NAcc shell dopamine in nicotine-experienced rats only when tested in the presence of a nicotine-associated context. LY379268 did not block nicotine-induced increases in NAcc shell dopamine in nicotine-naïve or -experienced rats tested in the absence of a nicotine-associated context. These intriguing findings suggest that activation of mGlu2/3 receptors negatively modulates the combined effects of nicotine and nicotine-associated contexts/cues on NAcc dopamine. Thus, these data highlight a critical role for mGlu2/3 receptors in context/cue-induced drug-seeking behavior and suggest a neurochemical mechanism by which mGlu2/3 receptor agonists may promote smoking cessation by preventing relapse induced by the

  16. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauly, J.R.; Marks, M.J.; Gross, S.D.

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the numbermore » of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.« less

  17. Nicotinic receptors as CNS targets for Parkinson's disease.

    PubMed

    Quik, Maryka; Bordia, Tanuja; O'Leary, Kathryn

    2007-10-15

    Parkinson's disease is a debilitating neurodegenerative movement disorder characterized by damage to the nigrostriatal dopaminergic system. Current therapies are symptomatic only and may be accompanied by serious side effects. There is therefore a continual search for novel compounds for the treatment of Parkinson's disease symptoms, as well as to reduce or halt disease progression. Nicotine administration has been reported to improve motor deficits that arise with nigrostriatal damage in parkinsonian animals and in Parkinson's disease. In addition, nicotine protects against nigrostriatal damage in experimental models, findings that have led to the suggestion that the reduced incidence of Parkinson's disease in smokers may be due to the nicotine in tobacco. Altogether, these observations suggest that nicotine treatment may be beneficial in Parkinson's disease. Nicotine interacts with multiple nicotinic receptor (nAChR) subtypes in the peripheral and central nervous system, as well as in skeletal muscle. Work to identify the subtypes affected in Parkinson's disease is therefore critical for the development of targeted therapies. Results show that striatal alpha6beta2-containing nAChRs are particularly susceptible to nigrostriatal damage, with a decline in receptor levels that closely parallels losses in striatal dopamine. In contrast, alpha4beta2-containing nAChRs are decreased to a much smaller extent under the same conditions. These observations suggest that development of nAChR agonists or antagonists targeted to alpha6beta2-containing nAChRs may represent a particularly relevant target for Parkinson's disease therapeutics.

  18. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  19. Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats.

    PubMed

    Galvez, Bryan; Gross, Noah; Sumikawa, Katumi

    2016-06-01

    Long-term potentiation (LTP) shows memory-like consolidation and thus becomes increasingly resistant to disruption by low-frequency stimulation (LFS). However, it is known that nicotine application during LFS uniquely depotentiates consolidated LTP. Here, we investigated how nicotine contributes to the disruption of stabilized LTP in the hippocampal CA1 region. We found that nicotine-induced depotentiation is not due to masking LTP by inducing long-term depression and requires the activation of GluN2A-containing NMDARs. We further examined whether nicotine-induced depotentiation involves the reversal of LTP mechanisms. LTP causes phosphorylation of Ser-831 on GluA1 subunits of AMPARs that increases the single-channel conductance of AMPARs. This phosphorylation remained unchanged after depotentiation. LTP involves the insertion of new AMPARs into the synapse and the internalization of AMPARs is associated with dephosphorylation of Ser-845 on GluA1 and caspase-3 activity. Nicotine-induced depotentiation occurred without dephosphorylation of the Ser-845 and in the presence of a caspase-3 inhibitor. LTP is also accompanied by increased filamentous actin (F-actin), which controls spine size. Nicotine-induced depotentiation was prevented by jasplakinolide, which stabilizes F-actin, suggesting that nicotine depotentiates consolidated LTP by destabilizing F-actin. α7 nicotinic acetylcholine receptor (nAChR) antagonists mimicked the effect of nicotine and selective removal of hippocampal cholinergic input caused depotentiation in the absence of nicotine, suggesting that nicotine depotentiates consolidated LTP by inducing α7 nAChR desensitization. Our results demonstrate a new role for nicotinic cholinergic systems in protecting potentiated synapses from depotentiation by preventing GluN2A-NMDAR-mediated signaling for actin destabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Α4β2 and α7 nicotinic acetylcholine receptor binding predicts choice preference in two cost benefit decision-making tasks.

    PubMed

    Mendez, I A; Damborsky, J C; Winzer-Serhan, U H; Bizon, J L; Setlow, B

    2013-01-29

    Nicotinic receptors have been linked to a wide range of cognitive and behavioral functions, but surprisingly little is known about their involvement in cost benefit decision making. The goal of these experiments was to determine how nicotinic acetylcholine receptor (nAChR) expression is related to two forms of cost benefit decision making. Male Long Evans rats were tested in probability- and delay-discounting tasks, which required discrete trial choices between a small reward and a large reward associated with varying probabilities of omission and varying delays to reward delivery, respectively. Following testing, radioligand binding to α4β2 and α7 nAChR subtypes in brain regions implicated in cost benefit decision making was examined. Significant linear relationships were observed between choice of the large delayed reward in the delay discounting task and α4β2 receptor binding in both the dorsal and ventral hippocampus. Additionally, trends were found suggesting that choice of the large costly reward in both discounting tasks was inversely related to α4β2 receptor binding in the medial prefrontal cortex and nucleus accumbens shell. Similar trends suggested that choice of the large delayed reward in the delay discounting task was inversely related to α4β2 receptor binding in the orbitofrontal cortex, nucleus accumbens core, and basolateral amygdala, as well as to α7 receptor binding in the basolateral amygdala. These data suggest that nAChRs (particularly α4β2) play both unique and common roles in decisions that require consideration of different types of reward costs. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Decreased Nicotinic Receptor Availability in Smokers with Slow Rates of Nicotine Metabolism.

    PubMed

    Dubroff, Jacob G; Doot, Robert K; Falcone, Mary; Schnoll, Robert A; Ray, Riju; Tyndale, Rachel F; Brody, Arthur L; Hou, Catherine; Schmitz, Alexander; Lerman, Caryn

    2015-11-01

    The nicotine metabolite ratio (NMR), a stable measure of hepatic nicotine metabolism via the CYP2A6 pathway and total nicotine clearance, is a predictive biomarker of response to nicotine replacement therapy, with increased quit rates in slower metabolizers. Nicotine binds directly to nicotinic acetylcholine receptors (nAChRs) to exert its psychoactive effects. This study examined the relationship between NMR and nAChR (α4β2* subtype) availability using PET imaging of the radiotracer 2-(18)F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-(18)F-FA-85380, or 2-(18)F-FA). Twenty-four smokers-12 slow metabolizers (NMR < 0.26) and 12 normal metabolizers (NMR ≥ 0.26)-underwent 2-(18)F-FA-PET brain imaging after overnight nicotine abstinence (18 h before scanning), using a validated bolus-plus-infusion protocol. Availability of nAChRs was compared between NMR groups in a priori volumes of interest, with total distribution volume (VT/fP) being the measure of nAChR availability. Cravings to smoke were assessed before and after the scans. Thalamic nAChR α4β2* availability was significantly reduced in slow nicotine metabolizers (P = 0.04). Slow metabolizers exhibited greater reductions in cravings after scanning than normal metabolizers; however, craving was unrelated to nAChR availability. The rate of nicotine metabolism is associated with thalamic nAChR availability. Additional studies could examine whether altered nAChR availability underlies the differences in treatment response between slow and normal metabolizers of nicotine. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors.

    PubMed

    Kabbani, Nadine; Nichols, Robert A

    2018-04-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7 i ) and metabotropic (α7 m ) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP 3 )-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors.

    PubMed

    Prickaerts, Jos; van Goethem, Nick P; Chesworth, Richard; Shapiro, Gideon; Boess, Frank G; Methfessel, Christoph; Reneerkens, Olga A H; Flood, Dorothy G; Hilt, Dana; Gawryl, Maria; Bertrand, Sonia; Bertrand, Daniel; König, Gerhard

    2012-02-01

    EVP-6124, (R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide, is a novel partial agonist of α7 neuronal nicotinic acetylcholine receptors (nAChRs) that was evaluated here in vitro and in vivo. In binding and functional experiments, EVP-6124 showed selectivity for α7 nAChRs and did not activate or inhibit heteromeric α4β2 nAChRs. EVP-6124 had good brain penetration and an adequate exposure time. EVP-6124 (0.3 mg/kg, p.o.) significantly restored memory function in scopolamine-treated rats (0.1 mg/kg, i.p.) in an object recognition task (ORT). Although donepezil at 0.1 mg/kg, p.o. or EVP-6124 at 0.03 mg/kg, p.o. did not improve memory in this task, co-administration of these sub-efficacious doses fully restored memory. In a natural forgetting test, an ORT with a 24 h retention time, EVP-6124 improved memory at 0.3 mg/kg, p.o. This improvement was blocked by the selective α7 nAChR antagonist methyllycaconitine (0.3 mg/kg, i.p. or 10 μg, i.c.v.). In co-application experiments of EVP-6124 with acetylcholine, sustained exposure to EVP-6124 in functional investigations in oocytes caused desensitization at concentrations greater than 3 nM, while lower concentrations (0.3-1 nM) caused an increase in the acetylcholine-evoked response. These actions were interpreted as representing a co-agonist activity of EVP-6124 with acetylcholine on α7 nAChRs. The concentrations of EVP-6124 that resulted in physiological potentiation were consistent with the free drug concentrations in brain that improved memory performance in the ORT. These data suggest that the selective partial agonist EVP-6124 improves memory performance by potentiating the acetylcholine response of α7 nAChRs and support new therapeutic strategies for the treatment of cognitive impairment. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    PubMed

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Axon Targeting of the Alpha 7 Nicotinic Receptor in Developing Hippocampal Neurons by Gprin1 Regulates Growth

    PubMed Central

    Nordman, Jacob C.; Philips, Wiktor S.; Kodama, Nathan; Clark, Sarah G.; Negro, Christopher Del; Kabbani, Nadine

    2015-01-01

    Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor7) can drive synaptic development and plasticity in the hippocampus. Here we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone (GC). Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the GC. In particular, α7/Gprin1 interaction appears intimately linked to a Gαo, GAP-43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain. PMID:24350810

  6. Nicotinic acetylcholine receptor ligands; a patent review (2006-2011)

    PubMed Central

    Gündisch, Daniela; Eibl, Christoph

    2012-01-01

    Introduction Nicotinic acetylcholine receptors (nAChRs), pentameric ligand-gated cation channels, are potential targets for the development of therapeutics for a variety of disease states. Areas covered This article is reviewing recent advances in the development of small molecule ligands for diverse nAChR subtypes and is a continuation of an earlier review in this journal. Expert opinion The development of nAChR ligands with preference for α4β2 or α7 subtypes for the treatment of CNS disorders are in the most advanced developmental stage. In addition, there is a fast growing interest to generate so-called PAMs, positive allosteric modulators, to influence the channels’ functionalities. PMID:22098319

  7. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions

    PubMed Central

    Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.

    2012-01-01

    Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217

  8. AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks.

    PubMed

    Damijonaitis, Arunas; Broichhagen, Johannes; Urushima, Tatsuya; Hüll, Katharina; Nagpal, Jatin; Laprell, Laura; Schönberger, Matthias; Woodmansee, David H; Rafiq, Amir; Sumser, Martin P; Kummer, Wolfgang; Gottschalk, Alexander; Trauner, Dirk

    2015-05-20

    Nicotinic acetylcholine receptors (nAChRs) are essential for cellular communication in higher organisms. Even though a vast pharmacological toolset to study cholinergic systems has been developed, control of endogenous neuronal nAChRs with high spatiotemporal precision has been lacking. To address this issue, we have generated photoswitchable nAChR agonists and re-evaluated the known photochromic ligand, BisQ. Using electrophysiology, we found that one of our new compounds, AzoCholine, is an excellent photoswitchable agonist for neuronal α7 nAChRs, whereas BisQ was confirmed to be an agonist for the muscle-type nAChR. AzoCholine could be used to modulate cholinergic activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate light-dependent perturbation of behavior in the nematode, Caenorhabditis elegans.

  9. Nicotine Reduces l-DOPA-Induced Dyskinesias by Acting at β2* Nicotinic Receptors

    PubMed Central

    Huang, Luping Z.; Grady, Sharon R.

    2011-01-01

    l-DOPA-induced dyskinesias or abnormal involuntary movements (AIMs) are a debilitating adverse complication associated with prolonged l-DOPA administration for Parkinson's disease. Few treatments are currently available for dyskinesias. Our recent data showed that nicotine reduced l-DOPA-induced AIMs in parkinsonian animal models. An important question is the nicotinic acetylcholine receptor (nAChR) subtypes through which nicotine exerts this beneficial effect, because such knowledge would allow for the development of drugs that target the relevant receptor population(s). To address this, we used β2 nAChR subunit knockout [β2(−/−)] mice because β2-containing nAChRs are key regulators of nigrostriatal dopaminergic function. All of the mice were lesioned by intracranial injection of 6-hydroxydopamine into the right medial forebrain bundle. Lesioning resulted in a similar degree of nigrostriatal damage and parkinsonism in β2(−/−) and wild-type mice. All of the mice then were injected with l-DOPA (3 mg/kg) plus benserazide (15 mg/kg) once daily for 4 weeks until AIMs were fully developed. l-DOPA-induced AIMs were approximately 40% less in the β2(−/−) mice compared with the wild-type mice. It is interesting to note that nicotine (300 μg/ml in drinking water) reduced l-DOPA-induced AIMs by 40% in wild-type mice but had no effect in β2(−/−) mice with partial nigrostriatal damage. The nicotine-mediated decline in AIMs was much less pronounced in wild-type mice with near-complete degeneration, suggesting that presynaptic nAChRs on dopaminergic terminals have a major influence. These data demonstrate an essential role for β2* nAChRs in the antidyskinetic effect of nicotine and suggest that drugs targeting these subtypes may be useful for the management of l-DOPA-induced dyskinesias in Parkinson's disease. PMID:21665941

  10. CRF1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse

    PubMed Central

    Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani

    2010-01-01

    Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073

  11. Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD).

    PubMed

    Dwoskin, Linda P; Joyce, B Matthew; Zheng, Guangrong; Neugebauer, Nichole M; Manda, Vamshi K; Lockman, Paul; Papke, Roger L; Bardo, Michael T; Crooks, Peter A

    2007-10-15

    Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom converts nicotine from a potent agonist into a potent antagonist. The classical antagonists, hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker to provide N,N'-bis-nicotinium analogs, affording a lead compound, N,N'-dodecyl-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD completely inhibited (IC(50)=500 nM) nicotine-evoked DA release from superfused rat striatal slices, suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 microM) inhibited the response to acetylcholine at alpha3beta4, alpha4beta4, alpha4beta2, and alpha1beta1varepsilondelta receptors expressed in Xenopus oocytes. TMPD had a 2-fold higher affinity than choline for the blood-brain barrier choline transporter, suggesting brain bioavailability. TMPD did not inhibit hyperactivity in nicotine sensitized rats, but significantly and specifically decreased nicotine self-administration. Together, the results suggest that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects, a pharmacological profile indicative of potential clinical utility for the treatment of tobacco dependence.

  12. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors

    PubMed Central

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-01-01

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. PMID:27049309

  13. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors.

    PubMed

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-05-13

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.

    PubMed

    Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R

    2004-01-01

    In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

  16. [Difference in action sites between mecamylamine and hexamethonium on nicotinic receptors of sympathetic neurons].

    PubMed

    Liu, Wei; Zheng, Jian-Quan; Liu, Zhen-Wei; Li, Li-Jun; Wan, Qin; Liu, Chuan-Gui

    2002-12-25

    To compare the difference in action sites between mecamylamine (MEC) and hexamethonium (HEX) on nicotinic receptors of sympathetic neurons, we investigated the effects of MEC and HEX on the nicotine-induced currents in cultured superior cervical ganglion neurons by whole-cell patch clamp technique. The IC(50) of MEC and HEX for antagonizing the effect of 0.08 mmol/L nicotine was 0.0012 and 0.0095 mmol/L, respectively. Both MEC and HEX accelerated the desensitization of nicotinic receptors. Furthermore, by comparing their effects at holding potentials 30, 70 and 110 mV, it was indicated that their suppressing effect on the nicotine-induced currents was voltage-dependent. However, different from that of HEX, the inhibitory effect of MEC increased with administering the mixture of MEC and nicotine at intervals of 3 min, indicating a use-dependent effect of MEC. It is concluded that the action site of MEC on nicotinic receptors of sympathetic neurons is different from that of HEX.

  17. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors.

    PubMed

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E

    2016-08-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.

  18. Neural Signatures of Cognitive Flexibility and Reward Sensitivity Following Nicotinic Receptor Stimulation in Dependent Smokers: A Randomized Trial.

    PubMed

    Lesage, Elise; Aronson, Sarah E; Sutherland, Matthew T; Ross, Thomas J; Salmeron, Betty Jo; Stein, Elliot A

    2017-06-01

    Withdrawal from nicotine is an important contributor to smoking relapse. Understanding how reward-based decision making is affected by abstinence and by pharmacotherapies such as nicotine replacement therapy and varenicline tartrate may aid cessation treatment. To independently assess the effects of nicotine dependence and stimulation of the nicotinic acetylcholine receptor on the ability to interpret valence information (reward sensitivity) and subsequently alter behavior as reward contingencies change (cognitive flexibility) in a probabilistic reversal learning task. Nicotine-dependent smokers and nonsmokers completed a probabilistic reversal learning task during acquisition of functional magnetic resonance imaging (fMRI) in a 2-drug, double-blind placebo-controlled crossover design conducted from January 21, 2009, to September 29, 2011. Smokers were abstinent from cigarette smoking for 12 hours for all sessions. In a fully Latin square fashion, participants in both groups underwent MRI twice while receiving varenicline and twice while receiving a placebo pill, wearing either a nicotine or a placebo patch. Imaging analysis was performed from June 15, 2015, to August 10, 2016. A well-established computational model captured effects of smoking status and administration of nicotine and varenicline on probabilistic reversal learning choice behavior. Neural effects of smoking status, nicotine, and varenicline were tested for on MRI contrasts that captured reward sensitivity and cognitive flexibility. The study included 24 nicotine-dependent smokers (12 women and 12 men; mean [SD] age, 35.8 [9.9] years) and 20 nonsmokers (10 women and 10 men; mean [SD] age, 30.4 [7.2] years). Computational modeling indicated that abstinent smokers were biased toward response shifting and that their decisions were less sensitive to the available evidence, suggesting increased impulsivity during withdrawal. These behavioral impairments were mitigated with nicotine and varenicline

  19. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  20. The α7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system.

    PubMed

    Baranowska, Urszula; Wiśniewska, Róża Julia

    2017-07-30

    α7-nACh is one of the major nicotinic cholinergic receptor subtypes found in the brain. It is broadly expressed in the hippocampal and cortical neurons, the regions which play a key role in memory formation. Although α7-nACh receptors may serve as postsynaptic receptors mediating classical neurotransmission, they usually function as presynaptic modulators responsible for the release of other neurotransmitters, such as glutamate, γ-aminobutyric acid, dopamine, and norepinephrine. They can, therefore, affect a wide array of neurobiological functions. In recent years, research has found that a large number of agonists and positive allosteric modulators of α7-nAChR induce beneficial effects on learning and memory. Consistently, mice deficient in chrna7 (the gene encoding α7-nAChR protein), are characterized by memory deficits. In addition, decreased expression and function of α7-nAChR is associated agoniwith many neurological diseases including schizophrenia, bipolar disorder, learning disability, attention deficit hyperactivity disorder, Alzheimer disease, autism, and epilepsy. In the recent years many animal experiments and clinical trials using α7-nAChR ligands were conducted. The results of these studies strongly indicate that agonists and positive allosteric modulators of α7-nAChR are promising therapeutic agents for diseases associated with cognitive deficits.

  1. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    PubMed Central

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  2. Pharmacological similarities between native brain and heterologously expressed α4β2 nicotinic receptors

    PubMed Central

    Shafaee, Navid; Houng, McCann; Truong, Anthony; Viseshakul, Nareerat; Figl, Antonio; Sandhu, Sumandeep; Forsayeth, John R; Dwoskin, Linda P; Crooks, Peter A; Cohen, Bruce N

    1999-01-01

    We studied the pharmacological properties of native rat brain and heterologously expressed rat α4β2 nicotinic receptors immunoprecipitated onto a fixed substrate with the anti-α4 antibody mAb 299.Immunodepletion with the anti-β2 antibody mAb 270 showed that 89% of the mAb-299-precipitated rat brain receptors contained β2.The association and dissociation rate constants for 30 pM ±[3H]-epibatidine binding to α4β2 receptors expressed in oocytes were 0.02±0.01 and 0.03±0.01 min−1 (±standard error, degrees of freedom=7–8) at 20–23°C.The Hill coefficients for ±[3H]epibatidine binding to the native brain, α4β2 receptors expressed in oocytes, and α4β2 receptors expressed in CV-1 cells (using recombinant adenovirus) were 0.69–0.70 suggesting a heterogeneous receptor population. Fits of the ±[3H]-epibatidine concentration-binding data to a two-site model gave KD s of 8–30 and 560–1,200 pM. The high-affinity sites comprised 73–74% of the native brain and oocyte α4β2 receptor population, 85% of the CV-1 α4β2 receptor population.The expression of rat α4β2 receptors in CV-1 cells using vaccinia viral infection-transfection resulted in a more homogeneous receptor population (Hill coefficient of 1.0±0.2). Fits of the ±[3H]-epibatidine binding data to a single-site model gave a KD of 40±3 pM.DHβE (IC50=260–470 nM) and the novel nicotine analogue NDNI (IC50=7–10 μM) inhibited 30 pM±[3H]-epibatidine binding to the native brain and heterologously expressed α4β2 receptors equally well.The results show that α4β2-containing nicotinic receptors in the rat brain and heterologously expressed rat α4β2 receptors have similar affinities for ±[3H]-epibatidine, DHβE, and NDNI. PMID:10578144

  3. Glutamine 57 at the complementary binding site face is a key determinant of morantel selectivity for {alpha}7 nicotinic receptors.

    PubMed

    Bartos, Mariana; Price, Kerry L; Lummis, Sarah C R; Bouzat, Cecilia

    2009-08-07

    Nicotinic receptors (AChRs) play key roles in synaptic transmission. We explored activation of neuronal alpha7 and mammalian muscle AChRs by morantel and oxantel. Our results revealed a novel action of morantel as a high efficacy and more potent agonist than ACh of alpha7 receptors. The EC(50) for activation by morantel of both alpha7 and alpha7-5HT(3A) receptors is 7-fold lower than that determined for ACh. The minimum morantel concentration required to activate alpha7-5HT(3A) channels is 6-fold lower than that of ACh, and activation episodes are more prolonged than in the presence of ACh. By contrast, oxantel is a weak agonist of alpha7 and alpha7-5HT(3A), and both drugs are very low efficacy agonists of muscle AChRs. The replacement of Gln(57) in alpha7 by glycine, which is found in the equivalent position of the muscle AChR, decreases the efficacy for activation and turns morantel into a partial agonist. The reverse mutation in the muscle AChR (epsilonG57Q) increases 7-fold the efficacy of morantel. The mutations do not affect activation by ACh or oxantel, indicating that this position is selective for morantel. In silico studies show that the tetrahydropyrimidinyl group, common to both drugs, is close to Trp(149) of the principal face of the binding site, whereas the other cyclic group is proximal to Gln(57) of the complementary face in morantel but not in oxantel. Thus, position 57 at the complementary face is a key determinant of the high selectivity of morantel for alpha7. These results provide new information for further progress in drug design.

  4. Stimulation of nicotinic acetylcholine alpha7 receptors rescue schizophrenia-like cognitive impairments in rats.

    PubMed

    Potasiewicz, Agnieszka; Nikiforuk, Agnieszka; Hołuj, Małgorzata; Popik, Piotr

    2017-02-01

    Alpha7 nicotinic acetylcholine receptor7 nAChR) dysfunction plays an important role in schizophrenia. Positive allosteric modulators of α7 nAChR have emerged as a promising therapeutic approach to manage cognitive deficits that are inadequately treated in schizophrenic patients. The aim of the present study was to evaluate the ability of type I (CCMI) and type II (PNU120596) α7 nAChR positive allosteric modulators to counteract MK-801-induced cognitive and sensorimotor gating deficits. The activity of these compounds was compared with the action of the α7 nAChR agonist A582941. CCMI, PNU120596 and A582941 reversed the sensorimotor gating impairment evoked by MK-801 based on the prepulse inhibition of the startle response. Additionally, no MK-801-evoked working memory deficits were observed with α7 nAChR ligand pretreatment as assessed in a discrete paired-trial delayed alternation task. However, these compounds did not affect the rats' attentional performances in the five-choice serial reaction time test. The α7 nAChR agents demonstrated a beneficial effect on sensorimotor gating and some aspects of cognition tested in a rat model of schizophrenia. Therefore, these results support the use of α7 nAChR positive allosteric modulators as a potential treatment strategy in schizophrenia.

  5. KK-92A, a novel GABAB receptor positive allosteric modulator, attenuates nicotine self-administration and cue-induced nicotine seeking in rats.

    PubMed

    Li, Xia; Sturchler, Emmanuel; Kaczanowska, Katarzyna; Cameron, Michael; Finn, M G; Griffin, Patrick; McDonald, Patricia; Markou, Athina

    2017-05-01

    GABA B receptors (GABA B R) play a critical role in GABAergic neurotransmission in the brain and are thought to be one of the most promising targets for the treatment of drug addiction. GABA B R positive allosteric modulators (PAMs) have shown promise as potential anti-addictive therapies, as they lack the sedative and muscle relaxant properties of full GABA B receptor agonists such as baclofen. The present study was aimed at developing novel, selective, and potent GABA B R PAMs with efficacy on abuse-related effects of nicotine. We synthetized ~100 analogs of BHF177, a GABA B R PAM that has been shown to inhibit nicotine taking and seeking, and tested their activity in multiple cell-based functional assays. Among these compounds, KK-92A displayed superior PAM properties at the GABA B R. Interestingly, our results revealed the existence of pathway-selective differential modulation of GABA B R signaling by the structurally related GABA B R allosteric modulators BHF177 and KK-92A. In vivo, similarly to BHF177, KK-92A inhibited intravenous nicotine self-administration under both fixed- and progressive-ratio schedules of reinforcement in rats. In contrast to BHF177, KK-92A had no effect on food self-administration. Furthermore, KK-92A decreased cue-induced nicotine-seeking behavior without affecting food seeking. These results indicate that KK-92A is a selective GABA B R PAM with efficacy in inhibition of the primary reinforcing and incentive motivational effects of nicotine, and attenuation of nicotine seeking, further confirming that GABA B R PAMs may be useful antismoking medications.

  6. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits.

    PubMed

    Leiser, Steven C; Bowlby, Mark R; Comery, Thomas A; Dunlop, John

    2009-06-01

    Cognition, memory, and attention and arousal have been linked to nicotinic acetylcholine receptors (nAChRs). Thus it is not surprising that nAChRs have been strongly implicated as therapeutic targets for treating cognitive deficits in disorders such as schizophrenia and Alzheimer's disease (AD). In particular the alpha7 (alpha7) nAChR has been closely linked with normalization of P50 auditory evoked potential (AEP) gating deficits, and to a lesser extent improvements in pre-pulse inhibition (PPI) of the acoustic startle response. These two brain phenomena can be considered as pre-attentive, occurring while sensory information is being processed, and are important endophenotypes in schizophrenia with deficits likely contributing to the cognitive fragmentation associated with the disease. In addition alpha7 nAChRs have been implicated in attention, in particular under high attentional demand, and in more demanding working memory tasks such as long delays in delayed matching tasks. Efficacy of alpha7 nAChR agonists across a range of cognitive processes ranging from pre-attentive to attentive states and working and recognition memory provides a solid basis for their pro-cognitive effects. This review will focus on the recent work highlighting the role of alpha7 in cognition and cognitive processes.

  7. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  8. Electrophysiological Perspectives on the Therapeutic Use of Nicotinic Acetylcholine Receptor Partial AgonistsS⃞

    PubMed Central

    Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A.

    2011-01-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)2(β2)3, (α4)3(β2)2, and (α4)2(β2)2α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, “run-up” of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development. PMID:21285282

  9. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirvan, M.H.; Pollard, H.B.; Heldman, E.

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretionmore » induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.« less

  10. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane.

    PubMed

    Mowrey, David D; Liu, Qiang; Bondarenko, Vasyl; Chen, Qiang; Seyoum, Edom; Xu, Yan; Wu, Jie; Tang, Pei

    2013-12-13

    Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.

  11. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  12. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: Role of nicotinic acetylcholine receptors

    PubMed Central

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J. Michael; Hanson, Glen R; Fleckenstein, Annette E

    2015-01-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats 1): attenuates short-term dopaminergic damage induced by methamphetamine and 2) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4 × 7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration. PMID:26871405

  13. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum.

    PubMed

    Uteshev, Victor V

    2012-01-01

    The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.

  14. Alteration in contractile G-protein coupled receptor expression by moist snus and nicotine in rat cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Hardip, E-mail: sandhu.hardip@gmail.com; Xu Cangbao; Edvinsson, Lars

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression of vasocontractile G-protein coupled receptors (GPCR), such as endothelin ET{sub B}, serotonin 5-HT{sub 1B}, and thromboxane A{sub 2} TP receptors, in rat cerebral arteries. Studies show that these vasocontractile GPCR show alterations by lipid-soluble cigarette smoke particles via activation of mitogen-activated protein kinases (MAPK). However, the effects of moist tobacco on the expression ofmore » GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24 h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine was kept at plasma level of snus users (25 ng nicotine/ml). A high dose (250 ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c, 5-HT{sub 1B} receptor agonist 5-carboxamidotryptamine, and TP receptor agonist U46619 were investigated by a sensitive myograph. The expression of ET{sub B}, 5-HT{sub 1B}, and TP receptors was studied at mRNA and protein levels using quantitative real-time PCR and immunohistochemistry, respectively. Organ culture with WSS or DSS (25 ng nicotine/ml) lowered the 5-HT{sub 1B} receptor-mediated contraction. Furthermore, DSS shifted the TP receptor-mediated contraction curve left-wards with a stronger contraction. High dose of nicotine (250 ng nicotine/ml) increased the ET{sub B} receptor-mediated contraction. The combined 5-HT{sub 1B} and 5-HT{sub 2A} receptor-mediated contraction was increased, and both the 5-CT and TxA2 induced contractions were left-ward shifted by WSS

  15. αConotoxin ArIB[V11L,V16D] is a potent and selective antagonist at rat and human native α7 nicotinic acetylcholine receptors

    PubMed Central

    Innocent, Neal; Livingstone, Phil D.; Hone, Arik; Kimura, Atsuko; Young, Tracey; Whiteaker, Paul; McIntosh, J. Michael; Wonnacott, Susan

    2008-01-01

    A recently developed α-conotoxin, α-CtxArIB[V11L,V16D] is a potent and selective competitive antagonist at rat recombinant α7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. α7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues where they are implicated in a variety of functions. Here we evaluate this toxin at rat and human native nAChRs. Functional α7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 in rat PC12 cells and human SHSY5Y cells loaded with calcium indicators. α-CtxArIB[V11L,V16D] specifically inhibited α7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli (5-iodo-A-85380, nicotine or KCl) that did not activate α7 nAChRs were unaffected. Human α7 nAChRs were also sensitive to α-CtxArIB[V11L,V16D]: ACh-evoked currents in X. laevis oocytes expressing human α7 nAChRs were inhibited by α-CtxArIB[V11L,V16D] (IC50 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the timecourse of recovery from blockade of rat α7 nAChRs in PC12 cells. α-CtxArIB[V11L,V16D] inhibited human native α7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 plus PNU-120596. Rat brain α7 nAChRs contribute to dopamine release from striatal minces: α-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that α-CtxArIB[V11L,V16D] selectively inhibits human and rat native α7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating α7 nAChR functions. PMID:18664588

  16. Galantamine, an Acetylcholinesterase Inhibitor and Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors, Attenuates Nicotine Taking and Seeking in Rats

    PubMed Central

    Hopkins, Thomas J; Rupprecht, Laura E; Hayes, Matthew R; Blendy, Julie A; Schmidt, Heath D

    2012-01-01

    Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Galantamine is an acetylcholinesterase inhibitor that also acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Galantamine has recently been shown to reverse nicotine withdrawal-induced cognitive impairments in mice, which suggests that galantamine may function to prevent relapse in human smokers. However, there are no studies examining whether galantamine administration modulates nicotine self-administration and/or reinstatement of nicotine seeking in rodents. The present experiments were designed to determine the effects of galantamine administration on nicotine taking and reinstatement of nicotine-seeking behavior, an animal model of relapse. Moreover, the effects of galantamine on sucrose-maintained responding and sucrose seeking were also examined to determine whether galantamine's effects generalized to other reinforced behaviors. An inverted U-shaped dose-response curve was obtained when animals self-administered different unit doses of nicotine with the highest responding for 0.03 mg/kg per infusion of nicotine. Acute galantamine administration (5.0 mg/kg, i.p.) attenuated nicotine self-administration when animals were maintained on either a fixed-ratio 5 (FR5) or progressive ratio (PR) schedule of reinforcement. Galantamine administration also attenuated the reinstatement of nicotine-seeking behavior. No significant effects of galantamine on sucrose self-administration or sucrose reinstatement were noted. Acetylcholinesterase inhibitors have also been shown to produce nausea and vomiting in humans. However, at doses required to attenuate nicotine self-administration, no effects of galantamine on nausea/malaise as measured by pica were noted. These results indicate that increased extracellular acetylcholine levels and/or nicotinic acetylcholine receptor stimulation is sufficient to attenuate

  17. Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor.

    PubMed

    Kayano, Tomohiko; Kitamura, Naoki; Miyazaki, Shunsuke; Ichiyanagi, Tsuyoshi; Shimomura, Norihiro; Shibuya, Izumi; Aimi, Tadanori

    2014-04-01

    Gymnopilins are substances produced in fruiting bodies of the hallucinogenic mushroom, Gymnopilus junonius. Although, only a few biological effects of gymnopilins on animal tissues have been reported, it is believed that gymnopilins are a key factor of the G. junonius poisoning. In the present study, we found that gymnopilins inhibited ACh-evoked responses in neuronal cell line, PC12 cell, and determine the underlying mechanism. Gymnopilins were purified from wild fruiting bodies of G. junonius collected in Japan. Ca(2+)-imaging revealed that gymnopilins reduced the amplitude of ACh-evoked [Ca(2+)]i rises by about 50% and abolished the ACh responses remaining in the presence of atropine. Gymnopilins greatly reduced the amplitude of [Ca(2+)]i rises evoked by nicotinic ACh receptor agonists, 1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP) and nicotine. In the whole-cell voltage clamp recording, gymnopilins inhibited the DMPP-evoked currents, but did not affect the voltage-gated Ca(2+) channel currents. These results indicate that gymnopilins directly act on nicotinic ACh receptors and inhibit their activity. This biological action of gymnopilins may be one of the causes of the G. junonius poisoning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A Drosophila model for developmental nicotine exposure

    PubMed Central

    2017-01-01

    Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development. PMID:28498868

  19. Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders.

    PubMed

    Graham, A J; Martin-Ruiz, C M; Teaktong, T; Ray, M A; Court, J A

    2002-08-01

    Mapping of nicotinic acetylcholine receptor (nAChR) subtypes and subunits in human brain is far from complete, however it is clear that multiple subunits are present (including alpha3, alpha4, alpha5, alpha6 and alpha7, beta2, alpha3 and beta4) and that these receptors are not solely distributed on neurones, but also on cerebral vasculature and astrocytes. It is important to elucidate subunit composition of receptors associated with different cell types and pathways within the human CNS in terms of potential nicotinic therapy for a range of both developmental and age-related disorders in which nAChR attenuation occurs. Reductions in nAChRs are reported in Alzheimer's and Parkinson's diseases, dementia with Lewy bodies, schizophrenia and autism, but may not be associated with reduced cortical cholinergic innervation observed in vascular dementia or occur at an early stage in Down's syndrome. Changes in nAChR expression in neuropsychiatric disorders appear to be brain region and subtype specific and have been shown in some instances to be associated with pathology and symptomatology. It is likely that deficits in alpha4-containing receptors predominate in cortical areas in Alzheimer's disease and autism, whereas reduction of alpha7 receptors may be more important in schizophrenia. Changes in astrocytic and vascular nAChR expression in neurodegenerative diseases should also be considered. Studies using both animal models and human autopsy tissue suggest that nAChRs can play a role in neuroprotection against age-related pathology. It is possible that the development of nAChR subtype specific drugs may lead to advances in therapy for both age-related and psychiatric disorders.

  20. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    PubMed

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    PubMed Central

    Yu, C.-J.; Debski, E. A.

    2008-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 μM) and bicuculline (25 μM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 μM). Muscarinic receptor-mediated responses, induced by carbachol (100 μM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input. PMID:12676145

  2. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    PubMed

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  3. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  4. Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    PubMed Central

    Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.

    2008-01-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158

  5. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  6. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  7. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    PubMed

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K; Sheppard, Tom D; Millar, Neil S

    2015-10-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9' position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22' position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors.

    PubMed

    Horton, William J; Gissel, Hannah J; Saboy, Jennifer E; Wright, Kenneth P; Stitzel, Jerry A

    2015-07-01

    While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic

  9. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  10. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    PubMed

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  11. Partial agonism at the α7 nicotinic acetylcholine receptor improves attention, impulsive action and vigilance in low attentive rats.

    PubMed

    Hayward, Andrew; Adamson, Lisa; Neill, Joanna C

    2017-04-01

    Inattention is a disabling symptom in conditions such as schizophrenia and attention deficit/hyperactivity disorder. Nicotine can improve attention and vigilance, but is unsuitable for clinical use due to abuse liability. Genetic knockout of the α7 nicotinic acetylcholine receptor (nAChR) induces attention deficits therefore selective agonism may improve attention, without the abuse liability associated with nicotine. The α7 nAChR partial agonist encenicline (formerly EVP-6124) enhances memory in rodents and humans. Here we investigate, for the first time, efficacy of encenicline to improve attention and vigilance in animals behaviourally grouped for low attentive traits in the 5 choice-continuous performance task (5C-CPT). Female Lister Hooded rats were trained to perform the 5C-CPT with a variable stimulus duration (SD). Animals were then grouped based on performance into upper and lower quartiles of d' (vigilance) and accuracy (selective attention), producing high-attentive (HA) and low-attentive (LA) groups. LA animals showed an increase in selective attention and vigilance at 0.3mg/kg encenicline, a reduction in impulsive action (probability of false alarms) and increase in vigilance following 1mg/kg at 0.75sSD. At 1mg/kg, HA animals had reduced selective attention at 0.75sSD and reduced vigilance at 0.75 and 1.25sSD. Improvement of attention, vigilance and impulsive action in LA animals demonstrates that encenicline has pro-attentive properties dependent on baseline levels of performance. Our work suggests that α7 nAChR partial agonism may improve attention particularly in conditions with low attention. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  12. Hyoscine butylbromide potently blocks human nicotinic acetylcholine receptors in SH-SY5Y cells.

    PubMed

    Weiser, Thomas; Just, Stefan

    2009-02-06

    Hyoscine butylbromide (HBB; tradenames: Buscopan/Buscapina is an antispasmodic drug for the treatment of abdominal pain associated with gastrointestinal cramping. As a hyoscine derivative, this compound competitively inhibits muscarinic acetylcholine (ACh) receptors on smooth muscle cells in the gastrointestinal tract. Preliminary investigations suggested that it might also inhibit nicotinic ACh receptors. This study investigated the effect of HBB on nicotinic ACh receptor-mediated membrane currents in SH-SY5Y cells. ACh and nicotine application-induced comparable membrane currents with EC(50) values of 25.9+/-0.6 and 40.1+/-0.4microM, respectively. When coapplied with 100microM ACh, HBB concentration-dependently suppressed currents with an IC(50) value of 0.19+/-0.04microM, and was approximately seven-times more potent than the ganglionic blocker, hexamethonium (IC(50)=1.3+/-0.3microM). Increasing the agonist concentration to 5mM did not affect the amount of block by HBB, which suggests a non-competitive mode of action. These functional in vitro data demonstrate for the first time that HBB blocks neuronal nicotinic ACh receptors in the same concentration range as it inhibits muscarinic ACh receptors. If one hypothesizes that HBB might also affect nicotinic receptors in autonomic neurons in vivo (e. g. in the enteric nervous system), this effect could contribute to its spasmolytic activity.

  13. Antigenic Structure of the Human Muscle Nicotinic Acetylcholine Receptor Main Immunogenic Region

    PubMed Central

    Luo, Jie; Lindstrom, Jon

    2009-01-01

    The main immunogenic region on the α1 subunits of muscle nicotinic acetylcholine receptors provokes half or more of the autoantibodies in myasthenia gravis and its animal model. Many of these autoantibodies depend on the native conformation of the receptor for their ability to bind with high affinity. We mapped this region and explained the conformation-dependence of its epitopes by making chimeras in which sequences of human muscle α1 subunits were replaced in human neuronal α7 subunits or Aplysia acetylcholine binding protein. These chimeras also revealed that the main immunogenic region can play a major role in promoting conformational maturation, and, consequently, assembly of receptor subunits. PMID:19705087

  14. Synthesis and evaluation of [125I]I-TSA as a brain nicotinic acetylcholine receptor alpha7 subtype imaging agent.

    PubMed

    Ogawa, Mikako; Tatsumi, Ryo; Fujio, Masakazu; Katayama, Jiro; Magata, Yasuhiro

    2006-04-01

    Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) alpha7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for alpha7 nAChRs. Therefore we synthesized (R)-3'-(5-[125I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one ([125I]I-TSA) and evaluated its potential for the in vivo detection of alpha7 nAChR in brain. In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [(125)I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 mul, i.c.v.) or nonradioactive I-TSA (50 micromol/kg, i.v.). I-TSA exhibited a high affinity and selectivity for the alpha7 nAChR (K(i) for alpha7 nAChR = 0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (alpha7 nAChR-rich region) and was rather rapid in the cerebellum (alpha7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Despite its high affinity and selectivity, [125I]I-TSA does not appear to be a suitable tracer for in vivo alpha7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

  15. Ligand-Induced Conformational Change in the α7 Nicotinic Receptor Ligand Binding Domain

    PubMed Central

    Henchman, Richard H.; Wang, Hai-Long; Sine, Steven M.; Taylor, Palmer; McCammon, J. Andrew

    2005-01-01

    Molecular dynamics simulations of a homology model of the ligand binding domain of the α7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca2+, to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca2+ appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change. PMID:15665135

  16. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  17. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    ERIC Educational Resources Information Center

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  18. Basolateral Amygdala, Nicotinic Cholinergic Receptors, and Nicotine: pharmacological effects and addiction in animal models and humans.

    PubMed

    Sharp, B M

    2018-05-26

    The amygdala is involved in processing incoming information about rewarding stimuli and emotions that denote danger such as anxiety and fear. Bi-directional neural connections between basolateral amygdala (BLA) and brain regions such as nucleus accumbens, prefrontal cortex, hippocampus and hindbrain regions regulate motivation, cognition, and responses to stress. Altered local regulation of BLA excitability is pivotal to the behavioral disturbances characteristic of posttraumatic stress disorder (PTSD), and relapse to drug use induced by stress. Herein, we review the physiological regulation of BLA by cholinergic inputs, emphasizing the role of BLA nicotinic receptors. We review BLA-dependent effects of nicotine on cognition, motivated behaviors and emotional states, including memory, taking and seeking drugs, and anxiety and fear in humans and animal models. The alterations in BLA activity observed in animal studies inform human behavioral and brain imaging research by enabling a more exact understanding of altered BLA function. Converging evidence indicates that cholinergic signaling from basal forebrain projections to local nicotinic receptors is an important physiological regulator of BLA and that nicotine alters BLA function. In essence, BLA is necessary for: behavioral responses to stimuli that evoke anxiety and fear; reinstatement of cue-induced drug seeking; responding to second-order cues conditioned to abused drugs; reacquisition of amplified nicotine self-administration due to chronic stress during abstinence; and to promote responding for natural reward. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Nicotinic Receptor-Mediated Effects on Appetite and Food Intake

    PubMed Central

    Jo, Young-Hwan; Talmage, David A.; Role, Lorna W.

    2008-01-01

    It is well known, although not well understood, that smoking and eating just do not go together. Smoking is associated with decreased food intake and lower body weight. Nicotine, administered either by smoking or by smokeless routes, is considered the major appetite-suppressing component of tobacco. Perhaps the most renowned example of nicotine's influence on appetite and feeding behavior is the significant weight gain associated with smoking cessation. This article presents an overview of the literature at, or near, the interface of nicotinic receptors and appetite regulation. We first consider some of the possible sites of nicotine's action along the complex network of neural and non-neural regulators of feeding. We then present the hypothesis that the lateral hypothalamus is a particularly important locus of the anorectic effects of nicotine. Finally, we discuss the potential role of endogenous cholinergic systems in motivational feeding, focusing on cholinergic pathways in the lateral hypothalamus. PMID:12436425

  20. Nicotinic receptor-mediated effects on appetite and food intake.

    PubMed

    Jo, Young-Hwan; Talmage, David A; Role, Lorna W

    2002-12-01

    It is well known, although not well understood, that smoking and eating just do not go together. Smoking is associated with decreased food intake and lower body weight. Nicotine, administered either by smoking or by smokeless routes, is considered the major appetite-suppressing component of tobacco. Perhaps the most renowned example of nicotine's influence on appetite and feeding behavior is the significant weight gain associated with smoking cessation. This article presents an overview of the literature at, or near, the interface of nicotinic receptors and appetite regulation. We first consider some of the possible sites of nicotine's action along the complex network of neural and non-neural regulators of feeding. We then present the hypothesis that the lateral hypothalamus is a particularly important locus of the anorectic effects of nicotine. Finally, we discuss the potential role of endogenous cholinergic systems in motivational feeding, focusing on cholinergic pathways in the lateral hypothalamus. Copyright 2002 Wiley Periodicals, Inc.

  1. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Association of the 5′-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia

    PubMed Central

    Stephens, Sarah H.; Logel, Judith; Barton, Amanda; Franks, Alexis; Schultz, Jessica; Short, Margaret; Dickenson, Jane; James, Benjamin; Fingerlin, Tasha E.; Wagner, Brandie; Hodgkinson, Colin; Graw, Sharon; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    Background The α7 neuronal nicotinic acetylcholine receptor subunit gene (CHRNA7) is localized in a chromosomal region (15q14) linked to schizophrenia in multiple independent studies. CHRNA7 was selected as the best candidate gene in the region for a well-documented endophenotype of schizophrenia, the P50 sensory processing deficit, by genetic linkage and biochemical studies. Methods Subjects included Caucasian-Non Hispanic and African-American case-control subjects collected in Denver, and schizophrenic subjects from families in the NIMH Genetics Initiative on Schizophrenia. Thirty-five single nucleotide polymorphisms (SNPs) in the 5′-upstream regulatory region of CHRNA7 were genotyped for association with schizophrenia, and for smoking in schizophrenia. Results The rs3087454 SNP, located at position −1831 bp in the upstream regulatory region of CHRNA7, was significantly associated with schizophrenia in the case-control samples after multiple-testing correction (P = 0.0009, African American; P = 0.013, Caucasian-Non Hispanic); the association was supported in family members. There was nominal association of this SNP with smoking in schizophrenia. Conclusions The data support association of regulatory region polymorphisms in the CHRNA7 gene with schizophrenia. PMID:19181484

  3. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  4. Cigarette toxin 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces experimental pancreatitis through α7 nicotinic acetylcholine receptors (nAChRs) in mice

    PubMed Central

    Alahmari, A. A.; Sreekumar, B.; Patel, V.; Ashat, M.; Alexandre, M.; Uduman, A. K.; Akinbiyi, E. O.; Ceplenski, A.; Shugrue, C. A.; Kolodecik, T. R.; Messenger, S. W.; Groblewski, G. E.; Gorelick, F. S.

    2018-01-01

    Clinical studies have shown that cigarette smoking is a dose-dependent and independent risk factor for acute pancreatitis. Cigarette smoke contains nicotine which can be converted to the potent receptor ligand and toxin, NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Previously, we have shown that NNK induces premature activation of pancreatic zymogens in rats, an initiating event in pancreatitis, and this activation is prevented by pharmacologic inhibition of nicotinic acetylcholine receptors (nAChR). In this study, we determined whether NNK mediates pancreatitis through the α7 isoform of nAChR using α7nAChR knockout mice. PCR analysis confirmed expression of non-neuronal α7nAChR in C57BL/6 (WT) mouse and human acinar cells. NNK treatment stimulated trypsinogen activation in acini from WT but not α7nAChR-/- mice. NNK also stimulated trypsinogen activation in human acini. To further confirm these findings, WT and α7nAChR-/- mice were treated with NNK in vivo and markers of pancreatitis were measured. As observed in acini NNK treatment induced trypsinogen activation in WT but not α7nAChR-/- mice. NNK also induced other markers of pancreatitis including pancreatic edema, vacuolization and pyknotic nuclei in WT but not α7nAChR-/- animals. NNK treatment led to increased neutrophil infiltration, a marker of inflammation, in WT mice and to a significantly lesser extent in α7nAChR-/- mice. We also examined downstream targets of α7nAChR activation and found that calcium and PKC activation are involved down stream of NNK stimulation of α7nAChR. In this study we used genetic deletion of the α7nAChR to confirm our previous inhibitor studies that demonstrated NNK stimulates pancreatitis by activating this receptor. Lastly, we demonstrate that NNK can also stimulate zymogen activation in human acinar cells and thus may play a role in human disease. PMID:29870540

  5. Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta.

    PubMed

    Tsuneki, H; Klink, R; Léna, C; Korn, H; Changeux, J P

    2000-07-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in the midbrain ascending dopaminergic system, a target of many addictive drugs. Here we assessed the intracellular Ca2+ level by imaging fura-2-loaded cells in substantia nigra pars compacta in mouse brain slices, and we examined the influence on this level of prolonged exposures to nicotine using mice lacking the nAChR beta2-subunit. In control cells, superfusion with nicotine (10-100 microM) caused a long-lasting rise of intracellular Ca2+ level which depended on extracellular Ca2+. This nicotinic response was almost completely absent in beta2-/- mutant mice, leaving a small residual response to a high concentration (100 microM) of nicotine which was inhibited by the alpha7-subunit-selective antagonist, methyllycaconitine. Conversely, the alpha7-subunit-selective agonist choline (10 mM) caused a methyllycaconitine-sensitive increase in intracellular Ca2+ level both in wild-type and beta2-/- mutant mice. Nicotine-elicited Ca2+ mobilization was reduced by the Na+ channel blocker tetrodotoxin (TTX) and by T-type Ca2+ channel blocking agents, whereas the choline-elicited Ca2+ increase was insensitive to TTX. Neither nicotine nor choline produced Ca2+ increase following inhibition of the release of Ca2+ from intracellular stores by dantrolene. These results demonstrate that in nigral dopaminergic neurons, nicotine can elicit Ca2+ mobilization via activation of two distinct nAChR subtypes: that of beta2-subunit-containing nAChR followed by activation of Na+ channel and T-type Ca2+ channels, and/or activation of alpha7-subunit-containing nAChR. The Ca2+ influx due to nAChR activation is subsequently amplified by the recruitment of intracellular Ca2+ stores. This Ca2+ mobilization may possibly contribute to the long-term effects of nicotine on the dopaminergic system.

  6. Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety.

    PubMed

    Labarca, C; Schwarz, J; Deshpande, P; Schwarz, S; Nowak, M W; Fonck, C; Nashmi, R; Kofuji, P; Dang, H; Shi, W; Fidan, M; Khakh, B S; Chen, Z; Bowers, B J; Boulter, J; Wehner, J M; Lester, H A

    2001-02-27

    Knock-in mice were generated that harbored a leucine-to-serine mutation in the alpha4 nicotinic receptor near the gate in the channel pore. Mice with intact expression of this hypersensitive receptor display dominant neonatal lethality. These mice have a severe deficit of dopaminergic neurons in the substantia nigra, possibly because the hypersensitive receptors are continuously activated by normal extracellular choline concentrations. A strain that retains the neo selection cassette in an intron has reduced expression of the hypersensitive receptor and is viable and fertile. The viable mice display increased anxiety, poor motor learning, excessive ambulation that is eliminated by very low levels of nicotine, and a reduction of nigrostriatal dopaminergic function upon aging. These knock-in mice provide useful insights into the pathophysiology of sustained nicotinic receptor activation and may provide a model for Parkinson's disease.

  7. Role of adenosine A{sub 2A} receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; El-gowilly, Sahar M.; Fouda, Mohamed A.

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 {mu}g/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 {mu}g/kg i.v.) dose-dependently reduced BRS{sub SNP} in contrast to no effect on BRS{submore » PE}. BRS{sub SNP} was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS{sub SNP} were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS{sub SNP} was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A{sub 2A} antagonist), or VUF5574 (A{sub 3} antagonist). In contrast, BRS{sub SNP} was preserved after blockade of A{sub 1} (DPCPX) or A{sub 2B} (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS{sub SNP} depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A{sub 2A} receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms

  8. Different effects of ionotropic and metabotropic glutamate receptor antagonists on attention and the attentional properties of nicotine.

    PubMed

    Quarta, Davide; Naylor, Christopher G; Morris, Hannah V; Patel, Swital; Genn, Rachel F; Stolerman, Ian P

    2007-09-01

    Distinct lines of evidence indicate that glutamate plays a primary role in modulating cognitive functions. Notably, competitive glutamate receptor antagonists acting at ionotropic N-methyl-d-aspartate (NMDA) or metabotropic glutamate 5 (mGlu5) receptors impair cognitive performance. Conversely, nicotine and other psychostimulants stimulate glutamatergic mechanisms and can act as cognitive enhancers. Hence we analysed the role of glutamate in performance of an attentional task and in nicotine-induced enhancement of attention by using the rodent five-choice serial reaction time task (5-CSRTT). Rats were trained to criterion performance and were then pre-dosed with either vehicle, the NMDA receptor antagonist (+)3-(2-carboxypiperazin-4-propyl)-1-propenyl-1-phosphonic acid (CPP, 0.3-2.0 mg/kg) or the mGlu5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 1.0-9.0 mg/kg) and challenged with nicotine (0.2 mg/kg). Nicotine improved attentional performance, an effect that was weakened by doses of CPP that themselves had little impact on performance; importantly, CPP dose-dependently blunted the ability of nicotine to improve response accuracy, the major measure of signal detection in the paradigm. MPEP dose-dependently impaired signal detection under conditions with a high attentional load, an effect that was reversed by nicotine; thus, MPEP did not block nicotine-induced attentional enhancement. Co-administration of either CPP or MPEP with nicotine also produced a general slowing of performance characterised by increases in omission errors and response latencies and reduced anticipatory responding. It is concluded that activation of NMDA receptors may be an important determinant of the effects of nicotine in the 5-CSRTT. Stimulation of nicotinic receptors may also reverse attentional deficits associated with the impaired function of the glutamate network.

  9. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease?

    PubMed Central

    2013-01-01

    Objectives The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. Introduction Acetylcholine can influence the immune system via the ‘cholinergic anti-inflammatory pathway’. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. Methods A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the ‘cholinergic anti-inflammatory pathway’ in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. Conclusion The evidence suggests a functional nonneuronal ‘cholinergic anti-inflammatory pathway’ may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease. PMID:22777144

  10. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    PubMed

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  11. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  12. Two distinct classes of functional α7-containing nicotinic receptor on rat superior cervical ganglion neurons

    PubMed Central

    Cuevas, Javier; Roth, Adelheid L; Berg, Darwin K

    2000-01-01

    Nicotinic acetylcholine receptors (nAChRs) that bind α-bungarotoxin (αBgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques.Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by αBgt (50 nm). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh.Nanomolar concentrations of methyllycaconitine blocked the αBgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-α7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of α7-containing receptor7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons.A second class of functional α7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by αBgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to α7-nAChRs in a number of other neuronal cell types.Experiments measuring the dissociation rate of 125I-labelled αBgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of αBgt-sensitive response.These results indicate that rat SCG neurons express two types of functional α7-nAChR, differing in pharmacology, desensitization and reversibility of αBgt blockade. PMID:10856125

  13. alpha 4 beta 2 subunit combination specific pharmacology of neuronal nicotinic acetylcholine receptors in N1E-115 neuroblastoma cells.

    PubMed

    Zwart, R; Abraham, D; Oortgiesen, M; Vijverberg, H P

    1994-08-22

    Pharmacological characteristics of native neuronal nicotinic acetylcholine receptor-mediated ion currents in mouse N1E-115 neuroblastoma cells have been investigated by superfusion of voltage clamped cells with known concentrations of the agonists acetylcholine, nicotine and cytisine, and the antagonists alpha-bungarotoxin and neuronal bungarotoxin. The sensitivity of the nicotinic acetylcholine receptor for agonists followed the agonist potency rank-order: nicotine approximately acetylcholine > cytisine. The EC50 values of acetylcholine and nicotine are 78 microM and 76 microM, respectively. Equal concentrations of acetylcholine and nicotine induce inward currents with approximately the same peak amplitude whereas cytisine induces much smaller inward currents. Acetylcholine-induced currents are unaffected by high concentrations of alpha-bungarotoxin. Conversely, at 10 and 90 nM neuronal bungarotoxin reduces the amplitude of the 1 mM acetylcholine-induced inward current to 47% and 11% of control values, respectively. Both the agonist potency rank-order and the differential sensitivity to snake toxins of nicotinic receptors in N1E-115 cells are consistent with the known pharmacological profile of alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes and distinct from those of all other nicotinic acetylcholine receptors of known functional subunit compositions. All data indicate that the native nicotinic acetylcholine receptor in N1E-115 cells is an assembly of alpha 4 and beta 2 subunits, the putative major subtype of nicotinic acetylcholine receptor in the brain.

  14. A Human-Specific α7-Nicotinic Acetylcholine Receptor Gene in Human Leukocytes: Identification, Regulation and the Consequences of CHRFAM7A Expression

    PubMed Central

    Costantini, Todd W; Dang, Xitong; Yurchyshyna, Maryana V; Coimbra, Raul; Eliceiri, Brian P; Baird, Andrew

    2015-01-01

    The human genome contains a variant form of the α7-nicotinic acetylcholine receptor7nAChR) gene that is uniquely human. This CHRFAM7A gene arose during human speciation and recent data suggests that its expression alters ligand tropism of the normally homopentameric human α7-AChR ligand-gated cell surface ion channel that is found on the surface of many different cell types. To understand its possible significance in regulating inflammation in humans, we investigated its expression in normal human leukocytes and leukocyte cell lines, compared CHRFAM7A expression to that of the CHRNA7 gene, mapped its promoter and characterized the effects of stable CHRFAM7A overexpression. We report here that CHRFAM7A is highly expressed in human leukocytes but that the levels of both CHRFAM7A and CHRNA7 mRNAs were independent and varied widely. To this end, mapping of the CHRFAM7A promoter in its 5′-untranslated region (UTR) identified a unique 1-kb sequence that independently regulates CHRFAM7A gene expression. Because overexpression of CHRFAM7A in THP1 cells altered the cell phenotype and modified the expression of genes associated with focal adhesion (for example, FAK, P13K, Akt, rho, GEF, Elk1, CycD), leukocyte transepithelial migration (Nox, ITG, MMPs, PKC) and cancer (kit, kitL, ras, cFos cyclinD1, Frizzled and GPCR), we conclude that CHRFAM7A is biologically active. Most surprisingly however, stable CHRFAM7A overexpression in THP1 cells upregulated CHRNA7, which, in turn, led to increased binding of the specific α7nAChR ligand, bungarotoxin, on the THP1 cell surface. Taken together, these data confirm the close association between CHRFAM7A and CHRNA7 expression, establish a biological consequence to CHRFAM7A expression in human leukocytes and support the possibility that this human-specific gene might contribute to, and/or gauge, a human-specific response to inflammation. PMID:25860877

  15. Alpha4 containing nicotinic receptors are positioned to mediate postsynaptic effects on serotonin neurons in the rat dorsal raphe nucleus

    PubMed Central

    Commons, Kathryn G.

    2008-01-01

    Nicotinic acetylcholine receptors containing the alpha4 and beta2 subunits constitute the most abundant high-affinity binding site of nicotine in the brain and are critical for the addictive qualities of nicotine. Serotonin neurotransmission is thought to be an important contributor to nicotine addiction. Therefore in this study it was examined how alpha4-containing receptors are positioned to modulate the function of serotonin neurons using ultrastructural analysis of immunolabeling for the alpha4 receptor subunit in the dorsal raphe nucleus (DR), a primary source of forebrain serotonin in the rat. Of 150 profiles labeled for the alpha4 subunit, 140 or 93% consisted of either soma or dendrites, these were often small-caliber (distal) dendrites <1.5 um in diameter (63/150 or 42%). The majority (107/150 or 71%) of profiles containing labeling for alpha4 were dually labeled for the synthetic enzyme for serotonin, tryptophan hydroxylase (TPH). Within dendrites immunogold labeling for alpha4 was present on the plasma membrane or near postsynaptic densities. However, labeling for alpha4 was commonly localized to the cytoplasmic compartment often associated with smooth endoplasmic reticulum, plausibly representing receptors in transit to or from the plasma membrane. Previous studies have suggested that nicotine presynaptically regulates activity onto serotonin neurons, however alpha4 immunolabeling was detected in only 10 axons in the DR or 7% of profiles sampled. This finding suggest that alpha4 containing receptors are minor contributors to presynaptic regulation of synaptic activity onto serotonin neurons, but rather alpha4 containing receptors are positioned to influence serotonin neurons directly at postsynaptic sites. PMID:18403129

  16. Second-By-Second Analysis of Alpha 7 Nicotine Receptor Regulation of Glutamate Release in the Prefrontal Cortex of Awake Rats

    PubMed Central

    Konradsson-Geuken, Åsa; Gash, Clelland R.; Alexander, Kathleen; Pomerleau, Francois; Huettl, Peter; Gerhardt, Greg A.; Bruno, John P.

    2009-01-01

    Summary These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the α7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intra-cortical infusions of the non-selective nicotinic agonist nicotine (1.0 μg/0.4 μL) or the selective α7 agonist choline (2.0 mM/0.4 μL). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pre-treated with the α7 antagonist, α-bungarotoxin (α-BGT, 10 μM) or kynurenine (10 μM) the precursor of the astrocyte-derived, negative allosteric α7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 ± 0.6 μM) that were cleared to baseline levels in 493 ± 80 sec. Pre-treatment with α-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 ± 0.9 μM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 ± 6 sec) and pre-treatment with α-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both α7 – and non-α7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on α7 full and partial agonists as therapeutic agents in the treatment of cortically-mediated cognitive deficits in schizophrenia. PMID:19637277

  17. α4-Containing nicotinic receptors contribute to the effects of perinatal nicotine on ventilatory and metabolic responses of neonatal mice to ambient cooling.

    PubMed

    Avraam, Joanne; Cummings, Kevin J; Frappell, Peter B

    2016-10-01

    Among numerous studies, perinatal nicotine exposure (PN) has had variable effects on respiratory control in the neonatal period. The effects of acute nicotine exposure on breathing are largely mediated by α4-containing nicotine acetylcholine receptors (nAChRs). These receptors are also involved in thermoregulatory responses induced by both acetylcholine and nicotine. We therefore hypothesized that α4-containing nAChRs would mediate the effects of PN on the metabolic and ventilatory responses of neonates to modest cold exposure. Wild-type (WT) and α4 knockout (KO) mice were exposed to 6 mg·kg -1 ·day -1 nicotine or vehicle from embryonic day 14 At postnatal day (P) 7 mice were cooled from an ambient temperature (T A ) of 32 to 20°C. Body temperature (T B ), rate of O 2 consumption (V̇o 2 ), ventilation (V̇e), respiratory frequency (F B ), and tidal volume (V T ) were continually monitored. An absence of α4 had no effect on the metabolic response to ambient cooling. Surprisingly, PN selectively increased the metabolic response of KO pups to cooling. Regardless, KO pups became hypothermic to the same degree as WT pups, and for both genotypes the drop in T B was exacerbated by PN. PN led to hyperventilation in WT pups caused by an increase in V T , an effect that was absent in α4 KO littermates. We show that PN interacts with α4-containing nAChRs in unique ways to modulate the control of breathing and thermoregulation in the early postnatal period. Copyright © 2016 the American Physiological Society.

  18. Tritiated-nicotine- and /sup 125/I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, P.B.; Hamill, G.S.; Nadi, N.S.

    1986-09-15

    The cholinergic innervation of the interpeduncular nucleus (IPN) is wholly extrinsic and is greatly attenuated by bilateral habenular destruction. We describe changes in the labeling of putative nicotinic receptors within this nucleus at 3, 5, or 11 days after bilateral habenular lesions. Adjacent tissue sections of the rat IPN were utilized for /sup 3/H-nicotine and /sup 125/I-alpha-bungarotoxin (/sup 125/I-BTX) receptor autoradiography. Compared to sham-operated controls, habenular destruction significantly reduced autoradiographic /sup 3/H-nicotine labeling in rostral (-25%), intermediate (-13%), and lateral subnuclei (-36%). Labeling in the central subnucleus was unchanged. Loss of labeling was maximal at the shortest survival time (3more » days) and did not change thereafter. In order to establish whether this loss was due to a reduction in the number or the affinity of /sup 3/H-nicotine-binding sites, a membrane assay was performed on microdissected IPN tissue from rats that had received surgery 3 days previously. Bilateral habenular lesions produced a 35% reduction of high-affinity /sup 3/H-nicotine-binding sites, with no change in binding affinity. Bilateral habenular lesions reduced /sup 125/I-BTX labeling in the intermediate subnuclei, and a slight increase occurred in the rostral subnucleus. In the lateral subnuclei, /sup 125/I-BTX labeling was significantly reduced (27%) at 3 days but not at later survival times. In view of the known synaptic morphology of the habenulointerpeduncular tract, it is concluded that a subpopulation of /sup 3/H-nicotine binding sites within the IPN is located on afferent axons and/or terminals. This subpopulation, located within rostral, intermediate, and lateral subnuclei, may correspond to presynaptic nicotinic cholinergic receptors. Sites that bind /sup 125/I-BTX may include a presynaptic subpopulation located in the lateral and possibly the intermediate subnuclei.« less

  19. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor- targeted therapeutics: advantages and limitations

    PubMed Central

    Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610

  20. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  2. Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate.

    PubMed

    Eldefrawi, M E; Schweizer, G; Bakry, N M; Valdes, J J

    1988-01-01

    The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-alpha-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh- or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.

  3. Nicotine modulation of adolescent dopamine receptor signaling and hypothalamic peptide response

    PubMed Central

    Mojica, Celina Y.; Dao, Jasmin M.; Yuan, Menglu; Loughlin, Sandra E.; Leslie, Frances M.

    2013-01-01

    Adolescence is a sensitive developmental period for limbic and dopamine systems that coincides with the typical age for onset of tobacco use. We have previously shown that a 4-day, low-dose nicotine (0.06 mg/kg) pretreatment enhances locomotor and penile response to the D2-like agonist, quinpirole (0.4 mg/kg), in adolescent but not adult rats. The present study is designed to determine mechanisms underlying this effect. Nicotine enhancement of adolescent quinpirole-induced locomotion was mediated by D2 receptors (D2Rs) since it was blocked by the D2R antagonist, L-741,626, but not by the D3R and D4R antagonists, NGB 2904 and L-745,870. Enhancement of quinpirole-induced erectile response was blocked by both L-741,626 and NGB 2904, indicating involvement of D3Rs. Whereas D2R binding was unaffected by adolescent nicotine pretreatment, effector coupling in the striatum was increased, as determined by GTPγS binding. Nicotine pretreatment enhanced quinpirole-induced c-fos mRNA expression in the hypothalamic paraventricular and supraoptic nuclei in adolescents only. Adolescent nicotine pretreatment enhanced c-fos mRNA expression in corticotropin releasing factor (CRF) cells of the paraventricular nucleus, and enhancement of penile erection was blocked by the CRF-1 receptor antagonist, CP 376,396. These findings suggest that adolescent dopamine and CRF systems are vulnerable to alteration by nicotine. This is the first evidence for a role of CRF in adolescent erectile response. PMID:24157491

  4. Cigarette Use and Striatal Dopamine D2/3 Receptors: Possible Role in the Link between Smoking and Nicotine Dependence.

    PubMed

    Okita, Kyoji; Mandelkern, Mark A; London, Edythe D

    2016-11-01

    Cigarette smoking induces dopamine release in the striatum, and smoking- or nicotine-induced ventral striatal dopamine release is correlated with nicotine dependence. Smokers also exhibit lower dopamine D2/3 receptor availability in the dorsal striatum than nonsmokers. Negative correlations of striatal dopamine D2/3 receptor availability with smoking exposure and nicotine dependence, therefore, might be expected but have not been tested. Twenty smokers had positron emission tomography scans with [ 18 F]fallypride to measure dopamine D2/3 receptor availability in ventral and dorsal regions of the striatum and provided self-report measures of recent and lifetime smoking and of nicotine dependence. As reported before, lifetime smoking was correlated with nicotine dependence. New findings were that ventral striatal dopamine D2/3 receptor availability was negatively correlated with recent and lifetime smoking and also with nicotine dependence. The results suggest an effect of smoking on ventral striatal D2/3 dopamine receptors that may contribute to nicotine dependence. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  5. Impacts of cannabinoid receptor ligands on nicotine- and chronic mild stress-induced cognitive and depression-like effects in mice.

    PubMed

    Pekala, Karolina; Michalak, Agnieszka; Kruk-Slomka, Marta; Budzynska, Barbara; Biala, Grazyna

    2018-07-16

    Taking into account the rather frequent concomitance of nicotine abuse and stress, we aimed to research memory- and depression-related effects of nicotine administration in combination with chronic mild unpredictable stress (CMUS) in mice and an involvement of the endocannabinoid system through CB1 and CB2 receptors. Mice were submitted to the CMUS for 4 weeks. Effects on depression-like behaviors and cognition, exerted by a combined administration of CB1, i.e., Oleamide (2.5, 5.0 mg/kg), AM 251 (0.1, 0.25 mg/kg) and CB2, i.e., JWH 133 (0.5, 2.0 mg/kg), AM 630 (0.25, 2.0 mg/kg) receptor ligands and nicotine (0.05, 0.1, 0.2 and 0.5 mg/kg), were then studied in stressed and unstressed mice by the forced swimming test and the passive avoidance paradigm, respectively. The results revealed that the CMUS-exposed mice exhibited depression-like behaviors and memory disturbances, while both effects were alleviated by nicotine. CB1 receptor ligands decreased antidepressive and cognitive (the latter for CB1 receptor antagonist only) effects of subchronic nicotine administration in stressed mice. CB1 and CB2 receptor antagonists exerted themselves some procognitive effects in those mice. Regarding the unstressed mice, CB1 and CB2 receptor ligands reversed the antidepressive effects of subchronic nicotine administration, while nicotine, in an ineffective dose, co-administered with CB2 receptor ligands, improved cognition. We confirmed the role of the two main subtypes of cannabinoid receptors, termed CB1 and CB2, on stress- and nicotine-related behavioral changes in mice. Our study has contributed to the understanding of the mechanisms involved in stress- and nicotine-induced disorders, such as anhedonia and memory disturbances. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effects of chronic sazetidine-A, a selective α4β2 neuronal nicotinic acetylcholine receptors desensitizing agent on pharmacologically-induced impaired attention in rats.

    PubMed

    Rezvani, Amir H; Cauley, Marty; Xiao, Yingxian; Kellar, Kenneth J; Levin, Edward D

    2013-03-01

    Nicotine and nicotinic agonists have been shown to improve attentional function. Nicotinic receptors are easily desensitized, and all nicotinic agonists are also desensitizing agents. Although both receptor activation and desensitization are components of the mechanism that mediates the overall effects of nicotinic agonists, it is not clear how each of the two opposed actions contributes to attentional improvements. Sazetidine-A has high binding affinity at α4β2 nicotinic receptors and causes a relatively brief activation followed by a long-lasting desensitization of the receptors. Acute administration of sazetidine-A has been shown to significantly improve attention by reversing impairments caused by the muscarinic cholinergic antagonist scopolamine and the NMDA glutamate antagonist dizocilpine. In the current study, we tested the effects of chronic subcutaneous infusion of sazetidine-A (0, 2, or 6 mg/kg/day) on attention in Sprague-Dawley rats. Furthermore, we investigated the effects of chronic sazetidine-A treatment on attentional impairment induced by an acute administration of 0.02 mg/kg scopolamine. During the first week period, the 6-mg/kg/day sazetidine-A dose significantly reversed the attentional impairment induced by scopolamine. During weeks 3 and 4, the scopolamine-induced impairment was no longer seen, but sazetidine-A (6 mg/kg/day) significantly improved attentional performance on its own. Chronic sazetidine-A also reduced response latency and response omissions. This study demonstrated that similar to its acute effects, chronic infusions of sazetidine-A improve attentional performance. The results indicate that the desensitization of α4β2 nicotinic receptors with some activation of these receptors may play an important role in improving effects of sazetidine-A on attention.

  7. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  8. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  9. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    PubMed

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  10. Sensory Gating and Alpha-7 Nicotinic Receptor Gene Allelic Variants in Schizoaffective Disorder, Bipolar Type

    PubMed Central

    Martin, Laura F.; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R.; Freedman, Robert; Olincy, Ann

    2011-01-01

    Objectives Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. Methods P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects’ DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Results Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. Conclusions In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia. PMID:17192894

  11. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus.

    PubMed

    Ray, M A; Graham, A J; Lee, M; Perry, R H; Court, J A; Perry, E K

    2005-08-01

    The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.

  12. The α7 nicotinic acetylcholine receptor: A mediator of pathogenesis and therapeutic target in autism spectrum disorders and Down syndrome.

    PubMed

    Deutsch, Stephen I; Burket, Jessica A; Urbano, Maria R; Benson, Andrew D

    2015-10-15

    Currently, there are no medications that target core deficits of social communication and restrictive, repetitive patterns of behavior in persons with autism spectrum disorders (ASDs). Adults with Down syndrome (DS) display a progressive worsening of adaptive functioning, which is associated with Alzheimer's disease (AD)-like histopathological changes in brain. Similar to persons with ASDs, there are no effective medication strategies to prevent or retard the progressive worsening of adaptive functions in adults with DS. Data suggest that the α7-subunit containing nicotinic acetylcholine receptor7nAChR) is implicated in the pathophysiology and serves as a promising therapeutic target of these disorders. In DS, production of the amyloidogenic Aβ1-42 peptide is increased and binds to the α7nAChR or the lipid milieu associated with this receptor, causing a cascade that results in cytotoxicity and deposition of amyloid plaques. Independently of their ability to inhibit the complexing of Aβ1-42 with the α7nAChR, α7nAChR agonists and positive allosteric modulators (PAMs) also possess procognitive and neuroprotective effects in relevant in vivo and in vitro models. The procognitive and neuroprotective effects of α7nAChR agonist interventions may be due, at least in part, to stimulation of the PI3K/Akt signaling cascade, cross-talk with the Wnt/β-catenin signaling cascade and both transcriptional and non-transcriptional effects of β-catenin, and effects of transiently increased intraneuronal concentrations of Ca(2+) on metabolism and the membrane potential. Importantly, α7nAChR PAMs are particularly attractive medication candidates because they lack intrinsic efficacy and act only when and where endogenous acetylcholine is released or choline is generated. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits

    PubMed Central

    Vieira-Brock, Paula L.; McFadden, Lisa M.; Nielsen, Shannon M.; Smith, Misty D.; Hanson, Glen R.

    2015-01-01

    Background: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Methods: Adolescent or adult male Sprague-Dawley rats received either nicotine water (10–75 μg/mL) or tap water for several weeks. Methamphetamine (4×7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Results: Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Conclusions: Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which

  14. Rescue of Amyloid-Beta-Induced Inhibition of Nicotinic Acetylcholine Receptors by a Peptide Homologous to the Nicotine Binding Domain of the Alpha 7 Subtype

    PubMed Central

    Trujillo, Cleber A.; Sathler, Luciana B.; Juliano, Maria A.; Juliano, Luiz; Ulrich, Henning; Ferreira, Sergio T.

    2013-01-01

    Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD. PMID:23894286

  15. Nicotinic receptor involvement in antinociception induced by exposure to cigarette smoke.

    PubMed

    Simons, Christopher T; Cuellar, Jason M; Moore, Justin A; Pinkerton, Kent E; Uyeminami, Dale; Carstens, Mirela Iodi; Carstens, E

    2005-12-02

    Direct exposure of rats to tobacco smoke induces antinociception. We presently investigated if this antinociception is mediated via nicotinic and/or mu-opioid receptors. Adult male rats were surgically implanted with Alzet osmotic minipumps that delivered either saline (control), the nicotinic antagonist mecamylamine, or the opiate antagonist naltrexone (3 mg/kg/day i.v. for 21 days). Nocifensive responses were assessed on alternate days using tail-flick reflex latency (TFL) over a 3-week period. During the second week, the rats were exposed to concentrated cigarette smoke in an environmental chamber for 6 h/day for 5 consecutive days; a control group was similarly exposed to filtered cigarette smoke. Rats receiving mecamylamine and naltrexone exhibited a significant weight loss after the first day of infusion. All treatment groups additionally exhibited significant weight loss during exposure to unfiltered or filtered smoke. The saline group exhibited significant antinociception on the first day of smoke exposure with rapid development of tolerance. The mecamylamine and naltrexone groups did not exhibit significant antinociception. Controls exposed to filtered smoke (with approximately 50% lower nicotine concentration) also exhibited significant analgesia on the first exposure day with rapid development of tolerance. Exposure to high levels of cigarette smoke, or to filtered smoke with a lower nicotine concentration in the vapor phase, induces antinociception with rapid development of tolerance. The antinociceptive effect appears to be mediated via nicotinic and mu-opioid receptors.

  16. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor.

    PubMed

    Otvos, Reka A; Mladic, Marija; Arias-Alpizar, Gabriela; Niessen, Wilfried M A; Somsen, Govert W; Smit, August B; Kool, Jeroen

    2016-06-01

    The α7-nicotinic acetylcholine receptor7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer's disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca(2+))-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives. © 2016 Society for Laboratory Automation and Screening.

  17. Nicotine and ethanol cooperate to enhance ventral tegmental area AMPA receptor function via α6-containing nicotinic receptors.

    PubMed

    Engle, Staci E; McIntosh, J Michael; Drenan, Ryan M

    2015-04-01

    Nicotine + ethanol co-exposure results in additive and/or synergistic effects in the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine (DA) pathway, but the mechanisms supporting this are unclear. We tested the hypothesis that nAChRs containing α6 subunits (α6* nAChRs) are involved in the response to nicotine + ethanol co-exposure. Exposing VTA slices from C57BL/6 WT animals to drinking-relevant concentrations of ethanol causes a marked enhancement of α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) receptor (AMPAR) function in VTA neurons. This effect was sensitive to α-conotoxin MII (an α6β2* nAChR antagonist), suggesting that α6* nAChR function is required. In mice expressing hypersensitive α6* nAChRs (α6L9S mice), we found that lower concentrations (relative to C57BL/6 WT) of ethanol were sufficient to enhance AMPAR function in VTA neurons. Exposure of live C57BL/6 WT mice to ethanol also produced AMPAR functional enhancement in VTA neurons, and studies in α6L9S mice strongly suggest a role for α6* nAChRs in this response. We then asked whether nicotine and ethanol cooperate to enhance VTA AMPAR function. We identified low concentrations of nicotine and ethanol that were capable of strongly enhancing VTA AMPAR function when co-applied to slices, but that did not enhance AMPAR function when applied alone. This effect was sensitive to both varenicline (an α4β2* and α6β2* nAChR partial agonist) and α-conotoxin MII. Finally, nicotine + ethanol co-exposure also enhanced AMPAR function in VTA neurons from α6L9S mice. Together, these data identify α6* nAChRs as important players in the response to nicotine + ethanol co-exposure in VTA neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sex differences and the role of dopamine receptors in the reward-enhancing effects of nicotine and bupropion.

    PubMed

    Barrett, Scott T; Geary, Trevor N; Steiner, Amy N; Bevins, Rick A

    2017-01-01

    Nicotine and bupropion have been demonstrated to enhance the value of other reinforcers, and this may partially account for nicotine reward and dependence. Evidence suggests that the sexes differ in their sensitivity to the primary and secondary reinforcing effects of nicotine and nicotine-associated stimuli. Whether the sexes also differ in sensitivity to the reward-enhancing effects of nicotine (and bupropion) is yet unclear. The present study evaluated potential sex differences in the enhancement effects of nicotine and bupropion using a reinforcer demand approach. Furthermore, we sought to investigate the role that D1- and D2-type dopamine receptors play in the reward-enhancing effects of nicotine and bupropion. Demand for sensory reinforcement was assessed in male and female rats responding on a progression of fixed ratio schedules. The effects of nicotine and 10 or 20 mg/kg bupropion on reinforcer demand were assessed within subjects. Subsequently, the effects of SCH-23390 and eticlopride were assessed on the enhancing effects of nicotine and bupropion on progressive ratio responding. Nicotine and bupropion enhanced demand metrics of reinforcement value in both sexes. Females were more sensitive to the enhancement effects of bupropion assessed by reinforcer demand and progressive ratio performance. D2-like dopamine receptor antagonism by eticlopride attenuated the enhancement effects of bupropion, but not of nicotine. Nicotine and bupropion both enhance reinforcement value in both sexes, though females may be more sensitive to the reward-enhancing effects of bupropion. D2- and possibly D1-type receptors appear to be involved in the reward-enhancing effects of bupropion, but not necessarily nicotine.

  19. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors.

    PubMed

    Mateos, B; Borcel, E; Loriga, R; Luesu, W; Bini, V; Llorente, R; Castelli, M P; Viveros, M-P

    2011-12-01

    We have analysed the long-term effects of adolescent (postnatal day 28-43) exposure of male and female rats to nicotine (NIC, 1.4 mg/kg/day) and/or the cannabinoid agonist CP 55,940 (CP, 0.4 mg/kg/day) on the following parameters measured in the adulthood: (1) the memory ability evaluated in the object location task (OL) and in the novel object test (NOT); (2) the anxiety-like behaviour in the elevated plus maze; and (3) nicotinic and CB(1) cannabinoid receptors in cingulated cortex and hippocampus. In the OL, all pharmacological treatments induced significant decreases in the DI of females, whereas no significant effects were found among males. In the NOT, NIC-treated females showed a significantly reduced DI, whereas the effect of the cannabinoid agonist (a decrease in the DI) was only significant in males. The anxiety-related behaviour was not changed by any drug. Both, nicotine and cannabinoid treatments induced a long-lasting increase in CB(1) receptor activity (CP-stimulated GTPγS binding) in male rats, and the nicotine treatment also induced a decrease in nicotinic receptor density in the prefrontal cortex of females. The results show gender-dependent harmful effects of both drugs and long-lasting changes in CB(1) and nicotinic receptors.

  20. Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices.

    PubMed

    Albiñana, E; Luengo, J G; Baraibar, A M; Muñoz, M D; Gandía, L; Solís, J M; Hernández-Guijo, J M

    2017-06-01

    Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.

  1. Nicotine receptor partial agonists for smoking cessation.

    PubMed

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2008-07-16

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). Varenicline was developed as a nicotine receptor partial agonist from cytisine, a drug widely used in central and eastern Europe for smoking cessation. The first trial reports of varenicline were released in 2006, and further trials have now been published or are currently are underway. The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('varenicline' or 'cytisine' or 'Tabex' or 'nicotine receptor partial agonist') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, PsycINFO and CINAHL using MeSH terms and free text, and we contacted authors of trial reports for additional information where necessary. The latest search was in March 2008. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data in duplicate on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow up. The main outcome measured was abstinence from smoking after at least six months from the beginning of treatment. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we performed meta-analysis to produce a risk ratio, using the Mantel-Haenszel fixed-effect model. We found

  2. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice.

    PubMed

    Sadigh-Eteghad, S; Talebi, M; Mahmoudi, J; Babri, S; Shanehbandi, D

    2015-07-09

    Agonists of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as therapeutic approaches for managing cognitive deficits in Alzheimer's disease (AD). Present study was designed to evaluate the effect of α7 nAChR selective activation by PHA-543613 (PHA) on beta-amyloid (Aβ)25-35-mediated cognitive deficits in mice. For this purpose, PHA (1mg/kg, i.p.), a selective α7 nAChR agonist, and galantamine (Gal) (3mg/kg, s.c.), an acetylcholine-esterase inhibitor (AChEI) effects on α7 nAChR were tested in Aβ25-35-received (intracerebroventricular, 10 nmol) mice model of AD. Methyllycaconitine (MLA) (1mg/kg, i.p.), a α7 nAChR antagonist, was used for receptor blockage effects evaluation. Working and reference memory in animals was assessed by the Morris water maze (MWM) task. The mRNA and protein levels of α7 subunit were analyzed by real-time PCR and Western blotting, respectively. PHA and Gal, ameliorate Aβ-impaired working and reference memory. However, Gal had less effect than PHA in this regard. Pretreatment with MLA reverses both Gal and PHA effects in MWM. PHA and Gal treatment prevent Aβ-induced α7 subunit protein reduction, but Gal has lesser effect than PHA. This effect blocked by pretreatment with MLA. In neither the pretreatment nor treatment group, the mRNA levels of nAChR α7 subunit were significantly changed. Therefore, α7 nAChR activation, reduces Aβ-induced cognitive deficits and increases the α7 protein level and subsequent neuron survival. However, blockage of receptor, increases Aβ toxicity and cognitive impairment and reduces the α7 nAChR protein level and flowing neuroprotection. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid

    PubMed Central

    Li, Ping; Ann, Jason; Akk, Gustav

    2013-01-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. While highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1–4 % of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI to the human α4β2 receptor is 18 µM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)2(β2)3 receptors significantly more strongly inhibited than the (α4)3(β2)2 receptors. PMID:21538459

  4. [Nicotinic Receptor, galantamine and Alzheimer disease].

    PubMed

    Arroyo, G; Aldea, M; Fuentealba, J; García, A G

    Population aging has increased and will drastically increase the prevalence of Alzheimer disease. The disease develops inexorably towards a syndrome of marked cognitive impairment, accompanied of emotional alterations and profound changes of personality. The patient loses its autonomy, and requires special attention of caregivers; this leads to a decrease of the quality of life, not only of the patient but also of its caregivers and family. The reduction of the number of functional nicotinic receptors in brain keeps pace with neurological symptoms and the severity of the disease (cholinergic theory of Alzheimer disease). There is a pleyade of data and observations reinforcing the idea that improving cholinergic neurotransmission is an investment in memory. Up to now, although with limited success, this improvement has been achieved only with the reversible inhibitors of acetylcholinesterase tacrine, rivastigmine and donepezil, available in the clinic since a few years. The last approved has been galantamine that in spite of being a modest inhibitor of acetylcholinesterase, improves memory (ADAS cog test) and slows down cognitive impairment of Alzheimer patients. To explain this therapeutic effect, a second mechanism of action for galantamine has been suggested, the positive allosteric modulation of presynaptic nicotinic receptors, that will favour the release of acetylcholine and other neurotransmitters involved in memory formation. Furthermore, galantamine possesses neuroprotectant antiapoptotic effects, according to recent data from our laboratory. These effects provide new ideas and therapeutic targets that might help to find novel and efficacious treatments for patients suffering Alzheimer disease.

  5. Partial agonists for α4β2 nicotinic receptors stimulate dopaminergic neuron firing with relatively enhanced maximal effects

    PubMed Central

    Chen, Ying; Broad, Lisa M; Phillips, Keith G; Zwart, Ruud

    2012-01-01

    BACKGROUND AND PURPOSE Partial agonists selective for α4β2 nicotinic ACh receptors have been developed for smoking cessation as they induce weak activation of native α4β2* receptors and inhibit effect of nicotine. However, it is unclear whether at brain functions there is an existence of receptor reserve that allows weak receptor activation to induce maximum physiological effects. We assessed the extent of α4β2 partial agonist-induced increase of firing rate in dopaminergic neurons and evaluated the influence of receptor reserve. EXPERIMENTAL APPROACH The relative maximal effects and potencies of six nicotinic agonists were assessed on recombinant human α4β2 and α7 receptors expressed in mammalian cell lines by measuring calcium influx. Agonist-induced increase of the spontaneous firing rate of dopaminergic neurons was recorded using microelectrodes in the ventral tegmental area of rat brain slices. KEY RESULTS All α4β2 partial and full agonists increased the firing rate concentration-dependently. Their sensitivity to subtype-selective antagonists showed predominant activation of native α4β2* receptors. However, partial agonists with relative maximal effects as low as 33% on α4β2 receptors maximally increased the firing rate and induced additional depolarization block of firing, demonstrating that partial activation of receptors caused the maximum increase in firing rate in the presence of a receptor reserve. CONCLUSIONS AND IMPLICATIONS Partial α4β2 agonists induced relatively enhanced effects on the firing rate of dopaminergic neurons, and the effect was mainly attributed to the existence of native α4β2* receptor reserve. The results have implications in the understanding of physiological effects and therapeutic efficacies of α4β2 partial agonists. PMID:21838750

  6. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  7. The Antinociceptive and Antiinflammatory Properties of 3-furan-2-yl-N-p-tolyl-acrylamide, a Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptors in Mice

    PubMed Central

    Bagdas, Deniz; Targowska-Duda, Katarzyna M.; López, Jhon J.; Perez, Edwin G.; Arias, Hugo R.; Damaj, M. Imad

    2016-01-01

    BACKGROUND Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant induced inflammatory pain, and the chronic constriction injury–induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid–induced aversion by using the conditioned place aversion test. RESULTS We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid induced aversion in the conditioned place aversion assay. CONCLUSIONS These findings suggest that the administration of PAM-2, a new α7

  8. Overexpression of α3/α5/β4 nicotinic receptor subunits modifies impulsive-like behavior.

    PubMed

    Viñals, Xavier; Molas, Susanna; Gallego, Xavier; Fernández-Montes, Rubén D; Robledo, Patricia; Dierssen, Mara; Maldonado, Rafael

    2012-05-01

    Recent studies have revealed that sequence variants in genes encoding the α3/α5/β4 nicotinic acetylcholine receptor subunits are associated with nicotine dependence. In this study, we evaluated two specific aspects of executive functioning related to drug addiction (impulsivity and working memory) in transgenic mice over expressing α3/α5/β4 nicotinic receptor subunits. Impulsivity and working memory were evaluated in an operant delayed alternation task, where mice must inhibit responding between 2 and 8s in order to receive food reinforcement. Working memory was also evaluated in a spontaneous alternation task in an open field. Transgenic mice showed less impulsive-like behavior than wild-type controls, and this behavioral phenotype was related to the number of copies of the transgene. Thus, transgenic Line 22 (16-28 copies) showed a more pronounced phenotype than Line 30 (4-5 copies). Overexpression of these subunits in Line 22 reduced spontaneous alternation behavior suggesting deficits in working memory processing in this particular paradigm. These results reveal the involvement of α3/α5/β4 nicotinic receptor subunits in working memory and impulsivity, two behavioral traits directly related to the vulnerability to develop nicotine dependence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Mechanisms of Nicotine Addiction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Daniel

    Nicotine reinforces the use of tobacco products primarily through its interaction with specific receptor proteins within the brain’s reward centers. A critical step in the process of addiction for many drugs, including nicotine, is the release of the neurotransmitter dopamine. A single nicotine exposure will enhance dopamine levels for hours, however, nicotinic receptors undergo both activation and then desensitization in minutes, which presents an important problem. How does the time course of receptor activity lead to the prolonged release of dopamine? We have found that persistent modulation of both inhibitory and excitatory synaptic connections by nicotine underlies the sustained increasemore » in dopamine release. Because these inputs express different types of nicotinic receptors there is a coordinated shift in the balance of synaptic inputs toward excitation of the dopamine neurons. Excitatory inputs are turned on while inhibitory inputs are depressed, thereby boosting the brain’s reward system.« less

  10. Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes.

    PubMed

    Tritto, Theresa; Stitzel, Jerry A; Marks, Michael J; Romm, Elena; Collins, Allan C

    2002-04-01

    Several studies have shown that genetic factors influence the effects of nicotine on respiration, acoustic startle, Y-maze crosses and rears, heart rate and body temperature in the mouse. Recently, we identified restriction fragment length polymorphisms (RFLPs) associated with the alpha4 (Chrna4) and alpha6 (Chrna6) nicotinic cholinergic receptor genes in the recombinant inbred (RI) strains derived from the Long-Sleep (LS) and Short-Sleep (SS) mouse lines. The alpha4 polymorphism has been identified as a point-mutation at position 529 (threonine to alanine) and the alpha6 polymorphism has not yet been identified. The studies described here evaluated the potential role of these polymorphisms in regulating sensitivity to nicotine by constructing dose-response curves for the effects of nicotine on six responses in the LSxSS RI strains. The results obtained suggest that both of the polymorphisms may play a role in regulating variability in sensitivity to nicotine. Those RI strains carrying the LS-like alpha4 RFLP were significantly more sensitive to the effects of nicotine on Y-maze crosses and rears, temperature and respiration and were less sensitive to the effects of nicotine on acoustic startle than those strains carrying the SS-like alpha4 RFLP. Those RI strains carrying the LS-like alpha6 RFLP were more sensitive to the effects of nicotine on respiration and acoustic startle, and less sensitive to the effects of nicotine on Y-maze crosses than those strains carrying the SS-like alpha6 RFLP. These results suggest that genetically determined differences in sensitivity to nicotine may be explained, in part, by variability associated with at least two of the neuronal nicotinic receptor genes, alpha4 and alpha6.

  11. Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.

    PubMed

    Post, Michael R; Lester, Henry A; Dougherty, Dennis A

    2017-04-04

    Designing subtype-selective agonists for neuronal nicotinic acetylcholine receptors is a challenging and significant goal aided by intricate knowledge of each subtype's binding patterns. We previously reported that in α6β2 receptors, acetylcholine makes a functional cation-π interaction with Trp149, but nicotine and TC299423 do not, suggesting a distinctive binding site. This work explores hydrogen binding at the backbone carbonyl associated with α6β2 Trp149. Substituting residue i + 1, Thr150, with its α-hydroxy analogue (Tah) attenuates the carbonyl's hydrogen bond accepting ability. At α6(T150Tah)β2, nicotine shows a 24-fold loss of function, TC299423 shows a modest loss, and acetylcholine shows no effect. Nicotine was further analyzed via a double-mutant cycle analysis utilizing N'-methylnicotinium, which indicated a hydrogen bond in α6β2 with a ΔΔG of 2.6 kcal/mol. Thus, even though nicotine does not make the conserved cation-π interaction with Trp149, it still makes a functional hydrogen bond to its associated backbone carbonyl.

  12. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Corsi-Zuelli, Fabiana Maria das Graças; Brognara, Fernanda; Quirino, Gustavo Fernando da Silva; Hiroki, Carlos Hiroji; Fais, Rafael Sobrano; Del-Ben, Cristina Marta; Ulloa, Luis; Salgado, Helio Cesar; Kanashiro, Alexandre; Loureiro, Camila Marcelino

    2017-01-01

    Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia. PMID:28620379

  14. Nicotine dependence and psychiatric disorders.

    PubMed

    Salín-Pascual, Rafael J; Alcocer-Castillejos, Natasha V; Alejo-Galarza, Gabriel

    2003-01-01

    Nicotine addiction is the single largest preventable cause of morbidity and mortality in the Western World. Smoking is not any more just a bad habit, but a substance addiction problem. The pharmacological aspects of nicotine show that this substance has a broad distribution in the different body compartnents, due mainly to its lipophilic characteristic. There are nicotinic receptors as members of cholinergic receptors' family. They are located in neuromuscular junction and in the central nervous system (CNS). Although they are similar, pentameric structure with an ionic channel to sodium, there are some differences in the protein chains characteristics. Repeated administration of nicotine in rats, results in the sensitization phenomenon, which produces increase in the behavioral locomotor activity response. It has been found that most psychostimulants-induced behavioral sensitization through a nicotine receptor activation. Nicotine receptors in CNS are located mainly in presynaptic membrane and in that way they regulated the release of several neurotransmitters, among them acetylcholine, dopamine, serotonin, and norepinephrine. In some activities like sleep-wake cycle, nicotine receptors have a functional significance. Nicotine receptor stimulation promotes wake time, reduces both, total sleep time and rapid eye movement sleep (REMS). About nicotine dependence, this substance full fills all the criteria for dependence and withdrawal syndrome. There are some people that have more vulnerability for to become nicotine dependent, those are psychiatric patients. Among them schizophrenia, major depression, anxiety disorders and attention deficit disorder, represent the best example in this area. Nicotine may have some beneficial effects, among them are some neuroprotective effects in disorders like Parkinson's disease, and Gilles de la Tourette' syndrome. Also there are several evidences that support the role of nicotine in cognitive improvement functions like attention

  15. Differential effects of 5-HT2C receptor activation by WAY 161503 on nicotine-induced place conditioning and locomotor activity in rats.

    PubMed

    Hayes, Dave J; Mosher, Tera M; Greenshaw, Andrew J

    2009-02-11

    Numerous studies indicate a role for both the serotonin 2C receptor (5-HT(2C)) and the nicotinic acetylcholine receptor in locomotion, reinforcement and motivated behaviours. Nicotine, a potent nicotinic acetylcholine receptor agonist, interacts with the dopaminergic and serotonergic systems and is known to positively affect reward-related behaviours. The current study examined the effects of 5-HT(2C) receptor activation on nicotine-induced (0.6 mg/kg) place conditioning and spontaneous locomotion. Using Sprague-Dawley rats, the effects of the selective 5-HT(2C) receptor agonist WAY 161503 (0-1.0 mg/kg) and the selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) alone, in combination, and on nicotine-induced (0.6 mg/kg) spontaneous locomotor activity were assessed. The effects of WAY 161503 (1.0, 3.0 mg/kg) were also investigated in nicotine-induced place conditioning using a two-compartment biased design; amphetamine (1.0 mg/kg) served as a positive control. As differential effects were observed between place conditioning and locomotor activity, the subjects used in the place conditioning experiments were also tested for effects on locomotor activity. WAY 161503 decreased baseline and nicotine-induced locomotor activity at the highest dose tested (1.0mg/kg) and these effects were attenuated by SB 242084. Amphetamine and nicotine both induced robust place preferences and WAY 161503 did not have any effects in the context of place conditioning. In contrast, WAY 161503 (1.0 mg/kg) blocked nicotine-induced locomotor activity. These results suggest that 5-HT(2C) receptors may play an inhibitory role in nicotine-induced locomotor activity, but do not appear to influence place conditioning under the current conditions.

  16. Shifting Topographic Activation and 5-HT1A-Receptor Mediated Inhibition of Dorsal Raphe Serotonin Neurons Produced by Nicotine Exposure and Withdrawal

    PubMed Central

    Sperling, Robin; Commons, Kathryn G.

    2011-01-01

    Nicotine activates serotonin (5-HT) neurons innervating the forebrain and this is thought to reduce anxiety. Nicotine withdrawal has also been associated with an activation of 5-HT neurotransmission, although withdrawal increases anxiety. In each case, 5-HT1A receptors have been implicated in the response. To determine if there are different subgroups of 5-HT cells activated during nicotine administration and withdrawal, we mapped the appearance of Fos, a marker of neuronal activation, in 5-HT cells of the dorsal and median raphe nuclei (DR and MR). To understand the role 5-HT1A receptor feedback inhibitory pathways on 5-HT cell activity during these conditions, we administered a selective 5-HT1A-receptor antagonist and measured novel disinhibited Fos expression within 5-HT cells. Using these approaches, we found evidence that acute nicotine activates 5-HT neurons rostrally and in the lateral wings of the DR while there is 5-HT1A dependent inhibition of cells located ventrally both at rostral and mid levels. Previous chronic nicotine exposure did not modify the pattern of Fos activation produced by acute nicotine, but increased 5-HT1A-dependent inhibition of 5-HT cells in the caudal DR. This pattern was nearly reversed during nicotine withdrawal when there was evidence for caudal activation and mid- and rostral-5-HT1A-dependent inhibition. These results suggest that the distinct behavioral states produced by nicotine exposure and withdrawal correlate with reciprocal rostral-caudal patterns of activation and 5-HT1A-mediated inhibition of DR 5-HT neurons. The complimentary patterns of activation and inhibition suggest that 5-HT1A receptors may help shape distinct topographic patterns of activation within the DR. PMID:21501256

  17. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans.

    PubMed

    Saccone, Nancy L; Wang, Jen C; Breslau, Naomi; Johnson, Eric O; Hatsukami, Dorothy; Saccone, Scott F; Grucza, Richard A; Sun, Lingwei; Duan, Weimin; Budde, John; Culverhouse, Robert C; Fox, Louis; Hinrichs, Anthony L; Steinbach, Joseph Henry; Wu, Meng; Rice, John P; Goate, Alison M; Bierut, Laura J

    2009-09-01

    Genetic association studies have shown the importance of variants in the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit gene cluster on chromosome 15q24-25.1 for the risk of nicotine dependence, smoking, and lung cancer in populations of European descent. We have carried out a detailed study of this region using dense genotyping in both European-Americans and African-Americans. We genotyped 75 known single nucleotide polymorphisms (SNPs) and one sequencing-discovered SNP in an African-American sample (N = 710) and in a European-American sample (N = 2,062). Cases were nicotine-dependent and controls were nondependent smokers. The nonsynonymous CHRNA5 SNP rs16969968 is the most significant SNP associated with nicotine dependence in the full sample of 2,772 subjects [P = 4.49 x 10(-8); odds ratio (OR), 1.42; 95% confidence interval (CI), 1.25-1.61] as well as in African-Americans only (P = 0.015; OR, 2.04; 1.15-3.62) and in European-Americans only (P = 4.14 x 10(-7); OR, 1.40; 1.23-1.59). Other SNPs that have been shown to affect the mRNA levels of CHRNA5 in European-Americans are associated with nicotine dependence in African-Americans but not in European-Americans. The CHRNA3 SNP rs578776, which has a low correlation with rs16969968, is associated with nicotine dependence in European-Americans but not in African-Americans. Less common SNPs (frequency nicotine dependence. In summary, multiple variants in this gene cluster contribute to nicotine dependence risk, and some are also associated with functional effects on CHRNA5. The nonsynonymous SNP rs16969968, a known risk variant in populations of European-descent, is also significantly associated with risk in African-Americans. Additional SNPs contribute to risk in distinct ways in these two populations.

  18. α7 nAChR mediated Fas demethylation contributes to prenatal nicotine exposure-induced programmed thymocyte apoptosis in mice.

    PubMed

    Liu, Han-Xiao; Liu, Sha; Qu, Wen; Yan, Hui-Yi; Wen, Xiao; Chen, Ting; Hou, Li-Fang; Ping, Jie

    2017-11-07

    This study aimed to investigate the effects of prenatal nicotine exposure (PNE) on thymocyte apoptosis and postnatal immune impairments in vivo and further explore the epigenetic mechanisms of the pro-apoptotic effect of nicotine in vitro . The results showed that PNE caused immune impairments in offspring on postnatal day 49, manifested as increased IL-4 production and an increased IgG1/IgG2a ratio in serum. Enhanced apoptosis of total and CD4+SP thymocytes was observed both in fetus and in offspring. Further, by exposing thymocytes to 0-100 μM of nicotine in vitro for 48 h, we found that nicotine increased α7 nicotinic acetylcholine receptor (nAChR) expression, activated the Fas apoptotic pathway, and promoted thymocyte apoptosis in concentration-dependent manners. In addition, nicotine could induce Tet methylcytosine dioxygenase (TET) 2 expression and Fas promoter demethylation, which can be abolished by TET2 siRNA transfection. Moreover, the α7 nAChR specific antagonist α-bungarotoxin can abrogate nicotine-induced TET2 increase, and the following Fas demethylation and Fas-mediated apoptosis. In conclusion, our findings showed, for the first time, that α7 nAChR activation could induce TET2-mediated Fas demethylation in thymocytes and results in the upregulation of Fas apoptotic pathway, which provide evidence for elucidating the PNE-induced programmed thymocyte apoptosis.

  19. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    PubMed

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  20. Hippocampal nicotinic receptors have a modulatory role for ethanol and MDMA interaction in memory retrieval.

    PubMed

    Rostami, Maryam; Rezayof, Ameneh; Alijanpour, Sakineh; Sharifi, Khadijeh Alsadat

    2017-08-15

    The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol reversed pre-training ethanol-induced amnesia, suggesting ethanol state-dependent learning. Pre-test intra-CA1 microinjection of different doses of MDMA (0.25-1µg/mouse) with an ineffective dose of ethanol (0.25g/kg, i.p.) also induced amnesia. Interestingly, pre-test intra-CA1 microinjection of MDMA (0.25-1µg/mouse) potentiated ethanol state-dependent learning. On the other hand, the activation of the dorsal hippocampal nAChRs by pre-test microinjection of nicotine (0.1-1µg/mouse, intra-CA1) improved amnesia induced by the co-administration of MDMD and ethanol. It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. α-Conotoxin MII-Sensitive Nicotinic Acetylcholine Receptors in the Nucleus Accumbens Shell Regulate Progressive Ratio Responding Maintained by Nicotine

    PubMed Central

    Brunzell, Darlene H; Boschen, Karen E; Hendrick, Elizabeth S; Beardsley, Patrick M; McIntosh, J Michael

    2010-01-01

    β2 subunit containing nicotinic acetylcholine receptors (β2*nAChRs; asterisk (*) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The α6 subunit assembles with β2 on DA neurons where α6β2*nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of α-conotoxin MII (α-CTX MII), an antagonist with selectivity for α6β2*nAChRs, the purpose of these experiments was to determine if α6β2*nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of α-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. α-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of α-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion α-CTX MII did not affect locomotor activity in an open field. These data suggest that α6β2*nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation. PMID:19890263

  2. Tobacco smoke exposure induces nicotine dependence in rats

    PubMed Central

    Small, Elysia; Shah, Hina P.; Davenport, Jake J.; Geier, Jacqueline E.; Yavarovich, Kate R.; Yamada, Hidetaka; Sabarinath, Sreedharan N.; Derendorf, Hartmut; Pauly, James R.; Gold, Mark S.; Bruijnzeel, Adrie W.

    2013-01-01

    RATIONALE Tobacco smoke contains nicotine and many other compounds that act in concert on the brain reward system. Therefore, animal models are needed that allow the investigation of chronic exposure to the full spectrum of tobacco smoke constituents. OBJECTIVES The aim of these studies was to investigate if exposure to tobacco smoke leads to nicotine dependence in rats. METHODS The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Somatic signs were recorded from a checklist of nicotine abstinence signs. Nicotine self-administration sessions were conducted to investigate if tobacco smoke exposure affects the motivation to self-administer nicotine. Nicotinic receptor autoradiography was used to investigate if exposure to tobacco smoke affects central α7 nicotinic acetylcholine receptor (nAChR) and non-α7 nAChR levels (primarily α4β2 nAChRs). RESULTS The nAChR antagonist mecamylamine dose-dependently elevated the brain reward thresholds of the rats exposed to tobacco smoke and did not affect the brain reward thresholds of the untreated control rats. Furthermore, mecamylamine induced more somatic withdrawal signs in the smoke exposed rats than in the control rats. Nicotine self-administration was decreased 1 day after the last tobacco smoke exposure sessions and was returned to control levels 5 days later. Tobacco smoke exposure increased the α7 nAChR density in the CA2/3 area and the stratum oriens and increased the non-α7 nAChR density in the dentate gyrus. CONCLUSION Tobacco smoke exposure leads to nicotine dependence as indicated by precipitated affective and somatic withdrawal signs and induces an upregulation of nAChRs in the hippocampus. PMID:19936715

  3. The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Chojnacka, Kinga; Horenstein, Nicole A.

    2014-01-01

    The minimum pharmacophore for activation of the human α7 nicotinic acetylcholine receptor (nAChR) is the tetramethylammonium cation. Previous work demonstrated that larger quaternary ammonium compounds, such as diethyldimethylammonium or 1-methyl quinuclidine, were α7-selective partial agonists, but additional increase in the size of the ammonium cation or the quinuclidine N-alkyl group by a single carbon to an N-ethyl group led to a loss of efficacy for ion channel activation. We report that although such compounds are ineffective at inducing the normal channel open state, they nonetheless regulate the induction of specific conformational states normally considered downstream of channel activation. We synthesized several panels of quaternary ammonium nAChR ligands that systematically varied the size of the substituents bonded to the central positively charged nitrogen atom. In these molecular series, we found a correlation between the molecular volume of the ligand and/or charge density, and the receptor’s preferred distribution among conformational states including the closed state, the active state, a nonconducting state that could be converted to an activated state by a positive allosteric modulator (PAM), and a PAM-insensitive nonconducting state. We hypothesize that the changes of molecular volume of an agonist’s cationic core subtly impact interactions at the subunit interface constituting the orthosteric binding site in such a way as to regulate the probability of conversions among the conformational states. We define a new minimal pharmacophore for the class of compounds we have termed “silent agonists,” which are able to induce allosteric modulator-dependent activation but not the normal activated state. PMID:24990939

  4. Cognitive Deficits in Schizophrenia: Focus on Neuronal Nicotinic Acetylcholine Receptors and Smoking

    PubMed Central

    Lasalde-Dominicci, Jose

    2015-01-01

    Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia. PMID:17554626

  5. Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling

    PubMed Central

    Parrish, William R; Rosas-Ballina, Mauricio; Gallowitsch-Puerta, Margot; Ochani, Mahendar; Ochani, Kanta; Yang, Li-Hong; Hudson, LaQueta; Lin, Xinchun; Patel, Nirav; Johnson, Sarah M; Chavan, Sangeeta; Goldstein, Richard S; Czura, Christopher J; Miller, Edmund J; Al-Abed, Yousef; Tracey, Kevin J; Pavlov, Valentin A

    2008-01-01

    The α7 subunit-containing nicotinic acetylcholine receptor7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling. PMID:18584048

  6. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  7. Preclinical evidence for combining the 5-HT2C receptor agonist lorcaserin and varenicline as a treatment for nicotine dependence.

    PubMed

    Fletcher, Paul J; Li, Zhaoxia; Silenieks, Leo B; MacMillan, Cam; DeLannoy, Ines; Higgins, Guy A

    2018-03-02

    Varenicline, a nicotinic acetylcholine receptor partial agonist, is used to treat nicotine dependence. Lorcaserin, a 5-HT 2C receptor agonist has been approved in some countries to treat obesity. Based on preclinical and preliminary clinical evidence, lorcaserin may have potential to treat nicotine dependence. These experiments examined in rats the effects of combining varenicline (0.5 or 1 mg/kg) and lorcaserin (0.3, 0.6 and 1 mg/kg) on nicotine self-administration, reinstatement of nicotine seeking, responding for food and impulsive action. Both drugs alone reduced nicotine self-administration. Combining varenicline and 0.6 mg/kg lorcaserin reduced responding to a greater extent than either drug alone. In a relapse model, extinguished nicotine seeking was reinstated by a priming injection of nicotine and nicotine-associated cues. Reinstatement was reduced by varenicline (1 mg/kg) and by lorcaserin (0.3 mg/kg). Combining lorcaserin (0.3 mg/kg) with varenicline (0.5 or 1 mg/kg) reduced reinstatement to a greater degree than either drug alone. Both drugs had minimal effects on responding for food, alone or in combination. In the five-choice serial reaction time test, varenicline (0.5 or 1 mg/kg) increased impulsivity, measured as increased premature responding. This effect was reduced by lorcaserin (0.3 mg/kg). Plasma levels of varenicline or lorcaserin were not altered by co-administration of the other drug. Varenicline and lorcaserin have additive effects on nicotine self-administration, and on nicotine seeking. Lorcaserin prevents impulsivity induced by varenicline. This pattern of effects suggests that co-administration of varenicline and lorcaserin has potential as a treatment for nicotine dependence that may exceed the value of either drug alone. © 2018 Society for the Study of Addiction.

  8. Medial Habenula Output Circuit Mediated by α5 Nicotinic Receptor-Expressing GABAergic Neurons in the Interpeduncular Nucleus

    PubMed Central

    Hsu, Yun-Wei A.; Tempest, Lynne; Quina, Lely A.; Wei, Aguan D.; Zeng, Hongkui

    2013-01-01

    The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an “accessory” subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5GFP, to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5GFP is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5GFP is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5GFP neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5GFP neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5GFP IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5GFP neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine. PMID:24227714

  9. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    NASA Astrophysics Data System (ADS)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  10. The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model.

    PubMed

    Fucile, Sergio

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) are cation-selective ligand-gated ion channels exhibiting variable Ca 2+ permeability depending on their subunit composition. The Ca 2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca 2+ -dependent processes such as neurotransmitter release. The rings of extracellular and intracellular charged amino acid residues adjacent to the pore-lining TM2 transmembrane segment have been shown to play a key role in the cation selectivity of these receptor channels, but to date a quantitative relationship between these structural determinants and the Ca 2+ permeability of nAChRs is lacking. In the last years the Ca 2+ permeability of several nAChR subtypes has been experimentally evaluated, in terms of fractional Ca 2+ current ( Pf , i.e., the percentage of the total current carried by Ca 2+ ions). In the present study, the available Pf -values of nAChRs are used to build a simplified modular model describing the contribution of the charged residues in defined regions flanking TM2 to the selectivity filter controlling Ca 2+ influx. This model allows to predict the currently unknown Pf -values of existing nAChRs, as well as the hypothetical Ca 2+ permeability of subunit combinations not able to assemble into functional receptors. In particular, basing on the amino acid sequences, a Pf > 50% would be associated with homomeric nAChRs composed by different α subunits, excluding α7, α9, and α10. Furthermore, according to the model, human α7β2 receptors should have Pf -values ranging from 3.6% (4:1 ratio) to 0.1% (1:4 ratio), much lower than the 11.4% of homomeric α7 nAChR. These results help to understand the evolution and the function of the large diversity of the nicotinic receptor family.

  11. Discriminative-stimulus effects of NS9283, a nicotinic α4β2* positive allosteric modulator, in nicotine-discriminating rats.

    PubMed

    Mohler, Eric G; Franklin, Stanley R; Rueter, Lynne E

    2014-01-01

    Neuronal α4β2* nicotinic acetylcholine receptors mediate cognition, pain, and the discriminative and reinforcing effects of nicotine. In addition to traditional orthosteric agonists, α4β2* positive allosteric modulators (PAMs) have recently been identified. With increased subtype selectivity relative to agonists, PAMs administered alone or in combination with low-dose α4β2* agonists may be used as powerful tools for increasing our understanding of α4β2* pharmacology. The present experiments tested the nicotine discriminative-stimulus effects of the α4β2* PAM NS9283 (A-969933) in the presence and absence of low-dose nicotine or nicotinic subtype-selective agonist. Rats were trained to discriminate 0.4 mg/kg nicotine from saline in a two-lever drug discrimination paradigm. In subsequent generalization tests, rats were administered nicotine, the α4β2*-preferring agonist ABT-594, and NS9283, alone or in two-drug combinations. Nicotine and ABT-594 showed dose-dependent nicotine generalization. NS9283 alone resulted in a non-significant increase in nicotine-appropriate lever selection. Combination of non-effective doses of nicotine or ABT-594 with escalating doses of NS9283 resulted in a complete conversion to 100 % nicotine-appropriate choice in the case of nicotine combination and incomplete, though significant, generalization for ABT-594. The α4β2* PAM NS9283 alone did not produce nicotine-like discriminative effects, but did demonstrate dose-related increases in nicotine lever choice when combined with a non-effective dose of nicotine or the α4β2* agonist ABT-594. This finding provides confirmation of the positive allosteric modulating effect of NS9283 in a functional in vivo paradigm. NS9283 is a potentially valuable tool for studying the role of α4β2* receptors in various nicotinic acetylcholine receptor-related functions.

  12. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    PubMed

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  13. The α7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to taxanes.

    PubMed

    Tu, Chao-Chiang; Huang, Chien-Yu; Cheng, Wan-Li; Hung, Chin-Sheng; Uyanga, Batzorig; Wei, Po-Li; Chang, Yu-Jia

    2016-04-01

    Gastric cancer is difficult to cure because most patients are diagnosed at an advanced disease stage. Systemic chemotherapy remains an important therapy for gastric cancer, but both progression-free survival and disease-free survival associated with various combination regimens are limited because of refractoriness and chemoresistance. Accumulating evidence has revealed that the homomeric α7-nicotinic acetylcholine receptor (A7-nAChR) promotes human gastric cancer by driving cancer cell proliferation, migration, and metastasis. Therefore, A7-nAChR may serve as a potential therapeutic target for gastric cancer. However, the role of A7-nAChR in taxane therapy for gastric cancer was unclear. Cells were subjected to A7-nAChR knockdown (A7-nAChR KD) using short interfering RNA (siRNA). The anti-proliferative effects of taxane were assessed via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL), and cell cycle distribution assays. A7-nAChR-KD cells exhibited low resistance to docetaxel and paclitaxel treatment, as measured by the MTT assay. Following paclitaxel treatment, the proportion of apoptotic cells was higher among A7-nAChR-KD cells than among scrambled control cells, as measured by cell cycle distribution and TUNEL assays. Further molecular analyses showed a reduction in the pAKT levels and a dramatic increase in the Bad levels in paclitaxel-treated A7-nAChR-KD cells but not in scrambled control cells. Following paclitaxel treatment, the level of Bax was slightly increased in both cell populations, whereas Poly (ADP-ribose) polymerase (PARP) cleavage was increased only in A7-nAChR-KD cells. These findings indicate that A7-nAChR-KD cells are more sensitive to paclitaxel treatment. We conclude that A7-nAChR may be a key biomarker for assessing the chemosensitivity of gastric cancer cells to taxane.

  14. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  15. Nonconventional three-finger toxin BMLCL from krait Bungarus multicinctus venom with high affinity interacts with nicotinic acetylcholine receptors.

    PubMed

    Utkin, Yu N; Kasheverov, I E; Kudryavtsev, D S; Andreeva, T V; Starkov, V G; Ziganshin, R H; Kuznetsov, D V; Anh, Hoang Ngoc; Thao, Nguyen Thi Thanh; Khoa, Nguyen Cuu; Tsetlin, V I

    2015-01-01

    Nonconventional three-finger toxin BMLCL was isolated from B. multicinctus venom, and its interaction with different subtypes of nicotinic acetylcholine receptor (nAChR) was studied. It was found that BMLCL is able to interact with high efficiency with both α7 and muscle type nAChRs.

  16. Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor.

    PubMed

    Baier, C J; Franco, D L; Gallegos, C E; Mongiat, L A; Dionisio, L; Bouzat, C; Caviedes, P; Barrantes, F J

    2014-08-22

    Chronic exposure to stress hormones has an impact on brain structures relevant to cognition. Nicotinic acetylcholine receptors (AChRs) are involved in numerous cognitive processes including learning and memory formation. In order to better understand the molecular mechanisms of chronic stress-triggered mental disease, the effect of corticosterone (CORT) on the biology of AChRs was studied in the neuronal cell line CNh. We found that chronic treatment with CORT reduced the expression levels of the α7-type neuronal AChR and, to a lesser extent, of α4-AChR. CORT also delayed the acquisition of the mature cell phenotype in CNh cells. Chronic nicotine treatment affected the differentiation of CNh cells and exerted a synergistic effect with CORT, suggesting that AChR could participate in signaling pathways that control the cell cycle. Overexpression of α7-AChR-GFP abolished the CORT effects on the cell cycle and the specific α7-AChR inhibitor, methyllycaconitine, mimicked the proliferative action exerted by CORT. Whole-cell voltage-clamp recordings showed a significant decrease in nicotine-evoked currents in CORT-treated cells. Taken together, these observations indicate that AChRs, and the α7-AChR in particular, could act as modulators of the differentiation of CNh cells and that CORT could impair the acquisition of a mature phenotype by affecting the function of this AChR subtype. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Noribogaine reduces nicotine self-administration in rats

    PubMed Central

    Chang, Qing; Hanania, Taleen; Mash, Deborah C

    2015-01-01

    Noribogaine, a polypharmacological drug with activities at opioid receptors, ionotropic nicotinic receptors, and serotonin reuptake transporters, has been investigated for treatment of substance abuse-related disorders. Smoking cessation has major benefits for both individuals and society, therefore the aim of this study was to evaluate the potential of noribogaine for use as a treatment for nicotine dependence. Adult male Sprague-Dawley rats were trained to self-administer nicotine intravenous. After initial food pellet training, followed by 26 sessions of nicotine self-administration training, the rats were administered noribogaine (12.5, 25 or 50 mg/kg orally), noribogaine vehicle, varenicline or saline using a within-subject design with a Latin square test schedule. Noribogaine dose-dependently decreased nicotine self-administration by up to 64% of saline-treated rats’ levels and was equi-effective to 1.7 mg/kg intraperitoneal varenicline. Noribogaine was less efficient at reducing food pellets self-administration than at nicotine self-administration, inhibiting the nondrug reinforcing effects of palatable pellets by 23% at the highest dose. These results suggest that noribogaine dose-dependently attenuates drug-taking behavior for nicotine, attenuates the reinforcing effects of nicotine and is comparable to varenicline power in that regard. The findings from the present study hold promise for a new therapy to aid smoking cessation. PMID:25995321

  18. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    PubMed

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  19. Targeting cholinesterase inhibitor poisoning with a novel blocker against both nicotinic and muscarinic receptors.

    PubMed

    Luo, Wangqian; Ge, Xulin; Cui, Wenyu; Wang, Hai

    2010-08-01

    Clinicians have been treating poisoning by acetylcholinesterase inhibitors (ChEI) for more than half a century. However, the current atropine-centered therapy still cannot protect completely against all ChEIs, and poisoning by ChEIs is fatal in more than 20% of cases. Various solutions that try to enhance atropine's antimuscarinic effects have been used, but these fail to increase the antidotal effect, and their too potent muscarinic antagonism may produce incapacitating side effects. We hypothesized that, in the treatment of ChEI poisoning, the high death rate may not be attributed to the insufficient muscarinic antagonism but to the lack of nicotinic antagonism. To test this hypothesis, we designed and synthesized benthiactzine, a drug that blocks both muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors (nAChRs). A specific [(3)H]quinuclidinyl benzilate-binding assay showed that benthiactzine was much weaker than atropine in binding to five different mAChR subtypes or to mAChRs expressed in 14 different tissues. Electrophysiological measures were used to identify and characterize benthiactzine's antinicotinic effect on three typical neuronal nAChRs subtypes, alpha4beta2, alpha4beta4, and alpha7, which are expressed heterogenously in SH-EP1 cells. Finally, benthiactzine afforded better protection than atropine against the most lethal ChEI, VX or sarin, in a mouse model. These results indicate that the antidotal effect may not be directly related to the antidote's antimuscarinic effect and that the antinicotinic effect may provide additional protection against ChEI poisoning. This new drug may benefit future antidote discovery.

  20. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emittedmore » filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.« less

  1. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism.

    PubMed

    Rahman, Shafiqur; Engleman, Eric A; Bell, Richard L

    2016-01-01

    Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions. Copyright © 2016. Published by Elsevier Inc.

  2. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.

    PubMed

    Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S

    2017-05-01

    Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Differential discriminative-stimulus effects of cigarette smoke condensate and nicotine in nicotine-discriminating rats.

    PubMed

    Lee, Jun-Yeob; Choi, Mee Jung; Choe, Eun Sang; Lee, Young-Ju; Seo, Joung-Wook; Yoon, Seong Shoon

    2016-06-01

    Although it is widely accepted that nicotine plays a key role in tobacco dependence, nicotine alone cannot account for all of the pharmacological effects associated with cigarette smoke found in preclinical models. Thus, the present study aimed to determine the differential effects of the interoceptive cues of nicotine alone versus those of cigarette smoke condensate (CSC) in nicotine-trained rats. First, the rats were trained to discriminate nicotine (0.4mg/kg, subcutaneous [s.c.]) from saline in a two-lever drug discrimination paradigm. Then, to clarify the different neuropharmacological mechanisms underlying the discriminative-stimulus effects in the nicotine and CSC in nicotine-trained rats, either the α4β2 nicotinic acetylcholine receptor (nAChR) antagonist dihydro-β-erythroidine (DHβE; 0.3-1.0mg/kg, s.c.) or the α7 nAChR antagonist methyllycaconitine citrate (MLA; 5-10mg/kg, intraperitoneal [i.p.]) was administered prior to the injection of either nicotine or CSC. Separate set of experiments was performed to compare the duration of action of the discriminative-stimulus effects of CSC and nicotine. CSC exhibited a dose-dependent nicotine generalization, and interestingly, 1.0mg/kg of DHβE antagonized the discriminative effects of nicotine (0.4mg/kg) but not CSC (0.4mg/kg nicotine content). However, pretreatment with MLA had no effect. In the time-course study, CSC had a relatively longer half-life in terms of the discriminative-stimulus effects compared with nicotine alone. Taken together, the present findings indicate that CSC has a distinct influence on interoceptive effects relative to nicotine alone and that these differential effects might be mediated, at least in part, by the α4β2, but not the α7, nAChR. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Potential State-selective Hydrogen Bond Formation Can Modulate Activation and Desensitization of the α7 Nicotinic Acetylcholine Receptor*

    PubMed Central

    Wang, Jingyi; Papke, Roger L.; Stokes, Clare; Horenstein, Nicole A.

    2012-01-01

    A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-57, a residue hypothesized to be proximate to the aryl group of the bound agonist and a putative hydrogen bonding partner. Q57K, Q57D, Q57E, and Q57L were chosen to remove the dual hydrogen bonding donor/acceptor ability of Gln-57 and replace it with hydrogen bond donating, hydrogen bond accepting, or nonhydrogen bonding ability. Activation of the receptor was compromised with hydrogen bonding mismatches, for example, pairing a pyrrole with Q57K or Q57L, or a furan anabaseine with Q57D or Q57E. Ligand co-applications with the positive allosteric modulator PNU-120596 produced significantly enhanced currents whose degree of enhancement was greater for 2-furans or -pyrroles than for their 3-substituted isomers, whereas the nonhydrogen bonding thiophenes failed to show this correlation. Interestingly, the PNU-120596 agonist co-application data revealed that for wild-type α7 nAChR, the 3-furan desensitized state was relatively stabilized compared with that of 2-furan, a reversal of the relationship observed with respect to the barrier for entry into the desensitized state. These data highlight the importance of hydrogen bonding on the receptor-ligand state, and suggest that it may be possible to fine-tune features of agonists that mediate state selection in the nAChR. PMID:22556416

  5. Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives.

    PubMed

    Scherma, Maria; Muntoni, Anna Lisa; Melis, Miriam; Fattore, Liana; Fadda, Paola; Fratta, Walter; Pistis, Marco

    2016-05-01

    Several lines of evidence suggest that endocannabinoid and nicotinic cholinergic systems are implicated in the regulation of different physiological processes, including reward, and in the neuropathological mechanisms of psychiatric diseases, such as addiction. A crosstalk between these two systems is substantiated by the overlapping distribution of cannabinoid and nicotinic acetylcholine receptors in many brain structures. We will review recent preclinical data showing how the endocannabinoid and nicotinic cholinergic systems interact bidirectionally at the level of the brain reward pathways, and how this interaction plays a key role in modulating nicotine and cannabinoid intake and dependence. Many behavioral and neurochemical effects of nicotine that are related to its addictive potential are reduced by pharmacological blockade or genetic deletion of type-1 cannabinoid receptors, inhibition of endocannabinoid uptake or metabolic degradation, and activation of peroxisome proliferator-activated-receptor-α. On the other hand, cholinergic antagonists at α7 nicotinic acetylcholine receptors as well as endogenous negative allosteric modulators of these receptors are effective in blocking dependence-related effects of cannabinoids. Pharmacological manipulation of the endocannabinoid system and endocannabinoid-like neuromodulators shows promise in the treatment of nicotine dependence and in relapse prevention. Likewise, drugs acting at nicotinic acetylcholine receptors might prove useful in the therapy of cannabinoid dependence. Research by Steven R. Goldberg has significantly contributed to the progress in this research field.

  6. Identification and in vitro pharmacological characterization of a novel and selective α7 nicotinic acetylcholine receptor agonist, Br-IQ17B.

    PubMed

    Tang, Jing-shu; Xie, Bing-xue; Bian, Xi-ling; Xue, Yu; Wei, Ning-ning; Zhou, Jing-heng; Hao, Yu-chen; Li, Gang; Zhang, Liang-ren; Wang, Ke-wei

    2015-07-01

    Alpha7-nicotinic acetylcholine receptor7 nAChR) is a ligand-gated Ca(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 μmol/L. Br-IQ17B is selective over other subtypes such as α4β2 and α3β4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [(3)H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits.

  7. Identification and in vitro pharmacological characterization of a novel and selective α7 nicotinic acetylcholine receptor agonist, Br-IQ17B

    PubMed Central

    Tang, Jing-shu; Xie, Bing-xue; Bian, Xi-ling; Xue, Yu; Wei, Ning-ning; Zhou, Jing-heng; Hao, Yu-chen; Li, Gang; Zhang, Liang-ren; Wang, Ke-wei

    2015-01-01

    Aim: Alpha7-nicotinic acetylcholine receptor7 nAChR) is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. Methods: Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. Results: Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 μmol/L. Br-IQ17B is selective over other subtypes such as α4β2 and α3β4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [3H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. Conclusion: We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits. PMID:25948478

  8. Review. Neurobiology of nicotine dependence.

    PubMed

    Markou, Athina

    2008-10-12

    Nicotine is a psychoactive ingredient in tobacco that significantly contributes to the harmful tobacco smoking habit. Nicotine dependence is more prevalent than dependence on any other substance. Preclinical research in animal models of the various aspects of nicotine dependence suggests a critical role of glutamate, gamma-aminobutyric acid (GABA), cholinergic and dopamine neurotransmitter interactions in the ventral tegmental area and possibly other brain sites, such as the central nucleus of the amygdala and the prefrontal cortex, in the effects of nicotine. Specifically, decreasing glutamate transmission or increasing GABA transmission with pharmacological manipulations decreased the rewarding effects of nicotine and cue-induced reinstatement of nicotine seeking. Furthermore, early nicotine withdrawal is characterized by decreased function of presynaptic inhibitory metabotropic glutamate 2/3 receptors and increased expression of postsynaptic glutamate receptor subunits in limbic and frontal brain sites, while protracted abstinence may be associated with increased glutamate response to stimuli associated with nicotine administration. Finally, adaptations in nicotinic acetylcholine receptor function are also involved in nicotine dependence. These neuroadaptations probably develop to counteract the decreased glutamate and cholinergic transmission that is hypothesized to characterize early nicotine withdrawal. In conclusion, glutamate, GABA and cholinergic transmission in limbic and frontal brain sites are critically involved in nicotine dependence.

  9. The 15q13.3 deletion syndrome: Deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders.

    PubMed

    Deutsch, Stephen I; Burket, Jessica A; Benson, Andrew D; Urbano, Maria R

    2016-01-04

    Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptor's endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  11. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov; Pfister, James A.; Lima, Flavia G.

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscularmore » paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.« less

  12. Nicotine Inhibits Memory CTL Programming

    PubMed Central

    Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo

    2013-01-01

    Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development. PMID:23844169

  13. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.

    PubMed

    Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara

    2012-05-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects. Copyright © 2012. Published by Elsevier Inc.

  14. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    PubMed Central

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  15. Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates

    PubMed Central

    Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.

    2012-01-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805

  16. Mood and anxiety regulation by nicotinic acetylcholine receptors: a potential pathway to modulate aggression and related behavioral states

    PubMed Central

    Picciotto, Marina R.; Lewis, Alan S.; van Schalkwyk, Gerrit I.; Mineur, Yann S.

    2015-01-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety are beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. PMID:25582289

  17. Effects of chronic varenicline treatment on nicotine, cocaine, and concurrent nicotine+cocaine self-administration.

    PubMed

    Mello, Nancy K; Fivel, Peter A; Kohut, Stephen J; Carroll, F Ivy

    2014-04-01

    Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal treatment medication would reduce both cigarette smoking and cocaine abuse. Varenicline is a clinically available, partial agonist at α4β2* and α6β2* nicotinic acetylcholine receptors (nAChRs) and a full agonist at α7 nAChRs. Varenicline facilitates smoking cessation in clinical studies and reduced nicotine self-administration, and substituted for the nicotine-discriminative stimulus in preclinical studies. The present study examined the effects of chronic varenicline treatment on self-administration of IV nicotine, IV cocaine, IV nicotine+cocaine combinations, and concurrent food-maintained responding by five cocaine- and nicotine-experienced adult rhesus monkeys (Macaca mulatta). Varenicline (0.004-0.04 mg/kg/h) was administered intravenously every 20 min for 23 h each day for 7-10 consecutive days. Each varenicline treatment was followed by saline-control treatment until food- and drug-maintained responding returned to baseline. During control treatment, nicotine+cocaine combinations maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05-0.001). Varenicline dose-dependently reduced responding maintained by nicotine alone (0.0032 mg/kg/inj) (P<0.05), and in combination with cocaine (0.0032 mg/kg/inj) (P<0.05) with no significant effects on food-maintained responding. However, varenicline did not significantly decrease self-administration of a low dose of nicotine (0.001 mg/kg), cocaine alone (0.0032 and 0.01 mg/kg/inj), or 0.01 mg/kg cocaine combined with the same doses of nicotine. We conclude that varenicline selectively attenuates the reinforcing effects of nicotine alone but not cocaine alone, and its effects on nicotine+cocaine combinations are dependent on the dose of cocaine.

  18. Effects of Chronic Varenicline Treatment on Nicotine, Cocaine, and Concurrent Nicotine+Cocaine Self-Administration

    PubMed Central

    Mello, Nancy K; Fivel, Peter A; Kohut, Stephen J; Carroll, F Ivy

    2014-01-01

    Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal treatment medication would reduce both cigarette smoking and cocaine abuse. Varenicline is a clinically available, partial agonist at α4β2* and α6β2* nicotinic acetylcholine receptors (nAChRs) and a full agonist at α7 nAChRs. Varenicline facilitates smoking cessation in clinical studies and reduced nicotine self-administration, and substituted for the nicotine-discriminative stimulus in preclinical studies. The present study examined the effects of chronic varenicline treatment on self-administration of IV nicotine, IV cocaine, IV nicotine+cocaine combinations, and concurrent food-maintained responding by five cocaine- and nicotine-experienced adult rhesus monkeys (Macaca mulatta). Varenicline (0.004–0.04 mg/kg/h) was administered intravenously every 20 min for 23 h each day for 7–10 consecutive days. Each varenicline treatment was followed by saline-control treatment until food- and drug-maintained responding returned to baseline. During control treatment, nicotine+cocaine combinations maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05–0.001). Varenicline dose-dependently reduced responding maintained by nicotine alone (0.0032 mg/kg/inj) (P<0.05), and in combination with cocaine (0.0032 mg/kg/inj) (P<0.05) with no significant effects on food-maintained responding. However, varenicline did not significantly decrease self-administration of a low dose of nicotine (0.001 mg/kg), cocaine alone (0.0032 and 0.01 mg/kg/inj), or 0.01 mg/kg cocaine combined with the same doses of nicotine. We conclude that varenicline selectively attenuates the reinforcing effects of nicotine alone but not cocaine alone, and its effects on nicotine+cocaine combinations are dependent on the dose of cocaine. PMID:24304823

  19. α4α6β2* nicotinic acetylcholine receptor activation on ventral tegmental area dopamine neurons is sufficient to stimulate a depolarizing conductance and enhance surface AMPA receptor function.

    PubMed

    Engle, Staci E; Shih, Pei-Yu; McIntosh, J Michael; Drenan, Ryan M

    2013-09-01

    Tobacco addiction is a serious threat to public health in the United States and abroad, and development of new therapeutic approaches is a major priority. Nicotine activates and/or desensitizes nicotinic acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area (VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of nicotine in rodents, suggesting that they may be key mediators of nicotine's action in humans. However, it is unknown which nAChR subtypes are sufficient to activate these neurons. To test the hypothesis that nAChRs containing α6 subunits are sufficient to activate VTA DA neurons, we studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9'S mice). In voltage-clamp recordings in brain slices from adult mice, 100 nM nicotine was sufficient to elicit inward currents in VTA DA neurons via α6β2* nAChRs. In addition, we found that low concentrations of nicotine could act selectively through α6β2* nAChRs to enhance the function of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors on the surface of these cells. In contrast, α6β2* activation did not enhance N-methyl-D-aspartic acid receptor function. Finally, AMPA receptor (AMPAR) function was not similarly enhanced in brain slices from α6L9'S mice lacking α4 nAChR subunits, suggesting that α4α6β2* nAChRs are important for enhancing AMPAR function in VTA DA neurons. Together, these data suggest that activation of α4α6β2* nAChRs in VTA DA neurons is sufficient to support the initiation of cellular changes that play a role in addiction to nicotine. α4α6β2* nAChRs may be a promising target for future smoking cessation pharmacotherapy.

  20. Functional somato-dendritic α7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex

    PubMed Central

    Klein, Rebecca C; Yakel, Jerrel L

    2006-01-01

    Multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed in the CNS. The amygdala complex, the limbic structure important for emotional memory formation, receives cholinergic innervation from the basal forebrain. Although cholinergic drugs have been shown to regulate passive avoidance performance via the amygdala, the neuronal subtypes and circuits involved in this regulation are unknown. In the present study, whole-cell patch-clamp electrophysiological techniques were used to identify and characterize the presence of functional somato-dendritic nAChRs within the basolateral complex of the amygdala. Pressure-application of acetylcholine (ACh; 2 mm) evoked inward current responses in a subset of neurons from both the lateral (49%) and basolateral nuclei (72%). All responses displayed rapid activation kinetics, and were blocked by the α7-selective antagonist methyllycaconitine. In addition, the α7-selective agonist choline induced inward current responses that were similar to ACh-evoked responses. Spiking patterns were consistent with pyramidal class I neurons (the major neuronal type in the basolateral complex); however, there was no correlation between firing frequency and the response to ACh. The local photolysis of caged carbachol demonstrated that the functional expression of nAChRs is located both on the soma and dendrites. This is the first report demonstrating the presence of functional nAChR-mediated current responses from rat amygdala slices, where they may be playing a significant role in fear and aversively motivated memory. PMID:16931547

  1. Effects of the nicotinic receptor antagonist mecamylamine on ad-lib smoking behavior, topography, and nicotine levels in smokers with and without schizophrenia: a preliminary study.

    PubMed

    McKee, Sherry A; Weinberger, Andrea H; Harrison, Emily L R; Coppola, Sabrina; George, Tony P

    2009-12-01

    Individuals with schizophrenia have higher plasma nicotine levels in comparison to non-psychiatric smokers, even when differences in smoking are equated. This difference may be related to how intensely cigarettes are smoked but this has not been well studied. Mecamylamine (MEC), a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist, which has been shown to increase ad-lib smoking and to affect smoking topography, was used in the current study as a pharmacological probe to increase our understanding of smoking behavior, smoking topography, and resulting nicotine levels in smokers with schizophrenia. This preliminary study used a within-subject, placebo-controlled design in smokers with schizophrenia (n=6) and healthy control smokers (n=8) to examine the effects of MEC (10mg/day) on ad-lib smoking behavior, topography, nicotine levels, and tobacco craving across two smoking deprivation conditions (no deprivation and 12-h deprivation). MEC, compared to placebo, increased the number of cigarettes smoked and plasma nicotine levels. MEC increased smoking intensity and resulted in greater plasma nicotine levels in smokers with schizophrenia compared to controls, although these results were not consistent across deprivation conditions. MEC also increased tobacco craving in smokers with schizophrenia but not in control smokers. Our results suggest that antagonism of high-affinity nAChRs in smokers with schizophrenia may prompt compensatory smoking, increasing the intensity of smoking and nicotine exposure without alleviating craving. Further work is needed to assess whether nicotine levels are directly mediated by how intensely the cigarettes are smoked, and to confirm whether this effect is more pronounced in smokers with schizophrenia.

  2. Thyroid Receptor β Involvement in the Effects of Acute Nicotine on Hippocampus-Dependent Memory

    PubMed Central

    Leach, Prescott T.; Kenney, Justin W.; Connor, David; Gould, Thomas J.

    2015-01-01

    Cigarette smoking is common despite adverse health effects. Nicotine’s effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ. PMID:25666034

  3. α-Conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors.

    PubMed

    Wan, Jingjing; Huang, Johnny X; Vetter, Irina; Mobli, Mehdi; Lawson, Joshua; Tae, Han-Shen; Abraham, Nikita; Paul, Blessy; Cooper, Matthew A; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2015-03-11

    Covalently attached peptide dendrimers can enhance binding affinity and functional activity. Homogenous di- and tetravalent dendrimers incorporating the α7-nicotinic receptor blocker α-conotoxin ImI (α-ImI) with polyethylene glycol spacers were designed and synthesized via a copper-catalyzed azide-alkyne cycloaddition of azide-modified α-ImI to an alkyne-modified polylysine dendron. NMR and CD structural analysis confirmed that each α-ImI moiety in the dendrimers had the same 3D structure as native α-ImI. The binding of the α-ImI dendrimers to binding protein Ac-AChBP was measured by surface plasmon resonance and revealed enhanced affinity. Quantitative electrophysiology showed that α-ImI dendrimers had ∼100-fold enhanced potency at hα7 nAChRs (IC50 = 4 nM) compared to native α-ImI (IC50 = 440 nM). In contrast, no significant potency enhancement was observed at heteromeric hα3β2 and hα9α10 nAChRs. These findings indicate that multimeric ligands can significantly enhance conotoxin potency and selectivity at homomeric nicotinic ion channels.

  4. High-Throughput Patch Clamp Screening in Human α6-Containing Nicotinic Acetylcholine Receptors

    PubMed Central

    Armstrong, Lucas C.; Kirsch, Glenn E.; Fedorov, Nikolai B.; Wu, Caiyun; Kuryshev, Yuri A.; Sewell, Abby L.; Liu, Zhiqi; Motter, Arianne L.; Leggett, Carmine S.; Orr, Michael S.

    2017-01-01

    Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors. PMID:28298165

  5. Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice.

    PubMed

    Terrando, Niccolò; Yang, Ting; Ryu, Jae Kyu; Newton, Phillip T; Monaco, Claudia; Feldmann, Marc; Ma, Daqing; Akassoglou, Katerina; Maze, Mervyn

    2015-03-17

    Surgery and critical illness often associate with cognitive decline. Surgical trauma or infection can lead independently to learning and memory impairments via similar, but not identical, cellular signaling of the innate immune system that promotes neuroinflammation. In this study we explored the putative synergism between aseptic orthopedic surgery and infection, the latter reproduced by postoperative lipopolysaccharide (LPS) administration. We observed that surgery and LPS augmented systemic inflammation up to postoperative d 3 and this was associated with further neuroinflammation (CD11b and CD68 immunoreactivity) in the hippocampus in mice compared with those receiving surgery or LPS alone. Administration of a selective α7 subtype nicotinic acetylcholine receptor7 nAChR) agonist 2 h after LPS significantly improved neuroinflammation and hippocampal-dependent memory dysfunction. Modulation of nuclear factor-kappa B (NF-κB) activation in monocytes and regulation of the oxidative stress response through nicotinamide adenine dinucleotide phosphate (NADPH) signaling appear to be key targets in modulating this response. Overall, these results suggest that it may be conceivable to limit and possibly prevent postoperative complications, including cognitive decline and/or infections, through stimulation of the cholinergic antiinflammatory pathway.

  6. The Serotonin 2C Receptor Agonist Lorcaserin Attenuates Intracranial Self-Stimulation and Blocks the Reward-Enhancing Effects of Nicotine.

    PubMed

    Zeeb, Fiona D; Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    Lorcaserin, a serotonin (5-hydroxytryptamine, 5-HT) 2C receptor agonist, was recently approved for the treatment of obesity. We previously suggested that 5-HT2C receptor agonists affect reward processes and reduce the rewarding effects of drugs of abuse. Here, we determined whether lorcaserin (1) decreases responding for brain stimulation reward (BSR) and (2) prevents nicotine from enhancing the efficacy of BSR. Rats were trained on the intracranial self-stimulation (ICSS) paradigm to nosepoke for BSR of either the dorsal raphé nucleus or left medial forebrain bundle. In Experiment 1, lorcaserin (0.3-1.0 mg/kg) dose-dependently reduced the efficacy of BSR. This effect was blocked by prior administration of the 5-HT2C receptor antagonist SB242084. In Experiment 2, separate groups of rats received saline or nicotine (0.4 mg/kg) for eight sessions prior to testing. Although thresholds were unaltered in saline-treated rats, nicotine reduced reward thresholds. An injection of lorcaserin (0.3 mg/kg) prior to nicotine prevented the reward-enhancing effect of nicotine across multiple test sessions. These results demonstrated that lorcaserin reduces the rewarding value of BSR and also prevents nicotine from facilitating ICSS. Hence, lorcaserin may be effective in treating psychiatric disorders, including obesity and nicotine addiction, by reducing the value of food or drug rewards.

  7. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  8. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    PubMed Central

    Sukhanov, Ilya; Dorofeikova, Mariia; Dolgorukova, Antonina; Dorotenko, Artem; Gainetdinov, Raul R.

    2018-01-01

    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted. PMID:29681856

  9. Cellular responses to nicotinic receptor activation are decreased after prolonged exposure to galantamine in human neuroblastoma cells.

    PubMed

    Barik, Jacques; Dajas-Bailador, Federico; Wonnacott, Susan

    2005-08-01

    In this study, we have examined cellular responses of neuroblastoma SH-SY5Y cells after chronic treatment with galantamine, a drug used to treat Alzheimer's disease that has a dual mechanism of action: inhibition of acetylcholinesterase and allosteric potentiation of nicotinic acetylcholine receptors (nAChR). Acute experiments confirmed that maximum potentiation of nicotinic responses occurs at 1 microM galantamine; hence this concentration was chosen for chronic treatment. Exposure to 1 microM galantamine for 4 days decreased Ca(2+) responses (by 19.8+/-3.6%) or [(3)H]noradrenaline ([(3)H]NA) release (by 23.9+/-3.3%) elicited by acute application of nicotine. KCl-evoked increases in intracellular Ca(2+) were also inhibited by 10.0+/-1.9% after 4 days' treatment with galantamine. These diminished responses are consistent with the downregulation of downstream cellular processes. Ca(2+) responses evoked by activation of muscarinic acetylcholine receptors were unaffected by chronic galantamine treatment. Exposure to the more potent acetylcholinesterase inhibitor rivastigmine (1 microM) for 4 days failed to alter nicotine-, KCl-, or muscarinic receptor-evoked increases in intracellular Ca(2+). These observations support the hypothesis that chronic galantamine exerts its effects through interaction with nAChR in this cell line. Exposure to 10 microM nicotine for 4 days produced decreases in acute nicotine- (18.0+/-3.5%) and KCl-evoked Ca(2+) responses (10.6+/-2.5%) and nicotine-evoked [(3)H]NA release (26.0+/-3.3%) that are comparable to the effects of a corresponding exposure to galantamine. Treatment with 1 microM galantamine did not alter numbers of [(3)H]epibatidine-binding sites in SH-SY5Y cells, in contrast to 62% upregulation of these sites in response to 10 microM nicotine. Thus, chronic galantamine acts at nAChR to decrease subsequent functional responses to acute stimulation with nicotine or KCl. This effect appears to be independent of the upregulation of n

  10. Anxiolytic-like and anxiogenic-like effects of nicotine are regulated via diverse action at β2*nicotinic acetylcholine receptors

    PubMed Central

    Anderson, S M; Brunzell, D H

    2015-01-01

    Background and Purpose Nicotine dose-dependently activates or preferentially desensitizes β2 subunit containing nicotinic ACh receptors (β2*nAChRs). Genetic and pharmacological manipulations assessed effects of stimulation versus inhibition of β2*nAChRs on nicotine-associated anxiety-like phenotype. Experimental Approach Using a range of doses of nicotine in β2*nAChR subunit null mutant mice (β2KO; backcrossed to C57BL/6J) and their wild-type (WT) littermates, administration of the selective β2*nAChR agonist, 5I-A85380, and the selective β2*nAChR antagonist dihydro-β-erythroidine (DHβE), we determined the behavioural effects of stimulation and inhibition of β2*nAChRs in the light–dark and elevated plus maze (EPM) assays. Key Results Low-dose i.p. nicotine (0.05 mg·kg−1) supported anxiolysis-like behaviour independent of genotype whereas the highest dose (0.5 mg·kg−1) promoted anxiogenic-like phenotype in WT mice, but was blunted in β2KO mice for the measure of latency. Administration of 5I-A85380 had similar dose-dependent effects in C57BL/6J WT mice; 0.001 mg·kg−1 5I-A85380 reduced anxiety on an EPM, whereas 0.032 mg·kg−1 5I-A85380 promoted anxiogenic-like behaviour in both the light–dark and EPM assays. DHβE pretreatment blocked anxiogenic-like effects of 0.5 mg·kg−1 nicotine. Similarly to DHβE, pretreatment with low-dose 0.05 mg·kg−1 nicotine did not accumulate with 0.5 mg·kg−1 nicotine, but rather blocked anxiogenic-like effects of high-dose nicotine in the light–dark and EPM assays. Conclusions and Implications These studies provide direct evidence that low-dose nicotine inhibits nAChRs and demonstrate that inhibition or stimulation of β2*nAChRs supports the corresponding anxiolytic-like or anxiogenic-like effects of nicotine. Inhibition of β2*nAChRs may relieve anxiety in smokers and non-smokers alike. PMID:25625469

  11. Maternal nicotine exposure effects on adolescent learning and memory are abolished in alpha(α)2* nicotinic acetylcholine receptor-null mutant mice.

    PubMed

    Mojica, Celina; Bai, Yu; Lotfipour, Shahrdad

    2018-06-01

    The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 μg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of Nicotine Withdrawal in Adult Male and Female Rats

    DTIC Science & Technology

    2008-01-01

    acid (GABA), norepinephrine, epinephrine, and beta-endorphin in the brain ( Barik & Wonnacott, 2006; Koob & LeMoal, 2006). Marked nicotine withdrawal...and Evaluation in Counseling and Development, 58-90. Barik , J., & Wonnacott, S. (2006). Indirect modulation by alpha7 nicotinic acetylcholine receptors

  13. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Connor, David A; Gould, Thomas J

    2015-06-01

    Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    USDA-ARS?s Scientific Manuscript database

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  15. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains.

    PubMed

    Garcia-Ratés, Sara; Morrill, Paul; Tu, Henry; Pottiez, Gwenael; Badin, Antoine-Scott; Tormo-Garcia, Cristina; Heffner, Catherine; Coen, Clive W; Greenfield, Susan A

    2016-06-01

    The primary cause of Alzheimer's disease is unlikely to be the much studied markers amyloid beta or tau. Their widespread distribution throughout the brain does not account for the specific identity and deep subcortical location of the primarily vulnerable neurons. Moreover an unusual and intriguing feature of these neurons is that, despite their diverse transmitters, they all contain acetylcholinesterase. Here we show for the first time that (1) a peptide derived from acetylcholinesterase, with independent trophic functions that turn toxic in maturity, is significantly raised in the Alzheimer midbrain and cerebrospinal fluid; (2) a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the α7 nicotinic receptor; (3) a synthetic cyclic version of this peptide is neuroprotective against the toxicity not only of its linear counterpart but also of amyloid beta, thereby opening up the prospect of a novel therapeutic approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Menthol Suppresses Nicotinic Acetylcholine Receptor Functioning in Sensory Neurons via Allosteric Modulation

    PubMed Central

    Wilhelm, M.; Swandulla, D.

    2012-01-01

    In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs. PMID:22281529

  17. Tricyclic antidepressants inhibit hippocampal α7* and α9α10 nicotinic acetylcholine receptors by different mechanisms.

    PubMed

    Arias, Hugo R; Vázquez-Gómez, Elizabeth; Hernández-Abrego, Andy; Gallino, Sofía; Feuerbach, Dominik; Ortells, Marcelo O; Elgoyhen, Ana Belén; García-Colunga, Jesús

    2018-07-01

    The activity of tricyclic antidepressants (TCAs) at α7 and α9α10 nicotinic acetylcholine receptors (AChRs) as well as at hippocampal α7-containing (i.e., α7*) AChRs is determined by using Ca 2+ influx and electrophysiological recordings. To determine the inhibitory mechanisms, additional functional tests and molecular docking experiments are performed. The results established that TCAs (a) inhibit Ca 2+ influx in GH3-α7 cells with the following potency (IC 50 in μM) rank: amitriptyline (2.7 ± 0.3) > doxepin (5.9 ± 1.1) ∼ imipramine (6.6 ± 1.0). Interestingly, imipramine inhibits hippocampal α7* AChRs (42.2 ± 8.5 μM) in a noncompetitive and voltage-dependent manner, whereas it inhibits α9α10 AChRs (0.53 ± 0.05 μM) in a competitive and voltage-independent manner, and (b) inhibit [ 3 H]imipramine binding to resting α7 AChRs with the following affinity rank (IC 50 in μM): imipramine (1.6 ± 0.2) > amitriptyline (2.4 ± 0.3) > doxepin (4.9 ± 0.6), whereas imipramine's affinity was no significantly different to that for the desensitized state. The molecular docking and functional results support the notion that imipramine noncompetitively inhibits α7 AChRs by interacting with two overlapping luminal sites, whereas it competitively inhibits α9α10 AChRs by interacting with the orthosteric sites. Collectively our data indicate that TCAs inhibit α7, α9α10, and hippocampal α7* AChRs at clinically relevant concentrations and by different mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions?

    PubMed

    Deutsch, Stephen I; Urbano, Maria R; Neumann, Serina A; Burket, Jessica A; Katz, Elionora

    2010-05-01

    The core dysfunctions of autism spectrum disorders, which include autistic disorder, Asperger disorder, and pervasive developmental disorder not otherwise specified, include deficits in socialization and communication and a need for the preservation of "sameness;" intellectual impairment and epilepsy are common comorbidities. Data suggest that pathological involvement of cholinergic nuclei and altered expression of acetylcholine receptors, particularly nicotinic acetylcholine receptors, occur in brain of persons with autistic disorder. However, many of these studies involved postmortem tissue from small samples of primarily adult persons. Thus, the findings may reflect compensatory changes and may relate more closely to intellectual impairment and the confounding effects of seizures and medications, as opposed to the core dysfunctions of autism. Nonetheless, because of the roles played by acetylcholine receptors in general, and nicotinic acetylcholine receptors in particular, in normal processes of attention, cognition, and memory, selective cholinergic interventions should be explored for possible therapeutic effects. Additionally, there are electrophysiological data that complement the clinical observations of frequent comorbid seizure disorders in these patients, suggesting a disturbance in the balance of excitatory and inhibitory tone in the brains of persons with autistic disorders. Conceivably, because the alpha7 nicotinic acetylcholine receptor is located on the surface of gamma-aminobutyric acid inhibitory neurons, selective stimulation of this receptor would promote gamma-aminobutyric acid's release and restore diminished inhibitory tone. The development of agonists and partial agonists for nicotinic acetylcholine receptors and positive allosteric modulators that enhance the efficiency of coupling between the binding of agonist and channel opening should facilitate consideration of clinical trials.

  19. Neuropeptide systems and new treatments for nicotine addiction

    PubMed Central

    Bruijnzeel, Adriaan W.

    2017-01-01

    RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience. PMID:28028605

  20. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms

    PubMed Central

    Abongwa, Melanie; Buxton, Samuel K.; Robertson, Alan P.; Martin, Richard J.

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  1. Fast synaptic transmission mediated by α-bungarotoxin-sensitive nicotinic acetylcholine receptors in lamina X neurones of neonatal rat spinal cord

    PubMed Central

    Bradaïa, A; Trouslard, J

    2002-01-01

    Using patch clamp recordings on neonatal rat spinal cord slices, we have looked for the presence of α-bungarotoxin-sensitive nicotinic ACh receptors (nAChRs) on sympathetic preganglionic neurones (SPNs) surrounding the central canal of the spinal cord (lamina X) and examined whether they were implicated in a fast cholinergic synaptic transmission. SPNs were identified either by their morphology using biocytin in the recording electrode and/or by antidromic stimulation of the ventral rootlets. The selective α7-containing nAChR (α7*nAChR) agonist choline (10 mm) induced a fast, rapidly desensitizing inward current, which was fully blocked by α-bungarotoxin (α-BgT; 50 nm) and strychnine (1 μm), two antagonists of α7*nAChRs. The I-V relationship of the choline-induced current showed a strong inward-going rectification. Electrically evoked excitatory postsynaptic currents (eEPSCs) could be recorded. At -60 mV, eEPSCs peaked at -26.2 pA and decayed monoexponentially with a mean time constant of 8.5 ms. The current-voltage relationship for eEPSCs exhibited a strong inward rectification and a reversal potential close to 0 mV, compatible with a non-selective cationic current. The appearance of eEPSCs was entirely suppressed by the application of 100 μm ACh or nicotine. Choline (10 mm) and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP; 100 μm) both reduced the amplitude of eEPSCs, whereas cytisine (100 μm) had no effect. Strychnine (1 μm) and α-BgT (50 nm) both suppressed the eEPSCs. Blocking the P2X purinergic and 5-HT3 receptors had no effect on eEPSCs. DMPP induced four types of current, which differed in their onset and desensitization rate. The most frequently encountered responses were insensitive to the action of strychnine and α-BgT, and were reproduced by ACh and nicotine but not by cytisine. We conclude that SPNs of the lamina X express several classes of nAChRs and in particular α-BgT-sensitive nAChRs. This is the first demonstration in a mammalian

  2. Zingiberis Siccatum Rhizoma, the active component of the Kampo formula Daikenchuto, induces anti-inflammatory actions through α7 nicotinic acetylcholine receptor activation.

    PubMed

    Endo, M; Hori, M; Mihara, T; Ozaki, H; Oikawa, T; Odaguchi, H; Hanawa, T

    2017-12-01

    We previously reported that Daikenchuto (DKT), a gastrointestinal prokinetic Japanese herbal (Kampo) medicine used for the treatment of postoperative ileus (POI), has characteristic potent anti-inflammatory activity. This effect may be partly mediated by the activation of α7 nicotinic acetylcholine receptor (nAChR). In this study, we identified the specific herbs in DKT that induce anti-inflammatory action. The herbal components of DKT were individually administered orally to each mouse four times before and after intestinal manipulation (IM) was carried out on the distal ileum. The anti-inflammatory activity of each crude drug was subsequently evaluated using immunohistochemical analyses of relevant molecules. Treatment with Zingiberis Siccatum Rhizoma (ZSR) but not the other components inhibited the infiltration of cluster of differentiation 68 (CD68)-positive macrophages as effectively as DKT treatment. Selective α7nAChR antagonists, such as methyllycaconitine citrate, or transient receptor potential ankyrin 1 (TRPA1) antagonists, such as HC-030031, significantly inhibited the amelioration of macrophage infiltration by ZSR. The inhibition of macrophage infiltration by ZSR was abolished in both α7nAChR and 5-hydroxytryptamine 4 receptor (5-HT 4 R) knockout mice. Daikenchuto-induced anti-inflammatory activity, which was mediated by inhibiting macrophage infiltration in POI, is dependent on the effects of ZSR. Zingiberis Siccatum Rhizoma activates TRPA1 channels possibly in enterochromaffin (EC) cells to release 5-HT, which stimulates 5-HT 4 R in the myenteric plexus neurons to release ACh, which in turn activates α7nAChR on macrophages to inhibit inflammation in POI. © 2017 John Wiley & Sons Ltd.

  3. Age Dependency of Inhibition of α7 Nicotinic Receptors and Tonically Active N-Methyl-d-aspartate Receptors by Endogenously Produced Kynurenic Acid in the Brain

    PubMed Central

    Alkondon, Manickavasagom; Pereira, Edna F. R.; Eisenberg, Howard M.; Kajii, Yasushi; Schwarcz, Robert

    2011-01-01

    In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of l-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2–7 h) of rat hippocampal slices with kynurenine (200 μM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(−)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 μM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-d-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 μM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA. PMID:21270133

  4. Extended nicotine self-administration increases sensitivity to nicotine, motivation to seek nicotine and the reinforcing properties of nicotine-paired cues.

    PubMed

    Clemens, Kelly J; Lay, Belinda P P; Holmes, Nathan M

    2017-03-01

    An array of pharmacological and environmental factors influence the development and maintenance of tobacco addiction. The nature of these influences likely changes across the course of an extended smoking history, during which time drug seeking can become involuntary and uncontrolled. The present study used an animal model to examine the factors that drive nicotine-seeking behavior after either brief (10 days) or extended (40 days) self-administration training. In Experiment 1, extended training increased rats' sensitivity to nicotine, indicated by a leftward shift in the dose-response curve, and their motivation to work for nicotine, indicated by an increase in the break point achieved under a progressive ratio schedule. In Experiment 2, extended training imbued the nicotine-paired cue with the capacity to maintain responding to the same high level as nicotine itself. However, Experiment 3 showed that the mechanisms involved in responding for nicotine or a nicotine-paired cue are dissociable, as treatment with the partial nicotine receptor agonist, varenicline, suppressed responding for nicotine but potentiated responding for the nicotine-paired cue. Hence, across extended nicotine self-administration, pharmacological and environmental influences over nicotine seeking increase such that nicotine seeking is controlled by multiple sources, and therefore highly resistant to change. © 2015 Society for the Study of Addiction.

  5. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  6. A novel highly selective 5-HT6 receptor antagonist attenuates ethanol and nicotine seeking but does not affect inhibitory response control in Wistar rats.

    PubMed

    de Bruin, N M W J; McCreary, A C; van Loevezijn, A; de Vries, T J; Venhorst, J; van Drimmelen, M; Kruse, C G

    2013-01-01

    Recent studies suggest a potential role for 5-hydroxytryptamine(6) (5-HT(6)) receptors in the regulation of addictive behavior. In the present study, our aim was to investigate whether the novel highly selective 5-HT(6) receptor antagonist compound (CMP) 42 affected nicotine and ethanol seeking behavior in Wistar rats. We have also studied whether CMP 42 had beneficial effects in a model of impulse control, as measured in the 5-choice serial reaction time task (5-CSRTT). Rats were trained to nose poke to receive intravenous infusions of nicotine or an ethanol drop. CMP 42 (3-30 mg/kg intraperitoneally, i.p.) was administered to investigate the effects on nicotine self-administration. Rats were also tested for cue-induced reinstatement of nicotine and ethanol seeking. In addition, the effects of CMP 42 were studied on the number of anticipatory responses in the 5-CSRTT. CMP 42 was effective in reducing nicotine self-administration and reinstatement of nicotine seeking at a dose of 30 mg/kg (i.p.). CMP 42 was also effective in reducing reinstatement of ethanol seeking (30 mg/kg i.p.). In contrast, CMP 42 did not affect anticipatory responding at doses tested, indicating no effects on impulse control. These results add to a body of evidence implicating the 5-HT(6) receptor as a viable target for the control of drug abuse. Specifically, we demonstrated for the first time effects on nicotine self-administration and on nicotine and ethanol reinstatement. Further, these effects are probably not mediated by effects on impulse control. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Unconventional ligands and modulators of nicotinic receptors.

    PubMed

    Pereira, Edna F R; Hilmas, Corey; Santos, Mariton D; Alkondon, Manickavasagom; Maelicke, Alfred; Albuquerque, Edson X

    2002-12-01

    Evidence gathered from epidemiologic and behavioral studies have indicated that neuronal nicotinic receptors (nAChRs) are intimately involved in the pathogenesis of a number of neurologic disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In the mammalian brain, neuronal nAChRs, in addition to mediating fast synaptic transmission, modulate fast synaptic transmission mediated by the major excitatory and inhibitory neurotransmitters glutamate and GABA, respectively. Of major interest, however, is the fact that the activity of the different subtypes of neuronal nAChR is also subject to modulation by substances of endogenous origin such as choline, the tryptophan metabolite kynurenic acid, neurosteroids, and beta-amyloid peptides and by exogenous substances, including the so-called nicotinic allosteric potentiating ligands, of which galantamine is the prototype, and psychotomimetic drugs such as phencyclidine and ketamine. The present article reviews and discusses the effects of unconventional ligands on nAChR activity and briefly describes the potential benefits of using some of these compounds in the treatment of neuropathologic conditions in which nAChR function/expression is known to be altered. Copyright 2002 Wiley Periodicals, Inc.

  8. Nicotine receptor partial agonists for smoking cessation.

    PubMed

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2011-02-16

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). Varenicline was developed as a nicotine receptor partial agonist from cytisine, a drug widely used in central and eastern Europe for smoking cessation. The first trial reports of varenicline were released in 2006, and further trials have now been published or are currently underway. The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('varenicline' or 'cytisine' or 'Tabex' or 'nicotine receptor partial agonist') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, PsycINFO and CINAHL using MeSH terms and free text, and we contacted authors of trial reports for additional information where necessary. The latest search was in September 2010. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow up.The main outcome measured was abstinence from smoking after at least six months from the beginning of treatment. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we performed meta-analysis to produce a risk ratio, using the Mantel-Haenszel fixed-effect model. We found 11 trials of

  9. Nicotine receptor partial agonists for smoking cessation.

    PubMed

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2010-12-08

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). Varenicline was developed as a nicotine receptor partial agonist from cytisine, a drug widely used in central and eastern Europe for smoking cessation. The first trial reports of varenicline were released in 2006, and further trials have now been published or are currently underway. The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('varenicline' or 'cytisine' or 'Tabex' or 'nicotine receptor partial agonist') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, PsycINFO and CINAHL using MeSH terms and free text, and we contacted authors of trial reports for additional information where necessary. The latest search was in September 2010. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow up.The main outcome measured was abstinence from smoking after at least six months from the beginning of treatment. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we performed meta-analysis to produce a risk ratio, using the Mantel-Haenszel fixed-effect model. We found 11 trials of

  10. Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells.

    PubMed

    Oikawa, Shino; Mano, Asuka; Iketani, Mitsue; Kakinuma, Yoshihiko

    2015-11-01

    We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Alpha6-Containing Nicotinic Acetylcholine Receptors Mediate Nicotine-Induced Structural Plasticity in Mouse and Human iPSC-Derived Dopaminergic Neurons.

    PubMed

    Collo, Ginetta; Cavalleri, Laura; Zoli, Michele; Maskos, Uwe; Ratti, Emiliangelo; Merlo Pich, Emilio

    2018-01-01

    Midbrain dopamine (DA) neurons are considered a critical substrate for the reinforcing and sensitizing effects of nicotine and tobacco dependence. While the role of the α4 and β2 subunit containing nicotinic acetylcholine receptors (α4β2 ∗ nAChRs) in mediating nicotine effects on DA release and DA neuron activity has been widely explored, less information is available on their role in the morphological adaptation of the DA system to nicotine, eventually leading to dysfunctional behaviors observed in nicotine dependence. In particular, no information is available on the role of α6 ∗ nAChRs in nicotine-induced structural plasticity in rodents and no direct evidence exists regarding the occurrence of structural plasticity in human DA neurons exposed to nicotine. To approach this problem, we used two parallel in vitro systems, mouse primary DA neuron cultures from E12.5 embryos and human DA neurons differentiated from induced pluripotent stem cells (iPSCs) of healthy donors, identified using TH + immunoreactivity. In both systems, nicotine 1-10 μM produced a dose-dependent increase of maximal dendrite length, number of primary dendrites, and soma size when measured after 3 days in culture. These effects were blocked by pretreatments with the α6 ∗ nAChR antagonists α-conotoxin MII and α-conotoxin PIA, as well as by the α4β2nAChR antagonist dihydro-β-erythroidine (DHβE) in both mouse and human DA neurons. Nicotine was also ineffective when the primary DA neurons were obtained from null mutant mice for either the α6 subunit or both the α4 and α6 subunits of nAChR. When pregnant mice were exposed to nicotine from gestational day 15, structural plasticity was also observed in the midbrain DA neurons of postnatal day 1 offspring only in wild-type mice and not in both null mutant mice. This study confirmed the critical role of α4α6 ∗ nAChRs in mediating nicotine-induced structural plasticity in both mouse and human DA neurons, supporting the

  12. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests.

    PubMed

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Haj-Mirzaian, Arvin; Ostadhadi, Sattar; Ghasemi, Mehdi; Amiri, Shayan; Faizi, Mehrdad; Dehpour, AhmadReza

    2015-10-01

    The antidepressant action of acute nicotine administration in clinical and animal studies is well recognized. But the underlying mechanism for this effect has not been carefully discovered. We attempted to evaluate the possible role of N-Methyl-D-aspartate (NMDA) receptors in the antidepressant-like effect of nicotine. After the assessment of locomotor activity in the open-field test, forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant-like effect of nicotine in mice. We performed intraperitoneal administration of nicotine at different doses and periods before the tests. To assess the possible involvement of NMDA receptors, non-effective doses of NMDA antagonists and an NMDA agonist were obtained and were administered simultaneously with the non-effective and effective doses of nicotine, respectively. Nicotine (0.2 mg/kg, 30 min before FST/TST) significantly reduced the immobility time of mice similar to fluoxetine (20 mg/kg). Nicotine did not affect the locomotor behavior of mice in open-field test. Co-administration of non-effective doses of NMDA receptor antagonists, ketamine (1 or 0.3 mg/kg), MK-801 (0.05 or 0.005 mg/kg), and magnesium sulfate (10 or 5 mg/kg) with nicotine (0.1 or 0.03 mg/kg) had remarkable synergistic antidepressant effect in both FST and TST. Also, non-effective NMDA (75 or 30 mg/kg) reversed the anti-immobility effect of nicotine (0.2 mg/kg) on mouse FST and TST. Our study has for the first time confirmed that the antidepressant-like effect of nicotine on mice is NMDA-mediated, and nicotine presumably exerts this effect by antagonizing the glutamatergic NMDA receptors.

  13. Nicotine Enhances the Hypnotic and Hypothermic Effects of Alcohol in the Mouse.

    PubMed

    Slater, Cassandra A; Jackson, Asti; Muldoon, Pretal P; Dawson, Anton; O'Brien, Megan; Soll, Lindsey G; Abdullah, Rehab; Carroll, F Ivy; Tapper, Andrew R; Miles, Michael F; Banks, Matthew L; Bettinger, Jill C; Damaj, Imad M

    2016-01-01

    Ethanol (EtOH) and nicotine abuse are 2 leading causes of preventable mortality in the world, but little is known about the pharmacological mechanisms mediating co-abuse. Few studies have examined the interaction of the acute effects of EtOH and nicotine. Here, we examine the effects of nicotine administration on the duration of EtOH-induced loss of righting reflex (LORR) and characterize the nature of their pharmacological interactions in C57BL/6J mice. We assessed the effects of EtOH and nicotine and the nature of their interaction in the LORR test using isobolographic analysis after acute injection in C57BL/6J male mice. Next, we examined the importance of receptor efficacy using nicotinic partial agonists varenicline and sazetidine. We evaluated the involvement of major nicotinic acetylcholine receptor (nAChR) subtypes using nicotinic antagonist mecamylamine and nicotinic α4- and α7-knockout mice. The selectivity of nicotine's actions on EtOH-induced LORR was examined by testing nicotine's effects on the hypnotic properties of ketamine and pentobarbital. We also assessed the development of tolerance after repeated nicotine exposure. Last, we assessed whether the effects of nicotine on EtOH-induced LORR extend to hypothermia and EtOH intake in the drinking in the dark (DID) paradigm. We found that acute nicotine injection enhances EtOH's hypnotic effects in a synergistic manner and that receptor efficacy plays an important role in this interaction. Furthermore, tolerance developed to the enhancement of EtOH's hypnotic effects by nicotine after repeated exposure of the drug. α4* and α7 nAChRs seem to play an important role in nicotine-EtOH interaction in the LORR test. In addition, the magnitude of EtOH-induced LORR enhancement by nicotine was more pronounced in C57BL/6J than DBA/2J mice. Furthermore, acute nicotine enhanced ketamine and pentobarbital hypnotic effects in the mouse. Finally, nicotine enhanced EtOH-induced hypothermia but decreased EtOH intake

  14. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    PubMed

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  15. Vagotomy Affects the Development of Oral Tolerance and Increases Susceptibility to Develop Colitis Independently of α-7 Nicotinic Receptor

    PubMed Central

    Di Giovangiulio, Martina; Bosmans, Goele; Meroni, Elisa; Stakenborg, Nathalie; Florens, Morgane; Farro, Giovanna; Gomez-Pinilla, Pedro J; Matteoli, Gianluca; Boeckxstaens, Guy E

    2016-01-01

    Vagotomy (VGX) increases the susceptibility to develop colitis suggesting a crucial role for the cholinergic anti-inflammatory pathway in the regulation of the immune responses. Since oral tolerance and the generation of regulatory T cells (Tregs) are crucial to preserve mucosal immune homeostasis, we studied the effect of vagotomy and the involvement of α7 nicotinic receptors7nAChR) at the steady state and during colitis. Therefore, the development of both oral tolerance and colitis (induced by dextran sulfate sodium (DSS) or via T cell transfer) was studied in vagotomized mice and in α7nAChR-/- mice. VGX, but not α7nAChR deficiency, prevented oral tolerance establishment. This effect was associated with reduced Treg conversion in the lamina propria and mesenteric lymphnodes. To the same extent, vagotomized mice, but not α7nAChR-/- mice, developed a more severe DSS colitis compared with control mice treated with DSS, associated with a decreased number of colonic Tregs. However, neither VGX nor absence of α7nAChR in recipient mice affected colitis development in the T cell transfer model. In line, deficiency of α7nAChR exclusively in T cells did not influence the development of colitis induced by T cell transfer. Our results indicate a key role for the vagal intestinal innervation in the development of oral tolerance and colitis, most likely by modulating induction of Tregs independently of α7nAChR. PMID:27341335

  16. Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10

    PubMed Central

    Zakrzewicz, Anna; Richter, Katrin; Agné, Alisa; Wilker, Sigrid; Siebers, Kathrin; Fink, Bijan; Krasteva-Christ, Gabriela; Althaus, Mike; Padberg, Winfried; Hone, Arik J.; McIntosh, J. Michael; Grau, Veronika

    2017-01-01

    Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopus laevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to

  17. Glial cell-derived neurotrophic factor alleviates sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nicotinic acetylcholine receptors in an experimental rat model of neuromyopathy.

    PubMed

    Wang, Xin; Min, Su; Xie, Fei; Yang, Jun; Li, Liang; Chen, Jingyuan

    2018-02-05

    Sepsis-induced neuromuscular dysfunction results from up-regulation of the expression of γ- and α7-nicotinic acetylcholine receptors (nAChR). Although glial cell derived neurotrophic factor (GDNF) has been implicated in repairing and supporting neurons, little is known about the effects of GDNF on demyelination of nerves in sepsis. In this study, we tested the hypothesis that GDNF could alleviate sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nAChR in an experimental rat model of neuromyopathy. Rats were randomly divided into a sham group and a sepsis group. Levels of inflammatory factors, muscle function, and nicotinic acetylcholine receptors were tested in rats after cecal ligation and puncture (CLP). At 24 h after CLP, GDNF was injected around the sciatic nerve of sepsis rats, cytokines were detected by enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining was used to detect the expression of nAChRs. GDNF and its downstream effector (Erk1/2 and GFR-α), neuregulin-1 (NRG-1) and γ- and α7-nAChR were measured using Western blot analysis. The expression of GDNF reached a minimum at 24 h after CLP. Compared with the sham group, the release of cytokines and the expression of γ- and α7-nAChR were significantly increased in the sepsis group. The administration of GDNF significantly alleviated sepsis-induced neuromuscular dysfunction, as well as reducing the expression of γ- and α7-nAChR. In addition, the expression of Erk1/2, GFR-α, NRG-1 were significantly increased after GDNF treatment. GDNF administration may improve patient outcomes by reducing the demyelination of nerves and the expression of γ- and α7-nAChR. Copyright © 2018. Published by Elsevier Inc.

  18. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.

    PubMed

    Molgó, Jordi; Marchot, Pascale; Aráoz, Rómulo; Benoit, Evelyne; Iorga, Bogdan I; Zakarian, Armen; Taylor, Palmer; Bourne, Yves; Servent, Denis

    2017-08-01

    We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  19. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  20. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring

    PubMed Central

    Wu, Wei-Li; Adams, Catherine E.; Stevens, Karen E.; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H.

    2015-01-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal spleen-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. PMID:25683697

  1. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring.

    PubMed

    Wu, Wei-Li; Adams, Catherine E; Stevens, Karen E; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H

    2015-05-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal-placental-fetal axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (Il6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of Il6 in Chrna7 mutant mice. We found that the basal level of Il6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7(+/-) offspring. The Chrna7(+/-) offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    PubMed

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Role of Nicotinic and Muscarinic Receptors on Synaptic Plasticity and Neurological Diseases.

    PubMed

    Fuenzalida, Marco; Pérez, Miguel Ángel; Arias, Hugo R

    2016-01-01

    The cholinergic activity in the brain is fundamental for cognitive functions. The modulatory activity of the neurotransmitter acetylcholine (ACh) is mediated by activating a variety of nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (mAChR). Accumulating evidence indicates that both nAChR and mAChRs can modulate the release of several other neurotransmitters, modify the threshold of long-term plasticity, finally improving learning and memory processes. Importantly, the expression, distribution, and/or function of these systems are altered in several neurological diseases. The aim of this review is to discuss our current knowledge on cholinergic receptors and their regulating synaptic functions and neuronal network activities as well as their use as targets for the development of new and clinically useful cholinergic ligands. These new therapies involve the development of novel and more selective cholinergic agonists and allosteric modulators as well as selective cholinesterase inhibitors, which may improve cognitive and behavioral symptoms, and also provide neuroprotection in several brain diseases. The review will focus on two nAChR receptor subtypes found in the mammalian brain and the most commonly targeted in drug discovery programs for neuropsychiatric disorder, the ligands of α4β2 nAChR and α7 nAChRs.

  4. Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.

    PubMed

    Ward, Melissa; Norman, Haval; D'Souza, Manoranjan S

    2018-02-15

    Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    PubMed

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  6. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective.

    PubMed

    Neumann, Silke; Shields, Nicholas J; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N

    2015-12-04

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer's disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  7. Neurocognitive Endophenotypes in Schizophrenia: Modulation by Nicotinic Receptor Systems

    PubMed Central

    Mackowick, Kristen M.; Barr, Mera S.; Wing, Victoria C.; Rabin, Rachel A.; Ouellet-Plamondon, Clairelaine; George, Tony P.

    2013-01-01

    Cigarette smoking is the leading preventable cause of death in the Western world, with a considerably higher prevalence observed in schizophrenia compared to the general population. Despite the negative health consequences of smoking heavily, it has been proposed that individuals with schizophrenia may maintain smoking behaviours to remediate symptoms associated with the disorder. Neurocognitive deficits are a core feature of schizophrenia and are present in approximately 80% of patients. Further, these deficits constitute an endophenotype of schizophrenia, as they are stable across disease phases, and heritable. The neurocognitive deficits that are present in schizophrenia are especially debilitating, since they are associated with poor clinical and functional outcomes and community integration. Interestingly, these deficits may also constitute a vulnerability factor towards the initiation and maintenance of tobacco use. Contributing to the potential shared vulnerability between schizophrenia and tobacco dependence is a dysregulation of the nicotinic acetylcholine receptor (nAChR) system. Pre-clinical evidence has shown that nicotine affects several neurotransmitter systems, including dopamine (DA), glutamate, and γ-aminobutyric acid (GABA), and certain neuropsychological deficits associated with these neurotransmitters (reaction time, spatial working memory, sustained attention, and sensory gating) are improved after nicotine administration in patients with schizophrenia. These positive effects on neurocognition appear to be more pronounced in smokers with schizophrenia, and may be an important mechanism that explains the co-morbidity of schizophrenia and tobacco dependence. PMID:23871750

  8. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia.

    PubMed

    Wecker, L; Engberg, M E; Philpot, R M; Lambert, C S; Kang, C W; Antilla, J C; Bickford, P C; Hudson, C E; Zesiewicz, T A; Rowell, Peter P

    2013-10-01

    Clinical studies have reported that the nicotinic receptor agonist varenicline improves balance and coordination in patients with several types of ataxia, but confirmation in an animal model has not been demonstrated. This study investigated whether varenicline and nicotine could attenuate the ataxia induced in rats following destruction of the olivocerebellar pathway by the neurotoxin 3-acetylpyridine (3-AP). The administration of 3-AP (70 mg/kg followed by 300 mg niacinamide/kg; i.p.) led to an 85% loss of inferior olivary neurons within one week without evidence of recovery, and was accompanied by a 72% decrease in rotorod activity, a 3-fold increase in the time to traverse a stationary beam, a 19% decrease in velocity and 31% decrease in distance moved in the open field, and alterations in gait parameters, with a 19% increase in hindpaw stride width. The daily administration of nicotine (0.33 mg free base/kg) for one week improved rotorod performance by 50% and normalized the increased hindpaw stride width, effects that were prevented by the daily preadministration of the nicotinic antagonist mecamylamine (0.8 mg free base/kg). Varenicline (1 and 3 mg free base/kg daily) also improved rotorod performance by approximately 50% following one week of administration, and although it did not alter the time to traverse the beam, it did improve the ability to maintain balance on the beam. Neither varenicline nor nicotine, at doses that improved balance, affected impaired locomotor activity in the open field. Results provide evidence that nicotinic agonists are of benefit for alleviating some of the behavioral deficits in olivocerebellar ataxia and warrant further studies to elucidate the specific mechanism(s) involved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multiple nicotine training doses in mice as a basis for differentiating the effects of smoking cessation aids.

    PubMed

    Cunningham, Colin S; McMahon, Lance R

    2013-07-01

    Receptor mechanisms underlying the behavioral effects of clinically used nicotinic acetylcholine receptor agonists have not been fully established. Drug discrimination was used to compare receptor mechanisms underlying the effects of smoking cessation aids. Separate groups of male C57BL/6J mice discriminated 0.56, 1, or 1.78 mg/kg of nicotine base. Nicotine, varenicline, and cytisine were administered alone, in combination with each other, and in combination with mecamylamine and dihydro-β-erythroidine (DHβE). Midazolam and morphine were tested to examine sensitivity to non-nicotinics. The ED50 value of nicotine to produce discriminative stimulus effects systematically increased as training dose increased. Varenicline and cytisine did not fully substitute for nicotine and, as compared with nicotine, their ED50 values varied less systematically as a function of nicotine training dose. Morphine did not substitute for nicotine, whereas midazolam substituted for the low and not the higher training doses of nicotine. As training dose increased, the dose of mecamylamine needed to produce a significant rightward shift in the nicotine dose-effect function also increased. DHβE antagonized nicotine in animals discriminating the smallest dose of nicotine. Varenicline did not antagonize the effects of nicotine, whereas cytisine produced a modest though significant antagonism of nicotine. These results suggest that differences in pharmacologic mechanism between nicotine, varenicline, and cytisine include not only differences in efficacy at a common subtype of nicotinic acetylcholine receptor, but also differential affinity and/or efficacy at multiple receptor subtypes.

  10. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  11. Nicotinic Cholinergic Synaptic Mechanisms in the Ventral Tegmental Area Contribute to Nicotine Addiction

    ERIC Educational Resources Information Center

    Pidoplichko, Volodymyr I.; Noguchi, Jun; Areola, Oluwasanmi O.; Liang, Yong; Peterson, Jayms; Zhang, Tianxiang; Dani, John A.

    2004-01-01

    Tobacco use is a major health problem that is estimated to cause 4 million deaths a year worldwide. Nicotine is the main addictive component of tobacco. It acts as an agonist to activate and desensitize nicotinic acetylcholine receptors (nAChRs). A component of nicotine's addictive power is attributable to actions on the mesolimbic dopaminergic…

  12. Nicotine Affects Bone Resorption and Suppresses the Expression of Cathepsin K, MMP-9 and Vacuolar-Type H+-ATPase d2 and Actin Organization in Osteoclasts

    PubMed Central

    Tanaka, Hideki; Tanabe, Natsuko; Kawato, Takayuki; Nakai, Kumiko; Kariya, Taro; Matsumoto, Sakurako; Zhao, Ning; Motohashi, Masafumi; Maeno, Masao

    2013-01-01

    Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization. PMID

  13. Mapping of a binding site for ATP within the extracellular region of the Torpedo nicotinic acetylcholine receptor beta-subunit.

    PubMed

    Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A

    1997-10-28

    Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.

  14. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    PubMed

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Selective and regulated trapping of nicotinic receptor weak base ligands and relevance to smoking cessation

    PubMed Central

    Govind, Anitha P; Vallejo, Yolanda F; Stolz, Jacob R; Yan, Jing-Zhi; Swanson, Geoffrey T; Green, William N

    2017-01-01

    To better understand smoking cessation, we examined the actions of varenicline (Chantix) during long-term nicotine exposure. Varenicline reduced nicotine upregulation of α4β2-type nicotinic receptors (α4β2Rs) in live cells and neurons, but not for membrane preparations. Effects on upregulation depended on intracellular pH homeostasis and were not observed if acidic pH in intracellular compartments was neutralized. Varenicline was trapped as a weak base in acidic compartments and slowly released, blocking 125I-epibatidine binding and desensitizing α4β2Rs. Epibatidine itself was trapped; 125I-epibatidine slow release from acidic vesicles was directly measured and required the presence of α4β2Rs. Nicotine exposure increased epibatidine trapping by increasing the numbers of acidic vesicles containing α4β2Rs. We conclude that varenicline as a smoking cessation agent differs from nicotine through trapping in α4β2R-containing acidic vesicles that is selective and nicotine-regulated. Our results provide a new paradigm for how smoking cessation occurs and suggest how more effective smoking cessation reagents can be designed. DOI: http://dx.doi.org/10.7554/eLife.25651.001 PMID:28718768

  16. α7 Nicotinic Acetylcholine Receptor7nAChR) Expression in Bone Marrow–Derived Non–T Cells Is Required for the Inflammatory Reflex

    PubMed Central

    Olofsson, Peder S; Katz, David A; Rosas-Ballina, Mauricio; Levine, Yaakov A; Ochani, Mahendar; Valdés-Ferrer, Sergio I; Pavlov, Valentin A; Tracey, Kevin J; Chavan, Sangeeta S

    2012-01-01

    The immune response to infection or injury coordinates host defense and tissue repair, but also has the capacity to damage host tissues. Recent advances in understanding protective mechanisms have found neural circuits that suppress release of damaging cytokines. Stimulation of the vagus nerve protects from excessive cytokine production and ameliorates experimental inflammatory disease. This mechanism, the inflammatory reflex, requires the α7 nicotinic acetylcholine receptor7nAChR), a ligand-gated ion channel expressed on macrophages, lymphocytes, neurons and other cells. To investigate cell-specific function of α7nAChR in the inflammatory reflex, we created chimeric mice by cross-transferring bone marrow between wild-type (WT) and α7nAChR-deficient mice. Deficiency of α7nAChR in bone marrow–derived cells significantly impaired vagus nerve–mediated regulation of tumor necrosis factor (TNF), whereas α7nAChR deficiency in neurons and other cells had no significant effect. In agreement with recent work, the inflammatory reflex was not functional in nude mice, because functional T cells are required for the integrity of the pathway. To investigate the role of T-cell α7nAChR, we adoptively transferred α7nAChR-deficient or WT T cells to nude mice. Transfer of WT and α7nAChR-deficient T cells restored function, indicating that α7nAChR expression on T cells is not necessary for this pathway. Together, these results indicate that α7nAChR expression in bone marrow–derived non–T cells is required for the integrity of the inflammatory reflex. PMID:22183893

  17. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  18. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization

    PubMed Central

    Lee, A M; Wu, D-F; Dadgar, J; Wang, D; McMahon, T; Messing, R O

    2015-01-01

    Background and Purpose Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. Experimental Approach Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce−/− and wild-type mice. Key Results Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce−/− mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce−/− than in wild-type mice. Conclusions and Implications PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation. PMID:26103136

  19. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  20. Selective CRF2 receptor agonists ameliorate the anxiety- and depression-like state developed during chronic nicotine treatment and consequent acute withdrawal in mice.

    PubMed

    Bagosi, Zsolt; Palotai, Miklós; Simon, Balázs; Bokor, Péter; Buzás, András; Balangó, Beáta; Pintér, Dávid; Jászberényi, Miklós; Csabafi, Krisztina; Szabó, Gyula

    2016-12-01

    The aim of the present study was to investigate the effects of the selective agonists of the corticotropin-releasing factor (CRF) 2 receptor, urocortin 2 (UCN 2) and urocortin 3 (UCN 3), on the anxiety- and depression-like signs induced by acute nicotine withdrawal in mice. In order to do so, male CFLP mice were exposed for 7 days to repeated intraperitoneal (IP) injection with nicotine or saline solution and 1day of acute withdrawal and then a single intracerebroventricular (ICV) injection with UCN 2, UCN 3 or saline solution. After 30min the mice were observed in an elevated plus-maze test or a forced swim test, for anxiety- and depression-like behavior. After 5min of testing, the plasma corticosterone concentration reflecting the activity of the hypothalamic-pituitary-adrenal (HPA) axis was also determined by a chemo-fluorescent method. Half of the animals were treated ICV and evaluated on the 8th day, the other half on the 9th day. On the 8th day, nicotine-treated mice presented signs of anxiolysis and depression, but no significant elevation of the plasma corticosterone concentration. On the 9th day, nicotine-treated mice exhibited signs of anxiety and depression and a significant increase of the plasma corticosterone levels. Central administration of UCN 2 or UCN 3 ameliorated the anxiety- and depression-like state including the hyperactivity of the HPA axis, developed during acute withdrawal following chronic nicotine treatment. The present study suggests that selective CRF2 receptor agonists could be used as a therapy in nicotine addiction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Unraveling the neurobiology of nicotine dependence using genetically engineered mice.

    PubMed

    Stoker, Astrid K; Markou, Athina

    2013-08-01

    This review article provides an overview of recent studies of nicotine dependence and withdrawal that used genetically engineered mice. Major progress has been made in recent years with mutant mice that have knockout and gain-of-function of specific neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to neuronal nAChRs that consist of five subunits. The different nAChR subunits that combine to compose a receptor determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent findings in genetically engineered mice have indicated that while α4-containing and β2-containing nAChRs are involved in the acquisition of nicotine self-administration and initial stages of nicotine dependence, α7 homomeric nAChRs appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-containing, α3-containing, and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence have only recently emerged. The use of genetically engineered mice continues to vastly improve our understanding of the neurobiology of nicotine dependence and withdrawal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    PubMed Central

    Neumann, Silke; Shields, Nicholas J.; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N.

    2015-01-01

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells. PMID:26690125

  3. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: carboxamide derivatives with different spacer motifs.

    PubMed

    Eibl, Christoph; Munoz, Lenka; Tomassoli, Isabelle; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4β2(∗) nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4β2(∗) nAChR. All evaluated compounds are partial agonists or antagonists at α4β2(∗), with reduced or no effects on α3β4(∗) with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Functional characterization of α7 nicotinic acetylcholine and NMDA receptor signaling in SH-SY5Y neuroblastoma cells in an ERK phosphorylation assay.

    PubMed

    Elnagar, Mohamed R; Walls, Anne Byriel; Helal, Gouda K; Hamada, Farid M; Thomsen, Morten Skøtt; Jensen, Anders A

    2018-05-05

    In the present study, the functional properties of α7 nicotinic acetylcholine receptors7 nAChRs) and N-methyl-D-aspartate receptors (NMDARs) endogenously expressed in SH-SY5Y human neuroblastoma cells were characterized in an extracellular-signal regulated kinase (ERK) phosphorylation assay. Both choline and N-methyl-D-aspartate (NMDA) mediated robust concentration-dependent increases in ERK phosphorylation in the SH-SY5Y cells, exhibiting EC 50 values in good agreement with those reported for the agonists at recombinant α7 nAChRs and NMDARs, respectively. Importantly, the responses evoked by choline (10 mM) and by NMDA (50 μM) were significantly inhibited by the α7-selective antagonist α-bungarotoxin (100 nM) and by the NMDAR-selective antagonist MK-801 (50 μM), respectively. The increased ERK phosphorylation levels observed upon co-application of choline (1, 3, 10 mM) and NMDA (50 μM) compared to those produced by the two agonists on their own were fully reconcilable with additive effects and did not reveal substantial synergy between α7 nAChR and NMDAR signaling. Interestingly, however, the responses evoked by the "choline (10 mM) - NMDA (50 μM)" combination were almost completely inhibited by α-bungarotoxin (100 nM) as well as by MK-801 (50 μM), suggesting some sort of a link between α7 nAChR- and NMDAR-mediated ERK phosphorylation. Finally, oligomeric amyloid-β 1-42 peptide (1000 nM) mediated robust inhibition of the ERK phosphorylation induced by choline (10 mM), NMDA (50 μM) and the "choline (10 mM) - NMDA (50 μM)" combination. In conclusion, ERK phosphorylation measurements in SH-SY5Y cells provides a robust assay for studies of α7 nAChR- and NMDAR-mediating signaling and putative functional interactions between the receptors. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Brain regions mediating α3β4 nicotinic antagonist effects of 18-MC on nicotine self-administration

    PubMed Central

    Glick, Stanley D.; Sell, Elizabeth M.; McCallum, Sarah E; Maisonneuve, Isabelle M.

    2011-01-01

    18-methoxycoronaridine (18-MC), a putative anti-addictive agent, has been shown to decrease the self-administration of several drugs of abuse in rats. 18-MC is a potent antagonist at α3β4 nicotinic receptors. Consistent with high densities of α3β4 nicotinic receptors being located in the medial habenula and the interpeduncular nucleus, 18-MC has been shown to act in these regions to decrease both morphine and methamphetamine self-administration. The present study was conducted to determine if 18-MC’s effect on nicotine self-administration is mediated by acting in these same brain regions. Because moderate densities of α3β4 receptors occur in the dorsolateral tegmentum, ventral tegmental area, and basolateral amygdala, these brain areas were also examined as potential sites of action of 18-MC. Local administration of 18-MC into either the medial habenula, the basolateral amygdala or the dorsolateral tegmentum decreased nicotine self-administration. Surprisingly, local administration of 18-MC into the interpeduncular nucleus increased nicotine self-administration while local administration of 18-MC into the ventral tegmental area had no effect on nicotine self-administration. Similar effects were produced by local administration of either mecamylamine or conotoxin AuIB. These data are consistent with the hypothesis that 18-MC decreases nicotine self-administration by indirectly modulating the dopaminergic mesolimbic pathway via blockade of α3β4 nicotinic receptors in the medial habenula, basolateral amygdala, and dorsolateral tegmentum. The data also suggest that an action of 18-MC in the interpeduncular nucleus may attenuate aversive and/or depressive effects of nicotine. PMID:21871879

  6. Rapid relief of block by mecamylamine of neuronal nicotinic acetylcholine receptors of rat chromaffin cells in vitro: an electrophysiological and modeling study.

    PubMed

    Giniatullin, R A; Sokolova, E M; Di Angelantonio, S; Skorinkin, A; Talantova, M V; Nistri, A

    2000-10-01

    The mechanism responsible for the blocking action of mecamylamine on neuronal nicotinic acetylcholine receptors (nAChRs) was studied on rat isolated chromaffin cells recorded under whole-cell patch clamp. Mecamylamine strongly depressed (IC(50) = 0.34 microM) inward currents elicited by short pulses of nicotine, an effect slowly reversible on wash. The mecamylamine block was voltage-dependent and promptly relieved by a protocol combining membrane depolarization with a nicotine pulse. Either depolarization or nicotine pulses were insufficient per se to elicit block relief. Block relief was transient; response depression returned in a use-dependent manner. Exposure to mecamylamine failed to block nAChRs if they were not activated by nicotine or if they were activated at positive membrane potentials. These data suggest that mecamylamine could not interact with receptors either at rest or at depolarized level. Other nicotinic antagonists like dihydro-beta-erythroidine or tubocurarine did not share this action of mecamylamine although proadifen partly mimicked it. Mecamylamine is suggested to penetrate and block open nAChRs that would subsequently close and trap this antagonist. Computer modeling indicated that the mechanism of mecamylamine blocking action could be described by assuming that 1) mecamylamine-blocked receptors possessed a much slower, voltage-dependent isomerization rate, 2) the rate constant for mecamylamine unbinding was large and poorly voltage dependent. Hence, channel reopening plus depolarization allowed mecamylamine escape and block relief. In the presence of mecamylamine, therefore, nAChRs acquire the new property of operating as coincidence detectors for concomitant changes in membrane potential and receptor occupancy.

  7. Mesoionic pyrido[1,2-a]pyrimidinones: A novel class of insecticides inhibiting nicotinic acetylcholine receptors.

    PubMed

    Zhang, Wenming; Holyoke, Caleb W; Barry, James; Leighty, Robert M; Cordova, Daniel; Vincent, Daniel R; Hughes, Kenneth A; Tong, My-Hanh T; McCann, Stephen F; Xu, Ming; Briddell, Twyla A; Pahutski, Thomas F; Lahm, George P

    2016-11-15

    A novel class of mesoionic pyrido[1,2-a]pyrimidinones has been discovered with exceptional insecticidal activity controlling a number of insect species, particularly hemiptera and lepidoptera. Mode-of-action studies showed that they act on nicotinic acetylcholine receptors (nAChRs) primarily as inhibitors. Here we report the discovery, evolution, and preparation of this class of chemistry. Our efforts in structure-activity relationship elucidation and biological activity evaluation are also presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Peer Smoking and the Nicotinic Receptor Genes: An Examination of Genetic and Environmental Risks for Nicotine Dependence

    PubMed Central

    Johnson, Eric O.; Chen, Li-Shiun; Breslau, Naomi; Hatsukami, Dorothy; Robbins, Tania; Saccone, Nancy L.; Grucza, Richard A.; Bierut, Laura J.

    2010-01-01

    Background Peer smoking provides a socially reinforcing context of friends’ encouragement and approval that contributes to smoking behavior. Twin studies show correlations and interactions between peer substance use and genetic liability for substance use. However, none examined specific genes. Here we test the hypothesis that the nicotinic receptor genes CHRNA5 (rs16969968), CHRNA3 (rs578776), CHRNB3 (rs13277254), and CHRND (rs12466358) modify the risk for nicotine dependence (ND) associated with peer smoking. Methods Cases of current nicotine dependence (FTND ≥ 4) and smoking-exposed (smoked 100+ cigarettes lifetime), but non-dependent controls (lifetime FTND = 0) came from the Collaborative Genetic Study of Nicotine Dependence (n=2,038). Peer smoking was retrospectively assessed for grades 9–12. Results Peer smoking and the four SNPs were associated with ND. A statistically significant interaction was found between peer smoking and rs16969968 (p = 0.0077). Overall risk of ND was highest for the rs16969968 AA genotype. However, variance in ND attributable to peer smoking was substantially lower among those with the AA genotype at rs16969968 than the lower risk genotypes: AA = 2.5%, GA/AG = 11.2%, GG = 14.2%; p ≤ 0.004. Conclusions Peer smoking had a substantially lower effect on ND among those with the high risk AA genotype at the functional SNP rs16969968 (CHRNA5) than among those with lower risk genotypes. Such results highlight the possibility that given drug exposure those with specific genetic risks may be less affected by social contexts and intervention strategies focused on social factors could have less influence on those at highest genetic risk. PMID:20840187

  9. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN.

    PubMed

    Kyte, S Lauren; Toma, Wisam; Bagdas, Deniz; Meade, Julie A; Schurman, Lesley D; Lichtman, Aron H; Chen, Zhi-Jian; Del Fabbro, Egidio; Fang, Xianjun; Bigbee, John W; Damaj, M Imad; Gewirtz, David A

    2018-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α 7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Sex differences in availability of β2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers

    PubMed Central

    Cosgrove, Kelly P.; Esterlis, Irina; McKee, Sherry A.; Bois, Frederic; Seibyl, John P.; Mazure, Carolyn M.; Krishnan-Sarin, Suchitra; Staley, Julie K.; Picciotto, Marina R.; O’Malley, Stephanie S.

    2012-01-01

    Context Sex differences exist in the reinforcing effects of nicotine, smoking cessation rates, and in response to nicotine replacement therapies. Sex differences in availability of nicotinic acetylcholine receptors containing the β2 subunit (β2*-nAChRs) may underlie differential nicotine and tobacco smoking effects and related behaviors in women and men. Objective To examine β2*-nAChR availability between male and female smokers and nonsmokers. To determine relationships between β2*-nAChR availability and tobacco smoking characteristics and female sex steroid hormones. Design Male (n=26) and female (n=28) tobacco smokers participated in one [123I]5-IA-85380 ([123I]5-IA) single photon emission computed tomography (SPECT) scan at 7–9 days of abstinence. Age-matched male (n=26) and female (n=30) nonsmokers participated in a single [123I]5-IA SPECT scan. All participants completed 1 magnetic resonance imaging study. Setting Academic Imaging Center Participants Tobacco smokers (n=54) and age- and sex-matched nonsmokers (n=56). Main Outcome Measure [123I]5-IA SPECT images were converted to equilibrium distribution volumes and analyzed using regions-of-interest. Results β2*-nAChR availability was significantly higher in male smokers compared to male nonsmokers in striatum, cortex and cerebellum, but female smokers did not have higher β2*-nAChR availability than female nonsmokers in any region. In women, β2*-nAChR availability in the cortex and cerebellum was negatively and significantly correlated with progesterone level on the day of the scan. In female smokers, on the day of the scan, progesterone levels were positively and significantly correlated with depressive symptoms, craving for a cigarette, and nicotine withdrawal. Conclusions The regulatory effects of nicotine in the brain, i.e., tobacco-smoking induced upregulation of β2*-nAChRs, appear to be distinctly different between men and women, and female sex hormones likely play a role in this regulation

  11. Alpha7 Nicotinic Acetylcholine Receptors Play a Predominant Role in the Cholinergic Potentiation of N-Methyl-D-Aspartate Evoked Firing Responses of Hippocampal CA1 Pyramidal Cells

    PubMed Central

    Bali, Zsolt K.; Nagy, Lili V.; Hernádi, István

    2017-01-01

    The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA) and acetylcholine (ACh). Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA) to assess the contribution of muscarinic ACh receptor (mAChR) or α7 nicotinic ACh receptor (nAChR) receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline. PMID:28928637

  12. D{sub 2} dopamine receptor gene and behavioral characteristics in nicotine dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, E.P.; Fitch, R.J.; Syndulko, K.

    1994-09-01

    The D{sub 2} dopamine receptor (DRD2) A1 allele has been recently associated with nicotine dependence. In the present study, TaqI A alleles (the minor A1 and the major A2 allele) of the DRD2 were determined in medically-ill subjects. The sample was composed of 41 non-smokers (N), 69 ex-smokers (X) and 63 active smokers (A). The relationships of DRD2 alleles to personality (Eysenick`s Addictive Personality [AP]), depression and nicotine dependence (Fagerstroem) scores were ascertained. A significant (P = 0.002) group effect prevailed in the AP scores, with the A group having the highest scores. Moreover, a significant (P = 0.025) allelemore » by group interaction was found, with A1 allelic subjects in group A showing the highest AP scores. Significant group effects were also found in both the depression (P = 0.0004) and the nicotine dependence (P = 0.0003) scores, with the A group again showing the highest scores. However, in contrast to the AP scores, no significant allele by group interaction was found either in the depression or the nicotine dependence scores. In conclusion, the present findings suggest a role for the DRD2 gene in personality of smokers. However, relationship of the DRD2 gene to the degree of depression or nicotine dependence was not found. The data indicate the importance of using behavioral and genetic variables in dissecting the complex set of variables associated with the smoking habit, and thus in achieving a better understanding of the biobehavioral bases of this addiction.« less

  13. Hypoxia and nicotine effects on Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor 1 (PAC1) in the developing piglet brainstem.

    PubMed

    Huang, J; Waters, K A; Machaalani, R

    2017-09-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) and its cognate receptor 1 (PAC1), have been implicated in the pathophysiology of the Sudden Infant Death Syndrome (SIDS). Two main risk factors for SIDS are prone sleeping and cigarette smoke exposure. Using piglet models of these risk factors, intermittent hypercapnic hypoxia (IHH-mimicking rebreathing in prone position) and nicotine (main reinforcing element of cigarettes), this study aimed to determine their effects on PACAP and PAC1 protein expression in the medulla. IHH was delivered for 1 (n=7), 2 (n=6), 3 (n=6) and 4 (n=7) days prior to euthanasia at 13-14days of age, while nicotine (n=7) was continuous for the first 14days of life. An additional group of combined nicotine and 1day IHH (1DIHH) was studied to determine the combined effects of the risk factors. Changes in expression were seen after the acute 1DIHH exposure (none after repeated daily exposures) and included a decrease in PACAP in the dorsal motor nucleus of vagus (DMNV; p=0.024), nucleus of the solitary tract (NTS; p=0.024) and the gracile nucleus (GRAC; p=0.001), and a decrease in PAC1 in the NTS (p=0.01). No PACAP change was noted in the nicotine-exposed piglets, however, a decrease in PAC1 was found in the DMNV (p=0.02). IHH exposure in piglets with pre-exposure to nicotine led to a significant decrease in PACAP in the Grac (p=0.04) but had no effect on PAC1. These findings show for the first time, the vulnerability of PACAP in the brainstem during early development to an acute hypercapnic hypoxic exposure and that those effects are greater than from nicotine exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The 5-HT2C Receptor Agonist Lorcaserin Reduces Nicotine Self-Administration, Discrimination, and Reinstatement: Relationship to Feeding Behavior and Impulse Control

    PubMed Central

    Higgins, Guy A; Silenieks, Leo B; Roßmann, Anne; Rizos, Zoe; Noble, Kevin; Soko, Ashlie D; Fletcher, Paul J

    2012-01-01

    Lorcaserin ((1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCl) is a selective 5-HT2C receptor agonist with clinical efficacy in phase-III obesity trials. Based on evidence that this drug class also affects behaviors motivated by drug reinforcement, we compared the effect of lorcaserin on behavior maintained by food and nicotine reinforcement, as well as the stimulant and discriminative stimulus properties of nicotine in the rat. Acutely administered lorcaserin (0.3–3 mg/kg, subcutaneous (SC)) dose dependently reduced feeding induced by 22-h food deprivation or palatability. Effects up to 1 mg/kg were consistent with a specific effect on feeding motivation. Lorcaserin (0.6–1 mg/kg, SC) reduced operant responding for food on progressive and fixed ratio schedules of reinforcement. In this dose range lorcaserin also reversed the motor stimulant effect of nicotine, reduced intravenous self-administration of nicotine, and attenuated the nicotine cue in rats trained to discriminate nicotine from saline. Lorcaserin also reduced the reinstatement of nicotine-seeking behavior elicited by a compound cue comprising a nicotine prime and conditioned stimulus previously paired with nicotine reinforcement. Lorcaserin did not reinstate nicotine-seeking behavior or substitute for a nicotine cue. Finally, lorcaserin (0.3–1 mg/kg) reduced nicotine-induced increases in anticipatory responding, a measure of impulsive action, in rats performing the five-choice serial reaction time task. Importantly, these results indicate that lorcaserin, and likely other selective 5-HT2C receptor agonists, similarly affect both food- and nicotine-motivated behaviors, and nicotine-induced impulsivity. Collectively, these findings highlight a therapeutic potential for 5-HT2C agonists such as lorcaserin beyond obesity into addictive behaviors, such as nicotine dependence. PMID:22189292

  15. The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control.

    PubMed

    Higgins, Guy A; Silenieks, Leo B; Rossmann, Anne; Rizos, Zoe; Noble, Kevin; Soko, Ashlie D; Fletcher, Paul J

    2012-04-01

    Lorcaserin ((1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCl) is a selective 5-HT(2C) receptor agonist with clinical efficacy in phase-III obesity trials. Based on evidence that this drug class also affects behaviors motivated by drug reinforcement, we compared the effect of lorcaserin on behavior maintained by food and nicotine reinforcement, as well as the stimulant and discriminative stimulus properties of nicotine in the rat. Acutely administered lorcaserin (0.3-3 mg/kg, subcutaneous (SC)) dose dependently reduced feeding induced by 22-h food deprivation or palatability. Effects up to 1 mg/kg were consistent with a specific effect on feeding motivation. Lorcaserin (0.6-1 mg/kg, SC) reduced operant responding for food on progressive and fixed ratio schedules of reinforcement. In this dose range lorcaserin also reversed the motor stimulant effect of nicotine, reduced intravenous self-administration of nicotine, and attenuated the nicotine cue in rats trained to discriminate nicotine from saline. Lorcaserin also reduced the reinstatement of nicotine-seeking behavior elicited by a compound cue comprising a nicotine prime and conditioned stimulus previously paired with nicotine reinforcement. Lorcaserin did not reinstate nicotine-seeking behavior or substitute for a nicotine cue. Finally, lorcaserin (0.3-1 mg/kg) reduced nicotine-induced increases in anticipatory responding, a measure of impulsive action, in rats performing the five-choice serial reaction time task. Importantly, these results indicate that lorcaserin, and likely other selective 5-HT(2C) receptor agonists, similarly affect both food- and nicotine-motivated behaviors, and nicotine-induced impulsivity. Collectively, these findings highlight a therapeutic potential for 5-HT(2C) agonists such as lorcaserin beyond obesity into addictive behaviors, such as nicotine dependence.

  16. Connections of nicotine to cancer.

    PubMed

    Grando, Sergei A

    2014-06-01

    This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.

  17. Immunolocalization of androgen and oestrogen receptors in the ventral lobe of rat (Rattus norvegicus) prostate after long-term treatment with ethanol and nicotine.

    PubMed

    Fávaro, W J; Cagnon, V H A

    2008-12-01

    Nicotine and alcohol adversely affect prostate gland function. In this work, immunohistochemistry was used to investigate the immunoreactivity and distribution of androgen and alpha, beta-oestrogen receptors following chronic treatment with alcohol, nicotine or a combination of both substances, as well as to relate these results to the development of possible prostatic pathologies. Forty male rats were divided into four groups: the Control group received tap water; the Alcoholic group received diluted 10% Gay Lussac ethanol; the Nicotine group received a 0.125 mg/100 g body weight dose of nicotine injected subcutaneously on a daily basis (Sigma Chemical Company, St. Louis, MO, USA); the Nicotine-Alcohol group received simultaneous alcohol and nicotine treatment. After 90 days of treatment, samples of the ventral lobe of the prostate were collected and processed for immunohistochemistry, light microscopy and the quantification of serum hormonal concentrations. The results showed significantly decreased serum testosterone levels and increased serum oestrogen levels in the animals from the nicotine-alcohol, the alcoholic and the nicotine groups, as well as their hormonal receptor levels. Then, it was concluded that ethanol and nicotine compromised the prostatic hormonal balance, which is a crucial factor to maintain the morphological and physiological features of this organ.

  18. Effects of cholinesterase inhibitors on rat nicotinic receptor levels in vivo and in vitro

    PubMed Central

    Sabbagh, Marwan N.

    2010-01-01

    Cholinesterase inhibitors (ChEIs) are the mainstay of treatment for AD but differ by secondary mechanisms of action. We determine the effects of sub-chronic dosing of ChEIs on α7 and non-α7 nAChRs and determine if differences can be observed between them. Sprague–Dawley rats were administered donepezil, galantamine; rivastigmine at two doses each, in saline SQ twice daily or with nicotine (0.4 mg/kg) as a positive control. After 14 days the animals were sacrificed, and the levels of nAChRs were measured using [3H]-EPI to measure non-α7 nAChRs and [3H]-MLA to measure α7 nAChRs. In the cortex, all compounds tested at the higher doses significantly increased the levels of both [3H]-EPI and [3H]-MLA. In the hippocampus all compounds significantly increased [3H]-EPI but had no effect on [3H]-MLA binding. No effects were observed in the striatum with treatment. There were no differences observed among the ChEIs. In cell cultures, none of the ChEIs increased non-α7 or α7 receptor binding. Treatment with ChEIs result in similar increases in receptor levels which suggest that the increases in nAChRs may be due simply to the increases in synaptic levels of acetylcholine. PMID:18726544

  19. Demonstration of muscarinic and nicotinic receptor binding activities of distigmine to treat detrusor underactivity.

    PubMed

    Harada, Taketsugu; Fushimi, Kazumi; Kato, Aya; Ito, Yoshihiko; Nishijima, Saori; Sugaya, Kimio; Yamada, Shizuo

    2010-01-01

    The present study was undertaken to examine whether distigmine, a therapeutic agent used to treat detrusor underactivity, binds directly to muscarinic and nicotinic receptors. We used radioreceptor binding assays and compared the effects of distigmine with those of neostigmine and donepedil. The inhibitory effect of distigmine on the blood acetylcholinesterase (AChE) activity was significantly weaker than that of neostigmine. Distigmine, neostigmine, and donepezil competed for specific binding sites of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS ) and [(3)H]oxotremorine-M in the bladder, submaxillary gland and cerebral cortex of rats in a concentration-dependent manner, indicating significant binding activity of muscarinic receptors. Distigmine displayed significantly higher affinity for binding sites of [(3)H]oxotremorine-M compared with those of [(3)H]NMS as revealed by large ratios of its K(i) value for [(3)H]NMS to that for [(3)H]oxotremorine-M, suggesting that it has preferential affinity for agonist sites of muscarinic receptors. Distigmine seemed to bind to the agonist sites of muscarinic receptors in a competitive manner. Repeated oral administration of distigmine caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]NMS in the bladder and submaxillary gland but not cerebral cortex. Distigmine also bound to nicotinic receptors in the rat cerebral cortex. In conclusion, distigmine shows direct binding to muscarinic receptors in the rat bladder, and repeated oral administration of distigmine causes downregulation of muscarinic receptors in the rat bladder. The observed direct interaction of distigmine with the bladder muscarinic receptors may partly contribute to the therapeutic and/or side effects seen in the treatment of detrusor underactivity.

  20. PET Imaging Evaluation of [18F]DBT-10, a Novel Radioligand Specific to α7 Nicotinic Acetylcholine Receptors, in Nonhuman Primates

    PubMed Central

    Hillmer, Ansel T.; Zheng, Ming-Qiang; Li, Songye; Scheunemann, Matthias; Lin, Shu-fei; Holden, Daniel; Labaree, David; Ropchan, Jim; Teodoro, Rodrigo; Deuther-Conrad, Winnie; Carson, Richard E.; Brust, Peter; Huang, Yiyun

    2015-01-01

    Purpose PET radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer’s disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[18F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([18F]DBT-10), in nonhuman primates. Methods [18F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [18F]DBT-10 PET, with measurement of [18F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [18F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (VT/fP). Results [18F]DBT-10 was produced within 90 min at high specific activities of 428±436 GBq/μmol at end of synthesis. Metabolism of [18F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15–55%. Uptake of [18F]DBT-10 in brain occurred rapidly, reaching peak SUVs of 2.9–3.7 within 30 min. The plasma free fraction was 18.8±3.4%. No evidence for radiolabeled [18F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated VT/fP values were 193–376 mL/cm3 across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose dependent blockade of [18F]DBT-10 binding by structural analog ASEM was observed throughout the

  1. The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium.

    PubMed

    Fu, Xiao Wen; Rekow, Stephen S; Spindel, Eliot R

    2012-10-15

    Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.

  2. Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles.

    PubMed

    Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J

    2011-12-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

  3. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    PubMed Central

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  4. Nicotinic plant poisoning.

    PubMed

    Schep, Leo J; Slaughter, Robin J; Beasley, D Michael G

    2009-09-01

    A wide range of plants contain nicotinic and nicotinic-like alkaloids. Of this diverse group, those that have been reported to cause human poisoning appear to have similar mechanisms of toxicity and presenting patients therefore have comparable toxidromes. This review describes the taxonomy and principal alkaloids of plants that contain nicotinic and nicotinic-like alkaloids, with particular focus on those that are toxic to humans. The toxicokinetics and mechanisms of toxicity of these alkaloids are reviewed and the clinical features and management of poisoning due to these plants are described. This review was compiled by systematically searching OVID MEDLINE and ISI Web of Science. This identified 9,456 papers, excluding duplicates, all of which were screened. Reviewed plants and their principal alkaloids. Plants containing nicotine and nicotine-like alkaloids that have been reported to be poisonous to humans include Conium maculatum, Nicotiana glauca and Nicotiana tabacum, Laburnum anagyroides, and Caulophyllum thalictroides. They contain the toxic alkaloids nicotine, anabasine, cytisine, n-methylcytisine, coniine, n-methylconiine, and gamma-coniceine. These alkaloids act agonistically at nicotinic-type acetylcholine (cholinergic) receptors (nAChRs). The nicotinic-type acetylcholine receptor can vary both in its subunit composition and in its distribution within the body (the central and autonomic nervous systems, the neuromuscular junctions, and the adrenal medulla). Agonistic interaction at these variable sites may explain why the alkaloids have diverse effects depending on the administered dose and duration of exposure. Nicotine and nicotine-like alkaloids are absorbed readily across all routes of exposure and are rapidly and widely distributed, readily traversing the blood-brain barrier and the placenta, and are freely distributed in breast milk. Metabolism occurs predominantly in the liver followed by rapid renal elimination. Following acute exposure

  5. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels ofmore » α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer

  6. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex.

    PubMed

    McClure-Begley, Tristan D; Esterlis, Irina; Stone, Kathryn L; Lam, TuKiet T; Grady, Sharon R; Colangelo, Christopher M; Lindstrom, Jon M; Marks, Michael J; Picciotto, Marina R

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein-protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.

  7. (E)-Nicotinaldehyde O-Cinnamyloxime, a Nicotine Analog, Attenuates Neuronal Cells Death Against Rotenone-Induced Neurotoxicity.

    PubMed

    Jurado-Coronel, Juan Camilo; Loaiza, Alix E; Díaz, John E; Cabezas, Ricardo; Ashraf, Ghulam Md; Sahebkar, Amirhossein; Echeverria, Valentina; González, Janneth; Barreto, George E

    2018-06-07

    Parkinson's disease (PD) is a neurodegenerative pathology characterized by resting tremor, rigidity, bradykinesia, and loss of dopamine-producing neurons in the pars compacta of the substantia nigra in the central nervous system (CNS) that result in dopamine depletion in the striatum. Oxidative stress has been documented as a key pathological mechanism for PD. Epidemiological studies have shown that smokers have a lower incidence of PD. In this aspect, different studies have shown that nicotine, a chemical compound found in cigarette, is capable of exerting beneficial effects in PD patients, but it can hardly be used as a therapeutic agent because of its inherent toxicity. Several studies have suggested that the use of nicotine analogs can have the same benefits as nicotine but lack its toxicity. In this study, we assessed the effects of two nicotine analogs, (E)-nicotinaldehyde O-cinnamyloxime and 3-(pyridin-3-yl)-3a,4,5,6,7,7a-hexahidrobenzo[d]isoxazole, in an in vitro model of PD. Initially, we performed a computational prediction of the molecular interactions between the nicotine analogs with the α7 nicotinic acetylcholine receptor (nAChR). Furthermore, we evaluated the effect of nicotine, nicotine analogs and rotenone on cell viability and reactive oxygen species (ROS) production in the SH-SY5Y neuronal cell line to validate possible protective effects. We observed that pre-treatment with nicotine or (E)-nicotinaldehyde O-cinnamyloxime (10 μM) improved cell viability and diminished ROS production in SH-SY5Y cells insulted with rotenone. These findings suggest that nicotine analogs have a potential protective effect against oxidative damage in brain pathologies.

  8. Varenicline: a selective alpha4beta2 nicotinic acetylcholine receptor partial agonist approved for smoking cessation.

    PubMed

    Lam, Sum; Patel, Priti N

    2007-01-01

    Tobacco smoking remains a significant health problem in the United States. It has been associated with staggering morbidity and mortality, specifically due to malignancies and cardiovascular disease. Smoking cessation can be difficult and frequently requires pharmacologic interventions in addition to nonpharmacologic measures. Previously available agents are nicotine replacement products and bupropion, which increased quit rates by about 2-fold compared with placebo. Varenicline is the first drug in a new class known as the selective alpha4beta2 nicotinic receptor partial agonists. In several randomized, double-blind, 52-week clinical trials involving healthy chronic smokers, varenicline demonstrated superiority to placebo and bupropion in terms of efficacy measures. Additionally, it improved tobacco withdrawal symptoms and reinforcing effects of smoking in relapsed patients. Patients should start therapy in combination with tobacco cessation counseling 1 week before quit date and continue the regimen for 12 weeks. The dose of varenicline should be titrated to minimize nausea. The recommended dosage is 0.5 mg once daily (QD) on days 1-3; titrate to 0.5 mg twice daily (BID) on days 4-7; and 1 mg BID starting on day 8. An additional 12-week maintenance therapy may be considered for those who achieve abstinence. The most common side effects are nausea (30%), insomnia (18%), headache (15%), abnormal dreams (13%), constipation (8%), and abdominal pain (7%). Overall, varenicline is a breakthrough in the management of tobacco addiction and has demonstrated good efficacy in motivated quitters. It also provides an option for smokers who cannot tolerate other pharmacologic interventions.

  9. Allosteric modulation of nicotinic and GABAA receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model.

    PubMed

    Yoshimura, Ryan F; Tran, Minhtam B; Hogenkamp, Derk J; Ayala, Narielle L; Johnstone, Timothy; Dunnigan, Andrew J; Gee, Timothy K; Gee, Kelvin W

    2017-11-01

    Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acid A (GABA A ) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T + tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A β2/3-subunit containing GABA A receptor (GABA A R) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABA A R subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative Effects of Dextromethorphan and Dextrorphan on Nicotine Discrimination in Rats

    PubMed Central

    Wright, M. Jerry; Vann, Robert E.; Gamage, Thomas F.; Damaj, M. Imad; Wiley, Jenny L.

    2007-01-01

    While the role of dextrorphan and dextromethorphan as N-methyl-D-aspartate (NMDA) receptor antagonists has received considerable research attention, their effects on nicotinic acetylcholine receptors (nAChR) has been less well characterized. Recent in vitro and in vivo research has suggested that these drugs noncompetitively block α3β4*, α4β2, and α7 nAChR subtypes and antagonize nicotine’s antinociceptive and reinforcing effects. Both drugs were most potent at blocking α3β4* AChR. This study investigated the effects of dextrorphan and dextromethorphan on nicotine’s discriminative stimulus effects. Three groups of rats were trained in a two-lever drug discrimination procedure to discriminate 0.4 mg/kg s.c. nicotine from saline. Nicotine dose-dependently substituted for itself in all three groups. In contrast, when dextrorphan (group 1) or dextromethorphan (group 2) were injected i.p., neither substitution for nor antagonism of nicotine was observed for either drug. Since i.p. administration allows substantial metabolism of dextromethorphan to its parent compound dextrorphan, the two drugs were also tested following s.c. administration (group 3). Discrimination results were similar across both routes of administration, in that neither substitution nor antagonism occurred, however, s.c. administration reduced response rates to a much greater extent than did i.p. administration. Previous work suggests that β2 subunits are crucial for mediation of nicotine’s discriminative stimulus effects and may play a role in its reinforcing effects, albeit other research suggests a role for α3β4* nicotinic receptors in the latter. Our results suggest that α3β4* nicotinic receptors do not play a major role in nicotine’s discriminative stimulus effects. Further, they suggest that the role of cholinergic mediation of the behavioral effects of dextrorphan and dextromethorphan related to the abuse properties of nicotine may be minimal. PMID:17112574

  11. Attenuation of nicotine taking and seeking in rats by the stoichiometry-selective alpha4beta2 nicotinic acetylcholine receptor positive allosteric modulator NS9283.

    PubMed

    Maurer, John J; Sandager-Nielsen, Karin; Schmidt, Heath D

    2017-02-01

    The rewarding and reinforcing effects of nicotine are produced, in large part, by activation of neuronal α4β2* nicotinic acetylcholine receptors (nAChRs), pentameric protein complexes comprised of different stoichiometries of α4 and β2 subunits. However, little is known about the functional role of distinct subtypes of α4β2* nAChRs in nicotine addiction. NS9283 represents a new class of stoichiometry-selective positive allosteric modulators (PAMs) that selectively bind to α4β2 nAChRs containing three α4 and two β2 subunits (3(α4)2(β2) nAChRs). The present experiments were designed to determine the effects of NS9283 on nicotine self-administration and the reinstatement of nicotine-seeking behavior, an animal model of smoking relapse. Parallel studies of sucrose self-administration and reinstatement were conducted in separate cohorts of rats to determine if the effects of NS9283 generalized to other reinforced behaviors. Acute and repeated administration of NS9283 dose-dependently reduced nicotine self-administration and reinstatement in male Sprague Dawley rats. These effects were reinforcer specific as no effects of NS9283 on sucrose self-administration and reinstatement were noted. NS9283 also failed to substitute for nicotine in supporting self-administration behavior suggesting that, at the doses tested, NS9283 alone is not reinforcing. Taken together, these results provide compelling evidence that stoichiometry-selective PAMs of 3(α4)2(β2) nAChRs attenuate nicotine taking and seeking in rats and suggest that targeting 3(α4)2(β2) nAChRs may represent a promising therapeutic strategy for preventing smoking relapse.

  12. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex

    PubMed Central

    Tinsley, Chris J.; Fontaine-Palmer, Nadine S.; Vincent, Maria; Endean, Emma P.E.; Aggleton, John P.; Brown, Malcolm W.; Warburton, E. Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-77) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive. PMID:21693636

  13. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex.

    PubMed

    Tinsley, Chris J; Fontaine-Palmer, Nadine S; Vincent, Maria; Endean, Emma P E; Aggleton, John P; Brown, Malcolm W; Warburton, E Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-77) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.

  14. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Beckstein, Oliver; Sansom, Mark S. P.

    2006-06-01

    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.

  15. Orexin receptors in the developing piglet hypothalamus, and effects of nicotine and intermittent hypercapnic hypoxia exposures.

    PubMed

    Hunt, Nicholas J; Waters, Karen A; Machaalani, Rita

    2013-05-01

    Orexin and its receptors (OxR1 and OxR2) play a significant role in arousal and sleep regulation. Using developing piglets, we aimed to determine the effects of nicotine and Intermittent Hypercapnic Hypoxia (IHH), alone or in combination, on orexin receptor expression in the hypothalamus. Four piglet groups were studied: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry for OxR1 and OxR2 expression, eight nuclei/areas of the hypothalamus: dorsal medial nucleus (DMN), arcuate nucleus (ARC), perifornical area (PFA), paraventricular nucleus (PVN), lateral hypothalamic area (LHA), ventral medial nucleus (VMN), supraoptic nucleus, retrochiasmatic part (SONr) and tuberal mammillary nucleus (TMN), were studied. Compared to controls, OxR1 and OxR2 were increased due to exposures, however this was region dependent. Nicotine increased OxR1 in the DMN (P<0.001) and SONr (P=0.036), and OxR2 in the DMN (P<0.001), VMN (P=0.014) and the TMN (P=0.026). IHH increased OxR1 in the DMN, PVN, VMN and SONr (P<0.01 for all), and OxR2 in DMN (P<0.001), PFA (P=0.001), PVN (P=0.004), VMN (P=0.041) and the TMN (P<0.001). The nic+IHH exposure increased OxR1 expression in all nuclei (TMN excluded) however, the changes were not significantly different from IHH alone. For OxR2, the increased expression after nic+IHH was significant compared to IHH in the DMN, ARC and SONr. These results show that nicotine increases orexin receptor expression in a region dependent manner. IHH induced increases were specific to arousal and stress related regions and nic+IHH results suggest that for OxR1, nicotine has no additive effect whereas for OxR2 it does, and is region dependent. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways.

    PubMed

    Rogers, Scott W; Gahring, Lorise C

    2015-01-01

    High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.

  17. Nicotinic Acetylcholine Receptors Mediate the Suppressive Effect of an Injection of Diluted Bee Venom into the GV3 Acupoint on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats.

    PubMed

    Yoon, Heera; Kim, Min Joon; Yoon, Insoo; Li, Dong Xing; Bae, Hyunsu; Kim, Sun Kwang

    2015-01-01

    Oxaliplatin, a platinum-based chemotherapy drug, often induces acute neuropathic pain, especially cold allodynia, even after a single administration. Subcutaneous injection of diluted bee venom (BV) into acupoints has been used to treat various pain symptoms in traditional oriental medicine. Although we previously demonstrated the suppressive effect of BV injection on oxaliplatin-induced cold allodynia in rats, its neurochemical mechanism remained unclear. This study investigates whether and how the cholinergic system mediates the relieving effect of BV injection on cold allodynia in oxaliplatin-administered rats. The behavioral signs of cold allodynia induced by an oxaliplatin administration (6 mg/kg, intraperitoneally (i.p.)) were evaluated by a tail immersion test in cold water (4°C). BV (0.25 mg/kg, subcutaneously (s.c.)) injection into the Yaoyangguan acupoint, located between the spinous processes of the fourth and fifth lumbar vertebrae, significantly alleviated the cold allodynia. This relieving effect of BV injection on oxaliplatin-induced cold allodynia was blocked by a pretreatment with mecamylamine (a non-selective nicotinic receptor antagonist, 2 mg/kg, i.p.), but not by atropine (a non-selective muscarinic receptor antagonist, 1 mg/kg, i.p.). Further, dihydro-β-erythroidinehydrobromide (DHβE, an α4β2 nicotinic antagonist, 5 mg/kg, i.p.) prevented the anti-allodynic effect of BV, whereas methyllycaconitine (an α7 nicotinic antagonist, 6 mg/kg, i.p.) did not. Finally, intrathecal administration of DHβE (10 nM) blocked the BV-induced anti-allodynic effect. These results suggest that nicotinic acetylcholine receptors, especially spinal α4β2 receptors, but not muscarinic receptors, mediate the suppressive effect of BV injection on oxaliplatin-induced acute cold allodynia in rats.

  18. Mechanisms of Inhibition and Potentiation of α4β2 Nicotinic Acetylcholine Receptors by Members of the Ly6 Protein Family*

    PubMed Central

    Wu, Meilin; Puddifoot, Clare A.; Taylor, Palmer; Joiner, William J.

    2015-01-01

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca2+ flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. PMID:26276394

  19. Inhibition of alpha7 nicotinic receptors in the ventral hippocampus selectively attenuates reinstatement of morphine-conditioned place preference and associated changes in AMPA receptor binding.

    PubMed

    Wright, Victoria L; Georgiou, Polymnia; Bailey, Alexis; Heal, David J; Bailey, Christopher P; Wonnacott, Susan

    2018-04-17

    Recurrent relapse is a major problem in treating opiate addiction. Pavlovian conditioning plays a role in recurrent relapse whereby exposure to cues learned during drug intake can precipitate relapse to drug taking. α7 nicotinic acetylcholine receptors (nAChRs) have been implicated in attentional aspects of cognition and mechanisms of learning and memory. In this study we have investigated the role of α7 nAChRs in morphine-conditioned place preference (morphine-CPP). CPP provides a model of associative learning that is pertinent to associative aspects of drug dependence. The α7 nAChR antagonist methyllycaconitine (MLA; 4 mg/kg s.c.) had no effect on the acquisition, maintenance, reconsolidation or extinction of morphine-CPP but selectively attenuated morphine-primed reinstatement of CPP, in both mice and rats. Reinstatement of morphine-CPP in mice was accompanied by a selective increase in [ 3 H]-AMPA binding (but not in [ 3 H]-MK801 binding) in the ventral hippocampus that was prevented by prior treatment with MLA. Administration of MLA (6.7 μg) directly into the ventral hippocampus of rats prior to a systemic priming dose of morphine abolished reinstatement of morphine-CPP, whereas MLA delivered into the dorsal hippocampus or prefrontal cortex was without effect. These results suggest that α7 nAChRs in the ventral hippocampus play a specific role in the retrieval of associative drug memories following a period of extinction, making them potential targets for the prevention of relapse. © 2018 The Authors.Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  20. The combination of memantine and galantamine improves cognition in rats: The synergistic role of the α7 nicotinic acetylcholine and NMDA receptors.

    PubMed

    Nikiforuk, Agnieszka; Potasiewicz, Agnieszka; Kos, Tomasz; Popik, Piotr

    2016-10-15

    The combination of memantine and acetylcholinesterase inhibitors (AChEIs) is used as a therapeutic strategy to improve cognition in Alzheimer's disease. Among AChEIs, galantamine, which is also a positive allosteric modulator (PAM) of nicotinic acetylcholine receptors (nAChRs), including α7-nAChRs, may be particularly beneficial. The α7-nAChR is involved in interactions between the cholinergic and glutamatergic systems. In the present study, we investigated the potential role of α7-nAChRs in the pro-cognitive effects of this drug combination. To this aim, cognitive performance in rats was assessed using the attentional set shifting task (ASST) and novel object recognition task (NORT). Co-administration of inactive doses of memantine with galantamine facilitated the rats' set-shifting performance and reversed delay-induced deficits in object recognition. These effects were blocked by the α7-nAChR antagonist methyllycaconitine, suggesting that the observed cognitive enhancement is α7-nAChR dependent. Moreover, combined administration of memantine with inactive doses of selective α7-nAChRs PAMs, CCMI and PNU-120596, also improved ASST and NORT performance in a methyllycaconitine-dependent manner. Stimulation of α7-nAChRs may underlie the pro-cognitive effects of combining memantine and galantamine. Our results suggest that memantine, when given with enhancers of α7-nAChRs, may represent an effective strategy for cognitive improvement. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Solution structure of {alpha}-conotoxin PIA, a novel antagonist of {alpha}6 subunit containing nicotinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung

    2005-12-30

    {alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, amore » kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.« less

  2. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    PubMed

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex. Published by Elsevier Inc.

  3. CB1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal.

    PubMed

    Saravia, Rocio; Flores, África; Plaza-Zabala, Ainhoa; Busquets-Garcia, Arnau; Pastor, Antoni; de la Torre, Rafael; Di Marzo, Vincenzo; Marsicano, Giovanni; Ozaita, Andrés; Maldonado, Rafael; Berrendero, Fernando

    2017-04-01

    Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. We investigated in mice the role of CB 1 cannabinoid receptors (CB 1 Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. Memory impairment during nicotine withdrawal was blocked by the CB 1 R antagonist rimonabant or the genetic deletion of CB 1 R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB 1 R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB 1 R conditional knockout mice and after subchronic treatment with rimonabant. These findings underline the interest of CB 1 R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.

    PubMed

    Renna, J M; Strang, C E; Amthor, F R; Keyser, K T

    2007-01-01

    Strychnine is considered a selective competitive antagonist of glycine gated Cl- channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of alpha7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2'-phosphonomethyl[1,1'-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both alpha7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 microM choline was used as an alpha7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have alpha7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and alpha-bungarotoxin on the binding of tetramethylrhodamine alpha-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 microM, can inhibit the alpha7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 microM does not. Binding studies show strychnine and alpha-bungarotoxin inhibit binding of labeled alpha-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell alpha7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.

  5. Effect of a nicotine vaccine on nicotine binding to the beta2-nAChRs in vivo in human tobacco smokers

    PubMed Central

    Esterlis, Irina; Hannestad, Jonas O.; Perkins, Evgenia; Bois, Frederic; D’Souza, D. Cyril; Tyndale, Rachel F.; Seibyl, John P.; Hatsukami, Dorothy M.; Cosgrove, Kelly P.; O’Malley, Stephanie S.

    2013-01-01

    Objective Nicotine acts in the brain to promote smoking in part by binding to the beta2-containing nicotinic acetylcholine receptors (β2*-nAChRs) and acting in the mesolimbic reward pathway. The effects of nicotine from smoking one tobacco cigarette are significant (80% of β2*-nAChRs occupied for >6h). This likely contributes to the maintenance of smoking dependence and low cessation outcomes. Development of nicotine vaccines provides potential for alternative treatments. We used [123I]5IA-85380 SPECT to evaluate the effect of 3′-AmNic-rEPA on the amount of nicotine that binds to the β2*-nAChRs in the cortical and subcortical regions in smokers. Method Eleven smokers (36years (SD=13); 19cig/day (SD=11) for 10years (SD=7) who were dependent on nicotine (Fagerström Test of Nicotine Dependence score =5.5 (SD=3); plasma nicotine 9.1 ng/mL (SD=5)) participated in 2 SPECT scan days: before and after immunization with 4–400μg doses of 3′-AmNic-rEPA. On SPECT scan days, 3 30-min baseline emission scans were obtained, followed by administration of IV nicotine (1.5mg/70kg) and up to 9 30-min emission scans. Results β2*-nAChR availability was quantified as VT/fP and nicotine binding was derived using the Lassen plot approach. Immunization led to a 12.5% reduction in nicotine binding (F=5.19, df=1,10, p=0.05). Significant positive correlations were observed between nicotine bound to β2*-nAChRs and nicotine injected before but not after vaccination (p=0.05 vs. p=0.98). There was a significant reduction in the daily number of cigarettes and desire for a cigarette (p=.01 and p=.04, respectively). Conclusions This proof-of-concept study demonstrates that immunization with nicotine vaccine can reduce the amount of nicotine binding to β2*-nAChRs and disrupt the relationship between nicotine administered vs. nicotine available to occupy β2*-nAChRs. PMID:23429725

  6. Attenuation of nicotine's discriminative stimulus effects in rats and its locomotor activity effects in mice by serotonergic 5-HT2A/2C receptor agonists.

    PubMed

    Batman, Angela M; Munzar, Patrik; Beardsley, Patrick M

    2005-05-01

    Reports have indicated that administration of nicotine inhibits, while withdrawal of chronically administered nicotine augments effects of serotonergic 5HT2A/2C agonists. It was our objective to determine whether 5HT2A/2C agonists can modulate the discriminative stimulus effects of nicotine in rats or its locomotor activity effects in mice. Adult male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg nicotine base from saline in a two-lever, fixed-ratio (FR10), food-reinforced, operant-conditioning task during daily (Monday-Friday) 15-min experimental sessions. After characterizing a dose-response curve for nicotine, we tested the ability of the 5HT(2A/2C) agonists (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCL (DOI; 0.18-1.0 mg/kg) and 1-(4-bromo-2, 5-dimethoxyphenyl)-2-aminopropane (DOB; 0.1-1.0 mg/kg), the 5HT2C agonist 6-chloro-2-(1-piperazinyl)pyrazine hydrochloride (MK 212; 0.1 mg/kg-1.0 mg/kg), and the 5HT1A agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.01 mg/kg-1.0 mg/kg) to modulate nicotine's discriminative stimulus effects. After finding that DOI was able to attenuate the percentage nicotine lever responding (%NLR), we tested for it to also reverse nicotine's effects on locomotor activity in mice. The 5HT2A/2C agonists-in particular DOI-dose dependently attenuated %NLR. The effects of DOI were reversed by the 5HT2A/2C antagonist ketanserin. MK 212 and 8-OH-DPAT had irregular effects among rats and only reduced %NLR to below 50% levels at doses markedly suppressing responding. DOI also dose dependently blocked nicotine's acute rate-lowering locomotor activity effects. These results indicate that activation of serotonin 5HT2A/2C receptors can blunt the discriminative stimulus and locomotor activity effects of nicotine and presents the possibility that activation of these receptors might also be able to attenuate other effects of nicotine.

  7. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning.

    PubMed

    Weed, Michael R; Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard; Bristow, Linda J

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.

  8. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed

    Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A

    2010-05-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.

  9. Activation and Inhibition of Mouse Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Wecker, Lynn; Stitzel, Jerry A.

    2010-01-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric α7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-β-erythroidine as selective antagonists in mouse models of α3β4 and α4β2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal α and β subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse α5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse α4β2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity. PMID:20100906

  10. Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More Than Just Nicotine.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer; Stadler, Ashley; Levin, Edward D; Seidler, Frederic J

    2015-09-01

    Tobacco smoke contains thousands of compounds in addition to nicotine, a known neuroteratogen. We evaluated the developmental neurotoxicity of tobacco smoke extract (TSE) administered to pregnant rats starting preconception and continued through the second postnatal week. We simulated nicotine concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers, and compared TSE with an equivalent dose of nicotine alone, and to a 10-fold higher nicotine dose. We conducted longitudinal evaluations in multiple brain regions, starting in adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although both nicotine doses produced presynaptic cholinergic deficits, these were partially compensated by hyperinnervation and receptor upregulation, effects that were absent with TSE. TSE also produced deficits in serotonin receptors in females that were not seen with nicotine. Regression analysis showed a profound sex difference in the degree to which nicotine could account for overall TSE effects: whereas the 2 nicotine doses accounted for 36%-46% of TSE effects in males, it accounted for only 7%-13% in females. Our results show that the adverse effects of TSE on neurodevelopment exceed those that can be attributed to just the nicotine present in the mixture, and further, that the sensitivity extends down to levels commensurate with second-hand smoke exposure. Because nicotine itself evoked deficits at low exposures, "harm reduction" nicotine products do not eliminate the potential for neurodevelopmental damage. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

    PubMed Central

    Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio

    2013-01-01

    The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401

  12. Mecamylamine, dihydro-β-erythroidine, and dextromethorphan block conditioned responding evoked by the conditional stimulus effects of nicotine

    PubMed Central

    Struthers, Amanda M.; Wilkinson, Jamie L.; Dwoskin, Linda P.; Crooks, Peter A.; Bevins, Rick A.

    2009-01-01

    Current smokers express the desire to quit. However, the majority find it difficult to remain abstinent. As such, research efforts continually seek to develop more effective treatment. One such area of research involves the interoceptive stimulus effects of nicotine as either a discriminative stimulus in an operant drug discrimination task, or more recently as a conditional stimulus (CS) in a discriminated goal-tracking task. The present work investigated the potential role nicotinic acetylcholine receptors in the CS effects of nicotine (0.4 mg/kg) using antagonists with differential selectivity for β2*, α7*, α6β2*, and α3β4* receptors. Methyllycaconitine (MLA) had no effect on nicotine-evoked conditioned responding. Mecamylamine and dihydro-β-erythroidine (DHβE) dose dependently blocked responding evoked by the nicotine CS. In a time-course assessment of mecamylamine and DHβE, each blocked conditioned responding when given 5 min before testing and still blocked conditioned responding when administered 200 min before testing. Two novel bis-picolinium analogs (N, N’-(3, 3′-(dodecan-1,12-diyl)-bis-picolinium dibromide [bPiDDB], and N, N’-(decan-1,10-diyl)-bis-picolinium diiodide [bPiDI]) did not block nicotine-evoked conditioned responding. Finally, pretreatment with low dose combinations of mecamylamine, dextromethorphan, and/or bupropion were used to target α3β4* receptors. No combination blocked conditioned responding evoked by the training dose of nicotine. However, a combination of mecamylamine and dextromethorphan partially blocked nicotine-evoked conditioned responding to a lower dose of nicotine (0.1 mg/kg). These results indicate that β2* and potentially α3β4* nicotinic acetylcholine receptors play a role in the CS effects of nicotine and are potential targets for the development of nicotine cessation aids. PMID:19778551

  13. Monovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia

    PubMed Central

    1995-01-01

    Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian

  14. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    PubMed

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  15. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared tomore » non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  16. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family.

    PubMed

    Wu, Meilin; Puddifoot, Clare A; Taylor, Palmer; Joiner, William J

    2015-10-02

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  18. Levamisole: A Positive Allosteric Modulator for the α3β4 Nicotinic Acetylcholine Receptors Prevents Weight Gain in the CD-1 Mice on a High Fat Diet.

    PubMed

    Lewis, Jeanne A; Yakel, Jerrel L; Pandya, Anshul A

    2017-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the function of multiple neurotransmitter pathways throughout the central nervous system. This includes nAChRs found on the proopiomelanocortin neurons in the hypothalamus. Activation of these nAChRs by nicotine causes a decrease in the consumption of food in rodents. This study tested the effect of subtype selective allosteric modulators for nAChRs on the body weight of CD-1 mice. Levamisole, an allosteric modulator for the α3β4 subtype of nAChRs, prevented weight gain in mice that were fed a high fat diet. PNU-120596 and desformylflustrabromine were observed to be selective PAMs for the α7 and α4β2 nAChR, respectively. Both of these compounds failed to prevent weight gain in the CD-1 mice. These results suggest that the modulation of hypothalamic α3β4 nAChRs is an important factor in regulating food intake, and the PAMs for these receptors need further investigation as potential therapeutic agents for controlling weight gain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors.

    PubMed

    Kobayashi, Soushi; Toyooka, Naoki; Zhou, Dejun; Tsuneki, Hiroshi; Wada, Tsutomu; Sasaoka, Toshiyasu; Sakai, Hideki; Nemoto, Hideo; Garraffo, H Martin; Spande, Thomas F; Daly, John W

    2007-01-01

    The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds. Recently, we reported that one of this class of alkaloids, (-)-235B', acts as a noncompetitive antagonist for α4β2 nicotinic receptors, and its sensitivity is comparable to that of the classical competitive antagonist for this receptor, dihydro-β-erythroidine. The enantioselective syntheses of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and what proved to be an epimer of natural 193E, starting from common chiral lactams have been achieved. When we performed electrophysiological recordings to examine the effects of the synthetic alkaloids on two major subtypes of nicotinic receptors (α4β2 and α7) expressed in Xenopus laevis oocytes, (-)-231C effectively blocked α4β2 receptor responses (IC(50 )value, 1.5 μM) with a 7.0-fold higher potency than for blockade of α7 receptor responses. In contrast, synthetic (-)-221I and (-)-epi-193E were more potent in blocking α7 receptor responses (IC(50 )value, 4.4 μM and 9.1 μM, respectively) than α4β2 receptor responses (5.3-fold and 2.0-fold, respectively). We achieved the total synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E starting from common chiral lactams, and the absolute stereochemistry of natural (-)-233D was determined. Furthermore, the relative stereochemistry of (-)-231C and (-)-221I was also determined. The present asymmetric synthesis of the proposed structure for 193E revealed that the C-8 configuration of natural 193E should be revised. The selectivity for

  20. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Toyohira, Yumiko; Horisita, Takafumi; Satoh, Noriaki; Takahashi, Keita; Zhang, Han; Iinuma, Munekazu; Yoshinaga, Yukari; Ueno, Susumu; Tsutsui, Masato; Sata, Takeyoshi; Yanagihara, Nobuyuki

    2015-12-01

    Ikarisoside A is a natural flavonol glycoside derived from plants of the genus Epimedium, which have been used in Traditional Chinese Medicine as tonics, antirheumatics, and aphrodisiacs. Here, we report the effects of ikarisoside A and three other flavonol glycosides on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that ikarisoside A (1-100 μM), but not icariin, epimedin C, or epimedoside A, concentration-dependently inhibited the secretion of catecholamines induced by acetylcholine, a physiological secretagogue and agonist of nicotinic acetylcholine receptors. Ikarisoside A had little effect on catecholamine secretion induced by veratridine and 56 mM K(+). Ikarisoside A (1-100 μM) also inhibited (22)Na(+) influx and (45)Ca(2+) influx induced by acetylcholine in a concentration-dependent manner similar to that of catecholamine secretion. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, ikarisoside A (0.1-100 μM) directly inhibited the current evoked by acetylcholine. It also suppressed (14)C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine at 1-100 μM and 10-100 μM, respectively. The present findings suggest that ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.

  1. Mesoionic insecticides: a novel class of insecticides that modulate nicotinic acetylcholine receptors.

    PubMed

    Holyoke, Caleb W; Cordova, Daniel; Zhang, Wenming; Barry, James D; Leighty, Robert M; Dietrich, Robert F; Rauh, James J; Pahutski, Thomas F; Lahm, George P; Tong, My-Hanh Thi; Benner, Eric A; Andreassi, John L; Smith, Rejane M; Vincent, Daniel R; Christianson, Laurie A; Teixeira, Luis A; Singh, Vineet; Hughes, Kenneth A

    2017-04-01

    As the world population grows towards 9 billion by 2050, it is projected that food production will need to increase by 60%. A critical part of this growth includes the safe and effective use of insecticides to reduce the estimated 20-49% loss of global crop yields owing to pests. The development of new insecticides will help to sustain this protection and overcome insecticide resistance. A novel class of mesoionic compounds has been discovered, with exceptional insecticidal activity on a range of Hemiptera and Lepidoptera. These compounds bind to the orthosteric site of the nicotinic acetylcholine receptor and result in a highly potent inhibitory action at the receptor with minimal agonism. The synthesis, biological activity, optimization and mode of action will be discussed. Triflumezopyrim insect control will provide a powerful tool for control of hopper species in rice throughout Asia. Dicloromezotiaz can provide a useful control tool for lepidopteran pests, with an underexploited mode of action among these pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Recent Developments in Novel Antidepressants Targeting α4β2-Nicotinic Acetylcholine Receptors

    PubMed Central

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients. PMID:24901260

  3. Nicotine Reduces Antipsychotic-Induced Orofacial Dyskinesia in Rats

    PubMed Central

    Bordia, Tanuja; McIntosh, J. Michael

    2012-01-01

    Antipsychotics are an important class of drugs for the management of schizophrenia and other psychotic disorders. They act by blocking dopamine receptors; however, because these receptors are present throughout the brain, prolonged antipsychotic use also leads to serious side effects. These include tardive dyskinesia, repetitive abnormal involuntary movements of the face and limbs for which there is little treatment. In this study, we investigated whether nicotine administration could reduce tardive dyskinesia because nicotine attenuates other drug-induced abnormal movements. We used a well established model of tardive dyskinesia in which rats injected with the commonly used antipsychotic haloperidol develop vacuous chewing movements (VCMs) that resemble human orofacial dyskinesias. Rats were first administered nicotine (minipump; 2 mg/kg per day). Two weeks later, they were given haloperidol (1 mg/kg s.c.) once daily. Nicotine treatment reduced haloperidol-induced VCMs by ∼20% after 5 weeks, with a significant ∼60% decline after 13 weeks. There was no worsening of haloperidol-induced catalepsy. To understand the molecular basis for this improvement, we measured the striatal dopamine transporter and nicotinic acetylcholine receptors (nAChRs). Both haloperidol and nicotine treatment decreased the transporter and α6β2* nAChRs (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex) when given alone, with no further decline with combined drug treatment. By contrast, nicotine alone increased, while haloperidol reduced α4β2* nAChRs in both vehicle and haloperidol-treated rats. These data suggest that molecular mechanisms other than those directly linked to the transporter and nAChRs underlie the nicotine-mediated improvement in haloperidol-induced VCMs in rats. The present results are the first to suggest that nicotine may be useful for improving the tardive dyskinesia associated with antipsychotic use. PMID:22144565

  4. An Exploratory Trial of Transdermal Nicotine for Aggression and Irritability in Adults with Autism Spectrum Disorder.

    PubMed

    Lewis, Alan S; van Schalkwyk, Gerrit Ian; Lopez, Mayra Ortiz; Volkmar, Fred R; Picciotto, Marina R; Sukhodolsky, Denis G

    2018-03-13

    Nicotinic acetylcholine receptors (nAChRs), particularly the α7 nAChR, are implicated in the pathophysiology of both autism spectrum disorder (ASD) and aggressive behavior. We explored the feasibility, tolerability, and preliminary efficacy of targeting nAChRs using transdermal nicotine to reduce aggressive symptoms in adults with ASD. Eight subjects were randomized in a double-blind crossover trial of 7 mg transdermal nicotine or placebo, each for 1 week. All participants tolerated nicotine treatment well. Five subjects contributed data to the primary outcome, Aberrant Behavior Checklist-Irritability (ABC-I) subscale change from baseline, which was improved by nicotine compared to placebo. Sleep ratings were also improved by nicotine and correlated with ABC-I improvement. These findings support further investigation of nAChR agonists for aggression and sleep in ASD.

  5. Nicotinic alteration of decision-making.

    PubMed

    Naudé, Jérémie; Dongelmans, Malou; Faure, Philippe

    2015-09-01

    Addiction to nicotine is characterized by impulses, urges and lack of self-control towards cigarettes. A key element in the process of addiction is the development of habits oriented towards nicotine consumption that surpass flexible systems as a consequence of a gradual adaptation to chronic drug exposure. However, the long-term effects of nicotine on brain circuits also induce wide changes in decision-making processes, affecting behaviors unrelated to cigarettes. This review aims at providing an update on the implications of nicotine on general decision-making processes, with an emphasis on impulsivity and risk-taking. As impulsivity is a rather ambiguous behavioral trait, we build on economic and normative theories to better characterize these nicotine-induced alterations in decision-making. Nonetheless, experimental data are sparse and often contradictory. We will discuss how the latest findings on the neurobiological basis of choice behavior may help disentangling these issues. We focus on the role of nicotine acetylcholine receptors and their different subunits, and on the spatio-temporal dynamics (i.e. diversity of the neural circuits, short- and long-term effects) of both endogenous acetylcholine and nicotine action. Finally, we try to link these neurobiological results with neuro-computational models of attention, valuation and action, and of the role of acetylcholine in these decision processes. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat.

    PubMed

    Zhang, X-L; Albers, K M; Gold, M S

    2015-01-22

    The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  8. α6β2* and α4β2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease

    PubMed Central

    Wonnacott, Susan

    2011-01-01

    Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the “gold standard” for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease. PMID:21969327

  9. Widespread Decrease of Nicotinic Acetylcholine Receptors in Parkinson's Disease

    PubMed Central

    Ichise, Masanori; Zoghbi, Sami S; Liow, Jeih-San; Ghose, Subroto; Vines, Douglass C; Sangare, Janet; Lu, Jian-Qiang; Cropley, Vanessa L; Iida, Hidehiro; Kim, Kyeong Min; Cohen, Robert M; Bara-Jimenez, William; Ravina, Bernard; Innis, Robert B

    2005-01-01

    Nicotinic acetylcholine receptors (nAChRs) have close interactions with the dopaminergic system and play critical roles in cognitive function. nAChRs were imaged in 10 non-demented Parkinson's disease (PD) patients and 15 age-matched healthy subjects using a single photon emission computed tomography ligand [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine. Using an arterial input function, we measured the total distribution volume (V; specific plus non-displaceable) as well as the delivery (K1). PD showed a widespread significant decrease (∼10%) of V in both cortical and subcortical regions without a significant change in K1. These results indicate the importance of extending the study to demented patients. PMID:16374823

  10. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning

    PubMed Central

    Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G.; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard; Bristow, Linda J.

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task. PMID:29261656

  11. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation.

    PubMed

    Sun, Rao; Zhang, Wei; Bo, Jinhua; Zhang, Zuoxia; Lei, Yishan; Huo, Wenwen; Liu, Yue; Ma, Zhengliang; Gu, Xiaoping

    2017-03-06

    The high prevalence of chronic pain in posttraumatic stress disorder (PTSD) individuals has been widely reported by clinical studies, which emphasized an urgent need to uncover the underlying mechanisms and identify potential therapeutic targets. Recent studies suggested that targeting activated glia and their pro-inflammatory products may provide a novel and effective therapy for the stress-related pain. In this study, we investigated whether activation of alpha-7 nicotinic acetylcholine receptor7 nAChR), a novel anti-inflammatory target, could attenuate PTSD-related chronic pain. The experiments were conducted in a rat model of single prolonged stress (SPS), an established model of PTSD-pain comorbidity. We found that SPS exposure produced persistent mechanical allodynia. Immunohistochemical and enzyme-linked immuno sorbent assay analysis showed that SPS also induced elevated activation of glia cells (including microglia and astrocytes) and accumulation of pro-inflammatory cytokines in spinal cord. In another experiment, we found that intrathecal injection of PHA-543613, a selective α7 nAchR agonist, attenuated the SPS-evoked allodynia in a dose dependent manner. However, this anti-hyperalgesic effect was blocked by pretreatment with methyllycaconitine (MLA), a selective α7 nAchR antagonist. Further analyses showed that PHA-543613 suppressed SPS-induced spinal glial activation and SPS-elevated spinal pro-inflammatory cytokines, and these were abolished by MLA. Taken together, the present study showed that spinal activation of α7 nAChR by PHA-543613 attenuated mechanical allodynia induced by PTSD-like stress, and the suppression of spinal glial activation may underlie this anti-hyperalgesic effect. Our study demonstrated the therapeutic potential of targeting α7 nAChR in the treatment of PTSD-related chronic pain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Nicotine Dependence, Nicotine Metabolism, and the Extent of Compensation in Response to Reduced Nicotine Content Cigarettes.

    PubMed

    Bandiera, Frank C; Ross, Kathryn C; Taghavi, Seyedehtaraneh; Delucchi, Kevin; Tyndale, Rachel F; Benowitz, Neal L

    2015-09-01

    The Food and Drug Administration has the authority to regulate tobacco product constituents, including nicotine, to promote public health. Reducing the nicotine content in cigarettes may lead to lower levels of addiction. Smokers however may compensate by smoking more cigarettes and/or smoking more intensely. The objective of this study was to test whether individual differences in the level of nicotine dependence (as measured by the Fagerstrom Test of Cigarette Dependence [FTCD]) and/or the rate of nicotine metabolism influence smoking behavior and exposure to tobacco toxicants when smokers are switched to reduced nicotine content cigarettes (RNC). Data from 51 participants from a previously published clinical trial of RNC were analyzed. Nicotine content of cigarettes was progressively reduced over 6 months and measures of smoking behavior, as well as nicotine metabolites and tobacco smoke toxicant exposure, CYP2A6 and nicotinic CHRNA5-A3-B4 (rs1051730) genotype were measured. Higher baseline FTCD predicted smoking more cigarettes per day (CPD), higher cotinine and smoke toxicant levels while smoking RNC throughout the study, with no interaction by RNC level. Time to first cigarette (TFC) was associated with differences in compensation. TFC within 10 min was associated with a greater increase in CPD compared to TFC greater than 10 min. Neither rate of nicotine metabolism, nor CYP2A6 or nicotinic receptor genotype, had an effect on the outcome variables of interest. FTCD is associated with overall exposure to nicotine and other constituents of tobacco smoke, while a short TFC is associated with an increased compensatory response after switching to RNC. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats.

    PubMed

    Carboni, Lucia; Romoli, Benedetto; Bate, Simon T; Romualdi, Patrizia; Zoli, Michele

    2018-05-29

    Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction.

    PubMed

    Miwa, Julie M; Lester, Henry A; Walz, Andreas

    2012-08-01

    The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.

  15. Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation.

    PubMed

    Momi, N; Ponnusamy, M P; Kaur, S; Rachagani, S; Kunigal, S S; Chellappan, S; Ouellette, M M; Batra, S K

    2013-03-14

    Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared with the normal pancreas, and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette smoke extract and nicotine, which is the major component of CS, significantly upregulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via the α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. In addition, we demonstrated that nicotine-mediated MUC4 upregulation promotes the PC cell migration through the activation of the downstream effectors, such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in vivo studies showed a marked increase in the mean pancreatic tumor weight (low dose (100 mg/m(3) total suspended particulate (TSP)), P=0.014; high dose (247 mg/m(3) TSP), P=0.02) and significant tumor metastasis to various distant organs in the CS-exposed mice, orthotopically implanted with luciferase-transfected PC cells, as compared with the sham controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine (low dose, 155.88±35.96 ng/ml; high dose, 216.25±29.95 ng/ml) and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings

  16. Human alpha 7 acetylcholine receptor: cloning of the alpha 7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional alpha 7 homomers expressed in Xenopus oocytes.

    PubMed

    Peng, X; Katz, M; Gerzanich, V; Anand, R; Lindstrom, J

    1994-03-01

    The alpha-bungarotoxin-binding acetylcholine receptors from the human neuroblastoma cell line SH-SY5Y were found to cross-react with some monoclonal antibodies to alpha 7 subunits of nicotinic acetylcholine receptors from chicken brain. The human alpha 7 subunit cDNA from SH-SY5Y was cloned, revealing 94% amino acid sequence identity to rat alpha 7 subunits and 92% identity to chicken alpha 7 subunits. Native human alpha 7 receptors showed affinities for some ligands similar to those previously observed with native chicken alpha 7 receptors, but for other ligands there were large species-specific differences in binding affinity. These results paralleled properties of alpha 7 homomers expressed in Xenopus oocytes. Human alpha 7 homomers exhibited rapidly desensitizing, inwardly rectifying, agonist-induced, cation currents that triggered Ca(2+)-sensitive Cl- channels in the oocytes. A change in efficacy from partial agonist for chicken alpha 7 homomers to full agonist for human alpha 7 homomers was exhibited by 1,1-dimethyl-4-phenylpiperazinium. This result reveals a large species-specific pharmacological difference, despite small differences in alpha 7 sequences. This is important for understanding the effects of these drugs in humans and for identifying amino acids that may contribute to the acetylcholine binding site, for analysis by in vitro mutagenesis. These results also characterize properties of native alpha 7 receptors and alpha 7 homomers that will provide criteria for functional properties expected of structural subunits, when these can be identified, cloned, and coexpressed with alpha 7 subunits.

  17. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  18. [Hexamethonium, nicotinic receptor blocker, changes the neuronal reactions on glutamate in the medial septal area in vitro].

    PubMed

    Karavaev, E N; Popova, I Iu; Kichigina, V F

    2007-01-01

    Despite the great interest in studying the medial septal area, the interactions of its neurochemical systems are not yet clearly understood. The aim of this study was to elucidate the role of nicotinic receptors in the interaction of glutamatergic and cholinergic systems of the medial septal area. The effect of L-glutamate (1 microM) on septal neurons was studied under the application of hexamethonium, nicotinic cholinoreceptor blocker by using the method of extracellular recording of neuronal activity in brain slices of ground squirrels. The response of septal neurons to glutamate depended on the type of their initial activity and on the presence of pacemaker properties. For the first time, the ability of septal neurons to respond to glutamate with an increase in burst frequency was shown. The influence of hexamethonium on the neuronal activity was similar to that of glutamate. After a preliminary application of hexamethonium, the reactions of neurons to glutamate changed. The excitatory reactions were masked, while the inhibitory reactions became stronger. It was found that nicotinic cholinergic receptors modulated the reactions of MS-DB cells to glutamate and the expression of the oscillatory properties of the septal neuronal network.

  19. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain

    PubMed Central

    Wilkerson, Jenny L; Kulkarni, Abhijit; Toma, Wisam; AlSharari, Shakir; Gul, Zulfiye; Lichtman, Aron H; Papke, Roger L; Damaj, M Imad

    2016-01-01

    Background and Purpose Orthosteric agonists and positive allosteric modulators (PAMs) of the α7 nicotinic ACh receptor (nAChR) represent novel therapeutic approaches for pain modulation. Moreover, compounds with dual function as allosteric agonists and PAMs, known as ago‐PAMs, add further regulation of receptor function. Experimental Approach Initial studies examined the α7 ago‐PAM, GAT107, in the formalin, complete Freund's adjuvant (CFA), LPS inflammatory pain models, the chronic constriction injury neuropathic pain model and the tail flick and hot plate acute thermal nociceptive assays. Additional studies examined the locus of action of GAT107 and immunohistochemical markers in the dorsal horn of the spinal cord in the CFA model. Key Results Complementary pharmacological and genetic approaches confirmed that the dose‐dependent antinociceptive effects of GAT107 were mediated through α7 nAChR. However, GAT107 was inactive in the tail flick and hot plate assays. In addition, GAT107 blocked conditioned place aversion elicited by acetic acid injection. Furthermore, intrathecal, but not intraplantar, injections of GAT107 reversed nociception in the CFA model, suggesting a spinal component of action. Immunohistochemical evaluation revealed an increase in the expression of astrocyte‐specific glial fibrillary acidic protein and phosphorylated p38MAPK within the spinal cords of mice treated with CFA, which was attenuated by intrathecal GAT107 treatment. Importantly, GAT107 did not elicit motor impairment and continued to produce antinociceptive effects after subchronic administration in both phases of the formalin test. Conclusions and Implications Collectively, these results provide the first proof of principle that α7 ago‐PAMs represent an effective pharmacological strategy for treating inflammatory and neuropathic pain. PMID:27243753

  20. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  1. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    PubMed

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  2. Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice.

    PubMed

    Moerke, Megan J; de Moura, Fernando B; Koek, Wouter; McMahon, Lance R

    2016-09-05

    Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56mg/kg and 0.91mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice

    PubMed Central

    Moerke, Megan J.; de Moura, Fernando B.; Koek, Wouter; McMahon, Lance R.

    2016-01-01

    Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1 mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100 mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56 mg/kg and 0.91 mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms. PMID:27238974

  4. Tolerance to anatoxin-a and nicotine on operant behavior: A search for mechanisms.

    EPA Science Inventory

    Anatoxin-a is a cyanobacterial toxin of concern to EPA as it can contaminate water supplies and poison a wide variety of species by stimulating nicotinic receptors. Research has shown tolerance to the effects of (+)anatoxin-a and nicotine on operant behavior with weekly administr...

  5. Nicotinic Mechanisms Modulate Ethanol Withdrawal and Modify Time Course and Symptoms Severity of Simultaneous Withdrawal from Alcohol and Nicotine.

    PubMed

    Perez, Erika; Quijano-Cardé, Natalia; De Biasi, Mariella

    2015-09-01

    Alcohol and nicotine are among the top causes of preventable death in the United States. Unfortunately, people who are dependent on alcohol are more likely to smoke than individuals in the general population. Similarly, smokers are more likely to abuse alcohol. Alcohol and nicotine codependence affects health in many ways and leads to poorer treatment outcomes in subjects who want to quit. This study examined the interaction of alcohol and nicotine during withdrawal and compared abstinence symptoms during withdrawal from one of the two drugs only vs both. Our results indicate that simultaneous withdrawal from alcohol and nicotine produces physical symptoms that are more severe and last longer than those experienced during withdrawal from one of the two drugs alone. In animals experiencing withdrawal after chronic ethanol treatment, acute nicotine exposure was sufficient to prevent abstinence symptoms. Similarly, symptoms were prevented when alcohol was injected acutely in mice undergoing nicotine withdrawal. These experiments provide evidence for the involvement of the nicotinic cholinergic system in alcohol withdrawal. Furthermore, the outcomes of intracranial microinfusions of mecamylamine, a nonselective nicotinic receptor antagonist, highlight a major role for the nicotinic receptors expressed in medial habenula and interpeduncular nucleus during withdrawal. Overall, the data support the notion that modulating the nicotinic cholinergic system might help to maintain long-term abstinence from alcohol.

  6. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain - In vitro and ex vivo evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinska, Elzbieta; Kuc, Damian; Zgrajka, Wojciech

    Kynurenic acid (KYNA) is a recognized broad-spectrum antagonist of excitatory amino acid receptors with a particularly high affinity for the glycine co-agonist site of the N-methyl-D-aspartate (NMDA) receptor complex. KYNA is also a putative endogenous neuroprotectant. Recent studies show that KYNA strongly blocks {alpha}7 subtype of nicotinic acetylcholine receptors (nAChRs). The present studies were aimed at assessing effects of acute and chronic nicotine exposure on KYNA production in rat brain slices in vitro and ex vivo. In brain slices, nicotine significantly increased KYNA formation at 10 mM but not at 1 or 5 mM. Different nAChR antagonists (dihydro-{beta}-erythroidine, methyllycaconitine andmore » mecamylamine) failed to block the influence exerted by nicotine on KYNA synthesis in cortical slices in vitro. Effects of acute (1 mg/kg, i.p.), subchronic (10-day) and chronic (30-day) administration of nicotine in drinking water (100 {mu}g/ml) on KYNA brain content were evaluated ex vivo. Acute treatment with nicotine (1 mg/kg i.p.) did not affect KYNA level in rat brain. The subchronic exposure to nicotine in drinking water significantly increased KYNA by 43%, while chronic exposure to nicotine resulted in a reduction in KYNA by 47%. Co-administration of mecamylamine with nicotine in drinking water for 30 days reversed the effect exerted by nicotine on KYNA concentration in the cerebral cortex. The present results provide evidence for the hypothesis of reciprocal interaction between the nicotinic cholinergic system and the kynurenine pathway in the brain.« less

  7. The wonderland of neuronal nicotinic acetylcholine receptors.

    PubMed

    Bertrand, Daniel; Terry, A V

    2018-05-01

    Nearly 30 years of experimental evidence supports the argument that ligands of nicotinic acetylcholine receptors (nAChRs) have potential as therapeutic agents. However, as in the famous Lewis Carroll novel "Alice in Wonderland", there have been many unexpected adventures along the pathway of development, and few nAChR ligands have been approved for any clinical condition to date with the exception of nicotine dependence. The recent failures of nAChR ligands in AD and schizophrenia clinical trials have reduced enthusiasm for this therapeutic strategy and many pharmaceutical companies have now abandoned this field of research. As with other clinical failures, multiple questions arise as to the basis for the failure. More generic questions focus on a potential translational gap between the animal models used and the human clinical condition they are meant to simulate, or the clinical trial mindset that large Ns have to be achieved for statistical power (often requiring multiple trial sites) as opposed to smaller patient cohorts at limited sites where conditions can be better controlled and replicated. More specific to the nAChR field are questions about subtype selectivity, dose selection, whether an agonist, antagonist, or allosteric modulator strategy is best, etc. The purpose of this review is to discuss each of these questions, but also to provide a brief overview of the remarkable progress that has been made over the last three decades in our understanding of this unique ligand-gated ion channel and how this new knowledge may help us improve drug development successes in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The reducing agent dithiothreitol (DTT) does not abolish the inhibitory nicotinic response recorded from rat dorsolateral septal neurons

    NASA Technical Reports Server (NTRS)

    Sorenson, E. M.; Gallagher, J. P.

    1993-01-01

    Previous intracellular recordings have demonstrated that dorsolateral septal nucleus (DLSN) neurons express a novel nicotinic receptor which produces a direct membrane hyperpolarization when activated by nicotinic agonists. Activation of the classical excitatory nicotinic receptors has been shown to require a disulfide bond involving the cysteines at positions 192 and 193 of the alpha subunits of the receptor. Reduction of this cystine bond with dithiothreitol (DTT) abolishes agonist activation of excitatory nicotinic receptors. We have now examined whether DTT treatment of the inhibitory nicotinic receptor on DLSN neurons also abolishes the inhibitory nicotinic response. We find that the inhibitory response persists after treatment of the neurons with 1 mM DTT, even if the reduction is followed by alkylation of the receptor with bromoacetylcholine to prevent possible reformation of disulfide bonds. This result suggests that the agonist binding site on the inhibitory nicotinic receptor does not require an intact disulfide bond, similar to the bond on the alpha subunit of the excitatory nicotinic receptor, for agonist activation of the receptor. Some of these results have been previously reported in abstract form.

  9. Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys.

    PubMed

    Secci, Maria E; Auber, Alessia; Panlilio, Leigh V; Redhi, Godfrey H; Thorndike, Eric B; Schindler, Charles W; Schwarcz, Robert; Goldberg, Steven R; Justinova, Zuzana

    2017-07-01

    The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.

  10. New mechanisms and perspectives in nicotine withdrawal

    PubMed Central

    Jackson, K.J.; Muldoon, P.P.; De Biasi, M.; Damaj, M.I.

    2014-01-01

    Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. PMID:25433149

  11. Probing the Non-Canonical Interface for Agonist Interaction with an α5 Containing Nicotinic Acetylcholine Receptor*

    PubMed Central

    Marotta, Christopher B.; Dilworth, Crystal N.; Lester, Henry A.; Dougherty, Dennis A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit are of interest because genome-wide association studies and candidate gene studies have identified polymorphisms in the α5 gene that are linked to an increased risk for nicotine dependence, lung cancer, and/or alcohol addiction. To probe the functional impact of an α5 subunit on nAChRs, a method to prepare a homogeneous population of α5-containing receptors must be developed. Here we use a gain of function (9') mutation to isolate populations of α5-containing nAChRs for characterization by electrophysiology. We find that the α5 subunit modulates nAChR rectification when co-assembled with α4 and β2 subunits. We also probe the α5–α4 interface for possible ligand binding interactions. We find that mutations expected to ablate an agonist binding site involving the α5 subunit have no impact on receptor function. The most straightforward interpretation of this observation is that agonists do not bind at the α5–α4 interface, in contrast to what has recently been demonstrated for the α4–α4 interface in related receptors. In addition, our mutational results suggest that the α5 subunit does not replace the α4 or β2 subunits and is relegated to occupying only the auxiliary position of the pentameric receptor. PMID:24144909

  12. Inside-out neuropharmacology of nicotinic drugs.

    PubMed

    Henderson, Brandon J; Lester, Henry A

    2015-09-01

    Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Alterations in alpha5* nicotinic acetylcholine receptors result in midbrain- and hippocampus-dependent behavioural and neural impairments.

    PubMed

    Besson, Morgane; Guiducci, Stefania; Granon, Sylvie; Guilloux, Jean-Philippe; Guiard, Bruno; Repérant, Christelle; Faure, Philippe; Pons, Stéphanie; Cannazza, Giuseppe; Zoli, Michele; Gardier, Alain M; Maskos, Uwe

    2016-09-01

    Evidence links alterations in α5-containing nicotinic receptors (α5*-nAChRs) to nicotine addiction. Notably, the rs16969968 polymorphism in the α5 gene (α5SNP) increases the risk for heavy smoking and impairs nicotine-rewarding properties in mice. Additional work is needed to understand how native and polymorphic α5*-nAChRs contribute to processes associated with the risk for nicotine addiction. We aimed at understanding the contribution of α5*-nAChRs to endophenotypes like increased responses to novelty and anxiety, known to promote vulnerability to addiction, and to the response of the dopamine and serotonin systems to nicotine. Behavioural phenotypes were investigated in mice lacking the α5 gene (α5(-/-)). Nicotine injections were performed to test the consequences of nicotine exposure on the phenotypes identified. Dopamine and serotonin signalling were assessed using in vivo microdialysis and electrophysiology. We used lentiviral vectors to compare the consequences of re-expressing either the α5 wild-type allele or the α5SNP in specific brain areas of α5(-/-) mice. α5(-/-) mice did not exhibit high responses to novelty but showed decreased novelty-induced rearing behaviour together with high anxiety. Exposure to high doses of nicotine rescued these phenotypes. We identified altered spontaneous and nicotine-elicited serotonin and dopamine activity in α5(-/-) mice. Re-expression of α5 in the ventral tegmental area and hippocampus rescued rearing and anxiety levels in α5(-/-) mice, respectively. When expressing the α5SNP instead, this resulted in a knockout-like phenotype for both behaviours. We propose that altered α5*-nAChR cholinergic signalling contributes to emotional/behavioural impairments that may be alleviated by nicotine consumption.

  15. Administration of the nicotinic acetylcholine receptor agonists ABT-089 and ABT-107 attenuates the reinstatement of nicotine-seeking behavior in rats

    PubMed Central

    Lee, Alycia M.; Arreola, Adrian C.; Kimmey, Blake A.; Schmidt, Heath D.

    2014-01-01

    Current smoking cessation pharmacotherapies have modest efficacy, and most smokers relapse within the first few days after a quit attempt. Nicotine withdrawal-induced craving and cognitive impairments predict smoking relapse during abstinence and suggest that cognitive-enhancing drugs may prevent relapse. ABT-089 and ABT-107 are subtype-selective nAChR agonists that improve cognitive performance in laboratory animals. However, there are no studies examining the effects of ABT-089 and ABT-107 on nicotine self-administration and the reinstatement of nicotine-seeking behavior, an animal model of relapse in human smokers. The goal of the present study was to determine the effects of the α4β2*/α6β2* nAChR agonist ABT-089 and the α7 nAChR agonist ABT-107 on nicotine taking and seeking in rats. The effects of acute ABT-089 and ABT-107 pretreatment on nicotine self-administration and reinstatement were tested in male Sprague Dawley rats. Parallel studies of ABT-089 and ABT-107 on sucrose self-administration and reinstatement were tested in separate groups of rats to determine if the effects of these drug treatments generalized to other reinforced behaviors. Nicotine and sucrose self-administration behaviors were not altered following acute administration of ABT-089 (0, 0.12, 1.2 and 12.0 mg/kg) or ABT-107 (0, 0.03 and 0.3 mg/kg). In contrast, both ABT-089 and ABT-107 pretreatment dose-dependently attenuated nicotine reinstatement. These effects were reinforcer-specific as no effects of ABT-089 or ABT-107 pretreatment on sucrose seeking were noted. Taken together, these findings suggest that ABT-089 and ABT-107 do not affect nicotine consumption, but may reduce the likelihood that a smoking lapse will lead to relapse. PMID:25128791

  16. Peristalsis and fecal pellet propulsion do not require nicotinic, purinergic, 5-HT3, or NK3 receptors in isolated guinea pig distal colon.

    PubMed

    Nicholas, Sarah; Spencer, Nick J

    2010-06-01

    The neuronal mechanism by which distension of the colon triggers peristalsis and the propulsion of colonic contents is incompletely understood. In this study, we used video imaging and spatiotemporal mapping techniques to investigate the neuroneuronal mechanisms underlying peristalsis in isolated guinea pig distal colon. In direct contrast to previous studies, we found that hexamethonium (100 muM-1 mM) or mecamylamine (20 muM) never abolished peristalsis or fecal pellet propulsion, although a temporary blockade of peristalsis was common, giving the impression perhaps that peristalsis was blocked permanently. During the initiation of peristalsis, the intraluminal propulsive force applied to an inserted fecal pellet was significantly reduced by hexamethonium 100 muM, even though, once initiated, the propagation velocity of fecal pellets was never reduced by nicotinic antagonists. In the presence of hexamethonium or mecamylamine, further addition of PPADS (10 muM), ondansetron (1 muM), and SR 142801 (300 nM) had no inhibitory effect on the propagation velocity of fecal pellets. In these preparations, antagonists for nicotinic, purinergic (P2), serotonergic (5-HT3), or tachykinergic (NK3) receptors always abolished responses to the agonists for these receptors, confirming that when peristalsis occurred, nicotinic, P2, 5-HT3, and NK3 receptors were blocked. Tetrodotoxin abolished nonnicotinic peristalsis. In summary, nicotinic transmission contributes to excitatory neuroneuronal transmission underlying peristalsis and fecal pellet propulsion but is not required for peristalsis, nor fecal pellet propulsion, as once thought. These observations could be explained by an excitatory nonnicotinic neuroneuronal pathway that can generate peristalsis and induce normal fecal pellet propagation velocities but does not require nicotinic, P2, 5-HT3, or NK3 receptors.

  17. Differential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on nicotine versus cocaine self-administration and relapse in squirrel monkeys.

    PubMed

    Justinova, Zuzana; Le Foll, Bernard; Redhi, Godfrey H; Markou, Athina; Goldberg, Steven R

    2016-05-01

    Group II metabotropic glutamate receptors (mGluR2 and mGluR3) have been suggested to play an important role in mediation of drug-reinforced behaviors, as well as in the mechanisms underlying relapse in abstinent subjects. The prototypical mGluR2/3 agonist, LY379268, has been shown to attenuate nicotine reinforcement and cue-induced reinstatement of drug seeking in rats, as well as reinstatement induced by drug-associated stimuli and contexts across different drugs of abuse (i.e., cocaine, heroin, and methamphetamine). However, in primates, LY379268 has been shown to produce conflicting results on abuse-related effects of cocaine, and there are no data available for nicotine. To explore the therapeutic potential of mGluR2/3 agonists, we compared the effects of LY379268 (0.03-1.0 mg/kg) on nicotine, cocaine, and food self-administration under a fixed-ratio (FR10) schedule in three separate groups of squirrel monkeys. Moreover, we studied the effects of LY379268 on nicotine/cocaine priming-induced and cue-induced reinstatement of drug-seeking behavior in nicotine- and cocaine-experienced groups of animals. LY379268 blocked nicotine, but not cocaine, self-administration in monkeys. There was a partial overlap between doses that affected nicotine and food self-administration. In abstinent monkeys, LY379268 dose-dependently blocked nicotine, but not cocaine, priming-induced reinstatement of drug seeking. In both cocaine-experienced and nicotine-experienced groups of animals, LY379268 potently reduced cue-induced reinstatement of drug-seeking behavior. The present findings provide strong support for the potential utility of mGlu2/3 receptor agonists for the treatment of nicotine dependence and suggest their utility for prevention of relapse induced by environmental cues associated with drug taking.

  18. Nicotine/Cigarette-smoke Promotes Metastasis of Pancreatic Cancer Through α7nAChR-mediated MUC4 Up-regulation

    PubMed Central

    Momi, Navneet; Ponnusamy, Moorthy P.; Kaur, Sukhwinder; Rachagani, Satyanarayana; Kunigal, Sateesh S; Chellappan, Srikumar; Ouellette, Michel M; Batra, Surinder K

    2012-01-01

    Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up

  19. Synthesis and pharmacology of alkanediguanidinium compounds that block the neuronal nicotinic acetylcholine receptor.

    PubMed

    Villarroya, M; Gandía, L; López, M G; García, A G; Cueto, S; García-Navio, J L; Alvarez-Builla, J

    1996-08-01

    Taking as models the polyamine toxin fraction FTX from the funnel-web spider venom, and the guanidinium moiety of guanethidine, a series of azaalkane-1, omega-diguanidinium salts were obtained. Some of them blocked ion fluxes through the neuronal nicotinic receptors for acetylcholine (nAChR). The blockade was exerted at submicromolar concentrations, suggesting a highly selective interaction with the nAChR. In fact, the active compounds on the nAChR ion channel did not recognize the voltage-dependent Na+ or Ca2+ channels of bovine adrenal chromaffin cells. Therefore, these compounds may be useful tools to clarify the functions of nAChR receptors in the central and peripheral nervous systems.

  20. Low arsenic concentrations impair memory in rat offpring exposed during pregnancy and lactation: Role of α7 nicotinic receptor, glutamate and oxidative stress.

    PubMed

    Mónaco, Nina María; Bartos, Mariana; Dominguez, Sergio; Gallegos, Cristina; Bras, Cristina; Esandi, María Del Carmen; Bouzat, Cecilia; Giannuzzi, Leda; Minetti, Alejandra; Gumilar, Fernanda

    2018-04-17

    Inorganic arsenic (iAs) is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Arsenic exposure has been associated to cognitive deficits. However, the underlying mechanisms remain unknown. In the present work we investigated in female adult offspring the effect of the exposure to low arsenite sodium levels through drinking water during pregnancy and lactation on short- and long-term memory. We also considered a possible underlying neurotoxic mechanism. Pregnant rats were exposed during pregnancy and lactation to environmentally relevant iAs concentrations (0.05 and 0.10 mg/L). In 90-day-old female offspring, short-term memory (STM) and long-term memory (LTM) were evaluated using a step-down inhibitory avoidance task. In addition, we evaluated the α7 nicotinic receptor7-nAChR) expression, the transaminases and the oxidative stress levels in hippocampus. The results showed that the exposure to 0.10 mg/L iAs in this critical period produced a significant impairment in the LTM retention. This behavioral alteration might be associated with several events that occur in the hippocampus: decrease in α7-nAChR expression, an increase of glutamate levels that may produce excitotoxicity, and a decrease in the antioxidant enzyme catalase (CAT) activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Nicotine Addiction and Psychiatric Disorders

    PubMed Central

    Kutlu, Munir Gunes; Parikh, Vinay; Gould, Thomas J.

    2017-01-01

    Even though smoking rates have long been on the decline, nicotine addiction still affects 20% of the US population today. Moreover, nicotine dependence shows high comorbidity with many mental illnesses including, but are not limited to, attention deficit hyperactivity disorder, anxiety disorders, and depression. The reason for the high rates of smoking in patients with mental illnesses may relate to attempts to self-medicate with nicotine. While nicotine may alleviate the symptoms of mental disorders, nicotine abstinence has been shown to worsen the symptoms of these disorders. In this chapter, we review the studies from animal and human research examining the bidirectional relationship between nicotine and attention deficit hyperactivity disorder, anxiety disorders, and depression as well as studies examining the roles of specific subunits of nicotinic acetylcholine receptors (nAChRs) in the interaction between nicotine and these mental illnesses. The results of these studies suggest that activation, desensitization, and upregulation of nAChRs modulate the effects of nicotine on mental illnesses. PMID:26472530

  2. β-Cryptoxanthin Reduced Lung Tumor Multiplicity and Inhibited Lung Cancer Cell Motility by Downregulating Nicotinic Acetylcholine Receptor α7 Signaling.

    PubMed

    Iskandar, Anita R; Miao, Benchun; Li, Xinli; Hu, Kang-Quan; Liu, Chun; Wang, Xiang-Dong

    2016-11-01

    Despite the consistent association between a higher intake of the provitamin A carotenoid β-cryptoxanthin (BCX) and a lower risk of lung cancer among smokers, potential mechanisms supporting BCX as a chemopreventive agent are needed. We first examined the effects of BCX on 4-[methyl nitrosamino]-1-[3-pyridyl]-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. BCX supplementation was given daily to the mice starting 2 weeks prior to the injection of NNK and continued 16 weeks after NNK injection. BCX supplementation resulted in a dose-dependent increase of BCX concentration in both serum and lungs of the mice without a significant alteration of vitamin A (retinol and retinyl palmitate) concentration. BCX significantly reduced the multiplicity of the NNK-induced lung tumor by 52% to 63% compared with the NNK-treated mice without BCX supplementation. The protective effect of BCX in the lungs was associated with reductions of both mRNA and protein of the homopentameric neuronal nicotinic acetylcholine receptor α77-nAChR), which has been implicated in lung tumorigenesis. We then conducted an in vitro cell culture study and found that BCX treatment suppressed α7-nAChR expression and inhibited the migration and invasion of α7-nAChR-positive lung cancer cells but not in cells lacking α7-nAChR. The activities of BCX were significantly attenuated by activators of α7-nAChR/PI3K signaling or by overexpression of constitutively active PI3K. Collectively, the results suggest that BCX inhibits lung tumorigenesis and cancer cell motility through the downregulation of α7-nAChR/PI3K signaling, independent of its provitamin A activity. Therefore, BCX can be used as a chemopreventive agent or a chemotherapeutic compound against lung cancer. Cancer Prev Res; 9(11); 875-86. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Effect of novel negative allosteric modulators of neuronal nicotinic receptors on cells expressing native and recombinant nicotinic receptors: implications for drug discovery.

    PubMed

    González-Cestari, Tatiana F; Henderson, Brandon J; Pavlovicz, Ryan E; McKay, Susan B; El-Hajj, Raed A; Pulipaka, Aravinda B; Orac, Crina M; Reed, Damon D; Boyd, R Thomas; Zhu, Michael X; Li, Chenglong; Bergmeier, Stephen C; McKay, Dennis B

    2009-02-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of alpha3beta4(*) nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant alpha3beta4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native alpha3beta4(*) nAChR, with IC(50) values ranging from 0.4 to 13.0 microM. Using cells expressing recombinant alpha3beta4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC(50) values ranging from 0.7 to 38.2 microM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 microM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery.

  4. Effect of Novel Negative Allosteric Modulators of Neuronal Nicotinic Receptors on Cells Expressing Native and Recombinant Nicotinic Receptors: Implications for Drug Discovery

    PubMed Central

    González-Cestari, Tatiana F.; Henderson, Brandon J.; Pavlovicz, Ryan E.; McKay, Susan B.; El-Hajj, Raed A.; Pulipaka, Aravinda B.; Orac, Crina M.; Reed, Damon D.; Boyd, R. Thomas; Zhu, Michael X.; Li, Chenglong; Bergmeier, Stephen C.; McKay, Dennis B.

    2009-01-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of α3β4* nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant α3β4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native α3β4* nAChR, with IC50 values ranging from 0.4 to 13.0 μM. Using cells expressing recombinant α3β4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC50 values ranging from 0.7 to 38.2 μM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 μM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery. PMID:18984653

  5. Nicotine inhibits potassium currents in Aplysia bag cell neurons

    PubMed Central

    White, Sean H.; Sturgeon, Raymond M.

    2016-01-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  6. Use of Nicotine in Electronic Nicotine and Non-Nicotine Delivery Systems by US Adults, 2015.

    PubMed

    Weaver, Scott R; Kemp, Catherine B; Heath, J Wesley; Pechacek, Terry F; Eriksen, Michael P

    Nicotine in electronic nicotine and non-nicotine delivery systems (ENDS/ENNDS) may present a risk of harm to those with cardiovascular disease and the fetuses of pregnant women. We assessed the extent to which adult users of ENDS/ENNDS used these products with nicotine. We obtained data for this study from a national probability survey of 6051 US adults that was conducted in August and September 2015. Of 399 adult ENDS/ENNDS users who were current smokers, 337 (80.7%) used ENDS/ENNDS containing nicotine, whereas only 29 of 71 (36.9%) ENDS/ENNDS users who were never smokers used ENDS/ENNDS containing nicotine. Assessments of the population health impact of ENDS/ENNDS use among never smokers should take into account the extent to which use involves nicotine.

  7. Determination of Nicotine Absorption from Multiple Tobacco Products and Nicotine Gum

    PubMed Central

    Digard, Helena; Proctor, Christopher; Kulasekaran, Anuradha; Malmqvist, Ulf

    2013-01-01

    Introduction: Snus is a smokeless tobacco product traditionally used in Scandinavia and available in pouched or loose forms. The objective of this study was to determine nicotine absorption for current pouched and loose snus products in comparison with a cigarette and an over-the-counter nicotine gum. Methods: We conducted an open-label, randomized, 6-way, crossover study involving 20 healthy snus and cigarette users. One of 6 products (2 pouched snus, 2 weights of loose snus, a cigarette, and a nicotine gum) was administered at each of 6 visits. Blood samples were taken at intervals over 120 min and sensory perception assessed by questionnaire. Results: For the 4 smokeless tobacco products and the nicotine gum, blood plasma levels of nicotine were ranked according to total nicotine content as follows: loose snus (27.1 mg nicotine) > pouched snus (14.7 mg nicotine) > loose snus (10.8 mg nicotine) = pouched snus (10.7 mg nicotine) > nicotine gum (4.2 mg nicotine). The area under the plasma concentration–time curve (AUC) and maximum plasma concentration (Cmax) of nicotine ranged from 26.9 to 13.1 ng.h/ml and 17.9 to 9.1 ng.h/ml, respectively across all the products. Nicotine was absorbed more rapidly from the cigarette but systemic exposure was within the range of the smokeless tobacco products (AUC = 14.8 ng.h/ml; Cmax = 12.8 ng.h/ml). Conclusions: This study has generated new information on comparative nicotine absorption from a cigarette, loose snus, and pouched snus typical of products sold in Scandinavia. The similar nicotine absorption for 1 g portions of loose and pouched snus with approximately 11 mg of nicotine indicate that absorption kinetics were dependent on quantity of tobacco by weight and total nicotine content rather than product form. PMID:22585541

  8. Systemic blockade of nicotinic and purinergic receptors inhibits ventilation and increases apnoea frequency in newborn rats.

    PubMed

    Niane, Lalah M; Joseph, Vincent; Bairam, Aida

    2012-08-01

    We hypothesized that the combined blockade of peripheral cholinergic and purinergic receptors alters the baseline breathing pattern and respiratory responses to carotid body stimuli (hypoxia, hyperoxia and hypercapnia). Rat pups at 4 (P4) and 12 days of postnatal age (P12) received an intraperitoneal injection of either saline vehicle or hexamethonium + suramin (Hex, 1 mg kg(-1), nicotinic receptor antagonist; Sur, 40 mg kg(-1), P2X receptor antagonist; both of which act mainly on peripheral receptors). Compared with the control animals (saline-injected rats), the Hex + Sur-treated rats demonstrated the following features: (1) decreased baseline ventilation and increased frequency of apnoea and breath-by-breath irregularities, with a larger effect in the P4 than in the P12 rats; (2) a decreased peak minute ventilation and respiratory frequency response to hypoxia (fractional inspired oxygen 12%), with a greater effect in the P12 than in the P4 rats; (3) an attenuated decline of the respiratory frequency during hyperoxia (fractional inspired oxygen 50%) to a similar magnitude in rats of both ages; and (4) a decreased hypercapnic ventilatory response (fractional inspired carbon dioxide 5%) to a similar magnitude in rats of both ages. We conclude that the cholinergic nicotinic and purinergic P2X receptors are essential to maintain an adequate baseline pattern in normoxia. They also contribute, albeit not exclusively, to the hypoxic ventilatory response, with an age-specific effect, most probably linked to the cholinergic component, which might partly underlie the postnatal maturation of peripheral chemoreceptors.

  9. Altered activity-rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the β2 nicotinic receptor

    PubMed Central

    Xu, Jian; Cohen, Bruce N.; Zhu, Yongling; Dziewczapolski, Gustavo; Panda, Satchidananda; Lester, Henry A.; Heinemann, Stephen F.; Contractor, Anis

    2010-01-01

    High-affinity nicotinic receptors containing beta2 subunits (β2*) are widely expressed in the brain, modulating many neuronal processes and contributing to neuropathologies such as Alzheimer’s disease, Parkinson’s disease and epilepsy. Mutations in both the α4 and β2 subunits are associated with a rare partial epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Here we introduced one such human missense mutation into the mouse genome to generate a knock-in strain carrying a valine-to-leucine mutation β2V287L.β2V287L mice were viable and born at an expected Mendelian ratio. Surprisingly, mice did not display an overt seizure phenotype; however homozygous mice did display significant alterations in their activity-rest patterns. This was manifest as an increase in activity during the light cycle suggestive of disturbances in the normal sleep patterns of mice; a parallel phenotype to that found in human ADNFLE patients. Consistent with the role of nicotinic receptors in reward pathways, we found that β2V287L mice did not develop a normal proclivity to voluntary wheel running, a model for natural reward. Anxiety-related behaviors were also affected by the V287L mutation. Mutant mice spent more time in the open arms on the elevated plus maze (EPM) suggesting that they had reduced levels of anxiety. Together, these findings emphasize several important roles of β2* nicotinic receptors in complex biological processes including the activity-rest cycle, natural reward, and anxiety. PMID:20603624

  10. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.

    2010-05-01

    Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca{sup 2+} increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibitedmore » the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC{sub 50} values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca{sup 2+} release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca{sup 2+} levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor

  11. From the Cover: Prenatal Nicotinic Exposure Attenuates Respiratory Chemoreflexes Associated With Downregulation of Tyrosine Hydroxylase and Neurokinin 1 Receptor in Rat Pup Carotid Body.

    PubMed

    Zhao, Lei; Zhuang, Jianguo; Gao, Xiuping; Ye, Chunyan; Lee, Lu-Yuan; Xu, Fadi

    2016-09-01

    Maternal cigarette smoke is the major risk of sudden infant death syndrome (SIDS). A depressed ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) is thought to be responsible for the pathogenesis of SIDS and the carotid body is critically involved in these responses. We have recently reported that prenatal nicotinic exposure (PNE) over the full gestation induces depressed HVR in rat pups. Here, we asked whether PNE (1) depressed not only HVR but also HCVR that were dependent on the carotid body, (2) affected some important receptors and neurochemicals expressed in the carotid body, such as tyrosine hydroxylase (TH), neurokinin-1 receptor (NK1R), and α7 nicotinic acetylcholine receptor7nAChR), and (3) blunted the ventilatory responses to activation of these receptors. To this end, HVR and HCVR in Ctrl and PNE pups were measured with plethysmography before and after carotid body ablation (Series I), mRNA expression and/or immunoreactivity (IR) of TH, NK1R, and α7nAChR in the carotid body were examined by RT-PCR and immunohistochemistry (Series II), and the ventilatory responses were tested before and after intracarotid injection of substance P (NK1R agonist) and AR-R17779 (α7nAChR agonist) (Series III). Our results showed that PNE (1) significantly depressed both HVR and HCVR and these depressions were abolished by carotid body ablation, (2) reduced the relative population of glomus cells, mRNA NK1R, and α7nAChR and IR of NK1R and TH in the carotid body, and (3) decreased ventilatory responses to intracarotid injection of substance P or AR-R17779. These results suggest that PNE acting via the carotid body could strikingly blunt HVR and HCVR, likely through downregulating TH and NK1R. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx

    PubMed Central

    Kichko, Tatjana I.; Kobal, Gerd

    2015-01-01

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1−/− and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1−/− and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research. PMID:26472811

  13. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons.

    PubMed

    Albers, Kathryn M; Zhang, Xiu Lin; Diges, Charlotte M; Schwartz, Erica S; Yang, Charles I; Davis, Brian M; Gold, Michael S

    2014-05-22

    Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund's adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. These findings suggest that Artn

  14. Evaluation of Nicotine Pharmacokinetics and Subjective Effects following Use of a Novel Nicotine Delivery System.

    PubMed

    Teichert, Axel; Brossard, Patrick; Felber Medlin, Loyse; Sandalic, Larissa; Franzon, Mikael; Wynne, Chris; Laugesen, Murray; Lüdicke, Frank

    2018-03-06

    Novel nicotine delivery systems represent an evolving part of the tobacco harm reduction strategy. The pharmacokinetic (PK) profile of nicotine delivered by P3L, a pulmonary nicotine delivery system, and its effects on smoking urges and craving relief in relation to Nicorette inhalator were evaluated. This open-label, ascending nicotine levels study was conducted in 16 healthy smokers. Three different nicotine delivery levels, 50, 80, and 150 µg/puff, delivered by the P3L system were evaluated consecutively on different days after the use of the Nicorette inhalator. Venous nicotine PK, subjective effects, and tolerability were assessed. Geometric least-squares means for maximum plasma nicotine concentration (Cmax), generated by the mixed-effect model for exposure comparison, were 9.7, 11.2, and 9.8 ng/mL for the 50, 80, and 150 µg/puff P3L variants, respectively, compared to 6.1 ng/mL after Nicorette inhalator use. Median time from product use start to Cmax was 7.0 minutes for all P3L, compared to 30.0 minutes for the Nicorette inhalator. Craving reduction was slightly faster than with the Nicorette inhalator as assessed with the visual analog scale craving score. The mean Questionnaire of Smoking Urges -brief total scores did not differ for both products. P3L was well tolerated. At all three nicotine levels tested, the inhalation of the nicotine lactate aerosol delivered with the P3L provided plasma nicotine concentrations higher and faster compared to the Nicorette inhalator. The plasma nicotine concentration-time profile supports a pulmonary route of absorption for P3L compared to the oromucosal absorption of the Nicorette inhalator. The combination of nicotine and lactic acid with the P3L device shows potential over existing nicotine delivery systems by delivering nicotine with kinetics close to published data on conventional cigarettes and without exogenous carrier substances as used in current electronic nicotine delivery systems. Altogether, the PK profile

  15. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    PubMed

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  16. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals.

    PubMed

    Callahan, Patrick M; Bertrand, Daniel; Bertrand, Sonia; Plagenhoef, Marc R; Terry, Alvin V

    2017-05-01

    Tropisetron, a 5-HT 3 receptor antagonist commonly prescribed for chemotherapy-induced nausea and vomiting also exhibits high affinity, partial agonist activity at α7 nicotinic acetylcholine receptors7 nAChRs). α7 nAChRs are considered viable therapeutic targets for neuropsychiatric disorders such as Alzheimer's disease (AD). Here we further explored the nAChR pharmacology of tropisetron to include the homomeric α7 nAChR and recently characterized heteromeric α7β2 nAChR (1:10 ratio) and we evaluated its cognitive effects in young and aged animals. Electrophysiological studies on human nAChRs expressed in Xenopus oocytes confirmed the partial agonist activity of tropisetron at α7 nAChRs (EC 50 ∼2.4 μM) with a similar effect at α7β2 nAChRs (EC 50 ∼1.5 μM). Moreover, currents evoked by irregular pulses of acetylcholine (40 μM) at α7 and α7β2 nAChRs were enhanced during sustained exposure to low concentrations of tropisetron (10 and 30 nM) indicative of a "priming" or co-agonist effect. Tropisetron (0.1-10 mg/kg) improved novel object recognition performance in young Sprague-Dawley rats and in aged Fischer rats. In aged male and female rhesus monkeys, tropisetron (0.03-1 mg/kg) produced a 17% increase from baseline levels in delayed match to sample long delay accuracy while combination of non-effective doses of donepezil (0.1 mg/kg) and tropisetron (0.03 and 0.1 mg/kg) produced a 24% change in accuracy. Collectively, these animal experiments indicate that tropisetron enhances cognition and has the ability to improve the effective dose range of currently prescribed AD therapy (donepezil). Moreover, these effects may be explained by tropisetron's ability to sensitize α7 containing nAChRs to low levels of acetylcholine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons.

    PubMed

    Wu, Min; Hajszan, Tibor; Leranth, Csaba; Alreja, Meenakshi

    2003-09-01

    Tonic impulse flow in the septohippocampal GABAergic pathway is essential for normal cognitive functioning and is sustained, in part, by acetylcholine (ACh) that is released locally via axon collaterals of septohippocampal cholinergic neurons. Septohippocampal cholinergic neurons degenerate in Alzheimer's disease and other neurodegenerative disorders. While the importance of the muscarinic effects of ACh on septohippocampal GABAergic neurons is well recognized, the nicotinic effects of ACh remain unstudied despite the reported benefits of nicotine on cognitive functioning. In the present study, using electrophysiological recordings in a rat brain slice preparation, rapid applications of nicotine excited 90% of retrogradely labelled septohippocampal GABA-type neurons with an EC50 of 17 microm and increased the frequency of spontaneously occurring, impulse-dependent fast GABAergic and glutamatergic synaptic currents via the alpha4beta2-nicotinic receptor. Interestingly, tetrodotoxin blocked all effects of nicotine on septohippocampal GABAergic type neurons, suggesting involvement of indirect mechanisms. We demonstrate that the effects of nicotine on septohippocampal GABA-type neurons involve recruitment of a novel, local glutamatergic circuitry as (i). Group I metabotropic glutamatergic receptor antagonists reduced the effects of nicotine; (ii). the number of nicotine responsive neurons was significantly reduced in recordings from slices that had been trimmed so as to reduce the number of glutamate-containing neurons within the slice preparation; (iii). in light and ultrastructural double immunocytochemical labelling studies vesicular glutamate 2 transporter immunoreactive terminals made synaptic contacts with parvalbumin-immunoreactive septohippocampal GABAergic neurons. The discovery of a local glutamatergic circuit within the septum may provide another avenue for restoring septohippocampal GABAergic functions in neurodegenerative disorders associated with a loss

  18. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  19. Specific α7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF-β1/Smad3 pathway.

    PubMed

    Yang, Yong-Hua; Fang, Huan-Le; Zhao, Ming; Wei, Xiang-Lan; Zhang, Ning; Wang, Shun; Lu, Yi; Yu, Xiao-Jiang; Sun, Lei; He, Xi; Li, Dong-Ling; Liu, Jin-Jun; Zang, Wei-Jin

    2017-12-01

    It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor β1 (TGF-β1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-β1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-β1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases. © 2017 John Wiley & Sons Australia, Ltd.

  20. AZD3480, a novel nicotinic receptor agonist, for the treatment of attention-deficit/hyperactivity disorder in adults.

    PubMed

    Potter, Alexandra S; Dunbar, Geoffrey; Mazzulla, Emily; Hosford, David; Newhouse, Paul A

    2014-02-01

    Laboratory studies have found that acute stimulation of nicotinic acetylcholine receptors improves cognition in adult attention-deficit/hyperactivity disorder (ADHD). Clinical trials of nicotinic agonists have been mixed, underscoring the need to understand the mechanisms for individual differences in clinical response. Using cognitive models within a clinical trial framework may provide insight into these differences. This was a within-subjects, randomized, placebo-controlled double-blind trial of the nicotinic agonist AZD3480 (also termed TC-1734) at doses of 5 mg and 50 mg and placebo in adults with ADHD. The order of the 2-week treatment periods was randomized, and a 3-week wash out separated each drug treatment period. Response inhibition (Stop Signal Task [SST]) and clinical efficacy (Investigator Rated Conners Adult ADHD Rating Scale [CAARS-INV]) were the a priori primary outcome measures of cognitive and clinical effects. We hypothesized that AZD3480 treatment would improve SST performance and clinical symptoms (CAARS-INV Total ADHD Symptoms Score). Thirty subjects were randomized, with 24 included in the intent-to-treat analyses. SST performance and total ADHD symptoms were significantly improved with 50 mg of AZD3480. CAARS-INV ratings of inattention, memory problems, and emotional lability/impulsivity were significantly improved with 50 mg of AZD3480. These results support previous work suggesting that nicotinic agonists are viable as treatments for adult ADHD. Measuring cognitive endophenotypes related to both the disorder and mechanism of treatment may help further rational drug development for dimensional features that cross-cut psychiatric disorders. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.